
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Minimum Convex Container of Two Convex Polytopes under Translations∗

Hee-Kap Ahn† Sang Won Bae‡ Otfried Cheong§ Dongwoo Park† Chan-Su Shin¶

Abstract

Given two convex d-polytopes P and Q in Rd for d ≥ 3,
we study the problem of bundling P and Q in a smallest
convex container. More precisely, our problem asks to
find a minimum convex set containing P and Q that
are in contact under translations. For dimension d = 3,
we present the first exact algorithm that runs in O(n3)
time, where n denotes the number of vertices of P and
Q. Our approach easily extends to any higher dimension
d > 3, resulting in the first exact algorithm.

1 Introduction

Given two convex d-polytopes P and Q in a d-
dimensional space for some constant d ≥ 3, we study
the problem of bundling them under translations. More
precisely, the problem asks to find a translation vec-
tor t ∈ Rd of Q that minimizes the volume or the
surface area of the convex hull of P ∪ Qt under the
restriction that their interiors remain disjoint, where
Qt = {q + t | q ∈ Q}.

For two convex polygons in the plane, Lee and Woo
showed that the area and perimeter can be minimized in
O(n) time [10], where n denotes the number of vertices
of P and Q. Research towards bundling more than two
polygons would be one very natural direction after Lee
and Woo. If one allows the problem to take the number
of polygons as part of input, it is NP-hard, even if the
input polygons are rectangles by a reduction from the
Partition problem [6]. Very recently, Ahn et al. [1] con-
sidered the bundling problem with three convex poly-
gons with n vertices in total in the plane and showed
that the complexity of the configuration space is O(n2)
and an optimal solution can be computed in O(n2) time.

∗The work by H.-K. Ahn and D. Park was supported by
the National Research Foundation of Korea(NRF) grant funded
by the Korea government (MSIP) (No. 2011-0030044 and No.
2013K2A2A4003667). The work by S.W. Bae was supported by
Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (2013R1A1A1A05006927).
†Dept. Computer Science and Engineering, POSTECH, South

Korea. {heekap,dwpark}@postech.ac.kr
‡Dept. Computer Science, Kyonggi University, South Korea.

swbae@kgu.ac.kr
§Dept. Computer Science, KAIST, South Korea.

otfried@kaist.edu
¶Dept. Digital and Information Engineering, Hankuk Univer-

sity of Foreign Studies, Yongin, South Korea. cssin@hufs.ac.kr

Another direction of research naturally takes exten-
sion towards higher dimension into account, which is of
our interest in this paper. To the best of our knowledge,
for dimension d ≥ 3 there is no known exact algorithm
that finds a minimum convex set that can contain two
given polytopes P and Q under translations without
overlap between their interiors. Ahn et al. [2] considered
the problem of minimizing the volume of the convex hull
of two convex polytopes under translations for dimen-
sion d > 3 where the polytopes are allowed to freely
overlap. They presented an algorithm that computes
the optimal translation in O(nd+1− 3

d logd+1 n) expected
time, where n is the total complexity of P and Q.

A special case of this problem, called a packing prob-
lem, has been studied in the literature, where the shape
of the container is predetermined. Then the problem
becomes to find a minimum size container of the given
shape into which input objects can be placed. In most
cases, the containers are simple convex figures such as
rectangles and circles, and input objects are polygons
in the plane. Milenkovic [11] gave a O(nk−1 log n) time
algorithm for packing k convex n-gons into a minimum
area axis-parallel rectangle. Alt and Hurtado [4] pre-
sented a near-linear time algorithm for packing two con-
vex polygons into a minimum area or perimeter rectan-
gle. Sugihara et al. [13] considered a circle container
enclosing a set of input disks in the plane, and gave a
“shake-and-shrink” algorithm that shakes the disks and
shrinks the enclosing circle step by step.

In this paper, we consider the bundling problem of
two convex d-polytopes with n vertices in total in di-
mension d > 3 where input polytopes are restricted to
be in contact under translation. We give an algorithm
with running time O(n3) for d = 3 to find a transla-
tion vector t∗ that attains the minimum volume or sur-
face area of the convex hull of P ∪Qt∗ . Our algorithm
constructs an arrangement in our translation space and
evaluates the volume or surface area function on each
cell of the arrangement. Our approach extends to any
fixed dimension d > 3, yielding a first exact algorithm
with running time O(nd+b

d
2 c(d−3)).

2 Preliminaries

For any subset A ⊆ Rd, let bd(A) be the boundary of A
and conv(A) the convex hull of A. We denote by |A| and
‖A‖ the surface area and the volume of A, respectively,
when both are well defined for A.

26th Canadian Conference on Computational Geometry, 2014

Let P and Q be convex d-polytopes in Rd and n de-
note the number of vertices of P and Q in total. With-
out loss of generality, we assume that P is stationary
and only Q can be translated by vectors t ∈ Rd. We
denote by Qt the translate of Q by t ∈ Rd, that is,
Qt = {q + t | q ∈ Q}.

Let vol(t) = ‖ conv(P ∪Qt)‖ and surf(t) = | conv(P ∪
Qt)|. Once t is fixed and the description of conv(P ∪Qt)
is identified, we can evaluate vol(t) and surf(t) in time
linear to the complexity of conv(P ∪Qt).

Ahn et al. [2] showed that the function vol(t) is con-
vex on the whole domain Rd. The convexity of the func-
tion surf(t) was proved by Ahn and Cheong [3] for 2-
dimensional case only, but their argument can easily be
extended to higher dimensions by using the Cauchy’s
surface area formula for a compact convex subset (See
Theorem 5.5.2 in [9]).

For our problem where no overlap between two poly-
topes is allowed, one might conjecture that there should
be an optimal solution such that the two polytopes are
in contact with each other. Much to our surprise, this
is not always the case. Figure 1 illustrates an exam-
ple of two polytopes P and Q such that their convex
hull volume is minimized when they are apart. In the
example, P is the polytope defined by the common in-
tersection of conv(aa′∪bb′) and the halfspace z 6 20−ε
for small ε > 0, and Q is just the segment bb′. Then,
the convex hull of P and Q forms a tetrahedron which is
conv(aa′∪bb′). Imagine that Q translates slightly in −z
direction. Then the convex hull loses volume by points
leaving the convex hull through the faces conv(bb′∪ qq′)
and conv(bb′ ∪ pp′), but it gains much larger volume
by points entering the convex hull through the faces
conv({b}∪ aa′) and conv({b′}∪ aa′). Similarly, one can
check that the convex hull volume strictly increases if
Q translates in any direction from the placement de-
picted in Figure 1. Note that this construction can be
extended to dimensions higher than 3.

b = (0, 10, 20)

b′ = (0,−10, 20)

a′ = (10, 0, 0)a = (−10, 0, 0)

p = (ε/2, 10− ε/2, 20− ε)

p′ = (ε/2,−10 + ε/2, 20− ε)

(−ε/2, 10− ε/2, 20− ε) = q

(−ε/2,−10 + ε/2, 20− ε) = q′

Figure 1: An example of two polytopes P and Q such
that the optimal solution make them apart.

As discussed above, the objective functions vol(t) and

surf(t) are convex over t ∈ Rd. Thus, if t∗ is an optimal
solution for our problem without overlap, then either P
and Qt∗ are apart (in this case, t∗ minimizes vol(t) or
surf(t) over the whole domain Rd), or P and Qt∗ are
in contact. The former case, which is also the case of
Figure 1, can be handled by algorithms for minimizing
the volume function vol(t) when overlap is allowed [2].
While not mentioned in the paper, the same algorithm
works for minimizing the surface area function surf(t).

In this paper, therefore, we focus on the problem
where two polytopes are supposed to be in contact with
each other. That is, we wish to minimize the volume or
the surface area of the convex hull under the restriction
that the two polytopes are in contact.

Representing the configuration space. Without loss
of generality, we assume that Q contains the origin. Let
r be a point of Q that corresponds to the origin, and
we call it the reference point of Q. Then the translation
of Q is specified by the location of the reference point.
Imagine that we slide Q along the boundary of P over
all possible translations t such that P and Qt are in
contact. Then, the trajectories of r form the boundary
of the Minkowski difference, denoted by P⊕(−Q), where
⊕ denotes the Minkowski sum and−Q denotes the point
reflection of Q with respect to the origin, which is well
known in motion planning [7]. Since our polytopes are
convex, we have the following lemma.

Lemma 1 The set of trajectories of the reference point
r of Q over all translations t such that P and Qt are in
contact forms the boundary of P ⊕ (−Q).

In our problem, we restrict the two polytopes P and Q
to be in contact, and thus the set of all such translations
determines the space of all configurations. Lemma 1
suggests that the configuration space K should be de-
fined as the boundary of P ⊕ (−Q).

Since P and Q are convex, computing the configu-
ration space K = bd(P ⊕ (−Q)) for P and Q, and
consequently specifying all the faces of K can be done
efficiently by a lifting technique, called the Cayley
trick. This concept starts by introducing the weighted
Minkowski sum (1 − λ)P1 ⊕ λP2 of two convex d-
polytopes P1 and P2 for 0 6 λ 6 1. The Cayley trick
then lifts P1 and P2 in a space of one dimension higher
with a (d + 1)-th coordinate xd+1: P1 is embedded in
the hyperplane {xd+1 = 0} and P2 in {xd+1 = 1}. To
obtain the weighted Minkowski sum of P1 and P2 at any
λ, one can just compute the convex hull conv(P1 ∪ P2)
in Rd+1 and cut it through the hyperplane {xd+1 = λ}.
It is easy to see that the Minkowski sum P1⊕P2 is just
a scaled copy of the cut with λ = 1

2 . We refer to Huber
et al. [8] for more details regarding the Cayley trick.

Note that the convex hull conv(P1∪P2) of P1 and P2

in Rd+1 coincides with the convex hull of the vertices of

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

P1 and P2. Since the complexity of P1 ⊕ P2 does not
exceed that of the convex hull conv(P1∪P2), we have the

upper bound O((n1+n2)b
d+1
2 c) on the complexity of the

Minkowski sum P1⊕P2 of two convex d-polytopes [12],
where n1 and n2 denote the number of vertices of P1

and P2, respectively. Computing P1 ⊕ P2 can be done

in O((n1 +n2) log(n1 +n2)+(n1 +n2)b
d+1
2 c) time [5] for

any fixed d ≥ 2. Using this in our configuration space
K yields the following.

Lemma 2 Let P and Q be convex d-polytopes with n
vertices in total for any fixed d > 2. The configu-
ration space K = bd(P ⊕ (−Q)) for P and Q has

O(nb
d+1
2 c) combinatorial complexity and can be com-

puted in O(n log n+ nb
d+1
2 c) time.

In the following sections, we introduce a decomposi-
tion of the configuration space K and describe a com-
plete algorithm, mainly for dimension d = 3. This will
lead to a direct extension to higher dimension for d > 3.

3 Subdividing the Configuration Space

In this section, we assume d = 3. For any translation
t ∈ K, P and Qt are in contact, more precisely, with
contact between a vertex, edge, or facet f of P and a
vertex, edge, or facet g of Q. We call the pair (f, g)
the contact pair at translation t ∈ K, denoted by C(t).
Our approach is to subdivide the configuration space K
into cells so that the contact pair and the convex hull
structure of the polytopes do not change within each
cell. We then obtain an expression for the volume or
surface area function for the convex hull in each cell,
and compute its minimum.

By Lemmas 1 and 2, we know that the configuration
space K = bd(P ⊕ (−Q)) describes all possible trans-
lation vectors and can be constructed in O(n2) time
for d = 3. In the following, we further investigate the
structure of the configuration space K to understand the
correspondence between its faces and the contact pair
that corresponds to a translation.

Imagine that Q translates around P over all possible
ways, keeping in contact with each other. This motion
is piecewise linear: For any face a of P and face b of
Q, let σa,b ⊂ K denote the set of translations t such
that the contact pair C(t) = (a, b). In the following,
we discuss only the case where σa,b 6= ∅. (1) When
a is a facet and b is a vertex, σa,b forms a polygon,
which is in fact a translate of a. See (f, u) in Figure 2.
When a is a vertex and b is a facet, then σa,b forms a
polygon which is a translate of the point reflection of
b. See (v′, g) in Figure 2. More importantly, observe
that σa,b = a⊕ (−b) forms a facet (or 2-face) of K. (2)
When both a and b are edges, the subset σa,b forms a
parallelogram a⊕(−b) that is a facet of K. See (vv′, uu′)
in Figure 2. (3) When a is a vertex and b is an edge,

u

v
v′

f

u′

(f, u)

(vv′, uu′)

P
Q

(v, u)

(vv′, u′)

g

(v′, g)

Figure 2: Contact pairs between P and Q, and the con-
figuration space K. Each of vertex-facet pairs, (f, u)
and (v′, g), defines a facet, an edge-edge pair (vv′, uu′)
defines a facet, a vertex-edge pair (vv′, u′) defines an
edge, and a vertex-vertex pair (v, u) defines a vertex in
the configuration space K.

σa,b forms a line segment that is a translate of −b by
translation vector a. When a is an edge and b is a vertex,
σa,b forms a line segment that is a translate of a. See
(vv′, u′) in Figure 2. In this case, σa,b forms an edge of
K. (4) When both a and b are vertices, σa,b is a point
a− b, which is a vertex of K. See (v, u) in Figure 2.

These observations are summarized as follows.

Lemma 3 Each face (of any dimension) of the config-
uration space K corresponds to the set of translations t
such that the contact pair C(t) remains the same.

Hull event planes and horizons. In addition, we have
to handle changes in the combinatorial structure of the
convex hull conv(P∪Qt) while t continuously varies over
K. A change in the structure of the convex hull implies
such a motion that a vertex of P and Q either sticks
out conv(P ∪ Qt) from inside or sinks into conv(P ∪
Qt) from its boundary. In either case, such a change
corresponds to a degenerate scene in which Qt touches
the supporting plane of a facet f of P in the same side
where P lies. For a facet f of P , consider the set Πf

of all translation vectors t ∈ R3 that make such a scene
described as above. Since a unique vertex of Qt must
lie on the supporting plane of f for all t ∈ Πf this
set Πf forms a plane in the space R3. We then define
hf := Hf ∩ K. We call Πf a hull event (hyper)plane
and hf a hull event horizon. Each t ∈ hf is called a hull
event. The same discussion also holds for any facet of
Q. A proof of the following lemma can be found in the
full version of the paper.

Lemma 4 For any facet f of P or Q, the hull event
horizon hf forms a closed polygonal curve on K con-
sisting of O(n2) line segments.

Now, we consider the subdivision A of K induced by
hf for all facets f of P and Q. Observe that for each cell

26th Canadian Conference on Computational Geometry, 2014

σ of A, the structure of the convex hull conv(P ∪ Qt)
for all t ∈ σ does not change since we need to cross at
least one hull event horizon in order to have a structural
change of conv(P ∪ Qt). Together with the faces of
K, A produces new faces by subdividing faces of K.
Since all the hull event horizons are polygonal on K,
we regard A as another convex polytope with parallel
facets and edges. Together with Lemma 3, we conclude
the following.

Lemma 5 Let σ be a face of A (of any dimension).
Then, both the contact pair C(t) and the structure of the
convex hull conv(P ∪Qt) stay constant over all t ∈ σ.

We now bound the complexity of A with help of the
following observation.

Lemma 6 Any two hull event horizons hf and hg for
facets f and g cross at most twice.

Since there are O(n) facets of P and Q in total, Lem-
mas 4 and 6 imply an immediate upper bound O(n3)
on the complexity of A.

Lemma 7 The polytope A consists of O(n3) faces (ver-
tices, edges, and facets).

This bound O(n3) seems easy and improvable, but it
is shown to be tight in the worst case.

Tight lower bound construction for A. Figure 3 il-
lustrates an instance of two polytopes which make Ω(n)
closed polygonal curves each of which consists of Ω(n2)
line segments. Let us describe how to construct two
polytopes P and Q more precisely. Figure 3(a) illus-
trates Q viewed at approximately 7 times magnification.
It looks like an “axe” whose head is the segment uu′ and
blade is the polygonal chain marked as thick segments in
the figure. The polytope P is illustrated in Figure 3(b),
which can be described as the convex hull of a folding
fan with rotating center (pivot) at c and the zigzag edges
(thick segments) along its tip. Then we could see that
every blade edge constitutes an edge-edge contact pair
with each zigzag edge as the blade chain is turning dully.
Figure 3(c) shows the configuration space K for P and
Q, which has Ω(n2) parallelogram facets corresponding
to those edge-edge contact pairs.

Note now that all front facets incident to c have al-
most the same slope, and all back facets incident to c
have almost the same slope. Consider the hull event
horizon hf for a front facet f incident to c. Imagine
the motion of Qt (in the original scale) as t moves along
hf . Then during this motion, the vertex u′′ of Q should
lie on the supporting plane of f , and each zigzag edge
of P sweeps over all the blade edges of Q, resulting in
Ω(n2) crossings with parallelogram facets of K. See a
blue curve in Figure 3(d). Similarly, for any other front

and back facet f ′, the motion of Qt along t ∈ hf ′ re-
sults in Ω(n2) crossings over the parallelogram facets of
K. Therefore, the subdivision A of K has Ω(n3) com-
plexity.

(a) (b)

(c) (d)

u′

u

c

u′′

Figure 3: A construction of two polytopes P and Q such
that each hull event horizon crosses Ω(n2) facets of K.
(a) Polytope Q (at 7 times magnification). (b) Polytope
P . (c) P ⊕ (−Q) whose boundary is K. (d) Four hull
event horizons (blue) are drawn on K. Each of them
crosses Ω(n2) facets of K.

4 Algorithm

In this section, we describe our algorithm, in particular,
for dimension d = 3 case. Given two convex 3-polytopes
P and Q with n vertices in total, our algorithm runs
with three stages:

(i) Compute the configuration space K.
(ii) Compute the subdivision A of the faces of K.
(iii) For each face σ of A, minimize the volume vol(t)

or surface area surf(t) over t ∈ σ.

This basically optimizes our objective function over the
whole configuration space K. Thus, the correctness of
our algorithm directly follows. In the following, we de-
scribe each stage in more details.

Stage (i) can be done by computing the Minkowski
sum P ⊕ (−Q), which takes O(n2) time as described in
Lemma 2. Recall that K consists of O(n2) faces.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

In Stage (ii), we repeatedly insert every hull event
horizon hf into K; that is, we cut those faces of K
crossed by hf and produce new faces. Let Ai be the
resulting subdivision after the i-th insertion of event
hull horizon, so K = A0 and A = Am, where m = O(n)
denotes the number of facets of P and Q. At the i-th
insertion, let hf be the horizon to be inserted. We then
compute the corresponding hull event plane Πf and in-
tersect it with Ki−1 by tracing hf and specifying those
faces of Ki−1 crossed by hf . This process can be done
in time proportional to the number of faces of Ki−1
crossed by hf , which is bounded by O(n2 + i) by Lem-
mas 4 and 6. Summing this bound over all i = 1, . . . ,m
results in O(mn2 +m2) = O(n3).

Stage (iii) performs actual optimization process for
each face σ of A. By Lemma 5, we know that restricting
our objective function in each face σ of A guarantees
no change in the contact pair C(t) and the structure
of the convex hull over t ∈ σ. This means that every
vertex of conv(P ∪ Qt) can be represented by a linear
function of t, and conv(P ∪Qt) can be triangulated into
the same family of tetrahedra in the following way: (1)
Triangulate each facet of conv(P ∪ Qt) if it is not a
triangle. (2) choose a point c in the interior of P and
connect c to all the vertices of conv(P ∪Qt).

Let Tσ be the set of those triangles on bd(conv(P ∪
Qt)) obtained at Step (1). Also, for each triangle
4 ∈ Tσ, let 4+ be the tetrahedron with base 4 and
apex c. Since P is stationary as assumed, c is fixed
and the vertices of each triangle 4 ∈ Tσ are linear
functions of t on σ, so we write 4(t) and 4+(t) as
functions of t ∈ σ to denote the geometric triangle
and tetrahedron for any fixed t ∈ σ. Observe that
vol(t) =

∑
4∈Tσ ‖4+(t)‖ and surf(t) =

∑
4∈Tσ |4(t)|.

The volume of a tetrahedron is represented by a cubic
polynomial in the coordinates of its vertices, and the
area of a triangle by a quadratic polynomial. That is,
in a face σ of A, the volume and surface area func-
tions are represented by a polynomial of degree three or
two, which can be minimized in O(1) time after having
its explicit formula in O(card(Tσ)) = O(n) time, where
card(Tσ) is the cardinality of Tσ. Hence, O(n) time is
sufficient for each face of A to minimize vol(t) or surf(t).
This implies an O(n4) time algorithm since A consists
of O(n3) faces.

Below, we will show that we can do this task in O(1)
average time per each face σ of A by exploiting coher-
ence between adjacent facets.

Exploiting coherence Let σ and σ′ be two adjacent
facets of A, sharing an edge e. Assume that we have
processed σ and we are going to process σ′. We maintain
Tσ and all formulas representing |4(t)| and ‖4+(t)‖
for each 4 ∈ Tσ and their sums (which are surf(t) and
vol(t)). In order to efficiently process the next facet σ′,

we need to update these invariants. We have two cases
here: the edge e is either a portion of an edge of K or a
portion of a hull event horizon hf for some facet f of P
or of Q.

For the former case, we have Tσ′ = Tσ, but the
coordinates of the vertices of conv(P ∪ Qt) should be
changed since the contact pair C(t) will be changed by
Lemma 3. This causes changes in all formulas for |4(t)|
and ‖4+(t)‖ for 4 ∈ Tσ′ . Thus, in this case, we spend
O(n) time because Tσ consists of O(n) triangles.

For the latter case, where e is a portion of a hull event
horizon hf for some facet f of P or Q, σ and σ′ belong
to a common facet of K. Thus, the contact pair C(t)
does not change over σ ∪ σ′, while the triangulations
Tσ and Tσ′ differ. Note that for 4 ∈ Tσ ∩ Tσ′ , the
formulas for |4(t)| and ‖4+(t)‖ remain the same over
t ∈ σ ∪ σ′. Thus, in this case, we are more interested in
those triangles 4 in the symmetric difference between
Tσ and Tσ′ , denoted by Te. Since e ⊂ hf , for any t ∈ e,
the position of P and Qt implies a degenerate scene such
that a vertex u of P or Q lies on the supporting plane
of f . As t moves into σ′ or into σ, the triangles on
f disappear and the triangles determined by each edge
incident to f and vertex u appear. This implies that
the number of triangles in the symmetric difference Te
does not exceed twice the number of edges incident to
facet f . In order to maintain our invariants, we are done
by specifying all appearing and disappearing triangles
4 ∈ Te and then updating the formulas for the volume
or surface area. This can be done in O(Nf) time, where
Nf denotes the number of edges incident to f .

To conclude our main result, we need the following
lemma, whose proof can be found in the full version of
the paper.

Lemma 8 The total number of triangles in Te over all
edges e of A that are portions of some hull event horizon
is bounded by O(n2 ·∑f Nf) = O(n3).

We are now ready to describe Stage (iii) of our algo-
rithm. We traverse all facets of A from an arbitrary ini-
tial facet σ0. For the first time, we compute conv(P∪Qt)
for some t ∈ σ0 and all the invariants from scratch in
O(n2) time. We then minimize our objective function
vol(t) or surf(t) over t ∈ σ0. As we move on to the next
facet σ′ from the current facet σ, we update our invari-
ants as described above, according to the type of the
edge e between σ and σ′, and then minimize the objec-
tive function. Repeat this procedure until we traverse
all the facets of A.

By a standard traverse, such as the depth first search,
we do not cross the same edge more than twice. This im-
plies that the total cost of crossing edges that come from
hull event horizons is not more than O(n3) by Lemma 8.
Moreover, if we take a little smarter traverse order, then
we can bound the number of crossed edges that are por-
tions of edges of K by O(n2). Since each edge crossing

26th Canadian Conference on Computational Geometry, 2014

of this type costs O(n) time, we finally bound the total
cost of update by O(n3) time.

We finally conclude the following theorem.

Theorem 9 Given two convex 3-polytopes P and Q
with n vertices in total, a minimum convex container
bundling P and Q under translations without overlap
can be computed in O(n3) time with respect to volume
or surface area.

5 Extension to Higher Dimensions

Our approach applied to dimension d = 3 immediately
extends to any fixed higher dimension d > 3. In this
section, we let d > 2 be any fixed number, and P and
Q be two convex d-polytopes with n vertices in total. It
is easy to check that Lemma 3 holds for any d > 3. As
defined for d = 3, the hull event hyperplanes Πf for each
facet of P or Q is determined and the intersection K∩hf
defined the hull event horizon hf . Then, the subdivision
A on K induced by all the hull event horizons possesses
the property of Lemma 5.

One important task is to bound the complexity of the
subdivision A. A proof of the following lemma can be
found in the full version of the paper.

Lemma 10 For any fixed d > 2, the complexity of the
subdivision A is O(nb

d
2 c(d−3)+d).

Note that the bound for d = 2 or 3 in Lemma 10
matches for the previously known upper bounds: Lee
and Woo [10] for d = 2 and the last sections of this
paper for d = 3.

Our algorithm for d = 3 also extends to any fixed

dimension d > 3. Stage (i) can be done in O(nb
d+1
2 c)

time, resulting in the configuration space K of complex-

ity O(nb
d+1
2 c) by Lemmas 1 and 2.

For Stage (ii), there are O(nb
d
2 c) facets of d-polytopes

P and Q, and thus the same number of hull event hori-
zons on K. As done for d = 3, we compute the sub-
division A on K by adding the hull event horizons one
by one. This can be done in time O(nb

d
2 c(d−3)+d) by

Lemma 10.
Stage (iii) also performs optimization over each facet

σ of A based on the triangulation Tσ. In this case, the
triangulation Tσ subdivides the boundary of conv(P ∪
Qt) into (d − 1)-simplices 4 (i.e., simplices of dimen-
sion d− 1) and for each 4 ∈ Tσ, we augment one more
interior point c ∈ P to obtain 4+ as the d-simplex and
thus to triangulate the interior of conv(P ∪ Qt). Note

that Tσ consists of at most O(nb
d
2 c) (d − 1)-simplices.

The d-dimensional volume of a d-simplex is represented
as a polynomial of degree d in the coordinates of its
vertices, and so the volume function vol(t) is, while the
surface area function surf(t) is represented as a polyno-
mial of degree d − 1 since it is the sum of the (d − 1)-
dimensional volume of all 4 ∈ Tσ. By exploiting the

coherence among the facets of A as done for d = 3, we
can complete Stage (iii) in time O(nb

d
2 c(d−3)+d).

We finally conclude the following.

Theorem 11 For any fixed d > 2 and two convex d-
polytopes P and Q with n vertices in total, a minimum
convex container bundling P and Q under translations
without overlap can be computed in O(nb

d
2 c(d−3)+d) time

with respect to volume or surface area.

References

[1] H.-K. Ahn, H. Alt, S. W. Bae, and D. Park. Bundling
three convex polygons to minimize area or perimeter. In
Proc. 13th Algorithms and Data Structures Symposium
(WADS 2013), pages 13–24, 2013.

[2] H.-K. Ahn, P. Brass, and C.-S. Shin. Maximum over-
lap and minimum convex hull of two convex polyhedra
under translations. Computational Geometry: Theory
and Applications, 40:171–177, 2008.

[3] H.-K. Ahn and O. Cheong. Aligning two convex figures
to minimize area or perimeter. Algorithmica, 62:464–
479, 2012.

[4] H. Alt and F. Hurtado. Packing convex polygons into
rectangular boxes. In Proc. 3rd Japanese Conference on
Discrete and Computational Geometry (JCDCG 2000),
volume 2098 of LNCS, pages 67–80, 2001.

[5] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete & Computational Geometry,
10:377–409, 1993.

[6] K. Daniels and V. Milenkovic. Multiple translational
containment, part i: An approximation algorithm. Al-
gorithmica, 19:148–182, 1997.

[7] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, 3rd edition, 2008.

[8] B. Huber, J. Rambau, and F. Santos. The Cayley trick,
lifting subdivisions and the Bohne–Dress theorem on
zonotopal tilings. Journal of European Mathematical
Society, 2:179–198, 2000.

[9] D. A. Klain and G.-C. Rota. Introduction to Geometric
Probability. Cambridge University Press, 1997.

[10] H. Lee and T. Woo. Determining in linear time the
minimum area convex hull of two polygons. IIE Trans-
actions, 20:338–345, 1988.

[11] V. Milenkovic. Translational polygon containment and
minimum enclosure using linear programming based
restriction. In Proc. 28th Annual ACM Symposium
on Theory of Computation (STOC’96), pages 109–118,
1996.

[12] R. Seidel. The upper bound theorem for polytopes:
an easy proof of its asymptotic version. Computational
Geometry: Theory and Applications, 5:115–116, 1995.

[13] K. Sugihara, M. Sawai, H. Sano, D.-S. Kim, and
D. Kim. Disk packing for the estimation of the size of
a wire bundle. Japan Journal of Industrial and Applied
Mathematics, 21:259–278, 2004.

	Introduction
	Preliminaries
	Subdividing the Configuration Space
	Algorithm
	Extension to Higher Dimensions

