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Geometric Hitting Set and Set Cover Problems with Half-Strips

Apurva Mudgal ∗, ‡ Supantha Pandit †, ‡

Abstract

We show that hitting set and set cover problems with
half-strips oriented in two opposite directions are NP-
complete.

1 Introduction

A half-strip oriented in the upward direction consists of
all points in the region bounded by two vertical lines
which are also bounded from below by a horizontal line
(see Figure 1(a)).

(a) (b)

Figure 1: Half-strips oriented in (a) upward and (b)
downward directions.

In this paper, we consider hitting set and set cover
problems with points in the plane and half-strips ori-
ented in upward and downward directions.

Problem 1 Hitting half-strips in two opposite di-
rections by points (HHS-OD). We are given a set P
of points, a set H of half-strips oriented in two opposite
directions, and a positive integer α. The goal is to de-
cide whether there exists a subset P ′ ⊆ P of points with
size at most α that hits all the half-strips.
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Problem 2 Covering points by half-strips in two
opposite directions (CHS-OD). We are given a set P
of points, a set H of half-strips oriented in two opposite
directions, and a positive integer β. The goal is to decide
whether there exists a subset H ′ ⊆ H of half-strips with
size at most β that covers all the points.

It is clear that both these problems are in NP. The
main result of this paper is that HHS-OD and CHS-OD
are NP-complete.

Previous Work. Katz et al. [5] give a polynomial
time algorithm for the hitting set problem when the
half-strips are oriented in one direction. Later on, Chan
and Grant [3] also give a polynomial time algorithm for
the same problem. For the set cover problem with half-
strips in one direction, a polynomial time algorithm was
given by Katz et al. [5], Chin et al. [4], Chakrabarty et
al.[2], and Chan and Grant [3].

One can observe that half-strips oriented in two op-
posite directions are pseudodisks. Therefore, from the
result of Mustafa and Ray [10] there is a PTAS for HHS-
OD and from the result of Mustafa et al. [9] there is a
QPTAS for CHS-OD.

Bereg et al. [1] give a factor 2 approximation for
the class cover problem with half-strips in two oppo-
site directions. A generalized version of the class cover
problem for strips and half-strips was studied in [8].

2 Hitting half-strips in two opposite directions by
points (HHS-OD)

In this section, we prove that HHS-OD is NP-complete
by a reduction from Planar 3-SAT. Lichtenstein [7]
proposed Planar 3-SAT as follows:

Definition 1 Planar 3-SAT [7, 6] Let φ be a SAT
formula with n variables and m clauses such that each
clause contains at most 3 variables. Further, φ can be
embedded on the plane as follows. All the variables are
aligned in a horizontal line and each 3 legged (for 3 vari-
ables) and each 2 legged (for 2 variables) clause connects
to the variables either from below or from above so that
no two clauses intersect (see Figure 2). Now, we have
to find an assignment which satisfies φ.

Let φ be a Planar 3-SAT formula with n variables
and m clauses. Let cb be the maximum number of legs
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Figure 2: Planar 3-SAT representation.

incident on a variable by clauses from below. Also let ct
be the maximum number of legs incident on a variable
by clauses from above. Now let c = max{cb, ct} and
k = c+ 1.
Variable Gadget: For each variable gadget, we take 4k
points in two horizontal rows such that each row con-
tains 2k points (see Figure 3). We connect these points
by edges to form a cycle. Now we take 4k half-strips,
each half-strip corresponding to an edge in the cycle.
To hit all these half-strips, at least 2k points are re-
quired. Now observe that there are only two possible
optimal solutions, S1 and S2 (see Figure 3), of size 2k,
which represent the truth values of the corresponding
variable:

Figure 3: Variable gadget with optimal solutions S1

(odd numbered points) and S2 (even numbered points).

Claim 1 There are exactly two possible optimal hitting
sets, S1 = {1, 3, · · · , 4k− 1} and S2 = {2, 4, · · · , 4k}, of
cost 2k for the variable gadget in Figure 3.

Proof. Note that a hitting set of half-strips in the vari-
able gadget is equivalent to a vertex cover in the cycle
connecting all the points. Since the cycle contains 2k
disjoint edges, there does not exist any solution of size
at most 2k − 1. Let S be a solution of size 2k. Con-
sider the following two cases. Case 1: No two vertices

in S are consecutive. In this case S is either S1 or S2.
Case 2: Some vertices in S are consecutive. Without
loss of generality, assume that vertices 1 and 2 are in
S. Then at least 2k − 1 vertices are required to cover
edges (3, 4), (5, 6), · · · , (4k−1, 4k). Hence, S has at least
2k + 1 vertices, which is a contradiction. �

Clause Gadget: For each clause we take one half-strip
as shown in Figure 4.

Figure 4: Clause half-strips for the formula in Figure 2.

Variable-Clause Interaction: The interaction between
the variable and the clause gadgets is set up by verti-
cally moving some points in the variable gadgets. We
now describe the vertical shifting of points for the vari-
able gadget corresponding to the variable xi. First we
fix the four end points {1, 2k, 2k + 1, 4k}. Let li be the
number of legs that connect to the variable xi from be-
low. Now number the clauses corresponding to these
legs C1, C2, · · · , Cli in the order in which their legs con-
nect to variable xi from left to right.

We now partition the points in the bottom row of the
variable gadget into pairs of consecutive points starting
from the pair {2, 3}. We associate the r-th pair of points
with clause Cr, where 1 ≤ r ≤ li. If xi occurs as a
negative literal in clause Cr, vertically shift the point 2r
to the top edge of the half-strip corresponding to clause
Cr. If xi occurs as a positive literal in Cr, vertically
shift the point 2r + 1 to the top edge of the half-strip
corresponding to clause Cr. A similar shifting of points
is done for clauses that connect to xi from above. In
Figure 5, we demonstrate the above construction for the
variable x4 of the Planar 3-SAT example of Figure 2.

Thus, given a formula φ with n variables and m
clauses, we obtain an instance (Pφ, Hφ) of HHS-OD with
4kn points and 4kn+m half-strips. We now assume that
α = 2kn.

Lemma 1 φ is satisfiable iff there exists a solution to
(Pφ, Hφ) with cost at most 2kn.
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Figure 5: Vertical movement of points in the variable
gadget for x4. We assume that variable x4 occurs as
a positive literal in clauses C1, C2, and C ′1 and as a
negative literal in clauses C3 and C ′2.

Proof. (only if part) Assume that φ has a satisfying
assignment. For the i-th variable gadget, take the so-
lution S1 if variable xi is true and S2 if variable xi is
false. We pick a total of 2kn points and these points hit
all the variable and clause half-strips.

(if part) Suppose there is a solution to (Pφ, Hφ) with
cost at most 2kn. To hit all the half-strips in a vari-
able gadget requires at least 2k points. Note that all
the variable gadgets are disjoint. Therefore, from each
variable gadget we must pick exactly 2k points (either
set S1 or set S2). Set variable xi to true if S1 is picked
in the variable gadget, otherwise set xi to false. Since
each clause half-strip contains either 3 (for 3 variable
clauses) or 2 (for 2 variable clauses) points shifted from
variable gadgets and one of these points must be picked
in any hitting set, this gives a satisfying assignment for
formula φ. �

From Lemma 1, we have the following theorem.

Theorem 2 HHS-OD is NP-complete.

3 Covering points by half-strips in two opposite di-
rections (CHS-OD)

In this section, we prove that CHS-OD is NP-complete
by giving a reduction from Planar 3-SAT (see Defini-

tion 1).
Given formula φ, let cb, ct, and c be the numbers as

defined in Section 2.
Variable Gadget: The variable gadget (see Figure 6) is
the same as the variable gadget of HHS-OD, with the
difference that we now take two horizontal rows of 8c+1
points each. By an argument similar to Claim 1, we can
say that there are exactly two optimal set covers of size
8c + 1: HS1 (all odd numbered half-strips) and HS2

(all even numbered half-strips). This gives the truth
assignment of the corresponding variable.

Figure 6: Variable gadget for CHS-OD with optimal so-
lutions HS1 (odd numbered half-strips) and HS2 (even
numbered half-strips).

Clause Gadget: The “regions” containing the clause gad-
gets are as shown in Figure 4. For a 3 variable clause
with xi, xj , and xk as left, middle, and right variables,
the clause gadget is a set of 9 points and 4 half-strips
covering these points as shown in Figure 7. Similarly,
for a 2 variable clause with xi and xj as left and right
variables, the clause gadget is a set of 5 points and 2
half-strips covering these points as shown in Figure 8.

Note that a different set of 9 or 5 points are added
for each clause.

Figure 7: 3 variable clause gadget.

Variable-Clause Interaction: Each point in the clause
gadgets lies in exactly one half-strip from the variable
gadgets. Now we describe the alignment of points in
the clause gadgets with the half-strips in the gadget for
variable xj . As before, let C1, C2, · · · , Clj be the clauses
connecting to xj from below. We group the downward
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half-strips in the variable gadget into sets of 8 consecu-
tive half-strips starting from group {2, · · · , 9}. We as-
sociate the r-th group with clause Cr, where 1 ≤ r ≤ lj .

Figure 8: 2 variable clause gadget.

Now consider a 3 variable clause Cr, with xj as a
middle variable. If xj occurs as a negative literal, place
the seven middle points as shown in Figure 9. If xj
occurs as a positive literal, place the seven middle points
as shown in Figure 10. Now suppose xj is a left or right
variable in Cr. Place point aj so that it aligns with an
odd numbered half-strip from the group of half-strips for
clause Cr if xj occurs as a negative literal and with an
even numbered half-strip from the group of half-strips
for clause Cr if xj occurs as a positive literal.

Figure 9: Placement of clause points and half-strips for
negative middle variable xj .

For a 2 variable clause Cr with xj as a right variable,
the placement of {b3, b2, b1, aj} is the same as that in
Figures 9 and 10 with {d1, d2, d3} removed. If xj is a left
variable, place aj in an odd or even numbered half-strip
from the group of half-strips for clause Cr according to
whether xj occurs as a negative or positive literal.

This completes the construction. Thus, given a for-
mula φ with n variables, m1 3 variable clauses, and
m2 2 variable clauses we construct an instance (Pφ, Hφ)
of CHS-OD with (16c + 2)n + 9m1 + 5m2 points and
(16c + 2)n + 4m1 + 2m2 half-strips. Here we assume
that β = (8c + 1)n + 2m1 + m2. Now we prove the
following lemma:

Figure 10: Placement of clause points and half-strips
for positive middle variable xj .

Lemma 3 φ is satisfiable iff there exists a solution to
(Pφ, Hφ) with cost at most (8c+1)n+2m1+m2, where
m1 and m2 are the number of clauses that contain 3
variables and 2 variables respectively.

Proof. (only if part) Assume that φ is satisfiable. In
the variable gadget for xi, take the solution HS1 if xi
is false and HS2 if xi is true. Thus, we are taking
(8c+1)n half-strips from variable gadgets. Now for each
3 variable clause at least one of ai, aj , or ak is covered.
Then, 2 half-strips are sufficient to cover the remain-
ing points from the clause gadget. For each 2 variable
clause, at least one of ai or aj is covered and 1 half-strip
is enough to cover the remaining points. Therefore, in
total (8c + 1)n + 2m1 +m2 half-strips are sufficient to
cover all the points in Pφ.

(if part) Suppose there is a solution Sol to CHS-OD
on (Pφ, Hφ) with cost at most (8c+1)n+2m1+m2. We
now modify Sol so that at least 2 half-strips are picked
from a 3 variable clause gadget and at least 1 half-strip
is picked from a 2 variable clause gadget.

If Sol contains 1 half-strip from a 3 variable clause
gadget, exactly one of the two triplets {b1, b2, b3} or
{d1, d2, d3} are covered completely by half-strips from
variable gadgets. Suppose {b1, b2, b3} is a triplet of this
type. Then we can remove the half-strip from the vari-
able gadget covering the middle point b2 and add a
half-strip from the clause gadget covering the triplet
{b1, b2, b3}. If Sol contains no half-strips from a 3 vari-
able clause gadget, we will do the above modification
for both the triplets {b1, b2, b3} and {d1, d2, d3}.

Similarly, if no half-strips are picked from a 2 vari-
able clause gadget, we can remove the half-strip cover-
ing point b2 and replace it by a half-strip from the clause
gadget covering {b1, b2, b3}.

The above process does not increase the cost of the
solution and it remains feasible. The modified Sol has
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exactly (8c + 1) half-strips from each variable gadget,
exactly 2 half-strips from each 3 variable clause gadget,
and exactly 1 half-strip from each 2 variable clause gad-
get. The satisfying assignment is obtained by setting xi
to false iff HS1 is picked in the corresponding variable
gadget. �

We thus have the following theorem.

Theorem 4 CHS-OD is NP-complete.
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