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Abstract

We consider the problem of covering a domain by mobile
sensors and the design of an efficient schedule that re-
duces unnecessary sensor overlap and energy consump-
tion. The problem is motivated by emerging partici-
patory sensing applications as well as other coverage
problems involving mobile nodes. The problem of mini-
mizing the total energy consumption while maintaining
the same level of coverage guarantee is NP-hard. We
develop distributed algorithms achieving a constant ap-
proximation factor when sensors have unit disk sens-
ing ranges, and a (1 + ε) approximation factor when
the sensors also have constant bounded density. For all
these algorithms the communication cost is asymptot-
ically bounded by the cost of simply maintaining the
direct neighborhood of each sensor. The constant ap-
proximation distributed algorithm can be generalized
for the k-coverage problem, when each point of interest
has to be covered by at least k sensors.

1 Introduction

Motivation. The past couple of years have witnessed
the wide adoption of smartphones. Although smart-
phones are mainly designed for user communication and
social interactions, they also provide an opportunistic
platform for communities to sense and contribute sen-
sory information to form a body of knowledge. This has
been termed as participatory sensing [3] or crowdsourc-
ing applications. A recent study using anonymous cell
phone records discovered that human trajectories show
a high degree of temporal and spatial regularity [13].
The study also confirms, not surprisingly, that individ-
uals return to a few highly frequented locations, such as
home or work and that there is a lot of overlaps in dif-
ferent individuals’ trajectories. Therefore it is expected
that there will be ample redundant sensors populating
certain ‘hot spots’ and there is an opportunity to selec-
tively turn on such sensors to reserve battery power.

Problem definition. In this paper we study how to
efficiently schedule mobile sensors for monitoring the
environment. We represent a sensor by a point (which
we also refer to as “node”) that is moving around in
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a pre-specified region Σ (e.g., a polygon) in the plane.
We assume two different types of sensing requirements.
In the continuous coverage model, the entire domain Σ
needs to be covered at all time. In the discrete coverage
model, we assume that a discrete set L of landmarks
inside Σ need to be covered at all time.

Each sensor has a fixed sensing range, and thus we
assume its monitoring region is a unit disk (which is a
common assumption in the literature). Since the disks
may overlap, we consider scheduling sensors to minimize
the total energy consumption. Assume that sensor i,
kept on, will consume energy at a rate of wi and it is kept
on for a total of ti time. Then the total energy usage∑

i witi is the weighted sum of the time that sensors
are turned on. When the weights are uniform (i.e., all
nodes consume power at the same rate), the objective
becomes the total time that all sensors are kept on.

The research question at hand is to design a clever
schedule of the sensors such that the total energy usage
is minimized and the coverage quality does not degrade
– i.e., what could be covered by the original collection of
sensors at any snapshot is still covered. Notice that this
problem is related to the problem of removing redun-
dant sensors for static sensor coverage. In our setting
the mobility of the sensors makes this problem more
challenging – one main difference is the addition of the
temporal dimension in the sense that we may selectively
turn on and off any sensor to reserve energy.

Our results. We start by introducing a framework
to analyze the complexity of mobile coverage. Al-
though the nodes move continuously, their coverage only
changes at some discrete points of time, which we call
“critical events”. To enable rigorous theoretical analysis
on the number of such critical events, we make a num-
ber of additional natural assumptions. We take Σ to
be the unit square and assume that the critical events
are tracked via a standard Hello beacon broadcast.
Also, without loss of generality, we assume that all the
sensors, at any snapshot, collectively cover the entire
domain Σ or the entire set of landmarks1.

We then describe our algorithms for finding approxi-
mate mobile coverage solution. We first present a static
distributed algorithm. This algorithm achieves a con-
stant approximation factor, where the main observation

1We describe our assumptions and model in more detail in
Section 3, however, we give a brief description here as well in
order to report our results.
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is to use a grid partitioning of the input sensors into
squares of side length r/2, where r is the sensing range
(i.e., the radius of the disks). For all the sensors whose
range intersect the same square, we calculate a constant
approximate solution for the local version of a geometric
set cover problem. The solution is taken as the union
of all the local solutions. We show that this results in a
constant approximation factor of the global optimum.

Next, we show that the above algorithm for the static
case can be extended to the mobile case such that we
only need to update the solution for a local problem
whenever a critical event occurs. This is achieved due
to our assumption that the critical events are tracked
via Hello beacon broadcast.

We also describe the distributed implementation of
a polynomial-time approximation scheme (PTAS) for
the case where each sensor has only a constant number
of neighbors in its communication range. This is by
adapting an existing centralized algorithm (the so-called
“shifting” technique [15]) with the critical insight that
the core structure is similar to our grid based solution—
see below.

We also show that the distributed algorithm can be
generalized (with only uniform weights though) to han-
dle k-coverage with a constant approximation factor,
that is, each point of interest is covered by at least k
sensors [25, 18]. The k-coverage problem is a natural ex-
tension to the standard coverage problem by improving
the robustness and accuracy of the coverage solution.

2 Related Work

Sensor coverage. The problem of sensor coverage in
the static setting has been extensively studied. We only
have space to review the most relevant results to our
work, and refer the reader to the survey paper [22] for
more details. In particular, our work belongs to the cat-
egory of using the boolean disk coverage model for area
coverage (covering the entire region) or point coverage
(covering discrete targets).

For area coverage, one of the most well studied prob-
lems is to determine the optimal placement pattern for
the infinite plane with minimum sensor density, when
sensors can be placed anywhere in the plane. It is
shown by Kershner that the triangle lattice pattern is
the optimal pattern if the sensors have unit disk sens-
ing regions [17]. Bai et al. [1] considered both opti-
mal density and network connectivity. They provided
a strip-based placement pattern and proved its asymp-
totic optimality for achieving both complete coverage
and 1-connectivity.

Both the area coverage and point coverage problems
can be generalized to k-coverage, where each target or
each point in the monitored area must be covered by at
least k sensors [25, 18].

Our work is also closely related to the problem of sen-
sor activity scheduling, which is to schedule nodes to be
activated alternatively such that the network operation
time can be prolonged and area coverage requirement
is still met. Various optimization objectives have been
used for this problem, ranging from ensuring the area
coverage ratio, minimizing the number of active sen-
sors, and prolonging network lifetime [20, 16, 24, 8].
A number of local tests have been developed to check
for redundant nodes and put them to sleep while still
maintaining full coverage(see, e.g., [8, 24]. The list of
reference is too long to survey here and we refer the
readers to the survey papers [19, 23].

Despite these previous studies, we are not aware of
any previous work which considered mobile sensors, and
thus our work is seminal in this topic.

Geometric set cover. The geometric set-cover prob-
lem is an abstractization of the sensor coverage problem.
In a typical such setting, we are given a set X ⊆ ℜd of
points (which is either discrete or continuous) and a
set R of simply-shaped regions in ℜd (e.g., halfspaces,
balls, simplices, cylinders, etc.). The goal is to compute
a smallest set of regions that altogether cover X.

When X = ℜd, or when X is a continuous subset in
ℜd, we refer to this setup of the problem as the contin-
uous model, and when X is a finite point set, this setup
of the problem is referred to as the discrete model.

The geometric set-cover problem is NP-Hard, under
both discrete and continuous models, even for very sim-
ple geometric settings in R2, e.g., when R is a set of unit
disks or unit squares [12, 14]. Therefore attention has
mostly focused on developing polynomial time approx-
imation algorithms. The well-known greedy algorithm,
which always selects the set that maximizes the resid-
ual coverage, yields a O(log n)-approximation in poly-
nomial time for the smallest set-cover [21, Chapter 2],
and the known lower-bound results suggest that this is
the (asymptotically) best approximation factor one can
hope to achieve in polynomial time for arbitrary (that
is, not necessarily geometric) settings [11]. However,
by exploiting the underlying geometry, one can obtain
polynomial-time algorithms with better approximation
factors for various geometric set-cover problems. These
algorithms employ and adapt a wide range of novel tech-
niques, including variants of the greedy algorithm, dy-
namic programming, LP-relaxation, and “ε-nets”. It
is beyond the scope of this paper to give a comprehen-
sive review of the known results. We only mention a few
results that are directly relevant to our problem, and re-
fer the reader to [2, 4, 10, 15] and the references therein
for further details. Specifically, Clarkson and Varadara-
jan [7] show a constant approximation factor (achievable
in expected polynomial time) for arbitrary disks with
uniform weights. A recent result by Chan et al. [5] is a
constant approximation factor (achievable in expected
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polynomial time) for the weighted set-cover problem of
points and arbitrary disks in the plane.

3 Preliminaries

One of the main challenges in analyzing mobile cover-
age problems is to properly factor the continuity of the
motion. We next describe how to model the mobile
coverage problem in the time-space domain and how to
track critical events.

The model. We consider a domain Σ to be monitored
by mobile sensors; Σ is typically of a simple shape, say,
a square or a disk. The sensors are represented by a set
D = {D1, . . . , Dn} of n unit disks in the plane, where
each disk Di is assigned a weight wi representing its
energy consumption at all times, for i = 1, . . . , n. In
what follows, the weights are assumed to be arbitrary,
unless stated otherwise.

For each sensor, we denote its sensing range by r (i.e.,
the radius of the disk in our model), and assume that it
has a communication range 3r. In this case, full cover-
age of Σ implies network connectivity. We note that in
practice the sensing ranges are much smaller than the
diameter ρ of the domain Σ, we thus assume r ≪ ρ (we
also note that ρ ≤ r implies that Σ can be covered by a
small number of disks, which is a scenario of less interest
in theory). Applying a common assumption in mobile
networks, we assume that the sensors periodically send
Hello beacons to detect and maintain direct commu-
nicating neighbors.

Critical Events. Each sensor moves along an arbitrary
trajectory. We denote the position ci of the center of Di

at time t, for i = 1, . . . , n, by ci := ci(t) = (Xi(t), Yi(t)),
and Di := Di(t) denotes Di at time t. Let U(t) :=∪n

i=1 Di(t) be the union of the disks at time t (that is,
all regions in the plane that are covered by at least one
disk at time t). Without loss of generality, we assume
that time ranges from 0 to 1 in the mobile coverage
problem.

Let us initialize the process with a subset S of the
disks in D whose union covers the domain Σ at time
t = 0. Since the union U(t) of all disks covers the do-
main Σ at all times 0 ≤ t ≤ 1, such a subset cover
exists, and let us denote its union in time t ≥ 0 by
U ′(t) :=

∪
D∈S D(t). We note that the topological

structure of the cover U ′(t) changes only at some critical
events. Each of these events is characterized by a triple
of disks that meet at a point p. Such an event may
correspond to the appearance of a new connected com-
ponent in the complement of the union of U ′(t) (that
is, a new “hole” in the union appears) or to the disap-
pearance of an existing component (that is, an existing
hole is sealed). In the first case we need to add a new
disk to S to restore coverage, and in the latter case we
may remove an existing disk from S, to save energy. See

(a) (b)

Figure 1. (a) A triple of disks with an empty intersection, just
before they meet, and (b) their position at the moment they meet
in a common point (depicted by the black bullet).

Figure 1 for an illustration.
Therefore, the optimal solution to the kinetic sensor

coverage problem will only change at a critical event,
and our assumption on the Hello beacon broadcast
implies that each sensor can locally detect the critical
event when its sensing region just starts or stops over-
lapping with another one’s sensing region. Similarly,
three sensors can all detect locally when their sensing
regions just start or stop having a common intersection.

4 Distributed Approximation Algorithms

4.1 The General Framework

In what follows, we first consider the discrete coverage
requirement when a set of landmarks to be covered is
given, and is denoted by L. We assume, without loss
of generality, that they are covered by the sensors (oth-
erwise, an uncovered point in L can be removed from
further consideration). Later on, we show how to choose
L carefully so that it guarantees a full coverage in the
continuous coverage model.

The static problem. Our static algorithm is a variant
of the set-cover algorithm of Hochbaum and Maass [15],
although they refer to the scenario where the disk set
is unrestricted (that is, this set is continuous and thus
one can choose any arbitrary disk to participate in the
coverage), whereas in our scenario this set is given.
We place a grid Γ over Σ of side length r/2. We say

that a cell is empty if it does not contain a point of L,
otherwise, it is non-empty. Our goal is to locally con-
struct a small cover in each non-empty cell of Γ, and
then combine all these covers to form the global cover-
age. Due to our special structure (that is, all disks have
radius r) and the existence of a machinery to handle
each cell locally, we will be able to show that our cov-
erage is not any larger than the optimal coverage up to
a constant factor.

Figure 2. A unit disk
placed on a grid of side
length 1/2.

It is easy to verify that each
disk D ∈ D must fully contain
at least one cell of Γ, more-
over, it meets at most 25 cells
of Γ. See Figure 2 for an il-
lustration. Let us now con-
sider a fixed non-empty cell
τ ∈ Γ, with a landmark point
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p ∈ L inside. By the assump-
tion that all points in L are
covered by D, p must have a
disk D ∈ D with p ∈ D. In particular, D must inter-
sect τ (it either overlaps τ or fully contains it). We now
collect all points p ∈ L that lie inside τ and the disks
intersecting τ ; let Lτ , Dτ be these resulting subsets. We
next construct a set cover for Lτ with the disks in Dτ

using the algorithm of Chan et al. [4]. As noted in Sec-
tion 2 this algorithm produces a set cover whose size is
only within a constant factor of the smallest set cover.
Let Sτ ⊆ Dτ be the set cover just produced. We then
report the set

S :=
∪

τ∈Γ,τ∩L ̸=∅

Sτ .

We next show:

Lemma 1. Let OPT be the smallest set cover for L
and D. Then |S| = O(|OPT|).

Proof. Let τ ∈ Γ be a fixed non-empty cell. We next
observe that the optimal set cover OPT∗

τ for Lτ , Dτ

is at least as good as the entire optimal set cover OPT
restricted to τ (as OPT∗

τ is the best coverage for Lτ , Dτ

whatsoever). That is, |OPT∗
τ | ≤ |OPTτ |, where OPTτ

is the subset of disks in OPT meeting τ .
By the properties of the approximation algorithm of

Chan et al. [5] it follows that |Sτ | ≤ C · |OPT∗
τ |, where

C > 0 is an absolute constant. On the other hand, we
claim that

∑
τ∈Γ,τ∩L̸=∅ |OPTτ | ≤ 25|OPT|, since, as

observed above, each disk of D can meet at most 25
cells of the grid, and thus the multiplicity of a fixed
disk in the optimal solution OPT cannot exceed this
constant. Combining the above inequalities we obtain:

|S| ≤
∑

τ∈Γ,τ∩L̸=∅

|Sτ | ≤ C
∑

τ∈Γ,τ∩L ̸=∅

|OPT∗
τ | ≤

C
∑

τ∈Γ,τ∩L ̸=∅

|OPTτ | ≤ 25C|OPT|,

from which we conclude |S| = O(|OPT|), as as-
serted. □

In order to make the algorithm distributed, we ob-
serve that since the communication range of each sen-
sor is 3r, any two disks that meet the same cell τ
can directly communicate with each other. Indeed, all
disks (of radius r) that meet (a non-empty cell) τ must
have their centers within distance at most r from τ .
We now observe that the centers c, c′ of two distinct
such disks D, D′ are located within distance at most
2r + r/

√
2 < 3r from each other. This can be verified

by placing c, c′ within distance r from two opposite cor-
ners of τ and the fact that the distance between these
two corners is r/

√
2. Having this property at hand,

the communication graph refined to the corresponding

nodes (whose disks meet τ) forms a clique, and hence all
disks meeting τ can “nominate” (say, by selecting the
one with smallest ID) one such disk D∗ to hold all infor-
mation about the local setting to our set cover problem,
that is, Lτ , Dτ , and then the computation for the ap-
proximated set cover (as described above) can be done
within D∗.

The kinetic problem. At the initial time t0 we ap-
ply the static algorithm presented above in order to find
an approximation for the set cover. Then for each node
(that is, a sensor), we keep track of the state of all possi-
ble triples with that node, that is, whether they have an
empty or non-empty intersection (recall that our model
supports that). Then, when a critical event is detected
(and so we also have the triple it involves), the local so-
lution within the grid cell τ on which the critical event
occurred will be re-computed using the algorithm for the
static case (only within τ). We compute τ by locating in
the grid Γ the cell containing the common intersection
of the disks at the corresponding critical event.

Running time and communication cost. For the
static problem, computing the approximate set-cover lo-
cally within each cell τ is done in expected polynomial
time [5]. We recall that each disk D communicates only
with other disks whose centers lie in its communication
range, in other words, each sensor exchanges messages
only with its neighbors in the communication network.
Recall that we do so independently in each cell τ ∈ Γ
that D meets, and that there are at most 25 such cells,
and thus the overall number of exchanged messages that
D involves is proportional to its degree in the commu-
nication network. Thus the total number of exchanged
messages is proportional to the sum of these degrees
(over all nodes representing the disks D), which is just
O(|E|), where E is the set of links in the network. This
bound is no more than the number of messages needed
for each node to discover its neighborhood (up to a con-
stant factor), which is a necessary routine for almost all
networks.
Concerning the kinetic version, in each round imposed

by the periodic beacons, each disk D exchanges mes-
sages in its neighborhood as described above for the
static problem. Thus the total number of messages ex-
changed is O(T |E|), where T is the number of rounds.
Here too, we piggyback the communication cost on the
cost of maintaining neighborhoods, and thus the algo-
rithm does not incur extra cost. We have thus shown:

Theorem 2. Given a network of mobile sensors with
an Hello beacon model as above, where each of the
sensors has a unit sensing radius r and a communication
radius 3r, and a set of landmarks L (confined to a unit-
square domain Σ) to be monitored, one can compute
a coverage for L at each time t, whose overall weight
is at most a constant factor from the optimum. The
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overall number of messages exchanged from each sensor
is proportional to its neighborhood size at any time t.

4.2 Sparse networks.

A natural case that we study is where the communi-
cation degree in the network is constant for each node.
This scenario arises in the context of participatory sens-
ing, as one cannot condense many participants (e.g.,
people who carry smartphones) at the same location.
We first note that when applying our previous algo-
rithm in this case, the total number of messages ex-
changed from and to each node is only O(1) (at each
round), and the overall number of messages exchanged
in the network is only linear in the number of nodes (at
each round). Nevertheless, we show below that for this
setting, one can achieve a better approximation factor.
We apply the polynomial approximation scheme

(PTAS) of Hochbam and Mass [15], based on a shifting
technique. A crucial property in their algorithm is the
fact that each point in the plane is covered by at most
O(1) disks, which corresponds to our scenario, as for
each disk there are only O(1) other disks that it meets.
Thus, in particular, a “deep” point (a point that is cov-
ered by arbitrarily many disks) implies that there is a
large clique in the network, and thus the communica-
tion degree (of the nodes in the clique) must be large as
well, which contradicts our assumption. Thus all points
are “shallow” (i.e., have constant depth).
In this algorithm we fix a small error parameter ε > 0,

and then set the side length of the grid Γ to be ∆ :=
O(r/ε) (recall that r is the sensing radius of the disks).
A key observation of the algorithm in [15] is the fact
that due to the constant-depth property, within each
cell τ of the grid the optimal solution can be computed
in polynomial time (where the degree of the polynomial
depends on ε). The algorithm in [15] then shows that
if we place the origin of this grid at a random point
in [0,∆]2, find the optimal set-cover OPT∗

τ locally in
each cell τ , and then collect all these local solutions
to form the actual set-cover S, we obtain that |S| is
at most (1 + ε)|OPT| (on expectation), where OPT is
the optimal solution for the whole setting. That is, the
main difference between this algorithm and the previous
one given for an arbitrary communication network, is
the fact that here (i) we randomly shift the grid, and
(ii) we compute the actual optimal solution within each
grid cell rather than an approximate solution. These
two facts eventually leads to the PTAS in [15], which is
an improvement over the constant approximation factor
we obtained earlier.
Here too we can make the algorithm distributed us-

ing a similar approach as in the general framework, how-
ever, we observe that the communication graph confined
to the nodes, whose corresponding disks meet a fixed
cell τ , is not necessarily connected. Nevertheless, we

claim that the coverages constructed w.r.t. each con-
nected component must be pairwise disjoint, and then
an optimal coverage is just the disjoint union of the re-
spective optimal coverages computed for each connected
component. Indeed, two sensors in different connected
components must lie within distance at least 3r from
each other, and thus if we draw a disk of radius r cen-
tered in each node of these components, the two result-
ing structures (each of which is a union of disks that
contain an optimal coverage) remain disjoint. Thus in
each such connected component we can nominate a disk
to compute the optimal set-cover.

In the kinetic problem, we track the critical events
and make the local computation in the grid at each such
event, this is done almost verbatim as in the general
framework.

Concerning the communication cost, in this solution
we need to expand the neighborhood of each node by
O(1/ε2). Specifically, the fact that each node has only
O(1) neighbors in the network, and, on the other hand,
each grid cell τ is now of side length O(r/ε), implies that
τ may be intersected by only O(1/ε2) disks (we omit the
easy computation, which follows from a straightforward
packing argument), and thus each disk may exchange
messages with that many disks in τ . On the other hand,
consider the connected components formed by the disks
covering the same grid cell τ . Each connected com-
ponent has a diameter of at most O(1/ε). Thus each
node searching in its O(1/ε)-hop neighborhood can find
all potential nodes in its connected component. Since
each disk appears in only O(1) cells (assuming ε is suffi-
ciently small, as otherwise we can resort to the previous
algorithm), the total number of exchanged messages in-
volving D is O(1/ε2), and this bound is O(n/ε2) over
all nodes. We have thus shown:

Theorem 3. Given a network of mobile sensors of con-
stant communication degree and a set of landmarks L
as in Theorem 2, one can compute a coverage of L at
each time t, whose weight is within a factor of (1 + ε)
from the optimum, for any ε > 0. The overall number
of messages exchanged from each sensor is O(1/ε2) at
any time t.

4.3 The continuous coverage problem

We now aim to cover the entire domain Σ at all times.
Consider that one can produce an appropriate point set
P by constructing the planar subdivision induced by
the disks (also referred to as the “arrangement of the
disks”), with the property that P is covered if and only
if Σ is covered; such constructions are standard in the
theory of computational geometry [9]. This compu-
tation involves in each round the construction of the
planar subdivision induced by the disks.
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Since Σ is covered at all times, the underlying com-
munication graph is connected. Moreover, this graph re-
mains connected in any refinement to a subset of nodes,
whose corresponding disks meet a fixed cell τ . Thus
all disks meeting a cell τ can nominate one disk D∗ to
locally compute the subdivision within τ . Then the en-
tire subdivision is obtained by gluing together all these
“pieces”. Having this subdivision at hand, the compu-
tation of P is fairly standard (see, e.g., [9]). At time
t0 we compute P with respect to the initial disk loca-
tions, and then apply the static algorithm with this set
of landmarks. For each critical event, before we update
our set cover, we only re-compute the portion of P that
intersects with the cell we are updating (this is sufficient
as the combinatorial structure of the coverage does not
change elsewhere).
Using similar arguments as above, the communication

overhead, at any time t, is proportional to the sum of
the neighborhood sizes over all nodes.

4.4 The k-Coverage Problem

The k-coverage problem is a special case of the so-called
set multi-cover problem, and in our scenarios this im-
plies that we require each point to be covered by at least
k disks, or, more specifically, each point should be mon-
itored by at least k sensors, where k > 0 is an integer
parameter (and thus the case k = 1 is just the standard
set cover problem).
In order to solve this problem efficiently, we use a sim-

ilar grid construction as the one for the original prob-
lem, and instead of applying the set-cover algorithm of
Chan et al. [5], we apply the set multi-cover algorithm
of Chekuri et al. [6]. This algorithm can be applied
only when the weights are uniform, and computes in ex-
pected polynomial time a k-coverage whose size is only
within a constant factor from the optimum. Plugging
this into our machinery, we obtain a similar bound as
in Lemma 1.

Theorem 4. Given the setting of Theorem 2 (while
assuming uniform weights), and an integer parameter
k > 0, one can compute a k-coverage for L at each
time t, whose size is at most a constant factor from the
optimum. The overall number of messages exchanged
from each sensor, at any time t, is proportional to its
neighborhood size.

5 Concluding Remarks

In this paper we studied the problem of efficiently con-
structing coverage by mobile sensors in order to reduce
energy consumption, we are not aware of any previous
works on this topic. Our approximation algorithms are
based on the shifting technique technique of Hochbaum
and Maass [15], nevertheless, this machinery has never
been subject before to a distributed computing setting,

which, as our work shows, is an important and useful
machinery for both theory and practice. We hope that
this observation will be useful for existing and future
participatory sensing applications.
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