
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Routing in a Polygonal Terrain with the Shortest Beacon Watchtower

Bahram Kouhestani David Rappaport Kai Salomaa∗

Abstract

In a paper by Biro et al. [2], a novel twist on guarding
in art galleries, motivated by geographical greedy rout-
ing in sensor networks, is introduced. A beacon is a
point that when activated induces a force of attraction,
or repulsion that can move points within the environ-
ment. The effect of a beacon is similar to standard
visibility with some additional properties. The effects
of a beacon are asymmetric leading to separate algo-
rithms to compute the “beacon kernel” and “inverse
beacon kernel”. In Biro [1] O(n2) algorithms are given
to compute the beacon kernel and inverse beacon ker-
nels in simple polygons. In this paper we revisit the
problem of computing the shortest watchtower to guard
a 2D terrain, using the properties of beacons, and we
present an O(n log n) time algorithm that computes the
shortest beacon watchtower. In doing this we introduce
O(n log n) algorithms to compute the beacon kernel in a
simple polygon and an inverse beacon kernel in a terrain
polygon. Similar ideas are then used for an algorithm
to compute the inverse beacon kernel in a monotone
polygon in O(n log n) time.

1 Introduction

Motivated by routing in sensor networks, Biro et. al [2]
introduced the notion of a beacon, as a new variation of
visibility. A beacon is a point inside a polygon P that
can induce a magnetic pull toward itself everywhere in
P . When the beacon b is activated, points in P move
greedily to minimize their Euclidean distance to b. A
point p in the interior of P moves along the ray ~pb until
it reaches b or hits the boundary of P . In the latter case
it may still reduce its Euclidean distance to b by sliding
on the boundary of P . A point in P is attracted by b
if its Euclidean distance to b is eventually decreased to
0. The attraction region of a beacon b is the set of all
points in P that b can attract. If a point d ∈ P (which
is not b) remains stationary in the presence of b, then
d is called a dead point. The set of points ending up
on d comprises the dead region of d with respect to b.
In general, when a beacon is activated, the path of a
point alternates between moving along the ray towards
b and sliding along the boundary of P and eventually

∗School of Computing, Queen’s University, Kingston, Ontario,
Canada. {kouhesta,daver,ksalomaa}@cs.queensu.ca

it either reaches b or gets stuck on a dead point.
The boundary between two dead regions or a dead
region and the attraction region of b is called a split edge.

Biro [1] showed that there are three different types
of split edges, and all of them emanate from a reflex
vertex. Note that a reflex vertex v will cause a split
edge for a beacon b if both incident edges of v are
located below the line perpendicular to bv at v (Fig
1). In our application, only the split edges between the
boundary of the attraction region and a dead region
are important. We call a split edge that separates the
attraction region of the beacon from a dead region a
separation edge (Fig 2). For more details on beacons
see [1, 2, 3].

We say a point x ∈ P is routed to a point y ∈ P via
b if b can attract x and y can attract a point located on b.

A 2D terrain T is a monotone polygonal chain
with respect to the x-coordinate. A watchtower is
a vertical line segment erected on T . The length
of the watchtower is the length of the line segment.
The notion of beacon visibility can be extended
to a terrain environment and a beacon watchtower is
a beacon located on the upper endpoint of a watchtower.

Figure 1: Three different types of split edges, from left
to right 1) both edges incident to r are to the left of the
line rb 2) one incident edge of r is to the left of rb and
the other to the right 3) both are to the right of rb [1].
In all cases both edges are below the perpendicular line
Pr. Split edges are shown in red.



26th Canadian Conference on Computational Geometry, 2014

Figure 2: Attraction and dead regions (shaded regions)
of a beacon b. Split edges are r1q1 and r2q2. r1q1 is a
separation edge while r2q2 is not.

In this paper we address the following problem:
Shortest Beacon Watchtower : Given a 2D terrain T ,
the goal is to find the shortest beacon watchtower b,
which guarantees that for any pair of points x, y ∈ T , x
can be routed to y via b.

2 Computing the shortest beacon watchtower

Let t1, t2, ..., tn denote vertices of T from left to right.
We construct a monotone polygon T ′ by adding two new
vertices tn+1 and tn+2 to T with the same y-coordinate,
where tn+1 has the same x-coordinate as tn and tn+2

has the same x-coordinate as t1 (See Fig 3). We call
T ′ a terrain polygon. The y-coordinate value of these
two points are chosen big enough so that for any points
p ∈ tn+1tn+2 and q ∈ T the interior of the line segment
pq does not intersect T . This can be done in linear time.
Suppose li is the line going through the edge titi+1,
and qi and q′i are the intersections of li with vertical
lines going through t1 and tn, respectively. Let q be the
point with the highest y-coordinate among all qi and
q′i (1 < i < n). We set the y-coordinates of tn+1 and
tn+2 to be the y-coordinate of q. In this way, any pair
of points on T can be routed via an arbitrary point on
tn+1tn+2.

The solution to the shortest beacon watchtower prob-
lem is a closest point to T which can attract all points
on the terrain and in return is attracted by all points
on the terrain. Therefore, by the definition of [1] the
solution is located in the intersection of the beacon
kernel and the inverse beacon kernel of T ′.
The beacon kernel of a polygon P is the set of points
in P that can attract all points in P . The inverse

Figure 3: Constructing the terrain polygon T ′ from
T . For space constraints, tn+1 and tn+2 are illustrated
closer to T than they actually are. The shaded area is
Qri the portion of T ′ to the left of the steepest split
edge of ri as defined in lemma 1.

beacon kernel is the set of points that are attracted by
all points in P . In general, due to the asymmetry of
beacon attraction, these two sets are not equal. The
beacon kernel and inverse beacon kernel of P can be
computed in O(n2) time [1]. Both the beacon kernel
and the inverse beacon kernel of P are convex with
respect to P . A sub-polygon Q is convex with respect
to P if the line segment connecting two arbitrary points
of Q either completely lies in Q or intersects P . Note
that Q may not be connected. It is easy to see that
the intersection of two polygons which are convex with
respect to P is also convex with respect to P and can
be computed in time proportional to the complexity of
the polygons. Therefore, the set of points that both
attract all points of T and are attracted by all points of
T can be computed in quadratic time. Using a sweep
line algorithm, the solution to the shortest beacon
watchtower problem can be computed by finding the
shortest distance between T and this set of points in
O(n2 log n) time.

Here we show that the beacon kernel of a simple poly-
gon and the inverse beacon kernel of a monotone poly-
gon can be computed in O(n log n) time and present
an O(n log n) time algorithm to compute the shortest
beacon watchtower of T . We begin with some defini-
tions. Let r be a reflex vertex incident to edges e1 and
e2. Let H1 and H2 be half-planes perpendicular to e1



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

and e2 emanating from r which include the outside of
P in a small neighbourhood of r. The dead wedge of
r is defined as the intersection of H1 and H2 (Fig 4).
Note that r introduces a split edge for points of P which
reside inside its dead wedge.

Figure 4: Dead wedge of a reflex vertex r. The lines H1

and H2 are perpendicular to e1 and e2, respectively.

According to [1] the beacon kernel of P is exactly the
set of points in P which are outside of all dead wedges
of reflex vertices of P .

Our solution to the shortest beacon watchtower
problem consists of four steps; 1) computing the beacon
kernel of T ′, 2) computing the inverse beacon kernel of
T ′, 3) computing their intersection and 4) finding the
shortest vertical distance between the resulting polygon
and the terrain. Next we show how to perform each
step in O(n log n) time.

2.1 Computing the beacon kernel of a simple poly-
gon

Biro [1] presents an algorithm to compute the beacon
kernel of a simple polygon which runs in O(n2) time.
In this section we improve his result and present an
algorithm to compute the beacon kernel of a simple
polygon in O(n log n) time.

Let P be a simple polygon and let r1, r2, ..., rm be the
set of reflex vertices of P . Let Wi denote the dead wedge
of ri and let Ci denote its complement. H l

i and Hr
i are

half-planes along edges of Ci excluding the exterior of P
in a neighbourhood of r. Biro showed that the beacon
kernel of P , bker(P ), is equal to (

⋂m
i=1 Ci) ∩ P [1].

Therefore, we have

bker(P ) = (

m⋂
i=1

Ci) ∩ P = (

m⋂
i=1

(H l
i ∪Hr

i )) ∩ P =

((

m⋂
i=1

H l
i) ∩ P ) ∪ ((

m⋂
i=1

Hr
i ) ∩ P )

Let H l = (
⋂m

i=1H
l
i) and Hr = (

⋂m
i=1H

r
i ).

bker(P ) = (H l ∩ P ) ∪ (Hr ∩ P ) = (H l ∪Hr) ∩ P

Note that Hr and H l are convex sets and can be
computed in O(n log n) time and their union, H, can
be computed in O(n) time. Using an algorithm of
Chazelle and Edelsbrunner [4] the intersection of two
simple polygons can be computed in O(n log n + k)
time where k is the number of vertices of the resulting
polygon. As an edge e of P can intersect at most 4
edges of a convex polygon (extreme case happens when
e passes through two vertices of the convex polygon),
e can intersect at most 8 edges of H = H l ∪ Hr.
Therefore, the number of vertices of P ∩H is O(n) and
bker(P ) can be computed in O(n log n) time using the
algorithm in [4].

In our application, we compute the beacon kernel of a
monotone polygon, where bker(T ′) = (T ′ ∩H l) ∪ (T ′ ∩
Hr). We claim that bker(T ′) is also monotone with
respect to the x-coordinate. According to [6] the in-
tersection and union of two monotone polygons with
respect to the same line is monotonic with respect to
that line and can be computed in linear time. There-
fore, T ′ ∩H l and T ′ ∩Hr are both monotone polygons
with respect to the x-coordinate and their intersection
(the beacon kernel of T ′) is also monotone with respect
to the x-coordinate.

2.2 Computing the inverse beacon kernel of a mono-
tone polygon

According to [1] a point is in the inverse (beacon)
kernel of a polygon P , if it belongs to the attraction
region of each vertex of P . This immediately results
in a quadratic time algorithm to compute the inverse
kernel of a polygon [1]. Here, we present an algorithm
that runs in O(n log n) time and computes the inverse
kernel of a terrain polygon. Later we show how to
extend this result and compute the inverse beacon ker-
nel of an arbitrary monotone polygon in O(n log n) time.

We compute the inverse attraction kernel of T ′ in
two runs. Let the right (left) attraction region of a
vertex v be the set of points that are attracted by v and
reside to the right (left) of v. Let the right (left) inverse
kernel of T ′ be the set of points that are attracted by
all vertices to their right (left). In each run we compute
one of these kernels. By definition the intersection of
the right inverse kernel and left inverse kernel is the
inverse kernel of T ′.

We use a new approach to compute the left inverse
kernel which allows us to reduce the time complexity
to O(n log n). Let ri be a reflex vertex of T . Note



26th Canadian Conference on Computational Geometry, 2014

that ri may introduce a split edge in the computation
of right attraction regions of some vertices. A point to
the right of or below any split edge of a right attraction
region, cannot belong to the left inverse kernel. Among
all split edges introduced by ri, we are interested in
the one which prevents the most points from residing
in the left inverse kernel. Let Qri be the portion of T ′

to the left of this split edge (Fig 3). We claim that the
intersection of the polygons Qri (for all reflex vertices,
ri) is the left inverse kernel of T ′.

Lemma 1 Let r1, r2, ..., rm be the set of reflex vertices
of T ′ which introduce a split edge in the computation of
the right attraction region of at least one vertex of T ′.
Let si be the steepest split edge among all the split edges
introduced by ri, i.e. the angle between si and an upward
vertical ray emanating from ri is the smallest among
other split edges introduced by ri. Let Q =

⋂m
i=1Qri ,

where Qri is the portion of T ′ to the left of si.
Then Q is equal to the left inverse kernel of T ′.

Proof. Let q /∈ Q. There exists a reflex vertex r, where
q is to the right of a split edge s introduced by r. Let
s be the split edge of the vertex v. Clearly q is not in
the right attraction region of v. Therefore, q is not in
the left inverse kernel of T ′.

Let q ∈ Q. For the sake of contradiction, let us as-
sume there exists a vertex v, where q is not in the right
attraction region of v. Therefore, q is to the right of
the separation edge of v introduced by some reflex ver-
tex r. By the construction of Qr, q is not in Qr which
contradicts that q ∈ Q. �

Note that in Lemma 1 reflex vertices that do not
introduce any split edges are ignored. Reflex vertex r
does not introduce a split edge for any right attraction
region, if no vertex to the left of r resides in the dead
wedge of r.

Next we present an algorithm that computes the left
inverse kernel of a terrain polygon. Later we show that
the time complexity of the algorithm is O(n log n). The
right inverse kernel is computed symmetrically. The
algorithm starts by setting the buddy of some vertices
of T . For each reflex vertex r, the first (rightmost)
vertex v, which lies to the left of r and belongs to the
dead wedge of r is found and buddy(v) is set to r.
With this construction, v is the first vertex to the left
of r for which r introduces a split edge. Note that later
we may change the buddy of v to another reflex vertex
located between v and r, this is done in order to cut
through a separation edge rather than a split edge and
discard more points that do not belong to the right
attraction region of v.

Algorithm LeftInverseKernel
Input. Terrain T , terrain polygon T ′.
Output. Left inverse kernel of T ′, i.e. the set of points
p ∈ T such that p is attracted by all vertices of T to its
left.

1: Let v1, v2, ..., vn be the ordered set of vertices of T
from right to left.

2: Let r1, r2, ..., rm be the ordered set of reflex vertices
of T from right to left.

3: for i = 1 to m do
4: Let vj be the left neighbour vertex of ri in T .
5: if vj is in the dead wedge of ri then
6: Set buddy(vj) to ri.
7: else
8: Find li, the first intersection of the left edge of

the dead wedge of ri and T .
9: Let vs be the first vertex of T located on or to

the left of li.
10: if li exists then
11: Set buddy(vs) to ri.
12: end if{else ri does not introduce a split edge.}
13: end if
14: end for
15: for i = 2 to n do
16: if buddy(vi) is not set and buddy(vi−1) is set

then
17: buddy(vi) = buddy(vi−1)
18: else if buddy(vi) is located to the right of

buddy(vi−1) then
19: buddy(vi) = buddy(vi−1) {Details for the up-

date of buddy appear in lemma 2.}
20: end if
21: end for
22: for i = 1 to m do
23: Find the vertex v such that buddy(v)=ri

and among all other vertices vj such that
buddy(vj)=ri, the line vri has the smallest an-
gle with the vertical downward ray through ri.

24: if such a vertex v exists then
25: Let ρ be the ray along the line vri emanating

from ri and let q be the first intersection of ρ
with T ′.

26: Add riq to the list of cut edges C.
27: end if{else ignore ri}
28: end for
29: return Polygon R = CutOutBelow(C, T ′).

Note that by our construction, vertices with the
same buddy are consecutive and vertices without a
buddy are {v1, v2, ..., vk} (1 ≤ k ≤ n), for the biggest
k where these vertices attract all points of T ′ to their
right. Therefore, we safely ignore these vertices in the
construction of the left inverse kernel.

The procedure CutOutBelow(C, T ′), returns a poly-
gon by cutting T ′ through edges of C and discarding



CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

the sub-polygon that is located below (or to the right
of) a cut edge.

Lemma 2 R is equal to Q =
⋂m

i=1Qri (of lemma 1).

Proof. R is constructed by cutting through split
edges of reflex vertices. Although these split edges may
or may not be the steepest, we may assume that, Q ⊆ R.

We prove R ⊆ Q by contradiction. Assume there
exists a point q ∈ R, where q /∈ Q. Therefore, there
exists at least one reflex vertex r, where q /∈ Qr. Let r
be the leftmost reflex vertex with this property. Let the
steepest split edge of r (i.e. the cut edge of Qr) s, be
the split edge of v. If buddy(v) = r then the algorithm
chooses s as the cut edge of r and q cannot belong to
R. So suppose buddy(v) = r′. By the construction of
buddies, r′ is a reflex vertex of T between v and r. Note
that r′ is above the line vr, as otherwise (r, r′) makes
a steeper split edge than (r, v). Now consider Qr′ . It
is constructed by cutting through the split edge of v or
some steeper split edge (Fig 5). In both case q cannot
belong to Qr′ , which contradicts the assumption that r
is the leftmost reflex vertex with q /∈ Qr. �

The definition of Q implies that the left inverse kernel
of T is monotone.

Figure 5: The split edge of v emanating from r, ru, is
completely to the right of the split edge of v emanating
from r′, r′u′.

Lemma 3 CutOutBelow(C, T ′) can be done in
O(n log n) time.

Proof. The input of CutOutBelow(C, T ′) is a set of
edges and a monotone polygon. The output is the
polygon resulting from cutting T ′ through these edges

and discarding the sub-polygon below each edge. Let
c1, c2, ..., ct be the set of edges in C. LetHci , Rci and Lci

be the half-plane above the line containing ci, the half-
plane to the right of the vertical line passing through
the right endpoint of ci and the half-plane to the left
of the vertical line passing through the left endpoint of
ci, respectively (Fig 6). As T ′ is monotone, cutting
though ci and discarding the portion below ci is equal
to taking the intersection of T ′ and (Hci ∪ Rci ∪ Lci).
Therefore, CutOutBelow(C, T ′) results in Q, where

Q = (

t⋂
i=1

(Hci ∪Rci ∪ Lci)) ∩ T ′ =

((

t⋂
i=1

Hci) ∩ T ′) ∪ ((

t⋂
i=1

Rci) ∩ T ′) ∪ ((

t⋂
i=1

Lci) ∩ T ′))

Let H = (
⋂t

i=1Hci), R = (
⋂t

i=1Rci) and L =

(
⋂t

i=1Hci). H, R and L can be computed in O(n log n)
time and are convex sets. The intersection of T ′ with
any of these convex sets is a monotone polygon and can
be computed in linear time. As the union of two mono-
tone polygons with respect to the same line results in a
monotone polygon with respect to to that line, Q can
be computed in O(n log n) time. �

Figure 6: Three half-planes constructed from c in
lemma 3.

Theorem 4 The inverse kernel of the terrain poly-
gon T ′ is a monotone polygon and can be computed in
O(n log n) time.

Proof. The inverse kernel of T ′ is the intersection of its
right and left inverse kernels. As both of these polygons
are monotone, their intersection is also monotone.



26th Canadian Conference on Computational Geometry, 2014

As T ′ is a monotone polygon a triangulation of T ′

can be computed in linear time and then T ′ can be pre-
processed in linear time to answer ray shooting queries
in O(log n) time [5]. We use ray shooting to find the
intersection of the left dead wedge edge of each reflex
vertex and the terrain in O(log n) time. After this, set-
ting the buddies of vertices requires linear time. While
processing a reflex vertex ri and setting the buddies
(steps 6 and 11 of the algorithm), we save a pointer
to the first vertex v with buddy(v) = ri. As vertices
with the same buddy are consecutive, starting from v
we can find the direction of the steepest split edge of ri
in time proportional to the number of vertices that have
ri as their buddy. Then the actual split edge is com-
puted in O(log n) time using ray shooting. Each vertex
has only one buddy and the overall time complexity of
finding all the steepest split edges is O(n log n). By
lemma 3 CutOutBelow(C, T ′) runs in O(n log n) time.
Therefore, the total time complexity of the algorithm
is O(n log n). Thus the left and right inverse kernels
are computed in O(n log n) time. As both of them are
monotone polygons, their intersection can be computed
in linear time. �

The method presented for computing the inverse
beacon kernel of a terrain polygon can be extended
to compute the inverse beacon kernel of an arbitrary
monotone polygon in O(n log n) time. Let M be a
monotone polygon. Without loss of generality, assume
that M is monotone with respect to the x-coordinate.
Similar to lemma 1, we can define the inverse kernel of
M . Let MU and ML be the upper and lower chains
of M . From ML we construct a terrain polygon ML′

similar to the construction of T ′ from T and compute
the inverse beacon kernel of ML′. From MU we
construct MU ′ which is also a terrain polygon and
contains points below MU (the construction is similar
to ML′ but the resulting polygon is upside down
compared to ML′). The previous method can be easily
extended to compute the inverse beacon kernel of MU ′.

There is only one modification in the computation of
inverse kernels; when computing the cut edge of a reflex
vertex r, the ray shooting is performed in M rather
than ML′ or MU ′. This will discard points that are
excluded from the inverse kernel due to r. We claim
that the intersection of the resulting polygons is the
inverse beacon kernel of M . We omit further details.

Theorem 5 The inverse kernel of a monotone polygon
can be computed in O(n log n) time.

2.3 Computing the shortest beacon watchtower

To compute the shortest beacon watchtower we inter-
sect the kernel and inverse kernel of the terrain polygon
(in linear time). The result K is a monotone polygon.

The shortest beacon watchtower is the minimum dis-
tance between K and T . So we are dealing with the
problem of computing the minimum vertical distance
between two monotone polygonal chains (T and the
lower chain of K). This can be done with a simple ver-
tical sweep line, where the vertices are the events. As
both chains are piecewise linear, in each event we com-
pute the vertical distance between the two chains and
if necessary update the shortest distance. This process
takes linear time.

3 Conclusion

We showed how to solve the shortest beacon watchtower
problem in O(n log n) time and O(n) space. In order
to do this, we improved the time complexity of com-
puting the beacon kernel of a simple polygon and the
inverse kernel of a monotone polygon to O(n log n). Fu-
ture work may consist of 1) computing the inverse kernel
of a simple polygon in sub-quadratic time, 2) as some
pair of points on the terrain can attract each other and
do not need a watchtower, how can one compute the
shortest watchtower in this case where both routing via
the watchtower and direct routing is allowed, 3) extend-
ing the result to 3D by including techniques presented
in [7].

References

[1] Michael Biro, Beacon-based Routing and Guarding.
PhD Dissertation, Stony Brook University, 2013.

[2] Michael Biro and Jie Gao and Justin Iwerks and Irina
Kostitsyna and Joseph S. B. Mitchell, Beacon-based
routing and coverage. Proceedings of the 21st Fall
Workshop on Computational Geometry, 2011.

[3] Michael Biro, Jie Gao, Justin Iwerks, Irina Kostitsyna,
Joseph S. B. Mitchell. Combinatorics of beacon routing
and coverage. Proceedings of the 25th Canadian Con-
ference on Computational Geometry, 2013.

[4] Bernard Chazelle, and Herbert Edelsbrunner: An op-
timal algorithm for intersecting line segments in the
plane. J. ACM 39(1):1-54 1992.

[5] Bernard Chazelle, Herbert Edelsbrunner, Michelangelo
Grigni, Leonidas Guibas, John Hershberger, Micha
Sharir, Jack Snoeyink. Ray shooting in polygons us-
ing geodesic triangulations. Algorithmica, 12(1):54-68,
1994.

[6] Darrell Shane, Monotone polygon intersection : geome-
try, computer applications, and computer graphics, Ft.
Belvoir : Defense Technical Information Center, 1991.

[7] Binhai Zhu: Computing the shortest watchtower of a
polyhedral terrain in O(n logn) time. Computational
Geometry, 8(1):181-193, 1997.


