
All Approximating Segments for a Sequence of Points

Ghobad Emadi∗ Alireza Zarei†

Abstract

In this paper, we consider the problem of approximat-
ing a sequence of n points by a line segment in such
a way that the distance of each point from this seg-
ment is not greater than a given constant. Further-
more, the distance between the first(last) input point
and the start(end)-point of the approximating segment
must not be greater than the given constant. This is
a sub-problem in solving unrestricted line simplifica-
tion and minimum-link path problems. We propose an
O(n log n) algorithm for computing a representation of
these segments and we prove that the lower time com-
plexity of finding all such segments (in a specific rep-
resentation) is Ω(n log n) on the algebraic computation
tree model which means that our algorithm is optimal.

Keywords: line simplification, line stabbing, algebraic
computation tree model, minimum-link path.

1 Introduction

A basic technique in data reduction is to approximate a
collection of data by another collection of smaller size.
Then, the resulted data are easier to be processed or
maintained, in cost of accuracy in further processes. An
example of such large-scale data is the ordered sequence
of points describing a path or a region boundary.

In such applications, we have an arbitrary sequence
of points and the goal is to approximate the trace of
these points by a chain of smaller number of segments
so that it describes the initial sequence well. This prob-
lem is known as the line simplification [1, 2, 3] or ordered
stabbing [5, 6] in the literatures. In this problem, each
line segment of the answer is used as an approximation
for a sub-sequence of the input points with an error
which is the maximum distance of the points of this
sub-sequence to the approximating segment. Then, the
error of an approximating chain is either the maximum
or sum of the error of its segments. The Euclidean dis-
tance is the most popular and practical distance mea-
sure in computing the error of a line segment.

In almost all line simplification solutions there is the
sub-problem of finding an approximating segment for a
sub-sequence of input points. In this paper, we consider

∗Department of Mathematical Sciences, Sharif University of
Technology, ghobad emadi@alum.sharif.ir
†Department of Mathematical Sciences, Sharif University of

Technology, zarei@sharif.edu

the general version of this problem. We are given a
sequence of points p1, p2, . . . , pn, and the goal is to find
all approximating segments st in such a way that the
distance of any point pi to st as well as the length of
the segments sp1 and tpn are not greater than a given
constant ε. The distances and lengths are measured
by L2, the Euclidean distance metric. This problem
can be formulated as having a sequence of closed disks
o1, o2, . . . , on, all with radius ε, and the goal is to find
all segments that start from a point in o1, intersect all
disks and end at a point in on. This formulation of
the problem is similar to the known ordered stabbing
problem while the first definition is used in line(path)
simplification literature.

This problem has many applications in online query
processing on geometric data sets, CAD/CAM and com-
puter graphics. In these applications, the set of approx-
imating segments are computed in a preprocessing step,
and at query time, for a fixed start or end point, a pos-
sible approximating segment is computed and returned
efficiently. For example, by moving one end point of
an approximating segment in a CAD/CAM application
the proper position of this segment must be determined
quickly.

We first give a proper representation model for these
approximating segments in Section 2. Then, in Sec-
tion 3, we propose an O(n log n) time algorithm for com-
puting the proper representation of the approximating
segments. Finally, in Section 4, we prove that obtaining
such a representation has Ω(n log n) time complexity on
the algebraic computation tree model which means that
our algorithm is optimal.

2 The Representation Model

Any approximating segment must start from a region
S ⊆ o1 and end at a region T ⊆ on. Thus, in order to
find all possible approximating segments we must find
the regions S and T , and a method that for each point
p ∈ S identifies the points t ∈ T where st is an approxi-
mating segment. As we will see later, both regions S and
T are convex and their boundaries are composed of line
segments and some arcs of oi’s boundaries. Hence, we
can maintain the regions S and T by having the ordered
sequence of their boundary edges and arcs. Moreover,
for each point s ∈ S we show that there is a convex
region Tp ⊂ T where for each point t ∈ Tp, st is an
approximating segment. Therefore, in a proper repre-

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

26th Canadian Conference on Computational Geometry, 2014

sentation of S and T we need a data structure from
which the region Tp can be obtained efficiently(e.g. in
logarithmic time). We call such a representation as a
proper representation model for the approximating seg-
ments.

3 The Proposed Algorithm

In this section, we propose an O(n log n) time algorithm
to find a proper representation for all approximating
segments of a sequence of points p1, p2, . . . , pn. We as-
sume that the corresponding disks o1 and on of p1 and
pn are disjoint. In this algorithm, we use some notation
and definitions from [6].

For any direction −→α ,
−→−α denotes its reverse direction

and L−→α is a line parallel to this direction. A disk oi is
called a support disk for a direction −→α if there is a line
L−→α where oi is tangent to L−→α from left(in direction of
−→α) and there is no other disk strictly to the left of L−→α .
Then, L−→α is called the support line for direction −→α and
the point p = L−→α ∩ oi is called a support point for this
direction. The gray disk in Figure 1 is a support disk
for direction −→α .

Observation 1 The set of lines(if exists any) which
are parallel to L−→α and intersect all disks o1, o2, . . . , on
must lie between L−→α and L−→−α (see Figure 1).

A line L is a limiting line if it is the support line in
both directions −→α and

−→−α. A limiting line is an internal
bitangent of a pair of disks. L−→

β
and L−→

β′ are two limiting

lines in Figure 1. Any limiting line L−→α has two support
points s−→α and e−→−α which are respectively support points

in directions −→α and
−→−α. A limiting line L−→α is called

clockwise(resp. counter-clockwise) if the direction of the

vector −−−−→s−→α e−→−α is the same as the direction of
−→−α(−→α) and

is denoted by cw(resp. ccw). Figure 1 shows cw and ccw
limiting lines.

oj

e−→−β
e−−→−β ′

L−→−α

s−→
β ′

L−→
β
(cw)

L−→
β ′(ccw)

s−→
β

L−→α
L ′

Figure 1: The gray disk is a support disk for the line
L−→α , and L−→

β
and L−→

β′ are two limiting lines. L−→
β

is

clockwise limiting line and L−→
β′ is counter-clockwise.

It is simple to verify that a cw or ccw limiting line
intersects all disks and if we rotate a cw(resp. ccw)
clockwise(resp. counter-clockwise) it does not intersect
all disks any more. Moreover, there are at most two
limiting lines(a cw and a ccw) which delimit slopes of
the lines intersecting all disks. Assume that cw is L−→α

and ccw is L−→
β

. Then, the direction of all approximating

lines must be between −→α and
−→
β .

Other than cw and ccw there is another limitation for
the set of approximating segments. When we rotate the
cw limiting line, before reaching the ccw, it may leave
a disk which means that it is not an approximating line
any more. For example, the line L′ in Figure 1 does not
intersect disk oj while it lies inside the slope defined
by cw and ccw. This restriction for the approximating
lines can also be defined by the notion of support lines.
Assume that A is the set of support disks for directions
[α, β] and B is the set of support disks for directions
[−β,−α]. The sets A and B are respectively called the
above and below support hulls. It is simple to see that
any one of the disks defining cw and ccw belongs to at
least one of the sets A and B.

Lemma 1 If a line L intersects all disks in A and B,
it intersects all disks o1, o2, . . . , on.

Proof. Assume that L−→γ intersects all disks in A and
B, but it does not intersect a disk oi where oi 6∈ A∪B.
Without loss of generality (W.l.o.g), assume that oi lies
to the left of L−→γ . Consider the line L′−→γ which is parallel

to L−→γ and is tangent to oi, and oi lies to the left of L′−→γ .

Trivially, L′−→γ is a support line in direction −→γ . On the

other hand, L′−→γ intersects support disk of cw and ccw

which means that γ ∈ [α, β] or γ ∈ [−β,−α]. Therefore,
oi belongs to A or B which is a contradiction. �

The final restriction on the approximating segments
in our problem is that such a segment must start from
o1 and end at a point in on.

Summarizing these three limitations, we propose an
algorithm which begins by o1 and on and incrementally
adds the other disks o2 to on−1. Next, it updates the
limiting lines cw and ccw, support hulls A and B, and
start and end regions S and T . As initialization, cw and
ccw are the proper internal bitangents of o1 and on(o1
and on does not intersect each other), both of A and
B are the set {o1, on}, S = o1 and T = on. Then, the
disks are considered one by one and these elements are
updated accordingly. The pseudo code of the algorithm
and its sub-functions are listed in Appendix A.

In this algorithm, A and B are maintained in two
balanced binary search trees as follows. Assume that
A =< oi1 , oi2 , . . . , oik > is the sequence of disks that
their order is defined so that the lower external bitan-
gent of any consecutive pair of these disks is a support
line (see Figure 2). Each line L that intersects all the
disks must lie above the lower envelope of these bitan-
gents (drawn in bold in Figure 2). Similarly, there is
such an ordering for disks in B. Moreover, the lower en-
velope of these bitangents for A is convex-downward and
the upper envelope of the bitangents for B is convex-
upward.

According to the direction of cw and ccw, the first
disk in A(resp. B) is called head(A)(resp. head(B))
and the last one is called tail(A)(resp. tail(B)).

The order of disks in A and B (implies the first and
the last disks) is derived from their position in their
corresponding binary search tree. For the initiative, the
order of o1 is less than on. As we see later, a new disk
will be inserted into A(resp. B) when it lies above(resp.
below) the lower(resp. upper) envelope of the bitangent
of disks in A(resp. B). The order of such a disk is de-
fined by the projection of its center on the corresponding
envelope. It is simple (by an inductive argument) to see
that cw and ccw are respectively internal bitangents of
(head(B),tail(A)) and (head(A),tail(B)).

The algorithm considers disks o2 to on−1 one by one
and for a disk oi does as follows: When oi lies between
two consecutive disks in A(resp. B) and completely
lies below(resp. above) the lower(resp. upper) enve-
lope then it is impossible to find a line intersecting all
disks o1, o2, . . . , oi and on. Moreover, if oi lies beyond
tail(B)(resp. tail(A)) and to the left(resp. right) of
ccw(resp. cw) or oi lies before head(B)(resp. head(A))
and to the left(resp. right) of cw(resp. ccw), there is
no approximating segment for disks o1, o2, . . . , oi and
on. The correctness of these claims are simple and are
derived from the definition of A, B, cw, and ccw.

The disk oi may change the limiting lines cw or
ccw. This happens when oi is not intersected by cw
or ccw. Based on the position of oi, (with respect
to cw or ccw) these limiting lines must be rotated
accordingly until it will be tangent to oi. This is
done by calling procedures UpdateCW (A,B, oi, cw) and
UpdateCCW (A,B, oi, ccw).

While the set of approximating segments must have
a direction between cw and ccw, some parts of A and
B are not valid any more and in the UpdateCW and
UpdateCCW procedures these invalid areas are re-
moved. If oi has not been inserted as head(A) and
Tail(A) in calling UpdateCW and UpdateCCW pro-
cedures and if it lies between two consecutive disks in A
and above the lower envelope of A, it must be inserted in
A in its correct position. Then, this may cause the lower
envelope to be non-convex. If so, the incorrect dicks are
removed from A. These operations are done by calling
the UpdateA procedure (see Appendix A). Similarly, it
may be required to update B using UpdateB(B, oi) pro-
cedure.

Finally, the algorithm must update the regions S and
T according to the new values of cw, ccw and the posi-
tion of oi. S is at most the intersection of the previous
S, the left half plan of ccw and the right half plan of cw.
We say, at most because the new disk oi may lies be-
fore (comparing to the direction cw and ccw) the disk
o1. Then, any segment which starts from o1 must go
backward to intersect oi which means that it can not

end at a point in on. Therefore, when cw or ccw leaves
oi before exiting S we must remove from S the region
that lies in front of oi(according to the direction of cw
or ccw). Symmetrically, the region T must be updated
accordingly. S and T are always the intersection of con-
vex regions. Thus, they will remain convex and their
boundaries are composed of line segments from cw and
ccw and circle arcs from oi disks.

After handling the disk oi, if either of the regions S
or T is empty it means that there is no approximating
segment which is reported by the algorithm.

ccw

cw

Figure 2: Support hulls and the lower envelope of disks.

Theorem 2 The time complexity of the above algo-
rithm for a sequence of n disks is O(n log n) and requires
O(n) space.

Proof. Having the proper search structures for A and
B, the position of a disk oi is obtained in O(log(|A|))
and O(log(|B|)) and the size of A and B are at most
n. The running time of UpdateCW , UpdateCCW ,
UpdateA and UpdateB procedures depend on the num-
ber of changes these procedures apply on A and B.
Each of these changes can be done in O(log(|A|)) and
O(log(|B|)). Each disk is inserted into A(or B) and
removed from it at most once which means that the
total number of insert/delete operations on A and B
is O(n). Therefore , the amortized cost of any one
of the procedures UpdateCW , UpdateCCW , UpdateA
and UpdateB is O(log n).

While the regions S and T are convex, finding the in-
tersection of these regions and a half-plane or a convex
region of complexity O(1) can be handled in logarithmic
time in terms of the complexity of their boundaries. Any
call to UpdateS or UpdateT increases the complexity of
the region by a constant number which means that the
complexity of the boundary of S and T is O(n). There-
fore, the time complexity of UpdateS and UpdateT is
O(log n). Hence, the total time complexity of the algo-
rithm is O(n log n) and requires O(n) space. �

Having the regions S and T and the binary search tree
data structures for A and B, for any query point s ∈ S
we can report the region T ′ ⊆ T where for any t ∈ T ′,
st is an approximating segment. This can be done by
finding tangent lines to A and B from s and obtaining
the intersection of T and the region contained between
these two tangents. Therefore, the following theorem
can be concluded.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

26th Canadian Conference on Computational Geometry, 2014

Theorem 3 Having the regions S and T and the data
structures A and B, the set of all approximating seg-
ments starting from a given query point s ∈ S can be
obtained in O(log n) time.

4 The Reduction Method

In this section, we propose a method for sorting a set of
n numbers using just the proper representation of the re-
gion S of a set of n disks to show that finding the proper
representation of all approximating segments requires
Ω(n log n) time on algebraic computation tree model.
In this model, add, multiply, division, and square-root
operations are done in constant time [4] and the lower
bound of sorting n distinct numbers on this model is
Ω(n log n). Let a1, a2, . . . , an be n positive real, non-
zero and distinct numbers and Φ : R → D((x, y), 2ε)
be a mapping function which maps a number ai to
a disk D(Ci, 2ε) whose radius is 2ε and its center is

Ci = (xi, yi) = (ε2 −
εai∑n
j=1 aj

,
√
ε2 − (ε2 −

εai∑n
j=1 aj

)2) in

cartesian coordinate. In this mapping, − ε
2 < xi <

ε
2

and yi is y-coordinate of the intersection point of line
x = xi and circle D((0, 0), ε) (see Figure 3). Accord-
ing to this mapping, each number ai corresponds to
a disk Di = Φ(ai) whose center lies on ε-radius circle
D((0, 0), ε). We add two other disks D0 and Dn+1 such
that the correct ordering of the numbers a1, a2, . . . , an
can be obtained from the proper representation of the
starting region S of the approximating segments for the
sequence D0, D1, D2, . . . , Dn, Dn+1 of disks. D0 is de-
fined as D((0,−ε), 2ε) and Dn+1 will be defined later.

Ïµ
2

Figure 3: Mapping a number ai to a disk with center
(xi, yi).

This mapping can be done with O(n) number of add,
multiply, division, and square-root operations and these
operations are allowed on algebraic computation tree
model. So, this reduction can be done in O(n) time.
Having the proper representation of the solution of this
derived problem, we prove that we can find the correct
ordering of the input numbers. This implies that the
lower bound of the approximating segments problem is
Ω(n log n) as well.

Assume that Ci is the center of the disk Di and its
coordinates are denoted by (xi, yi).

Observation 2 For each disk Di (1 ≤ i ≤ n) we have
− ε

2 < xi <
ε
2 and for each pair of disks Di and Dj

(1 ≤ i ≤ n and 1 ≤ j ≤ n) we have xi < xj if and only
if ai > aj.

This observation is a direct result of the definition of
Ci and the assumption that the numbers are positive,
non-zero, and distinct.

Observation 3 Each pair of distinct disks Di and Dj

(1 ≤ i ≤ n and 1 ≤ j ≤ n) intersect in exactly two
points on their boundaries.

This observation is derived from the facts that these
disks have the same radius, and the distance between
their centers is smaller than their radius.

In the rest of this paper, intersection points of two
disks are the intersections between their boundaries.

Lemma 4 Exactly one intersection point of each pair
of distinct disks Di and Dj (1 ≤ i ≤ n and 1 ≤ j ≤ n)
lies inside the disk D0 and this point lies under x-axis.

Proof. By the construction, the centers of Di and Dj

(Ci and Cj) lie on the boundary ofD((0, 0), ε) and above
x-axis, and their distance is smaller than 2ε. This im-
plies that one of the intersection points of Di and Dj lies
above x-axis and outside D0 (point pout in Figure 4).
On the other hand, the distances of Ci and Cj from
x-axis are smaller than 2ε which imply that the other
intersection point must lie under this line (point pin in
Figure 4). We prove that this intersection point lies in-
side D0. W.l.o.g, assume that pin = (xin, yin) is this
intersection point and 0 ≤ xin <

ε
2 . Then, at least one

of xi and xj must be in the range (− ε
2 , 0] (otherwise,

xin cannot be in the range 0 ≤ xin <
ε
2). This means

that at least one of the centers Ci and Cj lies on the
second quadrant on the boundary of disk D((0, 0), ε).
Then, the shortest distance from this center to the out-
side of D0 in forth quadrant happens when it lies on
point p = (0, ε) as shown in Figure 4. Trivially, this
distance is greater than 2ε. Therefore, the intersection
point cannot lie outside D0. �

We denote by S the region D0∩D1∩ . . .∩Dn which is
the intersection of these disks. Obviously, S can be rep-
resented as an ordered sequence of arcs, each of which
belongs to a disk Di ∈ {D0, D1, . . . , Dn}. Any pair of
consecutive arcs have a common point. These points
are called the vertices of S.

Lemma 5 If ai and aj are adjacent in the sorted order
of numbers a1, a2, . . . , an, the intersection point of their
corresponding disks Di and Dj (1 ≤ i ≤ n and 1 ≤ j ≤
n) that lies inside D0 is a vertex of S = D0 ∩D1 ∩ . . .∩
Dn.

D
0

Di
D

j

p
in

p
out

C
C ij

p

Figure 4: Positions of the intersection points of disks Di

and Dj .

Proof. Let p = (xp, yp) be the intersection point for
Di and Dj (see Figure 5). We prove that if ai and aj
are adjacent in the sorted order of a1, a2, . . . , an, then
p ∈ S which proves the lemma. Consider the disk Dp =
D((xp, yp), 2ε). W.l.o.g, assume that xj < xi. As shown
in Figure 5, Dp contains the center of any disk Dk which
xk < xj or xk > xi. Moreover, Dp does not contain the
center of a disk Dk where xj < xk < xi. Furthermore,
centers of disks Di and Dj lie on the boundary of Dp.
These three facts show that p ∈ S if and only if there is
no disk Dk whose xi lies between xj and xi and, in this
case p lies on the boundary of S. �

D
p

D Dj i

p

Figure 5: The vertices of the boundary of S.

We denote by max(resp. min) the index of the disk
Di (1 ≤ i ≤ n) with maximum(resp. minimum) value of
xi. This means that Dmax(resp. Dmin) corresponds to
the number amax(resp. amin) with the maximum(resp.
minimum) value among the numbers a1, a2, . . . , an. Let
q and q′ be the vertices of S that are respectively the
intersection points of D0 and Dmin(lies on the left side
of y-axis), and D0 and Dmax(lies on the right side of
y-axis) (see Figure 6).

Observation 4 The region S is convex and has n + 1
vertices. n− 1 vertices are the intersection points of Di

and Dj(1 ≤ i ≤ n and 1 ≤ j ≤ n) pairs where their
corresponding numbers ai and aj are adjacent in the

sorted order of the numbers a1, a2, . . . , an. The other
two vertices are q and q′.

This observation is a simple result of Lemma 5, the fact
that the intersection of convex regions is convex, and
the configuration of D0 and Di (1 ≤ i ≤ n) disks.

Observation 5 If we traverse the vertices of S from
q to q′, we obtain the sorted order of xi’s which corre-
sponds to the sorted order of the numbers a1, a2, . . . , an.

Therefore, we can sort a set of positive, non-zero, and
distinct numbers by converting them to a set of disks Di

and traversing the boundary of their intersection. Both
of these operations can be done in linear time.

Now, we select the disk Dn+1 so that a segment
st be an approximating segment for the sequence of
disks D0, D1, D2, . . . , Dn, Dn+1 if and only if s ∈ S =
D0 ∩D1 ∩ . . . ∩Dn and t ∈ Dn+1. Assume that t and
t′ are respectively the tangent lines to Dmin at point q
and Dmax at point q′ (see Figure 6). The disk Dn+1

is defined to be the 2ε-radius disk that is tangent to
both t and t′ and lies on the opposite side of the in-
tersection point of t and t′ with respect to S (see Fig-
ure 6). Lemma 6 shows that Dn+1 is well-defined. Each
disk Di ∈ {D1, D2, . . . , Dn} intersects D0 in two points
which lie on right and left side of y-axis. These points
respectively are called the first and the last intersec-
tion points.

D

min
max

0

n+1

qq ’

t

’

t

t t

D
D

D

’

cutting to save space

Figure 6: Position of Dn+1.

Lemma 6 For each pair of disks Di and Dj from
{D1, D2, . . . , Dn}, the tangent line of Di at its first

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

26th Canadian Conference on Computational Geometry, 2014

intersection point intersects the line that is tangent to
Dj at Dj’s last intersection point. Moreover, the inter-
section point of these tangent lines is closer to that side
of S that does not belong to the boundary of D0 and this
intersection point lies under x-axis.

Proof. Each disk Di((xi, yi), 2ε) intersects D0 in two
points. These points lie below that diameter ofDi which
is parallel to x-axis. The reason is that the distance of
Ci to any point on that part of the boundary of D0

which lies above this diameter is less than 2ε. On the
other hand, one of the intersection points of D0 and
Di lies on the right of the vertical diameter of Di and
the other one lies on the left of that diameter. The
slope of tangent lines to Di at the left intersection point
is negative and this for the right intersection point is
positive. Therefore, any right(resp. left) tangent line of
Di intersect any left(resp. right) tangent line of Dj . �

The following Lemma identifies the set of
all approximating segments for the sequence
D0, D1, D2, . . . , Dn, Dn+1 of disks.

Lemma 7 A segment st is an approximating segment
for the sequence D0, D1, D2, . . . , Dn, Dn+1 of disks if
and only if s ∈ S and t ∈ Dn+1.

Proof. Trivially, any segment that starts from a point
of S and ends at a point of Dn+1 is an approximating
segment for D0, D1, D2, . . . , Dn, Dn+1 . We prove the
reverse of the lemma by showing that any segment st
where s ∈ D0 − S and t ∈ Dn+1 does not intersect
the region S. As shown in Figure 7, the region D0 −
S can be partitioned into 3 parts A, B and C. It is
simple to check that if s belongs to any one of these
regions, it cannot intersect S. This means that st does
not intersect any one of the disks D1, D2, . . . , Dn and,
therefore, cannot be an approximating segment. �

Now, we can conclude the main result:

Theorem 8 The lower bound on the time complexity of
algorithms that solve the approximating segments prob-
lem of a sequence of n disks on the algebraic computa-
tion tree model is Ω(n log n).

5 Conclusion

In this paper, we considered the problem of approxi-
mating a set of points by a line segment. This is a sub-
problem in line(path) simplification and ordered stab-
bing problems which used in cartography and geometric
data reduction applications. We showed that the time
complexity of any algorithm for finding all approximat-
ing segments in a specific representaion is Ω(n log n) and
proposed an optimal algorithm for finding these seg-
ments by which the set of all approximating segments

A B C

q q ’

D0t t ’

n+1

t t

D

’

S

Figure 7: Locus of the approximating segments.

from a given query point can be obtained in O(log n)
time. A practical and immediate related open problem
is to find an optimal algorithm for finding only one ap-
proximating segment or solving its decision problem.

References

[1] Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.
Streaming algorithms for line simplilcation. Discrete &
Computational Geometry, vol. 43(3), pp. 497-515, 2010.

[2] P.K. Agarwal and K. R. Varadarajan. Efficient algo-
rithms for approximating polygonal chains. Discrete &
Compututationl Geometry, 23(2):273-291, 2000.

[3] P.K. Agarwal, S. Har-Peled, N.H. Mustafa and Y.
Wang. Near-linear time approximation algorithms for
curve simplification. Algorithmica, 42:203-219, 2005.

[4] M. Ben-Or. Lower bounds for algebraic computation
trees. Proc. 15th Annual Symposium on Theory of Com-
puting., pp. 80-86, 1983.

[5] P. Egyed and R. Wenger. Ordered stabbing of pairwise
disjoint convex sets in linear time. Discrete Applied
Mathematics, 31:133-140, 1991.

[6] L. J. Guibas, J. E. Hershberger, J. S.B. Mitchell, and
J.S. Snoeyink. Approximating polygons and subdivi-
sions with minimum link paths. Internat. J. Comput.
Geom. Appl., 3(4):383-415, December 1993.

Appendix

In the following procedures we use head(tail) for A and
B which corresponds to the first(last) disk in A or B ac-
cording to direction of cw and ccw. Also, next and prev
items follow this ordering. Here, we only listed the pro-
cedures UpdateCCW , UpdateA and UpdateS. The other
procedures(UpdateCW , UpdateB and UpdateT) are analo-
gously the same.

Algorithm 1 main procedure

1: Initialize A=< o1, on >, B=< o1, on >, cw=o1 ↘
on, ccw=o1 ↗ on, S=o1, T=on.

2: for i← 2 to n− 1 do
3: if oi lies between two consecutive disks of A(B)

and below(above) their lower(upper) external bi-
tangent then

4: There is no approximating segment.
5: end if
6: if oi lies after Tail(B)(Tail(A)) and

to the left(right) of ccw(cw) or before
Head(B)(Head(A)) and to the left(right) of
cw(ccw) then

7: There is no approximating segment.
8: end if
9: if oi does not intersect ccw then

10: UpdateCCW .
11: end if
12: if oi does not intersect cw then
13: UpdateCW .
14: end if
15: if oi lies between two consecutive disks of A(B)

and above(below) their lower(upper) external bi-
tangent and it is not inserted as Tail(A)(Tail(B))
or Head(A)(Head(B)) then

16: UpdateA(A, oi)(UpdateB(B, oi)).
17: end if
18: UpdateS.
19: UpdateT .
20: if S or T is empty then
21: There is no approximating segment.
22: end if
23: end for

Algorithm 2 UpdateS procedure

S ← S∩ (the left halfplan of ccw) ∩ (the right half-
plan of cw)
if cw or ccw leaves oi before leaving S then

remove from S the region lies in front of oi
end if

Algorithm 3 UpdateCCW procedure

1: if oi lies on the right of ccw then
2: ccw ← counter-clockwise tangent from Head(A)

to oi.
3: while ccw enters Tail(B) after entering oi do
4: remove Tail(B) from B.
5: end while
6: while Tail(B) lies above the upper external bitan-

gent of oi and Tail(B)→ prev do
7: remove Tail(B) from B.
8: end while
9: Add oi as the tail of B.

10: while Head(A)→ next does not lie below ccw do
11: remove Head(A) from A.
12: ccw ← counter-clockwise tangent from Head(A)

to oi.
13: end while
14: end if
15: if oi lies on the left of ccw then
16: ccw ← counter-clockwise tangent from oi to

Tail(B).
17: while ccw exit Head(A) before exiting oi do
18: remove Head(A) from A.
19: end while
20: while Head(A) lies below the lower external bi-

tangent of oi and Head(A)→ next do
21: remove Head(A) from A.
22: end while
23: Add oi as the head of A.
24: while Tail(B) → prev does not lie above ccw do
25: remove Tail(B) from B.
26: ccw ← counter-clockwise tangent from oi to

Tail(B).
27: end while
28: end if

Algorithm 4 UpdateA procedure

/∗ Suppose oi lies betweeen two members of
A such as Aprev and Anext ∗ /
while Anext lies below the lower external bitangent
of oi and Anext → next do
Tmp← Anext.
Anext ← Anext → next.
remove Tmp from A.

end while
while Aprev lies below the lower external bitangent
of oi and Aprev → prev do
Tmp← Aprev.
Aprev ← Aprev → prev.
remove Tmp from A.

end while
Insert oi into A.

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

