
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Maximizing the Minimum Angle with the Insertion of Steiner Vertices

Shankar P. Sastry∗

Abstract

We consider the problem of inserting a vertex inside
a star-shaped input polygon at the location that max-
imizes the minimum angle in the resulting triangula-
tion. An existing polynomial-time algorithm solves for
the intersection of three polynomial surfaces (a prior pa-
per indicates that these are eighth-degree polynomials)
and computes the maxima of the curve of intersection of
two such surfaces to solve the problem. We developed
a similar technique through the geometric insight that
at least two angles (typically, three) of the triangula-
tion have to be identical at the optimal location. We
combinatorially process the angles to compute the opti-
mal location in each case. The worst-case complexity of
the algorithm remains O(n3 log n), but it is much eas-
ier to implement partly because our algorithm requires
the solutions of an (at most) eighth-degree, univariate
polynomial for each combination of the angles. We also
modified the algorithm to lower the expected running
time to O(n2) using a recursive, randomized algorithm
for LP-type problems. We extend the algorithm by im-
posing constraints on the location of the Steiner vertex
and solving the constrained optimization problem in a
similar manner. We also extend the algorithm to simul-
taneously insert two vertices by considering all possible
topologies and ensuring that the necessary conditions
for local maxima are satisfied.

1 Introduction

We consider the problem of positioning a Steiner ver-
tex that is connected to all the vertices of a star-shaped
input polygon such that it maximizes the minimum an-
gle in the resulting triangulation. The point has to be
inside a convex feasible region so that no triangle lies
outside the polygon [6, 7]. The algorithm that solves
the problem may be used in Delaunay mesh refinment
algorithms to insert addition vertices into a mesh at an
optimal location or to carry out smoothing of the mesh
vertices to improve the mesh quality.

In the context of mesh smoothing, Freitag and
Plassman [6] developed a quadratic programming-based
active-set approach to maximize the minimum angle by
observing that it is a convex optimization problem with

∗Scientific Computing and Imaging Institute, University of
Utah, sastry@sci.utah.edu

a nondifferentiable objective function. Recent research
by Aronov et al. [2] has yielded polynomial-time algo-
rithms to maximize the minimum angle. Their recent
attempt [3] solves an LP-type problem by a comput-
ing the lower envelope of bivariate functions after solv-
ing eighth-degree polynomial equations. Their latest
attempt [4] solves for the intersection of three bivari-
ate polynomial surfaces or computes the maxima of the
curve of intersection of two such surfaces. The surface
intersection represents locations at which two or three
angles of the triangulation are equal. These algorithms
are described in Section 2. The active-set approach is
easy to implement, but it is numerical in nature. The
LP-type approach solves the problem exactly, but com-
puting the lower envelope of bivariate functions is not
easy. To obtain a maximum of the curve of intersec-
tion of two surfaces or a point of intersection of three
surfaces is also hard in comparison with solving a uni-
variate polynomial equation.

We use concepts from nondifferentiable optimization
to develop our algorithm. We infer that the minimum
angle is shared by two or more angles because it is al-
ways possible to improve the minimum angle (at the
cost of the “better” angles) by appropriately moving
the vertex. A brief background on this topic is pre-
sented in Section 3. Our approach is combinatorial and
is similar to [4]. We take all combinations of pos-
sible locations of the minimum angles and return the
“best” location of the Steiner vertex. Our algorithm is
described in detail in Section 4. We observe that the
number of possible combinations is O(n3), where n is
the number of segments in the polygonal cavity, and
we determine the optimal location by considering only
those points where the gradients are suitably directed.
We improve the expected running time to O(n2) using
a recursive, randomized technique adapted from Clark-
son’s algorithm [5]. We also provide an algorithm for a
generalized constrained optimization problem. We also
extend the algorithm for the insertion of two vertices.
These extensions are discussed in Section 5.

Our work has also provided some insight into local
mesh quality improvement by vertex movement. Sec-
tion 6 includes a discussion about improvements to our
algorithm and future work.



27th Canadian Conference on Computational Geometry, 2015

2 Related Work

In this section, we discuss two of the most relevant algo-
rithms in the evolution of our algorithm. The first algo-
rithm is by Aronov and Yagnatinsky [4]. Although we
developed our algorithm independently, their algorithm
is similar to ours. The main difference is the geomet-
ric intuition; we believe ours is simpler to comprehend,
and, therefore, easier to extend to tougher cases, as we
shall see in Section 5. The second algorithm is the active
set-based technique for mesh quality improvement [6].
We use concepts from this algorithm to accelerate our
algorithm for realistic cases.

2.1 The Bivariate Surface Algorithm

Aronov and Yagnatinsky [4] begin by defining a feasible
region in the domain where it is possible to construct
a triangulation whose minimum angle is some z. The
feasible region is bounded by circular arcs (that circum-
scribe an edge so that the angle subtended at the cir-
cumference is z) and line segments (that emanate at an
angle z from the edges). The feasible region may be
empty. For each value of z, we have arcs and lines on
the domain. When they are lifted in the third dimen-
sion for all values of z, they form surfaces. In a prior
paper [3], they have used eighth-degree, bivariate poly-
nomials to define similar surfaces. They then claim that
the optimal point is at a location where three surfaces
intersect at a point or the maxima of curve formed by
the intersection of two surfaces. The feasible maximum
over the points returns the optimal triangulation. We
use the gradients of the objective function to prove the
claim in the language of nondifferentiable optimization
and compute those points on the 2D plane. Our func-
tions are eighth-degree, univariate polynomials.

2.2 The Active Set Method

Freitag and Plassman [6] solve the problem through ver-
tex movement dictated by a numerical optimization al-
gorithm. At a given location, they define the active set
as the set of angle(s) with the minimum value. They
use the gradient of the function defining the angle(s) to
compute the direction in which the vertex should move
in order to optimize it. The descent direction is com-
puted by considering all convex combinations of active
set gradients and choosing the one that minimizes the
magnitude. If the active set changes during the ver-
tex movement, the gradients and descent direction are
recomputed. Similarly, we consider only those combi-
nations of angles in which all the current active-set an-
gle(s) are present.

3 Background

Since our objective function is nondifferentiable, we pro-
vide a background on necessary conditions1 for the con-
strained optimization of such functions [8], which will
also help us extend the algorithm for more complicated
cases. In the subsequent sections, we will provide a ge-
ometric intuition behind the material presented here.

We assume that our objective function, f(x), is de-
fined as a minimum over a set of functions fi(x), 1 ≤
i ≤ n. We define an active set at a location x as the
maximum subset of functions whose value is equal to
f(x). A vector, ~g is defined as a subgradient of f at x
if ∃ an ε neighborhood such that f(x+ ε)− f(x) ≥ ~gT ε.
If only one function is present in the active set, the gra-
dient of that function is the subgradient of f at x. If
multiple functions are present, any convex combination
of the gradients of the functions is also the subgradi-
ent of f at x. The set of all subgradients is called the
subdifferential, ∂f(x), of f at x.

For the unconstrained case, the necessary condition
for x∗ to be a local optimum is 0 ∈ ∂f(x∗). In
other words, some convex combination of gradients of
the functions in the active set should vanish, i.e., if
d < n + 1 functions are present in the active set in
an n−dimensional space, the gradients should lie on
some d−dimensional hyperplane and span both sides
of all other d−dimensional hyperplanes at the origin. If
d ≤ n + 1, the origin should lie inside the convex hull
of the gradient vectors, which is easy to verify for any
dimension.

For the constrained case, where hi(x) ≤ 0, i ∈ [1, k],
are the set of inequality constraints, a local optimum
should satisfy the Karush-Kuhn-Tucker (KKT) con-
ditions for nondifferentiable functions, i.e., hi(x

∗) ≤
0, λ∗i ≥ 0, λ∗i hi(x

∗) = 0, and 0 ∈ ∂f(x∗) −∑(k−1)
i=0 λi∂hi(x

∗). These conditions imply that some
convex combination of the gradients of the function(s)
of the active set and the gradients of all the active con-
straint(s) should vanish.

It can also be shown that if some convex combination
of m n−dimensional vectors vanishes (where m ≥ n+1),
there exists a set of n+ 1 vectors (from the original set
of m vectors) for which some convex combination also
vanishes. Thus, it is sufficient to consider all possible
combinations of n + 1 vectors rather than considering
all combinations of m > n+ 1 vectors.

4 Algorithm

Based on the theory presented in the last section, we
need to compute all possible locations where a set of an-
gles are equal and some convex combination of their gra-
dients vanishes. Since this is a 2D problem, we need to

1They hold true for a maximum, minimum, and saddle points.



CCCG 2015, Kingston, Ontario, August 10–12, 2015

θ

θ
θ

θ

θ
θ

θ

θ
θ

θ

θ

θ

θ

θ

θ

θ
θ

θ

θ

θ

Figure 1: All possible ways in which a local maximum can occur. The thick edges are the input edges, and the
dashed edges are the edges in the final triangulation. The circles (and some dashed edges) are potential locations of
the Steiner vertex that result in an angle θ at some vertex. The arrows indicate the gradient for each angle. Notice
how their convex combination can result in a zero vector.

only consider all possible sets of (no greater than) three
angles in order to determine all possible local maxima.
We also know that it is a convex optimization problem,
so there exists only one local maximum, which is also
the global maximum. Our algorithm considers all cases
combinatorially and computes the global maximum.

In Fig. 1, we present all possible ways in which a set
of three angles in the triangulation can be equal. If the
input polygon has n sides, there are 2n angles on the
edges and n angles at the Steiner vertex. The sets of
two and three angles can be composed of either type of
angles. All seven (eight, if the last two cases involving
two angles on the edges are considered different) ways
in which we can achieve equiangular configurations are
shown in Fig. 1 along with the gradients for each of the
angles.

In the top row of Fig. 1, we consider cases where
three angles are equal. Consider the locus of points that
results in an angle being θ. For angles at the Steiner
vertex, the locus is a circle, and for angles at the edge,
the locus is a straight line. The values of θ for which
the three curves are concurrent need to be computed.
In the bottom row, we consider cases where two angles
are equal, where their gradients must be anti-parallel,
i.e., the curves must be intersect tangentially.

We will now describe how a univariate polynomial
function can be constructed with λ = cot θ as the only
variable. This is also called a rational univariate rep-
resentation. The solution of the equation gives us the
θ values at which a maximum can occur. The actual
polynomial, however, is tedious to write down, but it is
straightforward, so we leave that as an algebra exercise.
First, we need to compute the circle that subtends an
angle θ at the chord formed by an edge. The center of
the circle should be at a distance λl from the mid point

of the edge, where 2l is its length (see Fig. 2). The
line that is at an angle θ can also easily be computed
as shown in the figure. Second, as we now have the
equations of the circles and/or lines (as functions of x,
y, and λ), we compute their points of intersection in a
pairwise manner. The point of intersection of two lines
(as a function of λ) can be computed as a function of
second-degree polynomials. The points of intersection
of a line and a circle can be similarly computed. For two
circles, however, we compute the equation of the line on
which the two circles intersect.

We will consider each case in Fig. 1 separately, going
from left to right (top row first). For the three an-
gles at the Steiner vertex, we have the equations for
three lines. We compute their points of intersection in
a pairwise manner and equate one of their coordinates
to get an eight-degree polynomial in λ. For two angles
at the Steiner vertex and one at an edge, we have two
lines whose point of intersection can be computed as a
function of λ. We solve for the λ at which the angle
subtended by one of the edges is θ. For an angle at the
vertex and two at the edges, we are given a point. We
again solve for λ at which the angle subtended by the
edge is θ. When the angles are on three edges, we have
three pairwise points of intersection. We equate the co-
ordinates of the points of intersection to get an equation
in λ. For the first two cases in the bottom row, the value
of λ can be computed by ensuring that the roots of the
resulting quadratic equation are equal because they in-
tersect tangentially. The last two cases, however, are
degenerate, and therefore, are not considered here; they
are considered when three angles are considered.

To determine the maximum, we consider all sets of
two and three angles and look for points at which their
values are equal and some convex combination of their



27th Canadian Conference on Computational Geometry, 2015

2l

λl θ

θ

λ

1
θ

Figure 2: For a given λ = cot θ, the locus of points is
either a circle or a line.

Figure 3: Preprocessing: determine the feasible
region [7], and decompose the region into trian-
gles/trapezoids in O(n) time. For each point, determine
the potential triangle/trapezoid using the binary search
technique in O(log n) time, and determine if the point
is inside or outside the triangle/trapezoid.

gradients vanish, which takes O(n3) time. Points that
are outside the convex feasible region of the star-shaped
polygon need to be discarded. It is possible to deter-
mine if a point is inside or outside the feasible region
in O(log n) time after a line sweeping-based preprocess-
ing algorithm (see Fig. 3) that is carried out at the be-
ginning. Our global maximum has to occur at one of
these locations that has not been discarded. The ob-
jective function is convex inside the feasible region [6].
At the points corresponding to smaller λ values (larger
θ values), at least one of the angles associated with the
largest λ value will be of less than the optimal value.
Thus, the largest λ (smallest θ) corresponds to the
global maximum. If not, it results in a contradiction.
The worst-case complexity is, therefore, O(n3 log n).

To improve the expected time, we adapt Clarkson’s
recursive algorithm [5] for our problem in which our
O(n3) algorithm is a subroutine that terminates the re-
cursion when n is small. In this algorithm, a subset of
angles (the size of the subset is proportional to O(

√
n))

is randomly chosen, and the optimal vertex location for
those angles is recursively found. If the number of angles
is small, our algorithm is used to carry out the optimiza-
tion. For the optimal location found, if the minimum
angle among the chosen subset also the minimum angle
when all other angles are considered, we are done. If
not, O(

√
n) more angles are randomly chosen from the

set of angles that are smaller than the optimal angle for
the chosen subset, and the algorithm is repeated. Al-
though Clarkson’s algorithm takes linear time for linear
programming problems, as shown by Amenta et al. [1],

θ θ θ θ

Figure 4: Three possible locations of a local maximum
in a constrained problem. The vertex is constrained to
be in the gray region. The gradients of the constraint(s)
and the angle(s) are also shown.

the expected running time for our problem is quadratic
because computing the minimum angle itself takes lin-
ear time.

5 Extensions

5.1 Constrained Optimization

The motivation for solving the constrained optimization
problem is to gurantee termination of Delaunay refine-
ment algorithm. Delaunay refinement terminates only if
the newly inserted vertex is at least at a certain distance
from other vertices in the domain. Thus, our inserted
vertex must be sufficiently distant from the edges and
vertices of the input polygon. Here, we consider a set
of more general geometric constraints. Based on the
theory of constrained optimization of nondifferentiable
functions, we need to compute the locations where some
convex combination of the gradients of the angle(s) and
the constraint(s) vanishes. The three ways in which this
can happen are depicted in Fig. 4. If the locus of points
that results in a constant angle is tangential to a curve
representing a constraint, the point of intersection is of
interest. Similarly, when two constraint curves intersect
and the gradient of an angle is suitably directed, a local
maximum is present at the point of intersection. Also,
the locus of points where two angles of the resulting
triangulation are equal may meet a constraint. If the
gradients are suitably directed, we have a local maxi-
mum. If there are O(n) angles and O(m) constraints, it
takes O(n2m + nm2) time to consider all cases. These
cases are in addition to the cases for the unconstrained
problem. For each case, it takes O(m) time to deter-
mine if the location is within the constraints and O(n)
time to compute the minimum angle. This can be ac-
celerated using the techniques described in the previous
section. If the constraints are nonconvex or disjoint, we
have to consider all combinations. We may also cache
the sorted order of the angles in previous combinations
to quickly discard a potential solution.



CCCG 2015, Kingston, Ontario, August 10–12, 2015

Figure 5: Three of the possible O(n2) topologies for
insertion of two Steiner vertices.

θ θ

θ

θ

θ

θ

θ
θ

θ

θ1

θ1

θ1

θ2

θ2

θ2

Figure 6: The possible choice of angles for a given
topology; (left) underdetermined system of equations;
(middle) zero-dimensional system of equations; (right)
overdetermined system of equations.

5.2 Insertion of Two Vertices

In the case of inserting just one vertex, the topology of
the resulting triangulation (connectivity of the vertices)
is fixed, i.e., the Steiner vertex is connected to all the
vertices of the input polygon. If two Steiner vertices are
to be inserted, we have to consider multiple topologies
as shown in Fig. 5. The two Steiner vertices may or
may not be connected to each other, and each Steiner
vertex is connected to a subset of polygon vertices. Ex-
actly two vertices are present in both subsets (to avoid
overlapping trianglesr). The common vertices divide the
polygon into two sides, and each Steiner vertex is con-
nected to all polygon vertices on its side. There are
O(n2) such topologies to consider.

For the insertion of just one vertex, we actually solve
a system of trivariate polynomials in x, y, and λ that
we managed to reduce to a single variable. The system
consists of three equations when three angles are being
equated. When two angles are being equated, we still
have three equations: two from the angles and an ad-
ditional equation constraining the gradients to be anti-
parallel. In the new case, we have a system of equations
with five variables (x1, y1, x2, y2, and λ). Thus, five
polynomial equations are needed to solve the problem.
We also know that three equations need to be associated
with the angles of triangles at each of the two Steiner
vertices at the local maxima. Our choice of the angles
should respect these conditions.

Consider the case where the Steiner vertices are not
connected, which reduces to two instances of the single
vertex insertion problem for each such topology. Thus,
the optimal locations can be computed in O(n5 log n) in
the worst case.

Let us now consider the more interesting case where

the Steiner vertices are connected. In this case, we need
to choose two or three angles in the triangles associated
with each of the Steiner vertices. Fig. 6 shows three pos-
sible ways this can be achieved. On the left, two of the
angles chosen are common to both Steiner vertices, and
only four angles have been chosen in total, which results
in an underdetermined system of polynomial equations,
which have an infinite number of solutions. As a result,
the optimal value of λ will come at the cost of some
other triangle. In the middle, only one angle is common
to the Steiner vertices, and five angles have been chosen
altogether. Thus, we have five equations with five vari-
ables, which is called a zero-dimensional system because
it has a finite number of solutions. We have to consider
all such cases in our algorithm. On the right, we have
chosen six angles with each Steiner vertex being asso-
ciated with three of them. This is an overdetermined
system if we insist that the value of θ be the same for
all angles. If they are different (as in the figure), we are
solving a problem that is similar to the case where the
two Steiner vertices are not connected. Note that the
discussion above also holds when only two angle are cho-
sen for a vertex because we have an additional equation
in the form of their gradients being anti-parallel.

In order to determine the computational complexity,
we have to analyze the number of ways in which these
angles can be chosen. Let the degree of the vertices be
d1 and d2, d1 +d2 = n+ 2. We do not consider the case
on the left in Fig. 6 because it results in an underde-
termined system. For the case in the middle, there are
only six ways in which the common angle can be chosen.
There are O(d21) and O(d22) ways in which the other two
angles can be chosen. The number of combinations is
O(n4). The overall complexity of the number of possi-
ble cases for a given topology is O(n4) The number of
possible topologies is O(n2). Thus, we consider O(n6)
cases in total. Since feasible regions are hard to find in
the fourth dimension, we carry out a linear search for
each case to determine the smallest angle and, subse-
quently, the global maximum in O(n7) time. For the
case on the right, the angles in the common triangles
are not being considered. Therefore, they are two inde-
pendent subproblems as in the case where the vertices
are not connected. If the minimum angle is part of the
common triangles, it will be handled in one of our ear-
lier cases. If not, it can be handled in the case where
the two vertices are not connected. Therefore, we do
not consider this case in our analysis here.

In order to improve the expected running time, we
may use a method similar to Clarkson’s algorithm that
we used for the single vertex insertion case. Note that it
has to be used for every possible topology to obtain the
most optimal location. We can extend this algorithm to
get a “near-optimal” solution by considering changes in
the topology (flip edges) only if it improves an existing



27th Canadian Conference on Computational Geometry, 2015

triangulation, but we cannot guarantee anything about
the approximation of the solution obtained.

It is also possible to construct a univariate polyno-
mial that is equivalent to the system of five pentavariate
polynomials described earlier in this section. Consider
the two angles of a vertex that do not belong to the
common triangles. The locus of points that results in
equal angles at the two corners can be described as a
parametric equation in λ for both vertices, which fixes
the location of the two vertices as a function of λ. We
get a polynomial equation by enforcing the condition
that the angle in the common triangle is also cot−1 λ.
In the case where only two angles are equated at a ver-
tex, we need an additional parameter, say, t, to fix the
location of one of the vertices. It is possible to com-
pute the location of the other vertex as a function of
λ and t and impose the angle condition as well as the
gradient condition to obtain a system of two bivariate
polynomials in λ and t.

6 Conclusion and Future Work

We used the theory of nondifferentiable optimization to
develop our algorithm and extend it to tougher prob-
lems. Due to the firm theoretical ground, this research
can be extended to investigate the complexity of the op-
timization of angles when an arbitrary number of ver-
tices are inserted in 2D as well as 3D meshes. It can
easily be seen that there is a combinatorial explosion of
possible mesh topologies as the number of vertices in-
creases, and they require solutions of larger systems of
multivariate polynomials. A practical algorithm should
account for this and prune the search space appropri-
ately. We think that the prior research in mesh quality
improvement [9] will help us in analyzing these prob-
lems. Mesh quality improvement techniques typically
optimize one vertex at a time. Since we now know that
two or three angles in 2D meshes (two, three, or four
angles in 3D meshes) are identical in an optimal patch,
reordering of vertices over which the optimization is car-
ried out will bring about greater improvement in mesh
quality. Prior research [9] has not taken advantage of
this property. Our next research will look in this direc-
tion.

As mentioned in Section 4, the expected running time
of our algorithm is improved by choosing a random sub-
set of angles from the given angles in each subroutine.
It is likely that the minimum angle occurs at the angle
opposite to the shortest input edge or the smallest angle
in the input polygon. Perhaps, assigning a higher prob-
ablity for such angles may yield faster results. Also,
given an optimal Steiner vertex location for a subset
of angles, we may choose additional angles by assign-
ing a higher probablity to those angles (in the original
set) that are smaller. A theoretical or emperical anal-

ysis of the improvement in the expected running time
due to such modifications is also an interesting topic of
research.

Acknowledgment

The work of the author was supported in part by the
NIH/NIGMS Center for Integrative Biomedical Com-
puting grant 2P41 RR0112553-12 and a grant from
ExxonMobil. The author would also like to thank Chris-
tine Pickett, an editor at the University of Utah, for
proofreading and finding numerous typos in the paper.

References

[1] N. Amenta, M. Bern, and D. Eppstein. Optimal point
placement for mesh smoothing. J. Algorithms, 30(2):302
– 322, 1999.

[2] B. Aronov, T. Asano, and S. Funke. Optimal triangula-
tions of points and segments with steiner points. Int. J.
Comput. Geom. Ap., 20(01):89–104, 2010.

[3] B. Aronov and M. V. Yagnatinsky. How to place a point
to maximize angles. In Proc. of the 25th Canadian Con-
ference on Computational Geometry, 2013.

[4] B. Aronov and M. V. Yagnatinsky. Quickly placing a
point to maximize angles. In Proc. of the 26th Canadian
Conference on Computational Geometry, 2014.

[5] K. L. Clarkson. Las vegas algorithms for linear and inte-
ger programming when the dimension is small. J. ACM,
42(2):488–499, Mar. 1995.

[6] L. A. Freitag and P. Plassmann. Local optimization-
based simplicial mesh untangling and improvement. Int.
J. Numer. Meth. Engrg., 49(1-2):109–125, 2000.

[7] D. T. Lee and F. P. Preparata. An optimal algorithm for
finding the kernel of a polygon. J. ACM, 26(3):415–421,
July 1979.

[8] A. P. Ruszczynski. Nonlinear optimization. Princeton
University Press, 2006.

[9] S. M. Shontz and P. Knupp. The effect of vertex reorder-
ing on 2D local mesh optimization efficiency. In Proc. of
the 17th International Meshing Roundtable, pages 107–
124. Springer Berlin Heidelberg, 2008.


