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On the Inverse Beacon Attraction Region of a Point

Bahram Kouhestani

Abstract

Motivated by routing in sensor networks, Biro et al. [2]
introduced the notion of beacon attraction and inverse
attraction as a new variant of visibility in a simple poly-
gon. A beacon b is a point inside a polygon P that can
induce an attraction that moves a target point p greedily
towards it in a trajectory that always reduces distance
from p to b. The trajectory of p may require sliding p
along the boundary of an obstacle. The attraction re-
gion of b is the set of all points that eventually reach b.
The inverse attraction region of p is the set of points that
can attract p. We present algorithms to efficiently com-
pute the inverse attraction region of a point for simple,
monotone, and terrain polygons with respective time
complexities O(n?), O(nlogn) and O(n).

1 Introduction

Biro et al. [2] introduced a novel variation of the art
gallery problem motivated by geographical greedy rout-
ing in sensor networks. A guard is a fixed point, called
a beacon, that induces a force of attraction within the
environment. The attraction of a beacon moves objects
(represented by points) greedily towards the beacon. A
point is attracted (covered) by a beacon if it eventually
reaches the beacon. It is a common practice in sensor
networks that message sending is performed by greedy
routing where a node sends or passes the message to its
neighbour that is closest to the destination. Depending
on the geometry of the network and the location
of the sender and receiver, greedy routing may fail.
This introduces the interesting problem to determine
whether messages can be exchanged between sender
and receiver using greedy routing.

Biro et al. [2] studied the combinatorics of guarding a
polygon with beacons and showed that L%J — 1 beacons
are sometimes necessary and always sufficient to route
between any pair of points in a simple polygon. They
also proved that it is NP-hard to find a minimum
cardinality set of beacons to cover a simple polygon.
In 2013, Biro et al. [3] presented a polynomial time
algorithm for routing between two fixed points using a
discrete set of candidate beacons in a simple polygon
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and a 2-approximation algorithm where the beacons
are placed with no restrictions. For polygons with
holes, Biro et al. [4] showed that |%| — h — 1 beacons
are sometimes necessary and [%J + h — 1 beacons are
always sufficient to guard a polygon with A holes. For

other results on beacons see [1].

In this paper we present algorithms to compute the
inverse attraction region of a point inside an n-gon. We
show that the inverse attraction region of a point can
be computed in O(n?) time in a simple polygon. For
monotone polygons we present a simple O(nlogn) time
algorithm to compute the inverse attraction region, and
for terrain polygons we can further reduce the complex-
ity to O(n) time.

2 Preliminaries

Let P be simple polygon in the plane with the vertices
V1, V3, ..., Uy in counter-clockwise order. P is monotone
with respect to the line L if every line orthogonal to
L intersects P in at most one connected component.
Throughout this paper, without loss of generality,
we assume that L is the z-axis. Let w and v be the
first and last vertices of the monotone polygon M in
lexicographic order. The upper (lower) chain of M
is the ordered set of edges from w to v in clockwise
(counter-clockwise) order. We define a terrain polygon*
as a monotone polygon with one of its chains consisting
of a single line segment.

Let p and g be two points inside P. The Euclidean
shortest path (geodesic path) between p and ¢, SP(p, q)
is a path inside P that connects p and ¢ and among
all such paths it has the smallest length. The union
of Euclidean shortest paths from p to all vertices of P
is called the shortest path tree of p and is denoted by
SPT(p). Guibas et al. presented a linear time algo-
rithm to compute SPT(p) [6]. It is worth mentioning
that SP(p, q) turns only at reflex vertices of P and the
angle facing the exterior of P at a turn is convex (the
outward convex property of the shortest path). The
parent of a node u # p in SPT(p) is the last reflex
vertex on SP(p,u) which is not u. For proofs and
details on shortest paths, see [7, Ch. 3].

LA terrain polygon is sometimes called a “monotone moun-
tain”.
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A beacon is a stationary point inside a simple poly-
gon P that can induce a force of attraction within P.
When beacon b is activated, points in P move greedily
towards b and monotonically decrease their Euclidean
distance to b. Furthermore, points are allowed to slide
on the boundary of the environment in order to get
closer to b, thus, the movement of a point alternates
between moving straight towards b and sliding on
the boundary of P (Fig. 1). Let e be an edge of P
and let L be the supporting line of e. Let h be the
orthogonal projection of b on L (Fig. 2a). As h is the
point with the shortest distance to b among all points
on L, sliding on e is always towards h. If h is located
on e¢ a point sliding on e will reach h and remain on
h. Otherwise, it slides all the way to an endpoint of
e. Then the point will move straight towards b if that
is possible. Otherwise, depending on the location of
the orthogonal projection of b on the supporting line
of the adjacent edge, the point either slides on the
new edge or remains stationary on the endpoint (Fig. 2).

Eventually a moving point either reaches b or be-
comes stuck on a boundary point of P. The path from
the original position of a point p to its final position
is called the attraction trajectory of p. A point in
P is attracted by b if its Euclidean distance to b is
eventually decreased to 0. The attraction region of
a beacon b is the set of all points in P that b can
attract and can be computed in linear time [1]. In the
case that the point does not reach b, its final location
is called a dead point. The dead region relative to
a dead point d is the set of all points that end up
on d. The boundary between the attraction region
and a dead region or two dead regions is called a
split edge. We denote a split edge that separates the
attraction region of the beacon from a dead region as a
separation edge. In contrast to conventional visibility,
beacon attraction is not symmetric. For example in
Fig. 1 a beacon located on p cannot attract a point
on b. The inverse attraction region of a point ¢ is
defined as the set of beacon locations in P that attract q.
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Figure 1: The movement of a point alternates between
moving straight towards the beacon and sliding on the
boundary.
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Figure 2: Three cases when a point slides to an endpoint
of e. (a) It moves straight towards b. (b) It slides on the
adjacent edge. (c) It get stuck on the endpoint. Here h’
is the orthogonal projection of b on the supporting line
of the adjacent edge of e.

Let r be a reflex vertex incident to edges e; and es.
Let H; and Hs be half-planes perpendicular to e; and
eo emanating from r which include the outside of P
in a small neighbourhood of r. The dead wedge of r
is defined as the intersection of H; and Hs (Fig 3).
Let b be a beacon inside the dead wedge of r and to
the left of r. Consider h, the orthogonal projection of
b on the supporting line of e;. Note that a point on
eo close to r will slide away from r. Let I' be the ray
from r and in the direction of br and let s be the line
segment between r and the first intersection of I" with
the boundary of P. The attraction of b to a point just
to the right of s moves the point to ey and slides it
towards h, while a point just to the left of s avoids es
and passes r. In other words the final destination of
those two points will be different and therefore s is a
split edge of b and we have the following lemma.

Lemma 1 A reflex vertex v introduces a split edge for
the beacon b if and only if b is inside the dead wedge of
T

Figure 3: The dead wedge of a reflex vertex r is the
intersection of half planes H; and H> designated by the
red arc.

Next we address the problem of computing the inverse
attraction region, that is:

Given a simple polygon P and a point q inside P, find
the set of all beacon locations in P that attract q.
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3 Inverse attraction region in simple polygons

Biro presented an algorithm for computing the inverse
attraction region of a point in a simple polygon [1].
Unfortunately his O(n?) time and space algorithm
has a flaw. The algorithm begins by constructing an
arrangement Ap of lines to partition P with the idea
that for any two points inside a particular region, either
both or none attract q.

The arrangement Ap contains three types of lines:
1) lines through edges of P, 2) lines through a reflex
vertex and perpendicular to one of the edges incident
to this reflex vertex (i.e lines supporting edges of the
dead wedge of reflex vertices), and 3) lines through ¢
and each reflex vertex of P.

As far as we know Biro’s proof [1] of the following
property for Ap, is correct.

Property 1: If b; and by belong to the same region
of Ap and the reflex vertex r is a split vertex relative
to by (i.e. r introduces a split edge for by) then r is also
a split vertex relative to b [1].

Biro used Property 1 to conclude that all points in
a particular region behave the same with respect to ¢
(all or none attract g). The example in Fig. 4 illustrates
that property 1 is not sufficient to guarantee that points
in the same region have the same attraction behaviour
with respect to g. Consider the line L going through the
reflex vertices r; and ro and let s and ¢ be two points
close to and on opposite sides of L. Even though rs
introduces a split edge for both s and ¢, it is easy to
see that s cannot attract ¢ while ¢ can. This example
suggests that additional lines need to be added to the
arrangement.

I
S// / /
L

Figure 4: An example where the arrangement in [1] does
not work. Point s cannot attract ¢ while ¢ can. Also
observe that point s’ can attract g while ¢’ cannot.

The example in Fig. 4 implies that it is necessary
to add some of the lines going through pairs of reflex
vertices of P to the arrangement. As a polygon may
have O(n) reflex vertices, this adds an additional O(n?)
lines with an arrangement of O(n?) regions.

We construct a new arrangement of O(n2) complexity
which correctly groups together points in P.

The arrangement Ap uses three types of lines:
1) Lines through edges of SPT(q).
2) Lines through the edges of the dead wedge of a reflex
vertex of p.
3) Lines through edges of the polygon.

Note that lines of the third type are added to Ap to
distinguish points that are inside or outside of P.

Lemma 2 If by and bs belong to the same region of Ap
then either both or neither attract q.

Proof. For the sake of contradiction and without loss
of generality assume b; attracts ¢ while by does not
attract ¢q. Let r be the split vertex that separates ¢
from the attraction region of bs (i.e. r introduces a
split edge for by that separates ¢ from the attraction
region of by). Without loss of generality let us assume
that ¢ is to the left of this split edge, so (Fig. 5). As by
and by are in the same region of A,, by is also in the
dead wedge of r and r introduces a split edge for b;.
As by attracts ¢, g lies to the right of this split edge s;.

We have two cases:
1) Both s; and sg have an (upper) endpoint on a com-
mon edge e (Fig. 5a). In this case ¢ lies in the triangle
formed by s1, so and e. This triangle is contained in P,
and therefore g sees  and the line segment connecting r
and ¢ is in SPT(q). Therefore, the line g7 forces b; and
bs to be in two different regions of Ap, a contradiction.
2) Edges s1 and s have (upper) endpoints on different
edges of P (Fig. 5b). Let the endpoint of s; lie on e
and the endpoint of sy lie on €. Notice that the left
endpoint of €' is located between s; and s». Now con-
sider the shortest path between ¢ and r. If ¢ and r see
each other directly then the supporting line of the line
segment gr belongs to Ap and similar to the previous
case we have a contradiction. If ¢ and r cannot see
each other directly then there exists a reflex vertex r’
between s; and ss such that the shortest path between
g and r passes through r’. Now by the construction the
line 7' is in Ap which forces by and bs to be located in
two different regions, a contradiction. O

Theorem 3 The inverse attraction region of a point in
a simple polygon can be computed in O(n?) time and
O(n?) space.
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Figure 5: Split edges of b; and bs.

Proof. There are O(n) lines in the arrangement.
Therefore the number of regions in the arrangement is
O(n?) and for each region we can check whether a can-
didate point can attract ¢ in linear time, resulting in
the O(n®) time complexity. O

4 Inverse attraction region in a monotone polygon

In the previous section we showed that lines passing
through edges of SPT(g) and through edges of dead
wedges form the boundaries between regions that at-
tract g and those that don’t. For the case of monotone
polygons we show that a much smaller subset of these
boundary edges suffice.

Let M be a monotone polygon and let ¢ be a point
in M. We begin by studying the effect of a single reflex
vertex on the inverse attraction region of ¢q. Let v be
a reflex vertex of M with e; and e, the left and right
adjacent edges of v, respectively. Let ¢ € M be a point
to the right of v. Our goal is to distinguish all beacon
placements to the left of v that do not attract ¢ because
they are blocked by an edge incident to v. To do so,
first we assume that there are no reflex vertices between
g and v (i.e no reflex vertex exists simultaneously to
the left of ¢ and to the right of v) and find points to
the left of v that cannot move g past a vertical line
through v.

We show that a ray passing through v can be used
to bound a subpolygon of M so that any beacon placed
within that subpolygon cannot attract the point ¢q. This
ray can be defined in one of two ways yielding what we
call a blocking ray. The two cases of blocking rays are
described as follows:

Case 1 blocking ray: ¢; € M is a point to the right
of the reflex vertex v and below the line L; orthogonal
to e, at v. Observe that L; passes through the left
edge of the dead wedge of v. According to attraction
properties (Fig. 2), a beacon in M below L; and to the
left of v cannot attract g; past the vertical line through
v, and therefore it does not attract ¢;. Thus we can
express the effect of v by a ray I'y emanating from v

Figure 6: The effect of a single reflex vertex on the
inverse attraction region of a point. Case 1 blocking
ray: q1 lies below Li: beacons below I'; cannot attract
q1. Case 2 blocking ray: gs lies above L; and and below
Ls: beacons below I's cannot attract ¢o.

extending to the left along L;. No point below I'y can
attract ¢;. We call I'y the blocking ray of v relative to ¢ .

Case 2 blocking ray: g2 € M is a point to the right
of v and above L. Let I's be the ray emanating from v
extending to the left along the line gov. Note that I's is
in the dead wedge of v. Consider a beacon b to the left
of v. If b is to the right of I'; then the attraction path
of g2 will intersect e, and by considering the orthogonal
projection of b on the supporting line of e,., we see that
b cannot pass ¢o over v. Now assume b is to the left
of T'y. Here the line segment g2b will not intersect e,
and therefore b can move g past over v. Here I's is the
blocking ray of v relative to g¢s.

We define the blocking region of a reflex vertex
v relative to ¢ as points of M which are below the
blocking ray of v relative to ¢. Informally, the blocking
region of v is the set of beacon locations that cannot
attract ¢ due to v. Note that a point in the blocking
region of v (in both cases) is in the dead wedge of v.

We can now present an algorithm to compute the
inverse attraction region of a point in a monotone

polygon.

Algorithm InverseAttractionRegion
Input. Monotone polygon M and a point ¢ € M.
Output. Inverse attraction region of ¢, that is, beacon
locations in P that attract q.

1: Compute SPT(q), the shortest path tree from ¢ to
each vertex of M.
2: for each reflex vertex r that sees ¢ do
3:  Discard points in the blocking region of r relative
to q
4: end for



CCCG 2015, Kingston, Ontario, August 10-12, 2015

5. for each pair of consecutive reflex vertices v, v’ in
SPT(q) (v = parent(v')) do
6:  Discard points in the blocking region of v’ relative
to v.
7: end for
8: return The remaining polygon

Theorem 4 Algorithm InverseAttractionRegion cor-
rectly computes the inverse attraction region of an input
point q in a monotone polygon.

Proof. Suppose p is discarded by the algorithm due
to the edge s = vv’, where v = parent(v’) in SPT(q).
We claim that p cannot attract any point on s (see ap-
pendix). We show that p cannot attract ¢ as well. We
consider two cases:

1) v and ¢’ lie on different chains of M. Here, s
partitions M into two sub-polygons and p and g are in
different sub-polygons. Let m be the attraction trajec-
tory of ¢ to p. As p and ¢ are on different sides of s,
7 crosses s. Let x be the intersection of w and s. As p
cannot attract x, we conclude that it cannot attract g.

2) v and v’ are on the same monotone chains (Fig. 8).

Let w be the first intersection point of the ray v'v
with M to the right of v. Note that as the shortest
path is outward convex, the parent of v in SPT(q)
lies in the sub-polygon to the right of the line segment
vw. Therefore, vw partitions M into two sub-polygons
where p and ¢ are in different sub-polygons. As p
cannot attract v, we can show that it cannot attract
any point on 7w (see appendix). If p attracts g then
the attraction trajectory must intersect vw which is a
contradiction.

Now suppose p is a point that cannot attract ¢q. Let ¢
be the separation edge of the attraction region of p such
that p and ¢ are in different sides of ¢. Let v’ be the re-
flex vertex that introduces ¢t and M; be the sub-polygon
that contains ¢ (Fig. 7). Observe that v = parent(v’) in
SPT(q) is in M; because the shortest path is outward
convex. Therefore, p does not attract v and p lies in the
blocking region of v’ relative to v. With our construc-
tion when the pair (v,v") € SPT(q) is processed, p will
be discarded. O

We use a result of Hershberger [5] that computes the
upper envelope of a set S of n non-vertical line segments
in O(nlogn) time. The upper envelope of S is defined as
the portion of the segments in S visible from y = +oc0.
The lower envelope is defined symmetrically.

Lemma 5 The time complexity of the Algorithm In-
verseAttractionRegion is O(nlogn).

Proof. In order to achieve an O(nlogn) time complex-
ity, we first collect all blocking rays and then discard

Figure 7: Attraction trajectory of v. Here, p cannot
attract v.

parent(v)

Figure 8: No point on 7w can be attracted by p. There-
fore p cannot attract q.

points in blocking regions. Let B be an axis aligned
bounding box of M. By intersecting the blocking rays
with B (and adding the top and bottom edges of B)
we have a collection of blocking line segments. If the
blocking line segment originated from a reflex vertex of
the lower (upper) chain, then we need to discard points
of M that are vertically below (above) this line seg-
ment. Using Hershberger’s algorithm [5], we construct
the upper (lower) envelope of blocking line segments of
vertices of the lower (upper) chain in O(nlogn) time
and obtain two monotone polygons. The intersection of
these two polygons with M is the set of points below
all upper chain blocking rays and above all lower chain
blocking rays. As the intersection of monotone polygons
can be computed in linear time, the total complexity is
O(nlogn). O

5 Inverse attraction in a terrain polygon

Let M be a terrain polygon and let L be a vertical line
through ¢. L partitions M into two terrain polygons.
We consider each of these polygons separately and
discard points that cannot attract ¢ in each polygon.
Here we explain how this is done for M;, the polygon
to the left of L. Let R; be all rays of R that extend
from left to right. We present a linear time algorithm
to discard points below the rays in R;. The algorithm
starts by traversing M; from right to left. Events are
reflex vertices with a blocking ray that extends to the
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left. The algorithm preserves the invariant that at
each event point the computed polygon to the right
is the set of points in M; vertically above all current
blocking rays I'1, I's, ..., I';. Furthermore, the algorithm
stores and updates a convex set C' which is the upper
envelope of current rays intersected by a bounding box
of the polygon.

Algorithm DiscardingBelowRays
Input. A terrain polygon M;. A set R =T17,T%,...,T,
of blocking rays all extending to the left.
Output. A polygon P obtained by discarding points in
M vertically below the rays in R.

1: Order R such that I'; is the blocking ray of the reflex
vertex r; and r; is to the left of r;;; for all ¢ =
1,2,...,m—1.

2: Let C be an axis aligned bounding box of M;.

3: Let V; be the vertical line through r; and H; be the
half-plane to the left of V;.

4: Let polygon P be the subset of M; between V; and

a vertical line through q.

for:=1tom do

if r; is in C then

Intersect C' with the half-plane above the sup-
porting line of I'; by traversing the lower edges
of C' and finding the first edge of C that inter-
sects I';.

9: Add to P all points of M7 between V; and V;41

that are also in C

10:  end if

11: end for

12: return P

The algorithm computes the upper envelope of rays
I'1,To,...,T'; between V; and V;41 and intersects the re-
sult with the portion of M; between V; and V; 1 (Fig. 9).
Therefore, the output are points of M above all block-
ing rays. Before we analyze the time complexity of the
algorithm, we show that it is safe to ignore rays of reflex
vertices that start below some current blocking regions
(step 6).

Lemma 6 Ifr; ¢ C then T'; does not contribute to P.
Proof. See appendix. O

Lemma 7 Algorithm DiscardingBelowRays runs in
O(n) time.

Proof. We use a sequential search in both step 7 in-
tersecting C'N H; and in step 9 intersecting the upper
envelope of I'; with C. In each case once we step over
an edge we eliminate it forever. Thus the overall com-
plexity of the algorithm is O(n). O

Figure 9: Discarding points below rays.

6 Conclusion

In this paper, we presented algorithms to efficiently
compute the inverse attraction region of a point for sim-
ple, monotone, and terrain polygons. Currently we are
developing a more efficient algorithm for simple poly-
gons using the ideas of chapter 4. We believe that we
can design an O(nlogn) time algorithm which can be
shown to be optimal.
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Appendix

Although our goal is to compute the inverse attraction
region of a fixed point, it is useful to compare the block-
ing regions of two points relative to a particular reflex
vertex.

Lemma 8 Let v be a reflex vertex of M. Let q and
q' be two points of M such that ¢’ is on the open line
segment qu. If there are no reflex vertices between v and
q, then the blocking regions of q¢ and q' (relative to v)
are equal.

Proof. Consider the cases in Fig. 6. It is easy to verify
that when ¢’ lies on the (open) line segment gu, the
blocking rays of ¢ and ¢’ are the same. Therefore, their
blocking regions are equal. O

Lemma 9 Let g be a point close to the left edge of v.
Consider the clockwise rotation of q around v to a ver-
tical position. During the rotation, the blocking region
of v relative to q never increases.

Proof. During the rotation, as long as ¢ is below L,
(see Fig. 6), the blocking region of ¢ remains the same.
While ¢ is rotated from L; to a vertical position, the
blocking ray of v relative to ¢ will rotate clockwise from
L1 to a vertical downward ray. During this time the
blocking region of ¢ (i.e. points in M below the block-
ing ray) monotonically gets smaller until it is empty.
Therefore, during the rotation the blocking region of ¢
is non increasing. O

Next we consider the effect of two reflex vertices on
the inverse attraction region of a point. Let v and v’ be
the only two reflex vertices of M. If a point ¢ € M is
located between v and v’ then any attraction trajectory
of g can at most have one of v and v’ on its path
and therefore the effect of v and v’ can be considered
separately. Therefore we focus on the inverse attrac-
tion region of the point ¢ which lies to the right of
both reflex vertices. Without loss of generality assume
v is on the lower chain and v’ is on the upper chain of M.

Case 1) If ¢ is visible to both v and v’, we claim that
any attraction trajectory of ¢ can at most pass through
one of these reflex vertices. The attraction trajectory of
q to a beacon b passes through v only if b is below the ray

g0 and passes through v/ only if b is above the ray qv’
(Fig. 10). As g sees both v and v’ there does not exist a

beacon both below cﬁ and above q_J . Therefore at most
one reflex vertex can affect the attraction trajectory and
in the computation of the inverse attraction v and v’ are
considered separately. We conclude that a point inside
the blocking regions of v or v’ cannot attract g.

Figure 10: If g sees both v and v, no attraction trajec-
tory of g can intersect both v and v’ and in the com-
putation of the inverse attraction region, v and v’ are
considered separately. Here points that cannot attract
q are shaded.

Case 2) Otherwise, without loss of generality assume
that ¢ can see v but not v (Fig. 11). We classify the
points to the left of v’ into two groups: ) points above
the ray g0 and i1) points below q0. Let p be a point
in group i. Consider 7 the attraction trajectory of ¢ in
the attraction of p. As p is located above ?, 7w does
not intersect the adjacent edges of v. We conclude that
p can attract ¢ if and only if p is not in the blocking
region of v’ (relative to ¢). Now assume that p is a
point in group . In this case m will intersect v or the
right edge of v. Therefore, p attracts ¢ if and only if
p can move ¢ from its initial position to v (i.e. p is
above the blocking ray of v relative to ¢) and p can at-
tract v (i.e p is below the blocking ray of v’ relative to v).

Next we show how to combine the two groups of case
2.

Lemma 10 If q sees v but not v’ then points in the
blocking region of v relative to q and points in the block-
ing region of v' relative to v are the only points that
cannot attract q.

Proof. It is obvious that a point in the blocking region
of v relative to ¢ does not attract ¢, because it cannot
move ¢ past over v. So we only need to argue about
points to the left of v'. Let p be a point in group i (i.e.
p is a point to left of v’ and below g0). By the previous
argument p attracts ¢ if and only if p can move ¢ from
its initial position to v and p can attract v. Therefore,
p cannot lie in the blocking region of v (relative to q)
and it cannot lie in the blocking region of v’ relative to
v and so the lemma follows.

Now let p be a point in group ¢ (i.e. pis to the left of v’
and above ﬁ) Note that as ¢ does not see v’, p also lies
above the line vv’ (see Fig. 11). Recall our case analysis
in Fig. 6. If the relative position of v with respect to
v’ lies in case 1 (which is the case in Fig. 11), then the
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blocking region of v’ relative to v is all points in the left
side of the dead wedge of v'. The attraction trajectory
of ¢ in the attraction of a point in group ¢ intersects the
right edge of v’. Therefore a point in group 7 can attract
q if it is not located on the left side of the dead wedge
of v/. This is precisely the blocking region of v’ relative
to v.

Now assume that the relative position of v to v’ lies
in case 2 of Fig. 6. Recall that the blocking ray of v’
relative _t()) v is the ray from ¢’ in the direction of the
vector vv’. As points above the qu are also above vv’,
all points of group 7 reside in the blocking region of v’
relative to v and lemma follows. O

Figure 11: Points that cannot attract ¢ are shaded.

Theorem 4 The algorithm InverseAttractionRegion
correctly computes the inverse attraction region of a
given point in a monotone polygon.

Proof. We use proof by contradiction. First that
assume p is a point that can attract ¢ and is discarded
by the algorithm. Without loss of generality we assume
p is to the left of ¢q. If p is discarded in step 3 of the
algorithm then let v be the rightmost reflex vertex
responsible for discarding p. Note that ¢ and v see each
other, and p is in the blocking region of v therefore it
is also in the dead wedge of v. As p is also to the left
of v, p cannot attract any points on the right adjacent
edge of v. Since p attracts ¢, the attraction trajectory
of ¢ to p must pass above v. Here in order for ¢ to
pass above v, there must exist an edge e between v
and ¢ such that ¢ slides on e and moves above the line
pu. This implies that e blocks the visibility of v and ¢,
which is a contradiction.

Assume p is discarded in step 6 due to s, where s is
the directed open edge of SPT(q) from v to v’. Note
that due to the monotonicity of M both v and v' are
to the right of p and to the left of q. Consider 7, the
attraction trajectory of v to p (Fig. 7). As p is discarded
when the pair (vv’) is processed, in the absence of other
reflex vertices p cannot attract v. Since v and v’ are
visible, no attraction trajectory (towards p) can slide
through s. By lemma 8 the blocking region of all points
on s are equal and by lemma 9 no points below s can

have a blocking region smaller than the blocking region
of v. Therefore (even in the presence of other reflex
vertices) no points on m,, can be attracted by p and
thus p does not attract v. Now we show that p cannot
attract ¢ as well. We consider two cases:

1) v and ¢’ lie on different chains of M. Here, s
partitions M into two sub-polygons and p and ¢ are
in different sub-polygons. Note that by lemma 8 the
blocking region of v relative to any point on s is precisely
the blocking region of v relative to v’. This implies that
p cannot attract any point on s. Let m be the attraction
trajectory of g to p. As p and ¢ are on different sides of
s, w crosses s. Let x be the intersection of m and s. As
p cannot attract x, we conclude that it cannot attract
q.

2) v and v’ are on the same monotone chains. Let w
be the first intersection point of the ray 17 with M to
the right of v (Fig. 8). Note that as the shortest path is
outward convex, the parent of v in SPT(q) lies in the
sub-polygon to the right of the line segment vw. There-
fore, vw partitions M into two sub-polygons where p
and ¢ are in different sub-polygons. By lemma 8 the
relative blocking region of v’ relative to any point on
vw is exactly the blocking region of v’ relative to v.
As p cannot attract v, it cannot attract any point on
vw. If p attracts g then the attraction trajectory must
intersect uww which is a contradiction.

Now suppose p is a point that cannot attract ¢ and is
not discarded by the algorithm. Let ¢ be the separation
edge of the attraction region of p such that p and ¢ are
in different sides of t. Let v’ be the reflex vertex that
introduces t and M; be the sub-polygon that contains ¢
(Fig. 7). Observe that v = parent(v’) in SPT(q) is in M;
because the shortest path is outward convex. Therefore,
p does not attract v and p lies in the blocking region of
v’ relative to v. With our construction when the pair
(v,v") € SPT(q) is processed, p will be discarded. O

Lemma 6 Ifr; ¢ C then T'; does not contribute to
P.

Proof. Let I'; be the blocking ray of r; and r; ¢ C. Let
I'; (j < i) be the leftmost ray above r;. Consider the
parent of r; in SPT(q). If r; is the parent of r; then
the blocking ray of r; relative to r; will be on or under
the ray r;r;, therefore all points in the blocking region
of r; are also in the blocking region of r;. Now assume
w # r; is the parent of r; and therefore w lies above
the ray r;r;. Consider the blocking ray of r; relative to
w. It lies on or below the line r;w and so below the line
r;7j. Therefore in both cases the blocking region of r;
can be ignored. O



