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Online Packing of Equilateral Triangles
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Abstract

We investigate the online triangle packing problem in
which a sequence of equilateral triangles with different
sizes appear in an online, sequential manner. The goal
is to place these triangles into a minimum number of
squares of unit size. We provide upper and lower bounds
for the competitive ratio of online algorithms. In partic-
ular, we introduce an algorithm which achieves a com-
petitive ratio of at most 2.474. On the other hand, we
show that no online algorithm can have a competitive
ratio better than 1.509.

1 Introduction

The classic 1-dimensional bin packing problem asks for
assignment of a set of items of different sizes into a min-
imum number of bins of unit capacity. For convenience,
it is often assumed that bins have capacity 1 and items’
sizes are in the range (0, 1]. In the online version, the
items are revealed in a sequential manner, and an algo-
rithm has to place an item into a bin without any in-
formation about forthcoming items. Online algorithms
are often compared according to their competitive ratio,
which is the maximum ratio between the cost of an on-
line algorithm and that of an optimal offline algorithm,
denoted by Opt, for serving the same sequence. For
bin packing, we are particularly interested in asymp-
totic competitive ratio which only considers sequences
for which the cost of Opt is arbitrary large.

Online bin packing has many applications in practice,
from server consolidation to cutting stock. In the lat-
ter application, the goal is to cut patterns of given sizes
from stocks of unit size. Clearly, this application can be
extended into two dimensions. In the 2-dimensional bin
packing problem, bins are typically squares of unit size
while items are similar objects of different sizes. Two
studied variations are box packing and square packing
in which items are boxes (rectangles) and squares, re-
spectively, of different sizes.

In this paper, we consider the equilateral triangle
packing problem, which is stated as follows. The prob-
lem can be thought as a two-dimensional version of the
classic bin packing problem.

Let σ = 〈x1, x2, . . . , xn〉 be an online sequence of equi-
lateral triangles, where xi ∈ (0, 1.035] indicates the side
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length of the ith equilateral triangle, 1 ≤ i ≤ n. The
online equilateral triangle packing problem is to place
these equilateral triangles into a minimum number of
squares of unit size so that no two triangles overlap.
Upon receiving an equilateral triangle, an online algo-
rithm makes an irrevocable decision for placing the tri-
angle into a square. For that, the algorithm does not
have any information about the (sizes of) forthcoming
triangles. Triangles are allowed to be rotated.

The assumption xi ∈ (0, 1.035] comes from the
fact that no equilateral triangle of length larger than
1/ cos π

12 ≈ 1.035 fits in a square of unit size. In the
rest of the paper by “triangle of size x” we mean “an
equilateral triangle whose side length is x”. We inter-
changeably use terms “bin” for “square of unit size”,
and “items” for incoming “equilateral triangles of dif-
ferent sizes”.

Related work. The 1-dimensional bin packing problem
has been extensively studied in the past few decades
(see [2, 3] for excellent surveys). The most practical
online algorithms are First Fit and Best Fit, which are
greedy in the sense that they avoid opening a new bin
if possible. The competitive ratio of both algorithms is
1.7 [11]. The Harmonic family of algorithms is based on
classifying items by their sizes [12]. A member of this
family is Harmonic++ of Seiden [13] with a competitive
ratio of 1.588 which is the best among online bin packing
algorithms.

For online square packing, the first set of results in-
cluded an upper bound of 2.6875 and a lower bound
of 4/3 [4]. The upper bound was later improved a few
times ([5, 6, 9]). The best existing upper bound is given
by an algorithm of competitive ratio 2.1187 [10]. In [14],
a lower bound of 1.62176 was proved for the competi-
tive ratio of any online algorithm. This lower bound
was later improved to 1.6406 [6].

The best existing online algorithm for the box packing
problem has a competitive ratio of 2.5545 [8] while there
is a lower bound of 1.907 for the competitive ratio of any
online box packing algorithm [1].

To our knowledge, there is no previous work address-
ing online packing of triangles. While we currently have
no particular application in mind, we believe that tri-
angle packing is of inherent and compelling interest.
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Figure 1: The triangle spots of a classification of large triangles of size x. The dark triangles indicate the lower
bound for the size of the triangles.

Our contributions. We provide an online algorithm for
packing equilateral triangles, which achieves a compet-
itive ratio of 2.474. Our algorithm is bounded-space in
the sense that it only keeps a constant number of squares
opened at any given time. We prove a lower bound of
1.509 for any online equilateral triangle packing algo-
rithm.

Our algorithm, in Section 2, classifies the triangles
based on their sizes into different classes, and places
triangles of the same class into the same bin. It requires
a careful classification, which is more detailed compared
to prior packing algorithms of boxes and squares.

For lower bound, in Section 3, we consider a sequence
formed by triangles of three different sizes. To achieve
a competitive ratio, we provide a linear program which
captures the requirements for different subsequences of
the original sequence.

2 Algorithm

In this section, we introduce our algorithm for packing
of equilateral triangles, which has a competitive ratio of
2.474.

Similar to Harmonic family of algorithms, we classify
triangles by their sizes. We refer to a triangle as being
large if its size is larger than 1/3, medium if its size is
in the range (1/20, 1/3] and small if it is at most 1/20.
Triangles that belong to any of these three groups are
classified further into smaller classes, and members of
each class are packed separately from others. In what
follows, we describe the classification and packing for
each group separately.

2.1 Large Triangles

The large triangles are classified into 12 groups, denoted
by Lc, c = 1, . . . , 12, based on their sizes. A large trian-
gle of size x belongs to class Lc if at most c items of size
x fit into a bin. Figure 1 shows the (best known) way
of placing c (1 ≤ c ≤ 12) equal triangles of maximum
size into a square [7]. If 0.816 < x ≤ 1.035, at most one
item of size x can fit in a unit square and the triangle
belongs to class L1. If 0.676 < x ≤ 0.816, at most two
items of size x fit in the same bin and it belongs to class
L2. Similarly, we can obtain the boundaries (lc, rc] for
any class Lc; see Table 1.

Triangles of each class are treated separately from
other classes. For each class Lc (1 ≤ c ≤ 12) with
boundaries (lc, rc], the algorithm has at most one active
bin of type c. When a bin of type Lc is opened, it is
declared as the active bin of the class and c triangle
spots of size rc are reserved in that (this is feasible by
definition of classes). Upon arrival of an item of type
Lc, it is placed in one of the c spots of the active bin. If
all these spots are occupied by previous items, a new bin
of type Lc is opened. This ensures that all bins of type
Lc, except potentially the current active bin, include c
items of size greater than lc.

2.2 Medium Triangles

The size of a medium triangle is in the range (1/20, 1/3].
Similar to that of Section 2.1, medium triangles are
classified and items of each class are treated sepa-
rately. Here, the classification is performed in a more
regulated manner. We define 34 groups with ranges
(1/20, 1/19.5], (1/19.5, 1/19], . . . , (1/3.5, 1/3] as bound-
aries of the classes. In particular, we say a triangle of
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Figure 2: The triangle spots of a classification of medium triangles of size x. The dark triangles indicate the lower
bound for the size of the triangles.

size x belongs to class M1
k if x ∈ (1/k, 1/(k − 0.5)],

and belongs to class M2
k if x ∈ (1/(k+ 0.5), 1/k], where

3 ≤ k ≤ 20; classes M1
3 and M2

20 are not defined.
The item placement is similar to large triangles. As

before, there is at most one active bin for each class Lc
with boundaries (lc, rc]. When an active bin of type Mc

is opened, Xc spots of size rc are reserved in it. Upon
arrival of an item of type Mc, it is placed in one of
the spots in the active bin (and a new bin is opened if
required). The following lemma gives the value of Xc.

Lemma 1 It is possible to place 2k2 − 2k triangles of
class M1

k in the same bin. Similarly, 2k2 − k triangles
of class M2

k can be placed in the same bin (3 ≤ k ≤ 20).

Proof. Consider a horizontal triangle strip constructed
by r connected equilateral triangles of size x, for an inte-
ger r ≥ 5. The vertical width of the triangle strip is the
height of an equilateral triangle, i.e.,

√
3x/2. Assume

the horizontal width of the triangle strip is 1. Therefore,
x = 2/(r + 1).

For a triangle of size x = 1/k, which is associated
with class M2

k , we obtain r = 2k − 1. Note that, with-
out overlappings, we can place at most k copies of the
corresponding strip in a bin, where k ≥ 3; see M2

3 and
M2

4 in Figure 2. Therefore, there exist 2k2−k triangles
of class M2

k in the same bin.
In a similar way, for a triangle with x = 1/(k − 0.5)

of class M1
k , we obtain r = 2k − 2. Since we can place

at most k (k ≥ 4) copies of the corresponding strip in
a bin, there exist 2k2 − 2k triangles of class M1

k in the
same bin; see M1

4 and M1
5 in Figure 2. �

2.3 Small Triangles

A small triangle has size at most to 1/20. We maintain
at most one active bin for placing small items. When
a bin is opened for these items, we reserve four triangle
spots of size 0.633, i.e., the four triangles of class L4

in Figure 1. These triangle spots are used as bins for
placing small items.

Epstein and van Stee [5] provide an approach to assign
small squares into unit squares. The algorithm is to

find an appropriate sub-bin for an item, which can be
found by partitioning a (sub-)bin into four identical sub-
bins (see [5], for more details). A similar approach to
that of Epstein and van Stee can be used for assigning
equilateral triangles into unit equilateral triangle bins.
The analysis of the algorithm for the case when both
the items and bins are equilateral triangles is the same
to the case when both the items and bins are squares.
Therefore, we can use Claim 3 of [5] for our case. That
is,

Claim 1 Given an online sequence of equilateral trian-
gles of sizes no more than 1/M , for some integer M , one
can pack items into equilateral triangle bins of unit size
so that the total occupied space in each bin is at least
M2−1
(M+1)2 .

Lemma 2 The occupied area of each bin opened for
small items, except possibly a constant number of them,
is more than 0.585.

Proof. Note that the side length (≤ 1/20) of a small
triangle is within a factor of at most 1/12.66 of the side
length (0.633) of the triangle spots. Assuming M = 12,
by Claim 1, a fraction of at least (122−1)/132 = 0.846 of
all triangle spots, except potentially a constant number
of them, is occupied by small triangles.

Since the area of each bin covered by four triangle
spots is 4 × 0.173 = 0.692 (see L4 of Figure 1), the
occupied area of each bin opened for small items is more
than 0.692× 0.846 = 0.585. �

2.4 Analysis

For analyzing our algorithm, we use a weighting argu-
ment. Corresponding to each triangle of size x, we de-
fine a weight w(x) as follows.

Recall that a large triangle of a class Lc (1 ≤ c ≤ 12)
is placed in a square which has c spots for items of
this class. All bins opened for these triangles, except
possibly the last active bin, include c items of this class.
We define the weight of items of class c to be 1/c. This
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Class Side length x Occupied Area Weight Density

L1 (0.816, 1.035] > 1(0.288) = 0.288 1 < 3.472
L2 (0.676, 0.816] > 2(0.197) = 0.395 1/2 < 2.538
L3 (0.633, 0.676] > 3(0.173) = 0.520 1/3 < 1.926
L4 (0.554, 0.633] > 4(0.132) = 0.531 1/4 < 1.893
L5 (0.525, 0.554] > 5(0.119) = 0.596 1/5 < 1.680
L6 (0.500, 0.525] > 6(0.108) = 0.649 1/6 < 1.543
L7 (0.476, 0.500] > 7(0.098) = 0.686 1/7 < 1.457
L8 (0.437, 0.476] > 8(0.082) = 0.661 1/8 < 1.524
L9 (0.420, 0.437] > 9(0.076) = 0.682 1/9 < 1.461
L10 (0.401, 0.420] > 10(0.069) = 0.696 1/10 < 1.449
L11 (0.390, 0.401] > 11(0.065) = 0.724 1/11 < 1.398
L12 (1/3, 0.390] > 12(0.048) = 0.577 1/12 < 1.732
M2

3 (1/3.5, 1/3] > 15(0.035) = 0.530 1/15 < 1.886
M1

4 (1/4, 1/3.5] > 24(0.027) = 0.649 1/24 < 1.540
M2

4 (1/4.5, 1/4] > 28(0.021) = 0.598 1/28 < 1.672
M1

5 (1/5, 1/4.5] > 40(0.017) = 0.692 1/40 < 1.445
. . . . . . . . . . . . . . .
M2

19 (1/19.5, 1/19] > 703(0.00113) = 0.800 1/703 < 1.250
M1

20 (1/20, 1/19.5] > 760(0.00108) = 0.822 1/760 < 1.216

Small (0, 1/20] > 0.585
√
3/4x2

0.585 < 1.708

Table 1: A summary of classes: range of the side length
x, minimum occupied area, weights, and densities.

way, the total weight of items in bins opened for large
triangles, except possibly 12 of them, is exactly 1.

For medium triangles of class M1
k , we define the

weight to be 1/(2k2 − 2k), where 4 ≤ k ≤ 20. By
Lemma 1, the algorithm places 2k2 − 2k triangles of
this class in each open bin (except possibly the last ac-
tive bin), which implies the weight of all bins opened for
this class is exactly 1. Similarly, the weight of triangles
of class M2

k is defined as 1/(2k2−k), where 3 ≤ k ≤ 19.
This implies a weight of 1 for all bins (except possibly
the last one) opened for this class. To summarize, the
total weight of triangles in all bins opened for medium
items, except possibly 34 of them (one for each class),
is 1.

For a small triangle ∆ of size x, we define its weight
as area(∆)/0.585, where area(∆) =

√
3x2/4 is the area

of ∆. By Lemma 2, the occupied area of all bins opened
for small items (except a constant number of them) is
at least 0.585 which implies their total weight is at least
0.585/0585 = 1.

Table 1 gives a summary of the weights of items in
different classes. From the above argument, we conclude
the following:

Lemma 3 The total weight of triangles in each bin
opened by the algorithm, except possibly a constant num-
ber of then, is at least 1.

Next, we provide an upper bound for the total weight
of items in a bin of the optimal offline algorithm (Opt).

Lemma 4 The total weight of items in a bin of Opt is
less than 2.474.

Proof. Define the density of an item as the ratio be-
tween its weight and its area. An upper bound for the

density of items of each class is reported in Table 1. For
large and medium triangles, these values are simply the
ratio between the weight and minimum area of items in
each bin. For a small triangle ∆, the density is less than
1/0.585 = 1.708, which is the ratio between the weight
((
√

3x2/4)/0.585) and the area of ∆.
Note that the density of all triangles except those of

types L1 and L2 cannot be more than 1.926 (by Table 1).
In the following, we consider different cases, and show
that no bin B of Opt can have a total weight more than
2.474.

First, assume there are no triangles of type L1 or L2

in B. The density of all triangles is less than 1.926,
which implies the total weight of items in B is less than
1× 1.926 (which is < 2.474).

Assuming there is no item of type L1, there exist two
cases: (I) If there are two items of type L2, the total
weight of these two items is 2 × 1/2 = 1. Since the
remaining area is at most 1 − (2 × 0.197) < 0.606, the
total weight of the items that fit in the remaining area
would be at most 0.606× 1.926 < 1.168. Therefore, the
total weight of all items in B is less than 1+1.168 (which
is < 2.474). (II) If there is only one item of type L2,
it would have a weight of 1/2 and the remaining area
in B is at most 1 − 0.197 = 0.803. The total weight of
other items that fit in the remaining area of B would
be at most 0.803 × 1.926 < 1.547. Therefore, the total
weight of items in the bin will be less than 1/2 + 1.547
(which is < 2.474).

Note that no two items of type L1 fit in B. Assume
there is one item of type L1. The remaining area is
at most 1 − 0.288 = 0.712. In such case, we can only
place at most one item of type L2 in B. If there is no
item of type L2, the total weight of items that fit in the
remaining area of B is at most 0.712 × 1.926 < 1.372.
Thus the total weight of items in B would be less than
1 + 1.372 (which is < 2.474).

The only remaining case is when B contains a triangle
∆1 of type L1 and a triangle ∆2 of type L2 (see Fig-
ure 3). Assume the remaining area is tightly covered by
triangles of smaller sizes. It easy to check that when B
contains ∆1 and ∆2, there is no way to place triangles
of smaller sizes of class L3 in B. The total weights of
∆1 and ∆2 is 1 + 1/2 = 1.5. The remaining area in B
has size at most 1 − 0.288 − 0.197 = 0.515. Since the
density of items (except those of types L1, . . . , L3) is at
most 1.893 (by Table 1), the total weight of the items
would be at most 0.515× 1.893 < 0.974. Therefore, the
total weight of items in B is less than 1.5+0.974 (which
is equal to 2.474). �

Now, we give the main result of this section.

Theorem 5 There exists an online algorithm for pack-
ing equilateral triangles into squares with a competitive
ratio less than 2.474.
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Figure 3: The maximum weight for a bin of Opt is
achived when it contains an item of class L1 and an
item of class L2. Other items that fit in the bin will
have denisity smaller than 1.893.

Proof. For an input σ, let A(σ) and Opt(σ) denote
the cost of the presented algorithm and Opt, respec-
tively. Let w(σ) denote the total weight of items of
σ. Lemmas 3 and 4 imply that A(σ) ≤ w(σ) + c,
where c is a constant independent of the length of σ,
and Opt(σ) ≥ w(σ)/2.474. From these inequalities we
conclude A(σ) ≤ 2.474Opt(σ) + c, which proves an
upper bound 2.474 for the competitive ratio of the al-
gorithm. �

3 General Lower Bound

In this section, we show that no online algorithm for
triangle packing can achieve a competitive ratio better
than 80/53 ≈ 1.509. In our proof, we build sequences
containing only triangles of sizes x = 0.554, y = 0.676+
ε, and z = 0.816 + ε, where ε is a sufficiently small
constant. Note that triangles of size x are the largest
triangles of the class L5, and triangles of sizes y and z
belong to the classes L2 and L1, respectively.

Let σ = σ1σ2σ3 be a sequence of triangles, where σ1,
σ2, and σ3 are n replicas of the triangles of sizes x, y,
and z, respectively. Assume n is sufficiently large. We
compare the cost of any online algorithm A with that
of Opt after serving sequences σ1, σ1σ2, and σ1σ2σ3.

Lemma 6 Opt(σ1) = n/5 + 1, Opt(σ1σ2) ≤ n/2 + 1,
and Opt(σ1σ2σ3) ≤ n+ 1.

Proof. For σ1, Opt places five triangles in one bin;
see Figure 4a. Thus each bin, except potentially the
last one, contains five triangles, which gives a total of
n/5 + 1 bins for placing σ1. For σ1σ2, Opt can place
two triangles of size x with two triangles of size y in the
same bin (see Figure 4b), so all bins (except potentially
the last one), contain four triangles, which gives a total
of 2n/4+1 bins. For σ1σ2σ3, Opt can place one triangle
of each size x, y, z in the same bin; see Figure 4c. Thus

all bins include three triangles, which results a total of
at most 3n/3 + 1 bins for placing σ1σ2σ3. �

Now, we obtain the main result of this section.

Theorem 7 The competitive ratio of any online algo-
rithm A for triangle packing is at least 80

53 ≈ 1.509.

Proof. Let aij be the number of bins which include i
replicas of size x and j replicas of size y, where 1 ≤ i ≤ 5
and 0 ≤ j ≤ 2.

Denote by A(σ1) the number of bins opened by the al-
gorithm A for σ1. Note that if a square contains four or
five triangles of size x, then it cannot contain a triangle
of size y. Similarly, if a square contains three triangles
of size x, then it cannot contain more than one triangle
of size y. In summary,

A(σ1) = a10 + a11 + a12 + a20 + a21 + a22 + a30 + a31

+ a40 + a50.

Assume A has a competitive ratio of at most r. By
Lemma 6, for some constant c1,

A(σ1) ≤ r × n/5 + c1. (1)

By counting the number of triangles of size x, we obtain

a10 + a11 + a12 + 2a20 + 2a21 + 2a22 + 3a30

+ 3a31 + 4a40 + 5a50 = n.
(2)

Let b1 be the number of bins that include only one
replica of size y, and also let b2 be the number of bins
that include only two replicas of size y and no replica
of size x. Consider a packing of A after serving σ1σ2,
meaning that A has placed n triangles of size x and n
triangles of size y. In a similar way to that of A(σ1),
we can obtain A(σ1σ2), the number of bins opened by
A for σ1σ2:

A(σ1σ2) = a10 + a11 + a12 + a20 + a21 + a22 + a30 + a31

+ a40 + a50 + b1 + b2,

which can be bounded as follows (by Lemma 6, for some
constant c2):

A(σ1σ2) ≤ r × n/2 + c2. (3)

Counting the number of triangles of size y gives

a11 + 2a12 + a21 + 2a22 + a31 + b1 + 2b2 = n. (4)

Now, consider a packing of A after placing triangles
of size z. The algorithm A can place triangles of size z
in bins which either (I) include at most two triangles
of size x and no triangle of size y (i.e., a10 + a20 bins),
or (II) include one triangle of size x and one triangle of
size y (i.e., a11 bins), or (III) include only one triangle
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Figure 4: Opt uses different packings for different prefix sequences of σ1σ2σ3.

of size y (i.e., b1 bins). Except these bins, A has to
open one bin for each triangle of size y, which implies
n− a10 − a20 − a11 − b1 new bins. In summary,

A(σ1σ2σ3) = a12 + a21 + a22 + a30 + a31 + a40 + a50

+ b2 + n

By Lemma 6, for some constant c3, the number of
bins opened by A for σ1σ2σ3 bounds as follows:

A(σ1σ2σ3) ≤ r × n+ c3. (5)

Equations 1-5 should hold for a competitive ratio of r.
If we scale these equations by 1/n, the constants c1, c2,
and c3 can be ignored. Let αij = aij/n, β1 = b1/n, and
β2 = b2/n. The following linear program summarizes
the above discussion.

minimize r subject to

α10 + α11 + α12 + α20 + α21 + α22 + α30 + α31 + α40

+ α50 ≤ r/5;

α10 + α11 + α12 + α20 + α21 + α22 + α30 + α31 + α40

+ α50 + β1 + β2 ≤ r/2;

α12 + α21 + α22 + α30 + α31 + α40 + α50 + β2 + 1 ≤ r;
α10 + α11 + α12 + 2α20 + 2α21 + 2α22 + 3α30 + 3α31

+ 4α40 + 5α50 = 1;

α11 + 2α12 + α21 + 2α22 + α31 + β1 + 2β2 = 1;

αij , β1, β2 ≥ 0.

This linear program obtains the optimal value r =
80/53. Therefore, we conclude the actual competitive
ratio is at least 80/53. �
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