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Flips in Edge-Labelled Pseudo-Triangulations®
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Abstract

We show that O(n?) exchanging flips suffice to trans-
form any edge-labelled pointed pseudo-triangulation
into any other with the same set of labels. By using in-
sertion, deletion and exchanging flips, we can transform
any edge-labelled pseudo-triangulation into any other
with O(nlogc + hlogh) flips, where ¢ is the number
of convex layers and h is the number of points on the
convex hull.

1 Introduction

A pseudo-triangle is a simple polygon with three convex
interior angles, called corners, that are connected by re-
flex chains. Given a set P of n points in the plane, a
pseudo-triangulation of P is a subdivision of its convex
hull into pseudo-triangles, using all points of P as ver-
tices (see Figure 1a). A pseudo-triangulation is pointed
if all vertices are incident to a reflex angle in some face
(including the outer face; see Figure 1b for an example).
Pseudo-triangulations find applications in areas such as
kinetic data structures [6] and rigidity theory [9]. More
information on pseudo-triangulations can be found in a
survey by Rote, Santos, and Streinu [8].

(a) (b)

Figure 1: (a) A pseudo-triangulation with two non-
pointed vertices. (b) A pointed pseudo-triangulation.

Since a regular triangle is also a pseudo-triangle,
pseudo-triangulations generalize triangulations (subdi-
visions of the convex hull into triangles). Triangula-
tions have numerous applications and are extremely
well-studied; the particular topic we are interested in is
that of flips. In a triangulation, a flip is a local transfor-
mation that removes one edge, leaving an empty quadri-
lateral, and inserts the other diagonal of that quadrilat-
eral. Note that this is only possible if the quadrilateral
is convex. Lawson [7] showed that any triangulation
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with n vertices can be transformed into any other with
O(n?) flips, and Hurtado, Noy, and Urrutia [5] gave a
matching (n?) lower bound.

Pointed pseudo-triangulations support a similar type
of flip, but before we can introduce this, we need to
generalize the concept of pseudo-triangles to pseudo-k-
gons: weakly simple polygons with k convex interior
angles. A diagonal of a pseudo-k-gon is called a bitan-
gent if the pseudo-k-gon remains pointed after inser-
tion of the diagonal. In a pointed pseudo-triangulation,
flipping an edge removes the edge, leaving a pseudo-
quadrilateral (a pseudo-4-gon), and inserts the unique
other bitangent of the pseudo-quadrilateral (see Fig-
ure 2a). In contrast with triangulations, all internal
edges of a pointed pseudo-triangulation are flippable.
Bereg [3] showed that O(nlogn) flips suffice to trans-
form any pseudo-triangulation into any other.

Aichholzer et al. [2] showed that the same result holds
for all pseudo-triangulations (including triangulations)
if we allow two more types of flips: insertion and dele-
tion flips. As the name implies, these either insert
or delete one edge, provided that the result is still a
pseudo-triangulation. To disambiguate, they call the
other flips exchanging flips. In a later paper, this bound
was refined to O(nlogc) [1], where ¢ is the number of
convex layers of the point set.
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Figure 2: (a) A flip in a pseudo-quadrilateral. (b) A
left-shelling pseudo-triangulation.

In this paper, we investigate flips in edge-labelled
pseudo-triangulations:  pseudo-triangulations where
each internal edge has a unique label in {1,...,3n —3—
2h}, where h is the number of vertices on the convex hull
(3n—3—2h is the number of internal edges in a triangu-
lation). In the case of an exchanging flip, the new edge
receives the label of the old edge. For a deletion flip, the
edge and its label are simply removed, and for an inser-
tion flip, the new edge receives an unused label from
the set of all possible labels. The edge-labelled version
is more difficult than the unlabelled version, since we no
longer have the freedom to choose the mapping between
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edges in the initial and final pseudo-triangulation.

Bose et al. [4] initiated the study of flips in edge-
labelled triangulations. They gave a tight ©(nlogn)
bound on the worst-case number of flips required for
triangulations of points in convex position. However,
in general, they show that it is not always possible to
flip between two given edge-labelled triangulations. In
contrast, we show that it is always possible to transform
two given edge-labelled pseudo-triangulations into each
other using flips.

Our results are the following: using only exchang-
ing flips, we show that O(n?) flips suffice to transform
any edge-labelled pointed pseudo-triangulation into any
other with the same set of labels. By using insertion,
deletion and exchanging flips, we can transform any
edge-labelled pseudo-triangulation into any other with
O(nlogc+ hlogh) flips.

Before we prove our results, we need a few more defi-
nitions. Given a set of points in the plane, let vy be the
point with the lowest y-coordinate, and let v4, ..., v, be
the other points in clockwise order around vg. The left-
shelling pseudo-triangulation is the union of the convex
hulls of wg,...,v;, for all 2 < i < n (see Figure 2b).
Thus, every vertex after vy is associated with two edges:
a bottom edge connecting it to vy and a top edge that is
tangent to the convex hull of the earlier vertices. The
right-shelling pseudo-triangulation is similar, with the
vertices added in counter-clockwise order instead.

2 Transforming pointed pseudo-triangulations

In this section, we show that every edge-labelled pointed
pseudo-triangulation can be transformed into any other
with the same set of labels by O(n?) exchanging flips.
We do this by showing how to transform a given edge-
labelled pointed pseudo-triangulation into a canonical
one. The result then follows by the reversibility of flips.
We use the left-shelling pseudo-triangulation as canoni-
cal pseudo-triangulation, with the bottom edges labelled
in clockwise order around vg, followed by the internal
top edges in the same order (based on their associated
vertex).

Since we can transform any pointed pseudo-
triangulation into the left-shelling pseudo-triangulation
with O(nlogn) flips [3], the main part of the proof
lies in reordering the labels of a left-shelling pseudo-
triangulation. We use two tools for this, called a sweep
and a shuffle, that are implemented by a sequence of
flips. A sweep interchanges the labels of some internal
top edges with their respective bottom edges, while a
shuffle permutes the labels on all bottom edges.

Lemma 1 We can transform any left-shelling pseudo-
triangulation into the canonical one with O(1) shuffle
and sweep operations.

Proof. In the canonical pseudo-triangulation, we call
the labels assigned to bottom edges low, and the labels
assigned to top edges high. In the first step, we use a
shuffle to line up every bottom edge with a high label
to a top edge with a low label. Then we exchange these
pairs of labels with a sweep. Now all bottom edges have
low labels and all top edges have high labels, so all that
is left is to sort the labels. We can sort the low labels
with a second shuffle. To sort the high labels, we sweep
them to the bottom edges, shuffle to sort them there,
then sweep them back. O

The remainder of this section describes how to per-
form a sweep and a shuffle with flips.

Lemma 2 We can interchange the labels of the edges
incident to an internal vertex v of degree two with three
exchanging flips.

Proof. Consider what happens when we remove wv.
Deleting one of its edges leaves a pseudo-quadrilateral.
Removing the second edge then either merges two cor-
ners into one, or removes one corner, leaving a pseudo-
triangle T. There are three bitangents that connect v
to T, each corresponding to the geodesic between v and
a corner of T. Any choice of two of these bitangents
results in a pointed pseudo-triangulation. When one of
them is flipped, the only new edge that can be inserted
so that the result is still a pointed pseudo-triangulation
is the bitangent that was not there before the flip. Thus,
we can interchange the labels with three flips (see Fig-
ure 3). O
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Figure 3: Interchanging the labels of the edges incident
to a vertex of degree two.

Lemma 3 (Sweep) In the left-shelling pseudo-
triangulation, we can interchange the labels of any
number of internal top edges and their corresponding
bottom edges with O(n) exchanging flips.

Proof. Let S be the set of vertices whose internal top
edge should have its label swapped with the correspond-
ing bottom edge. Consider a ray L from vy that starts
at the positive z-axis and sweeps through the point set
to the negative z-axis. We will maintain the following
invariant: the graph induced by the vertices to the left
of L is their left-shelling pseudo-triangulation and the
graph induced by the vertices to the right of L is their
right-shelling pseudo-triangulation (both groups include
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Figure 4: Interchanging the labels of two bitangents of a pseudo-pentagon with five bitangents. An edge in the
pentagon corresponds to a geodesic between two corners of the pseudo-pentagon.

vp). Furthermore, the labels of the top edges of the ver-
tices in S to the right of L have been interchanged with
their respective bottom edges. This invariant is satisfied
at the start.

Suppose that L is about to pass a vertex vg. If vy is
on the convex hull, its top edge is not internal and no
action is required for the invariant to hold after passing
vg. So assume that v, is not on the convex hull and
consider its incident edges. It is currently part of the
left-shelling pseudo-triangulation of points to the left of
L, where it is the last vertex. Thus, vy is connected to vg
and to one vertex to its left. It is not connected to any
vertex to its right, since there are 2n — 3 edges in total,
and the left- and right-shelling pseudo-triangulations to
each side of L contribute 2(k+1)—34+2(n—k)—3 = 2n—4
edges. So the only edge that crosses L is an edge of the
convex hull. Therefore v, has degree two, which means
that we can use Lemma 2 to swap the labels of its top
and bottom edge with three flips if vy € S.

Furthermore, the sides of the pseudo-triangle that re-
mains if we were to remove vy, form part of the convex
hull of the points to either side of L. Thus, flipping
the top edge of vy results in the tangent from vy to
the convex hull of the points to the right of L — ex-
actly the edge needed to add vy to their right-shelling
pseudo-triangulation. Therefore we only need O(1) flips
to maintain the invariant when passing vy.

At the end, we have constructed the right-shelling
pseudo-triangulation and swapped the desired edges.
An analogous transformation without any swapping can
transform the graph back into the left-shelling pseudo-
triangulation with O(n) flips in total. O

Lemma 4 In the left-shelling pseudo-triangulation, we
can interchange the labels of two consecutive bottom
edges with O(1) exchanging flips.

Proof. When we remove the two consecutive bottom
edges (say a and b), we are left with a pseudo-pentagon
X. A pseudo-pentagon can have up to five bitangents,
as each bitangent corresponds to a geodesic between two
corners. If X has exactly five bitangents, this correspon-
dence is a bijection. This implies that the bitangents of
X can be swapped just like diagonals of a convex pen-
tagon (see Figure 4). On the other hand, if X has only
four bitangents, it is impossible to swap a and b without
flipping an edge of X.

Fortunately, we can always transform X into a
pseudo-pentagon with five bitangents. If the pseudo-
triangle to the right of b is a triangle, X already has five
bitangents (see Lemma 19 in the Appendix). Otherwise,
the top endpoint of b is an internal vertex of degree two
and we can flip its top edge to obtain a new pseudo-
pentagon that does have five bitangents (see Lemma 20
in the Appendix). After swapping the labels of a and b,
we can flip this top edge back. Thus, in either case we
can interchange the labels of @ and b with O(1) flips. O

We can use Lemma 4 to reorder the labels of the
bottom edges with insertion or bubble sort, as these
algorithms only swap adjacent values.

Corollary 5 (Shuffle) In the left-shelling pseudo-
triangulation, we can reorder the labels of all bottom
edges with O(n?) exchanging flips.

Combining this with Lemmas 1 and 3, and the fact
that we can transform any pointed pseudo-triangulation
into the left-shelling one with O(nlogn) flips [3], gives
the main result.

Theorem 6 We can transform any edge-labelled
pointed pseudo-triangulation with n vertices into any
other with O(n?) exchanging flips.

The following lower bound follows from the Q(nlogn)
lower bound on the flip distance between edge-labelled
triangulations of a convex polygon [4].

Theorem 7 There are pairs of edge-labelled pointed
pseudo-triangulations with n vertices that require
Q(nlogn) exchanging flips to transform one into the
other.

3 Transforming general pseudo-triangulations

In this section, we extend our results for edge-
labelled pointed pseudo-triangulations to all edge-
labelled pseudo-triangulations. Since not all pseudo-
triangulations have the same number of edges, we need
to allow flips that change the number of edges. In par-
ticular, we allow a single edge to be deleted or inserted,
provided that the result is still a pseudo-triangulation.
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Since we are dealing with edge-labelled pseudo-
triangulations, we need to determine what happens to
the edge labels. It is useful to first review the prop-
erties we would like these flips to have. First, a flip
should be a local operation — it should affect only one
edge. Second, a labelled edge should be flippable if and
only if the edge is flippable in the unlabelled setting.
This allows us to re-use the existing results on flips in
pseudo-triangulations. Third, flips should be reversible.
Like most proofs about flips, our proof in the previous
section crucially relies on the reversibility of flips.

With these properties in mind, the edge-deletion flip
is rather straightforward — the labelled edge is removed,
and other edges are not affected. Since the edge-
insertion flip needs to be the inverse of this, it should
insert the edge and assign it a free label — an unused
label in {1,...,3n — 3 — 2h}, where h is the number of
vertices on the convex hull (3n — 3 — 2h is the number
of internal edges in a triangulation).

With the definitions out of the way, we turn our at-
tention to the number of flips required to transform any
edge-labelled pseudo-triangulation into any other. In
this section, we show that by using insertion and dele-
tion flips, we can shuffle (permute the labels on bottom
edges) with O(n + hlogh) flips. Combined with the
unlabelled bound of O(nlogc) flips by Aichholzer et
al. [1], this brings the total number of flips down to
O(nlogc+ hlogh). Note that, by the results of Bose et
al. [4], this holds for a set of points in convex position
(h = n). In the remainder of this section we assume
that h < n. As before, we first build a collection of
simple tools that help prove the main result.

YV-Y-V-Y

Figure 5: Interchanging the label of an edge incident to
a vertex of degree two with a free label.

Lemma 8 With O(1) flips, we can interchange the la-
bel of an edge incident to an internal vertex of degree
two with a free label.

Proof. Let v be a vertex of degree two and let e be
an edge incident to v. Since v has degree two, its re-
moval leaves an empty pseudo-triangle T. There are
three bitangents that connect v to T', one for each cor-
ner. Thus, we can insert the third bitangent f with the
desired free label, making v non-pointed (see Figure 5).
Flipping e now removes it and frees its label. Finally,
flipping f moves it into e’s starting position, completing
the exchange. 0

This implies that, using an arbitrary free label as
placeholder, we can swap any two edges incident to in-
ternal degree-two vertices — no matter where they are
in the pseudo-triangulation.

Corollary 9 We can interchange the labels of two
edges, each incident to some internal vertex of degree
two, with O(1) flips.

Recall that during a sweep (Lemma 3), each internal
vertex has degree two at some point. Since the number
of free labels for a pointed pseudo-triangulation is equal
to the number of internal vertices, this means that we
can use Lemma 8 to swap every label on a bottom edge
incident to an internal vertex with a free label by per-
forming a single sweep. Afterwards, a second sweep can
replace these labels on the bottom edges in any desired
order. Thus, permuting the labels on bottom edges in-
cident to internal vertices can be done with O(n) flips.
Therefore, the difficulty in permuting the labels on all
bottom edges lies in bottom edges that are not incident
to an internal vertex, that is, chords of the convex hull.
If there are few such chords, a similar strategy (free
them all and replace them in the desired order) might
work. Unfortunately, the number of free labels can be
far less than the number of chords.

We now consider operations on maximal groups of
consecutive chords, which we call fans. As the vertices
of a fan are in convex position, fans behave in many
ways like triangulations of a convex polygon, which can
be rearranged with O(nlogn) flips [4]. The problem
now becomes getting the right set of labels on the edges
of a fan.

v

Figure 6: (a) An indexed fan. (b) Shifting the index.

Consider the internal vertices directly to the left (v;,)
and right (vg) of a fan F, supposing both exist. Vertex
vy, has degree two and forms part of the reflex chain of
the first pseudo-triangle to the left of F'. Thus, flipping
v.’s top edge connects it to the leftmost vertex of F
(excluding vg). Vertex vy is already connected to the
rightmost vertex of F, so we just ensure that it has
degree two. To do this, we flip all incident edges from
vertices further to the right, from the bottom to the
top. Now the diagonals of F' form a triangulation of a
convex polygon whose boundary consists of vy, vy, the
top endpoints of the chords, and vy (see Figure 6a). It
is possible that there is no internal vertex to one side of
F. In that case, there is only one vertex on that side of
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F', which is part of the convex hull, and we can simply
use that vertex in place of v, or vy without flipping any
of its edges. Since there is at least one internal vertex by
assumption, either v, or vy is an internal vertex. This
vertex is called the indez of F. If a vertex is the index
of two fans, it is called a shared indez.

A triangulated fan is called an indexed fan if there is
one edge incident to the index, the indezed edge, and the
remaining edges are incident to one of the neighbours
of the index on the boundary. Initially, all diagonals of
F are incident to vg, so we transform it into an indexed
fan by flipping the diagonal of F' closest to the index.
Next, we investigate several operations on indexed fans
that help us move labels between fans.

Lemma 10 (Shift) In an indexed fan, we can shift the
indezed edge to the next diagonal with O(1) flips.

Proof. Suppose that v, is the index (the proof for vy
is analogous). Let e be the current indexed edge, and
f be the leftmost diagonal incident to vy. Then flip-
ping f followed by e makes f the only edge incident to
the index and e incident to the neighbour of the index
(see Figure 6b). Since flips are reversible, we can shift
the index the other way too. O

Lemma 11 We can switch which fan a shared index
currently indexes with O(1) flips.

Proof. Flipping the current indexed edge “parks” it by
connecting it to the two neighbours of the index, and
reduces the degree of the index to two (see Figure 7).
Now, flipping the top edge of the index connects it to the
other fan, where we parked the previously indexed edge.
Flipping that edge connects it to the index again. 0O

Lemma 12 In a pointed pseudo-triangulation, we can
always decrease the degree of a vertexr v of degree three
by flipping one of the edges incident to its reflex angle.

Proof. Consider the geodesic from v to the opposite
corner ¢ of the pseudo-triangle v is pointed in. The line
supporting the part of the geodesic when it reaches v
splits the edges incident to v into two groups. As there
are three edges, one of these groups must contain multi-
ple edges. Flipping the edge incident to its reflex angle
in the group with multiple edges results in a geodesic
to c¢. If this geodesic passed through v, it would insert
the missing edges along the geodesic from v to ¢ (oth-
erwise we could find a shorter path). But inserting this
geodesic would make v non-pointed. Thus, v cannot be
on this geodesic. Therefore the new edge is not incident
to v and the flip reduces the degree of v. O

Since the index always has degree three, this allows
us to extend the results from Lemma 8 and Corollary 9
regarding vertices of degree two to indexed edges.

Corollary 13 In an indexed fan, we can interchange
the label of the indexed edge with a free label in O(1)

flips.

Corollary 14 Given two indezed fans, we can inter-
change the labels of the two indexed edges with O(1)

flips.

Now we have enough tools to shuffle the bottom
edges.

Lemma 15 (Shuffle) In the left-shelling pseudo-
triangulation, we can reorder the labels of all bottom
edges with O(n + hlogh) flips, where h is the number
of vertices on the convex hull.

Proof. In the initial pseudo-triangulation, let B and F
be the sets of labels on bottom edges and free labels,
respectively. Let F; be the set of labels on the i-th fan
(in some fixed order), and let F' be the set of labels on
non-fan bottom edges. Let F] and F be these same
sets in the target pseudo-triangulation. As we are only
rearranging the bottom labels, we have that B = F; U
. UFUF=F/U...UF] Uf/, where k is the number
of fans.

We say that a label £ belongs to fan i if £ € F. At
a high level, the reordering proceeds in four stages. In
stage one, we free all labels in F. In stage two, we place
each label from B \F/ in the fan it belongs to, leaving
the labels in F free. Then, in stage three, we correct
the order of the labels within each fan. Finally, we place
the labels in 7 correctly.

Since each internal vertex contributes exactly one top
edge, one bottom edge, and one free label, we have that
|F| = |F|. To free all labels in F, we perform a sweep
(see Lemma 3). As every internal vertex has degree two
at some point during the sweep, we can exchange the
label on its bottom edge with a free label at that point,
using Lemma 8. This requires O(n) flips. The labels in
F remain on the bottom edges incident to internal ver-
tices throughout stage two and three, as placeholders.

To begin stage two, we index all fans with O(n) flips
and shift these indices to the first ‘foreign’ edge: the
first edge whose label does not belong to the current
fan. If no such edge exists, we can ignore this fan for
the remainder of stage two, as it already has the right
set of labels. Now suppose that there is a fan F; whose
indexed edge e is foreign: ¢, ¢ F/. Then either £, €
FJ’ for some j # i, or £, € 7. In the first case, we
exchange ¢, with the label on the indexed edge of Fj},
and shift the index of F} to the next foreign edge. In
the second case, we exchange ¢, with a free label in
B\ F'. If this label belongs to Fj, we shift its index
to the next foreign edge. In either case, we increased
the number of correctly placed labels by at least one.
Thus n — 1 repetitions suffice to place all labels in the
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Figure 7: Changing which side a shared index indexes.

fan they belong to, wrapping up stage two. Since we
perform a linear number of swaps and shifts, and each
takes a constant number of flips, the total number of
flips required for stage two is O(n).

For stage three, we note that each indexed fan corre-
sponds to a triangulation of a convex polygon. As such,
we can rearrange the labelled diagonals of a fan F; into
their desired final position with O(|F;|log|F;|) flips [4].
Thus, if we let A be the number of vertices on the convex
hull, the total number of flips for this step is bounded
by

> O(|Fi|log|Fi|) <> O(|F;|log h) = O(hlog h).

For stage four, we first return to a left-shelling pseudo-
triangulation by un-indexing each fan, using O(n) flips.
After stage two, the labels in F are all free, so all that is
left is to place these on the correct bottom edges, which

we can do with a final sweep. Thus, we can reorder all
bottom labels with O(n + hlogh). O

This leads to the following bound.

Theorem 16 We can transform any edge-labelled
pseudo-triangulation with n vertices into any other with
O(nlogc+ hlogh) flips, where ¢ is the number of con-
vex layers and h is the number of vertices on the convex
hull.

Proof. Using the technique by Aichholzer et al. [1], we
first transform the pseudo-triangulation into the left-
shelling pseudo-triangulation T with O(nlogc) flips.
Our canonical pseudo-triangulation contains the labels
{1,...,2n — h — 3}, but it is possible for T" to con-
tain a different set of labels. Since all labels are drawn
from {1,...,3n — 2h — 3}, at most n — h labels differ.
This is exactly the number of internal vertices. Thus,
we can use O(n + hlogh) flips to shuffle (Lemma 15)
all non-canonical labels on fan edges to bottom edges
incident to an internal vertex. Omnce there, we use a
sweep (Lemma 3) to ensure that every internal ver-
tex has degree two at some point, at which time we
replace its incident non-canonical labels with canoni-
cal ones with a constant number of flips (Lemma 8).
Once our left-shelling pseudo-triangulation has the cor-
rect set of labels, we use a constant number of shuf-
fles and sweeps to sort the labels (Lemma 1). Since
we can shuffle and sweep with O(n + hlogh) and O(n)

flips, respectively, the total number of flips reduces to
O(nloge+n+ hlogh) = O(nlogc+ hlogh). O

The correspondence between triangulations of a con-
vex polygon and pseudo-triangulations gives us the fol-
lowing lower bound.

Theorem 17 There are pairs of edge-labelled pseudo-
triangulations with n vertices such that any sequence
of flips that transforms one into the other has length
Q(nlogn).
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Appendix

Figure 8: (a) A corner of a pseudo-triangle and an edge
such that the entire pseudo-triangle on the other side of
the edge lies inside the corner’s wedge. (b) If a can see
a point past z, then the geodesic does not contain .

Lemma 18 Let a be a corner of a pseudo-triangle with
neighbours x and y, and let e be an edge on the chain oppo-
site a. If all vertices of the other pseudo-triangle containing
e lie in the wedge formed by extending the edges ax and ay
into half-lines (see Figure 8a), then flipping e will result in
an edge incident on a.

Proof. Let T be the pseudo-triangle on the other side of
e, and let b be the corner of T opposite e. Then flipping e
inserts the geodesic between a and b. This geodesic must
intersect e in a point s and then follow the shortest path
from s to a. If s lies strictly inside the wedge, nothing can
block as, thus the new edge will contain as and be incident
on a.

Now, if all of e lies strictly inside the wedge, our result
follows. But suppose that e has =z as an endpoint and the
geodesic between a and b intersects e in x. As a can see x
and all of T lies inside the wedge, there is an € > 0 such
that a can see the point X on the boundary of T" at distance
e from x (see Figure 8b). The line segment ap intersects
the geodesic at a point s’. By the triangle inequality, s'a
is shorter than following the geodesic from s’ via x to a.
But then this would give a shorter path between a and b,
by following the geodesic to s’ and then cutting directly to
a. As the geodesic is the shortest path by definition, this is
impossible. Thus, the geodesic cannot intersect e at x and
the new edge must be incident to a. (]

Lemma 19 Let a and b be two consecutive internal bot-
tom edges in the left-shelling pseudo-triangulation, such that
the pseudo-triangle to the right of b is a triangle. Then the
pseudo-pentagon X formed by removing a and b has five bi-
tangents.

Proof. Let c¢o,...,ca be the corners of X in counter-
clockwise order around the boundary. By Lemma 18, flip-
ping b results in an edge b’ that intersects b and is incident on
c1. This edge is part of the geodesic between ¢; and c3, and
as such it is tangent to the convex chain v, vq, . .., c3, where
vq is the top endpoint of a (v, could be c3). Therefore it is
also the tangent from c; to the convex hull of {vo,...,va}.
This means that the newly created pseudo-triangle with c;
as corner and a on the opposite pseudo-edge also meets the

conditions of Lemma 18. Thus, flipping a results in another
edge, a’, also incident on ci. As b separates c¢; from all ver-
tices in {vo,...,vq}, @’ must also intersect b. This gives us
four bitangents, of which two are incident on vy (a and b),
and two on ¢; (a’ and b'). Finally, flipping a before flipping
b results in a bitangent that is not incident on v (as vo is a
corner and cannot be on the new geodesic), nor on c¢1 (as b
separates a from c¢1). Thus, X has five bitangents. O

Lemma 20 Let a and b be two consecutive internal bottom
edges in the left-shelling pseudo-triangulation, such that the
pseudo-triangle to the right of b is not a triangle. Then the
pseudo-pentagon X formed by flipping the corresponding top
edge of b and removing a and b has five bitangents.

Proof. Let v, and v, be the top endpoints of a and b. By
Lemma 18 and since b had degree two, flipping the top edge
of b results in the edge vyci. We get three bitangents for
free: a, b, and b’ — the old top edge of b and the result of
flipping b.

X consists of a reflex chain C that is part of the convex
hull of the points to the left of a, followed by three successive
tangents to C, ve, or vp. Since C lies completely to the
left of a, it cannot significantly alter any of the geodesics or
bitangents inside the polygon, so we can reduce it to a single
edge. Now, X consists either of a triangle with two internal
vertices, or a convex quadrilateral with one internal vertex.

If X is a triangle with two internal vertices, the internal
vertices are v, and vp. Let its exterior vertices be vg, x, and
y. Then there are seven possible bitangents: a = vovq,b =
VOV, TVa, TV, YVa, YUb, and vevp. We know that xv, and
yup are edges, so there are five possible bitangents left. As
all vertices involved are either corners or have degree one
in X, the only condition for an edge to be a bitangent is
that it does not cross the boundary of X. Since the exterior
boundary is a triangle, this reduces to it not crossing xv, and
yup. Two line segments incident to the same vertex cannot
cross. Thus, xvy, yve, and vavp cannot cross xrv, and yvp,
and X has five bitangents.

If X’s convex hull has four vertices, the internal vertex
is vp (otherwise the pseudo-triangle to the right of b would
be a triangle). Let its exterior vertices be wvo, z, v., and
y. Then there are six possible bitangents: a = vove,b =
VoUb, TY, TUb, YUs, and vavp, of which one (yvy) is an edge
of X. Since a and b are guaranteed to be bitangents, and
zy, Ty, and vevp all share an endpoint with yvy, the argu-
ments from the previous case apply and we again have five
bitangents. O



