Proceedings of the 28th Canadian
Conference on Computational
Geometry

August 3-5, 2016
Simon Fraser University
Vancouver, British Columbia
Canada

Sponsored by

FIELDS

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

Computing Science

Compilation copyright (¢) 2016 Thomas C. Shermer.

Copyright of individual papers retained by authors.

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Contents

Session 1A

Square Formation by Asynchronous Oblivious Robots

Giovanni Viglietta and Marcello Mamino

Finding Points in General Position

Vincent Froese, Iyad Kanj, André Nichterlein and Rolf Niedermeier

Minimizing the Total Movement for Movement to Independence

Problem on a Line

Sina Yazdanbod and Mehrdad Ghadirt

Searching with Advice: Robot Fence-Jumping

Kostantinos Georgiou, Fvangelos Kranakis and Alexandra Steau

Session 1B

On the Stability of Medial Axis of a Union of Balls in the Plane
David Letscher and Kyle Sykes

kth Nearest Neighbor Sampling in the Plane
Kirk Gardner and Don Sheehy,

NearptD: A Parallel Implementation of Exact Nearest Neighbor
Search using a Uniform Grid

David Hedin and W Randolph Franklin

Realizing Farthest-Point Voronoi Diagrams
Therese Biedl, Carsten Grimm, Leonidas Palios, Jonathan Shewchuk and

Sander Verdonschot

Session 2

Recognition of Triangulation Duals of Simple Polygons With and
Without Holes

Martin Derka, Alejandro Lopez-Ortiz and Daniela Maftulea

1

28" Canadian Conference on Computational Geometry, 2016

Sliding k-Transmitters: Hardness and Approximation

Therese Biedl, Saeed Mehrabi and Ziting Yu 63}

The Length of the Beacon Attraction Trajectory

Bahram Kouhestani, David Rappaport and Kai Salomaa 69l

A Competitive Strategy for Walking in Generalized Streets for a
Simple Robot.

Azadeh Tabatabaei, Fardin Shapouri and Mohammad Ghodsi 75l

Session 3A

Polynomial volume point set embedding of graphs in 3D

Farshad Barahimi and Steve Wismath R0

Boundary Labeling with Obstacles
Martin Fink and Subhash Surt 80l

On the Biplanar Crossing Number of K,

Stephane Durocher, Ellen Gethner and Debajyoti Mondal

Squarability of rectangle arrangements
Matéj Konecny, Stanislav Kuéera, Michal Opler, Jakub Sosnovec, Stépdn
Simsa and Martin Topfer 101

Session 3B

Transforming Hierarchical Trees on Metric Spaces

Mahmoodreza Jahanseir and Don Sheehy 107

On the Triangulation of non-fat Imprecise Points

Vahideh Keikha, Ali Mohades and Mansoor Davoodi Monfared 114

On the Precision to Sort Line-Quadric Intersections

Michael Deakin and Jack Snoeyink 122

Adaptive Metrics for Adaptive Samples
Nicholas Cavanna and Don Sheehy 128

Session 4A

1

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Geometric Spanners Merging and its Applications

Davood Bakhshesh and Mohammad Farshi
A Faster Algorithm for the Minimum Red-Blue-Purple Spanning

Graph Problem for Points on a Circle

Ahmad Biniaz, Prosenjit Bose, Ingo van Duijn, Anil Maheshwari and

Michiel Smid
Partitions of planar point sets into polygons

Ajit Diwan and Bodhayan Roy
Counting Convex k-gons in an Arrangement of Line Segments

Martin Fink, Neeraj Kumar and Subhash Suri

Session 4B

A Fast 2-Approximation Algorithm for Guarding Orthogonal
Terrains
Yangdi Lyu and Alper Ungor
An Iterative Refinement Scheme of Dominating Guards and
Witnesses for Art Gallery Problems
Eyup Serdar Ayaz and Alper Ungor
Minimizing the Solid Angle Sum of Orthogonal Polyhedra and
Guarding them with 7-Edge Guards
Israel Aldana-Galvan, Jose Luis Alvarez-Rebollar, Juan Carlos Catana-
Salazar, Mazay Jiménez-Salinas, Erick Solis-Villareal, Jorge Urrutia
The Planar Slope Number

Udo Hoffmann

Session HA

Epsilon-covering: a greedy optimal algorithm for simple shapes
Tuong Nguyen and Isabelle Sivignon

Geometric Unique Set Cover on Unit Disks and Unit Squares

Saeed Mehrabi

100

i)

182

28" Canadian Conference on Computational Geometry, 2016

Stabbing Line Segments with Disks and Related Problems
Raghunath Reddy Madireddy and Apurva Mudga 20T]
Critical Placements of a Square or Circle amidst Trajectories for
Junction Detection

Ingo van Duijn, Irina Kostitsyna, Marc van Kreveld and Maarten Loffler 208§

Session HB

Smallest Paths with Restricted Orientations in Simple Polygons
Jillian Dicker and Joseph Peters
Exact Solutions for the Geometric Firefighter Problem

Mauricio J. O. Zambon, Pedro J. de Rezende and Cid C. de Souza . . . [223

Progressive Alignment of Shapes

Ashwin Gopinath, David Kirkpatrick, Paul Rothemund and Chris Thachuk 230]

Rectangle-of-influence triangulations

Therese Biedl, Anna Lubiw, Saeed Mehrabi and Sander Verdonschot . . 237

Session 6A
Maximum Area Rectangle Separating Red and Blue Points
Bogdan Armaselu and Ovidiu Daescu 244]
Characterizing minimum-length coordinated motions for two discs
David Kirkpatrick and Paul Liv 252

Maximizing the Sum of Radii of Disjoint Balls or Disks

David Eppstein e 260

Session 6B

On the Number of Forceless Hint Sequences in Paint-by-Numbers
Puzzles

Shira Zucker and Daniel Berend

An upper bound of 84 for Morpion Solitaire 5D

Henryk Michalewski, Andrzej Nagorko and Jakub Pawlewicz 70

1v

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Kernelizing Buttons and Scissors

Akanksha Agrawal, Sudeshna Kolay, Saket Saurabh and Roohani Sharma 279

Session 7TA
Minimizing Uncertainty through Sensor Placement with Angle
Constraints
Ioana Bercea, Volkan Isler and Samir Khuller
New Bounds for Facial Nonrepetitive Colouring

Prosenjgit Bose, Vida Dujmouvic, Pat Morin and Lucas Rioux-Maldague . [293

Session 7TA
Problems on One Way Road Networks

Jammigumpula Ajaykumar, Avinandan Das, Navaneeta Saikia and Arindam

Karmaka 303l
Creating a robust implementation for segment intersection by refine-

ment: A multistage assignment that defines away degeneracies

Jack Snoeyink 309]

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Square Formation by Asynchronous Oblivious Robots

Marcello Mamino™

Abstract

A fundamental problem in Distributed Computing is
the Pattern Formation problem, where some indepen-
dent mobile entities, called robots, have to rearrange
themselves in such a way as to form a given figure from
every possible (non-degenerate) initial configuration.

In the present paper, we consider robots that operate
in the Euclidean plane and are dimensionless, anony-
mous, oblivious, silent, asynchronous, disoriented, non-
chiral, and non-rigid. For this very elementary type of
robots, the feasibility of the Pattern Formation problem
has been settled, either in the positive or in the nega-
tive, for every possible pattern, except for one case: the
Square Formation problem by a team of four robots.

Here we solve this last case by giving a Square For-
mation algorithm and proving its correctness. Our con-
tribution represents the concluding chapter in a long
thread of research. Our results imply that in the context
of the Pattern Formation problem for mobile robots,
features such as synchronicity, chirality, and rigidity are
computationally irrelevant.

1 Introduction and Background

Consider a finite set of independent computational enti-
ties, called robots, that live and operate in the Euclidean
plane and are capable of observing each other’s positions
and moving to other locations, through so-called Look-
Compute-Mowve cycles. A fundamental motion planning
question in Distributed Computing is which patterns
can be formed by such robots, regardless of their ini-
tial positions. This is known as the Pattern Formation
problem, and has been extensively studied under differ-
ent robot models (see the monography [5]).

In this paper we focus on a very weak type of robots,
which are modeled as geometric points (dimensionless),
are all indistinguishable from each other (anonymous),
and execute the same deterministric algorithm. More-
over, they retain no memory of past events and ob-
servations (oblivious), they cannot communicate ex-
plicitly (silent), they have no common notion of time
(asynchronous), of a North direction (disoriented), of a
clockwise direction (non-chiral), and they may be un-
predictably stopped during each cycle before reaching

*Institut fiir Algebra, TU Dresden, 01062 Dresden, Germany,
marcello.mamino@tu-dresden.de
TUniversity of Ottawa, Canada, gvigliet@uottawa.ca

Giovanni Vigliettal

their intended destination (non-rigid movements). This
robot model is often called ASYNCH.

Note that if n such robots initially form a regular
n-gon and their local coordinate systems are oriented
symmetrically, then they all have the same “view” of
the world. Now, if they are all activated synchronously,
they are bound to make symmetric moves forever, im-
plying that they will always form a regular n-gon, or
perhaps collide in the center. As the pattern has to
be formed from every possible initial configuration, the
Pattern Formation problem is unsolvable if the pattern
is not a regular polygon or a point. Clearly, the exis-
tence of a general algorithm that will indeed make the
robots form a regular polygon or a point from any initial
configuration is not obvious and has been the object of
intensive research by several authors.

In the case of a point, the Pattern Formation problem
has been eventually settled in [1], where an algorithm
is presented that always makes n # 2 ASYNCH robots
gather in a point (if n = 2, the problem is unsolvable).

In the case of a regular polygon, there is a long history
of algorithms that solve the Pattern Formation problem
under increasingly weaker robot models. We start from
the semi-synchronous model, SSYNCH, in which we as-
sume the existence of a global “clock” that discretizes
time. In each time unit, some robots (chosen by an ex-
ternal “adversary”) perform a complete Look-Compute-
Move cycle synchronously, while the other robots re-
main inactive. In [10] it is shown that SSYNCH robots
can always form a regular polygon, provided that they
have the ability to remember their past observations
(hence they are not oblivious). In [2] the obliviousness
of the robots is restored, but the algorithm proposed
only makes the robots converge to a regular polygon,
perhaps without ever forming one. These results were
improved in [3], where it is shown how n # 4 SSYNCH
robots, without additional requirements, can form a reg-
ular polygon. The case of a square, n = 4, was solved
separately in [4] with an ad-hoc algorithm.

For ASYNCH robots, a simple solution was given
in [8], under the assumption that the local coordinate
systems of all robots have the same orientation. This
result was improved in [9], where it is only assumed that
the local coordinate systems are all right-handed (chiral-
ity), but may be rotated arbitrarily. In [6], an algorithm
is given for n # 4 ASYNCH robots with no assumptions
on their local coordinate systems, but allowing them to
move along circular arcs, as well as straight line seg-

28" Canadian Conference on Computational Geometry, 2016

ments. A solution for n # 4 ASYNCH robots with no
extra assumptions was finally given in [7]. The general
algorithm lets only a few robots move at a time, so that
the others will provide a stable “reference frame” for
them. The case n = 4 is left unsolved in [7], essen-
tially because four robots are too few to implement this
strategy, yet enough to make ad-hoc solutions elusive.

In the following sections, we formalize the Square For-
mation problem for n = 4 ASYNCH robots, we give
an algorithm for it, and we prove its correctness, thus
completing the characterization of the patterns that are
formable by ASYNCH robots from every initial config-
uration. Since the proof of non-formability of asymmet-
ric patterns that we outlined above holds even for fully
synchronous robots with chirality and rigid movements
(i.e., movements that cannot be unpredictably stopped
by an adversary), all these features turn out to be com-
putationally irrelevant with respect to the Pattern For-
mation problem.

2 Model Specification

Let R = {r1,r2,73,74} be a set of robots, each of which
is thought of as a computational entity occupying a
point in the plane R? and having its own local Carte-
sian coordinate system. Each robot’s coordinate system
is always centered at the robot’s location, and different
robots’ coordinate systems may have different orienta-
tion, handedness, and unit of length.

Each robot cyclically goes through three phases:
Look, Compute, and Mowve. In a Look phase, the robot
takes an instantaneous “snapshot” of all the robots’ lo-
cations and it expresses them as points in R? within
its own local coordinate system. In the next Compute
phase, these four points are fed, in any order, to an al-
gorithm A, which outputs a destination point p, again
expressed in the robot’s coordinate system. The al-
gorithm A is the same for all robots, and it can only
compute algebraic functions of the input points (for our
purposes, we will only need arithmetic functions and
square roots). In the next Move phase, the robot moves
toward p along a straight line. Note that, even though
the robots are indistinguishable, each robot can iden-
tify itself in the snapshots it takes, because it is always
located at (0,0).

When a Move phase ends, the Look phase of the next
cycle starts. We may assume that the Look and Com-
pute phases of a robot are executed together and instan-
taneously at each cycle, but the Move phase’s duration
may vary, although it must be finite. The duration of
each Move phase of each cycle of each robot is decided
arbitrarily by an external “adversary”, called scheduler.
As a consequence, a robot may perform a Look while
some other robots are in the middle of a movement,
and there is no way to tell it from the snapshot. The

scheduler also arbitrarily sets the speed of each robot
at each moment of each Move phase; the velocity vector
must always be directed toward the current destination
point, or be the null vector. In particular, a robot may
actually start moving a long time after the last Look-
Compute phase, when the snapshot it has taken and the
destination it has computed are already “obsolete”.

The scheduler can also decide to end a robot’s Move
phase before it reaches its intended destination. The
only constraint is that it cannot do so before the robot
has moved by at least § during that phase, where ¢ is
a fixed positive distance (in absolute units), not known
to the robots. This is to guarantee that if a robot keeps
computing the same destination point (in absolute co-
ordinates), it reaches it in finitely many cycles.

An initial configuration of the robots is non-
degenerate if no two robots are located in the same
point, and no robot is moving (formally, each robot’s
initial destination point coincides with the robot’s initial
location, and all robots are in a Move phase initially).

The Square Formation problem asks for a specific al-
gorithm A, whose input is a quadruplet of points and
the output is a single destination point, such that, if
the four robots of R execute A in all their Compute
phases, starting from any non-degenerate initial config-
uration, and regardless of the scheduler’s choices and of
the value of §, they always end up forming a square in
finite time. Once a square is formed, the robots have
to maintain their positions forever. (Recall that the in-
put quadruplet always contains (0,0) as the executing
robot’s location, and the value of § cannot be accessed

by A.)

3 Preliminary Constructions and Definitions

The following geometric construction will be useful in
our Square Formation algorithm. Let rirorsry be a
strictly convex quadrilateral whose diagonals 173 and
rory are not orthogonal. Let ¢ be the unique point such
that r1q = rory, the lines r1¢ and rory are orthogonal,
and the ray emanating from r; and passing through ¢
intersects the line rory. Let ¢35 be the line through rj3
and ¢, and let ¢; be the line through r; parallel to /3.

Figure 1: Constructing the guidelines and the targets

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

(Since rir3 and rory are not orthogonal, £3 is well de-
fined and is distinct from ¢;.) Let 3 be the line through
ro orthogonal to ¢1, and let ¢4 be the line through ry4
parallel to £5. By construction, these four lines intersect
at four points that are vertices of a square Q. In turn,
the midpoints of the edges of @ form a second square
@', called the target square.

Ideally, if the robots of R are located at ry, ro, r3, 4
(with abuse of notation, we identify each robot with its
location), our Square Formation algorithm will attempt
to make the team move to the vertices of Q. More
precisely, the target of r; is the vertex p; of Q' that
lies on ¢;. The line ¢; is called the guideline of r;, and
the segment 7;p; is the pathway of r;. If r; lies in the
interior of an edge of @, then r; is said to be internal;
otherwise, r; is external. If two robots have parallel
guidelines, they are said to be opposite to each other.

In Section 5 we will prove that if we permute the la-
bels of the vertices of the above quadrilateral arbitrarily,
as long as the indices follow a clockwise or a counter-
clockwise order, and we repeat the same construction,
the resulting target square will be the same. Hence, if
several robots compute the above construction at the
same time within their local coordinate systems, they
necessarily obtain the same target square. Note also
that the target square remains unaltered as the robots
move along their pathways, as long as the quadrilateral
stays convex, and its diagonals stay non-orthogonal.

Let ¢ be the center of the target square. The “signed
distance” between r; and its target can be computed as
(ri — ¢) x (r; — ¢), where x denotes the cross product
in R?, defined as (z1,y1) X (22,y2) = T1y2 — oyy. If
this number is 0, then r; is said to be finished. If the
product of the signed distances of two robots is not neg-
ative (respectively, not positive), the two robots are said
to be concordant (respectively, discordant). Intuitively,
they are concordant if they move around c¢ in the same
“direction” (i.e., clockwise or counterclockwise) as they
go toward their targets.

Let the guidelines of two discordant robots r; and r;
intersect in a point g. If p; lies on the segment ;g and
p; lies on the segment 7;g, then r; and r; are said to be
convergent; otherwise, they are divergent (if both r; and
r; are finished, they are both convergent and divergent).

If the pathway of r; intersects the segment ;7 in v,
then r; is said to be blocked at v. If the pathway of r;
intersects an extension of the segment r;7y in v, then r;
is said to be hindered at v (see Figure 4).

Let us give one last definition. A thin hexagon is a
hexagon H = h1h2h3h4h5h6 such that hlhg = h3h4 =
hahs = hgh1 = hihg/4, the angles at hy and hy are
50°, and all other angles are equal. h; and hy are the
extremes of H, and the segment hihy is the main di-
agonal. The other four vertices are called beacons, and
the midpoint of two adjacent beacons is a haven.

ho | hs
hy1e50° 50°T>e hy
he o e

Figure 2: Thin hexagon (empty dots denote havens)

4 The Square Formation Algorithm

The Square Formation algorithm will identify the cur-
rent configuration’s class among the ones listed below,
and it will execute a different procedure based on the
class. If the configuration belongs to several classes, the
relevant one is the one that appears first in the list.

So, when a new class is defined, it is assumed that
none of the definitions of the previous classes are sat-
isfied. In particular, after quadrilaterals with orthogo-
nal diagonals and non-convex quadrilaterals have been
ruled out, the target square described in Section 3 will
be well defined, as well as each robot’s guideline, etc.

Again, we identify each robot r; with its position, and
a class’ definition is fulfilled when there is a permutation
of the indices that satisfies the corresponding condition.

We will use expressions of the form, “robot r; moves
to point d;; robot r; moves to point d;” without spec-
ifying which robot is actually running the algorithm,
as if there was a global coordinator overseeing the exe-
cution. However, since the robots are anonymous and
independent, we will always move symmetric robots in
symmetric ways, so as to comply with the specification
of the robot model given in Section 2.

Borrowing from [6, 7], we will make use of cautious
moves, whose purpose is, roughly speaking, to prevent
situations in which a robot is still in the middle of a
movement when a configuration class change occurs.
This is done by identifying a finite number of critical
points and making each moving robot stop at the first
critical point it encounters. In this section, we will only
generically say, “robot r; cautiously moves toward d;”,
leaving out the tricky details of how critical points are
chosen and maintained. A complete analysis of every
case will be carried out in Section 5, along with the
proof of correctness of the Square Formation algorithm.

Configuration 1: Orthogonal

Definition. The segments r173 and rory are orthogo-
nal and intersect in a point ¢ (possibly an endpoint).
Execution. Each of rq, ro, r3, r4 moves away from c,
to a point at distance max{ric,rac, r3c, rqc} from it.

Configuration 2: Thin Hexagon

Definition. The thin hexagon H with main diagonal
717y contains also r3 and r4, but not on two adjacent
beacons.

Execution. If both r3 and r4 are on the main diagonal,

28" Canadian Conference on Computational Geometry, 2016

they move orthogonally to it, remaining within H. If
rg is on the main diagonal and r4 is not, r3 moves to
the opposite side of the main diagonal, orthogonally to
it, remaining within H. If r3 and r4 are on different
sides of the main diagonal, they move to the haven on
their respective side; the closest moves first while the
other one waits (in case of a tie, they both move). If
r3 and 74 are on the same side of the main diagonal,
they move to the two adjacent beacons on that side,
minimizing the total distance traveled.

Configuration 3: Non-Convex

Definition. The triangle 17213 contains ry.
Execution. 74 moves to the foot of an altitude of
r1rorsg that lies in the interior of an edge of r17or3.

Configuration 4: Pinwheel

Definition. r, ro, r3, 74 are all concordant.
Execution. Let r; be opposite to r3 and assume with-
out loss of generality that rirs < rory (if rirs = rory,
the configuration is Orthogonal). Suppose that r; and
r3 are both finished. If the thin hexagon H with main
diagonal rory contains 1 (and not r3), assume without
loss of generality that ror; < rors, and let ro cautiously
move toward its target. If neither r; nor r3 is in H,
both ry and r4 cautiously move toward their targets.
Suppose now that r; and r3 are not both finished.
if 1 is blocked at v, it cautiously moves toward wv.
If neither r; nor r3 is blocked and r; is hindered at
v, r1 cautiously moves toward v. If neither r; nor
rg is blocked or hindered, r1 and r3 cautiously move
toward their targets. (These rules are exhaustive due
to Lemma 4 below.)

Configuration 5: Scissors

Definition. ry, ro are divergent; rs, r4 are divergent.
Execution. If exactly one robot is external, it cau-
tiously moves toward its target. If all the internal
robots are finished, all the external robots cautiously
move toward their targets. In all other cases, all the
internal robots cautiously move toward their targets.

Configuration 6: Flowing

Definition. ry, ro are divergent; rs, r4 are convergent.
Execution. If two opposite robots are finished, the
non-finished one that is closest to its target cautiously
moves toward it (there cannot be a tie, or the config-
uration would be Orthogonal). Otherwise, if exactly
one of r; and ry is finished, the robot opposite to it
cautiously moves toward its target. Otherwise, both r3
and 74 cautiously move toward their targets.

Configuration 7: One Discordant
Definition. r, ro, r3 are concordant; r4 is discordant.
Execution. r4 cautiously moves toward its target.

5 Correctness of the Algorithm

As noted in Section 3, the target square is well defined,
no matter how each robot computes it.

Lemma 1 Given a strictly convex quadrilateral with
non-orthogonal diagonals, regardless of how labels r1,
ro, T3, T4 are assigned to its vertices following a clock-
wise or a counterclockwise order, the construction in
Section 3 yields the same guidelines and target square.

Proof. The construction does not change if we invert
the labels of r5 and r4, hence we may assume that the in-
dices are arranged in clockwise order. Now it is enough
to prove that the construction does not change if we
shift the labels clockwise by one position. So, let ¢’ be
the unique point such that roq’ = ryr3, the lines roq’
and r;r3 are orthogonal, and the ray emanating from 7
and passing through ¢’ intersects the line ry7r3. By con-
struction, the triangle ror4q’ is a copy of r1r3q rotated
by 90°, which means that the line r4q’ is orthogonal to
/3, and hence coincident with /4. It follows that all the
new guidelines are the same as in the original construc-
tion, and so is the target square. O

Lemma 2 Given a strictly convex quadrilateral with
non-orthogonal diagonals, if its vertices are labeled 11,
ro, 13, T4 in clockwise order, then their targets pi, pa,
p3, P4 also appear in clockwise order, and vice versa.

Proof. It suffices to prove that if p1, p2, p3 are in clock-
wise order, then so are r1, 73, 3. Referring to Figure 3,
if r1, r9, r3 are in counterclockwise order, then 9 is lo-
cated to the right of the line r1r3. Therefore, ¢ must be
to the left of ¢35, contradicting the fact that ¢ must lie
on ¢4, which in turn is located to the right of /s. 0

Figure 3: r1, 73, 3 cannot be in counterclockwise order

The following is an easy consequence of Lemma 2.

Corollary 3 No two robots have intersecting pathways.
If two robots are external, they are either concordant or
convergent. If three robots are external, they are con-
cordant. O

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Lemma 4 In a Pinwheel configuration, two opposite
robots cannot be both blocked. Moreover, if rirs < rory,
robots r1 and r3 cannot be both hindered.

Proof. Referring to Figure 4, if ry is blocked, it means
that the segment ri73 crosses f5 above po. Hence rirj3
must cross ¢4 further above, and therefore r4 cannot be
blocked, because its pathway lies below py.

Suppose now that r; and r3 are both hindered, as in
Figure 4. Because the line 7174 intersects the pathway
of r3, it is immediate to see that r; must be external and
r4 must be internal. Symmetrically, 73 must be external
and 7o must be internal. This means that rirs > rory,
contradicting our assumption. (]

Figure 4: ro is blocked; 1 and r3 are hindered

Lemma 5 In a Pinwheel configuration where r1 and r3
are opposite, both are finished, and neither of them is in
the thin herxagon H with main diagonal rory, there is a
choice of critical points that lets ro and r4 Teach their
targets in finite time as they perform a cautious mowve.

Proof. Our critical points will prevent 7 and r4 from
forming an Orthogonal, Thin Hexagon, or Non-Convex
configuration before reaching their targets.

An Orthogonal configuration cannot be formed before
r9 and 74 reach their targets, because 173 is parallel to
their guidelines.

A Thin Hexagon configuration cannot be formed, ei-
ther. Note that r; and r3 must be on opposite sides of
H, due to Lemma 2. As Figure 5 suggests, it is straight-
forward to verify that if r; and r3 are both outside H,
the sum of the distances of r; and r3 from the main
diagonal is greater than the height of H (this is true be-
cause each short edge of a thin hexagon is a quarter of
the main diagonal). As ry and r4 move toward their tar-
gets, the main diagonal becomes shorter and the sum of
the distances of r; and r3 from the main diagonal grows.
In particular, this sum is greater than the new height
of H. It follows that, no matter how ro and r4 move, a
Thin Hexagon configuration will never be formed.

Observe that both ro and r4 could be hindered, say
at v and v’, respectively (as r1 and r3 in Figure 4). It
suffices to set their critical points halfway to v and v’
to guarantee that a Non-Convex configuration will never
be formed. We call the segments rov and r4v” safe zones.
It is easy ot see that, as 72 and 74 move (and recompute
a new v and v’ pair), their safe zones get longer, giving
them even more leeway, until they are not hindered any
more, and can safely reach their targets. O

Figure 5: As ry and 4 move, no Thin Hexagon is formed

Lemma 6 In a Thin Hexagon configuration that is also
a Scissors one, both extremes must be external.

Proof. By Corollary 3, at most two robots can be ex-
ternal. Clearly, each external robot must necessarily be
an extreme of the thin hexagon. Suppose for a con-
tradiction that at most one robot is external. Let r;
be either an external robot or an extreme of the thin
hexagon (in case there are no external robots). The
other extreme must be the farthest robot, hence either
rs or 74 (assuming that r; and ro are divergent). Now it
is straightforward to verify that both angles /rir3ry and
Zrirars are greater than arctan(1/2) > 25°, and hence
the thin hexagon cannot contain both r3 and r4. O

Lemma 7 If a configuration is not Thin Hexagon, r3
and r4 are convergent, and r1 and ro do not move while
r3 and r4 move toward their targets, the configuration
never becomes Thin Hexagon.

Proof. By Lemma 2, r; and ry are on the same side of
the line r3ry, as in Figure 6. Let H be the thin hexagon
with main diagonal r3r4. By assumption, either 1 and
ro occupy two adjacent beacons of H or one of them,
say 71, is not in H. In both cases, as soon as H starts
moving together with r3 and r4, r1 is guaranteed to re-
main strictly outside of H. Indeed, the position of H
at each time can be obtained from its initial position by
a composition of two types of transformations: shrink-
age about an extreme and rotation about an extreme by
less than 90° in the direction opposite to ;. Both these
operations cause 71 to stay out of H if it is already out
and to get out of H if it is initially on a beacon. O

T4

Figure 6: As r3 and r4 move, no Thin Hexagon is formed

28" Canadian Conference on Computational Geometry, 2016

Theorem 8 The algorithm of Section 4 solves the
Square Formation problem in the ASYNCH model.

Proof. We prove that the rules given in Section 4 are
well defined, exhaustive, and make the four robots form
a square in a finite amount of time. The general idea
is that each configuration can only remain in the same
class, or transition to a class with lower index, with one
exception: a Thin Hexagon can become a Scissors con-
figuration, and this case will be examined separately.
We also have to verify that no robot is moving when
the team’s behavior changes, in order to prevent incon-
sistencies arising from robots believing to be in different
classes, due to asynchronicity. The cautious move tech-
nique serves this purpose, but we have to show that
suitable critical points exist. When only one robot is
tasked with moving, it is sufficient to identify the first
location on its path that may cause other robots to start
moving. So, no discussion will be needed in this case.

Verifying the above for Configurations 1-3 is trivial,
so let us assume that the robots’ initial configuration is
none of those, and in particular that a target square is
well defined (cf. Lemma 1). Now, as the robots move to-
ward their targets, the target square remains unaltered,
and collisions are impossible due to Corollary 3.

Let the configuration be in the Pinwheel class.
Lemma 4 implies that the rules are unambiguous and
a robot always moves, eventually forming a lower-index
configuration or reaching a target. If rirs < rory, the
main diagonal of a possible thin hexagon H must be
rory, SO it is easy for r; and r3 to stop as soon as they
reach the boundary of H, since H remains still as they
move. When r; and r3 are finished, the cautious move
of ro and r4 succeeds due to Lemma 5.

Let the configuration be in the Scissors class. By
Lemma 6, if there are fewer than two external robots,
no Thin Hexagon can ever be formed, and if there are
two external robots (not more, by Corollary 3), there
is only one candidate thin hexagon H having these two
robots as extremes. If the internal robots move, they
can set their critical points on the boundary of H. If the
external robots move, they must be convergent (or they
would be concordant by Corollary 3, and the configura-
tion would be Pinwheel), hence no Thin Hexagon can be
formed, due to Lemma 7. Also, no moving robot can be
blocked or hindered at any point. When two opposite
robots are finished, the configuration may transition to
Pinwheel while other robots are still moving, but this is
fine because it does not cause a change in behavior.

Let the configuration be in the Flowing class. If r3
and r4 move together, no critical points originating from
thin hexagons have to be set, due to Lemma 7, and the
other critical points are easy to spot. If two opposite
robots are finished, moving only the non-finished robot
closest to its target prevents the formation of an Orthog-
onal configuration. A transition to Pinwheel or Scissors

may occur, but only when no robots are moving.

If the configuration class is none of the above, there
must be a unique discordant robot, which turns the con-
figuration into a Pinwheel one upon reaching its target.

As we mentioned, the only anomaly in this process is
the transition from a Thin Hexagon to a Scissors con-
figuration, which occurs when two robots reach adja-
cent beacons. According to the rules for the Scissors
case, the two robots on the beacons (which are internal)
move to their targets. Since they move away from the
main diagonal, they can form no Thin Hexagon. After-
wards, the two external robots (which are convergent)
move to their targets without forming a Thin Hexagon,
by Lemma 7. No Orthogonal or Non-Convex configura-
tions can be formed during these procedures, either. [J

References

[1] M. Cieliebak, P. Flocchini, G. Prencipe, and N. San-
toro. Distributed computing by mobile robots: gather-
ing. SIAM Journal on Computing, 41(4):829-879, 2012.

[2] X. Défago and S. Souissi. Non-uniform circle forma-
tion algorithm for oblivious mobile robots with con-
vergence toward uniformity. Theoretical Computer Sci-
ence, 396(1-3):97-112, 2008.

[3] Y. Dieudonné and F. Petit. Swing words to make circle
formation quiescent. 14th International Colloquium on
Structural Information and Communication Complezity

(SIROCCO), 166-179, 2007.

[4] Y. Dieudonné and F. Petit. Squaring the circle with
weak mobile robots. 19th International Symposium on
Algorithms and Computation (ISAAC), 354-365, 2008.

[5] P. Flocchini, G. Prencipe, and N. Santoro. Distributed
computing by oblivious mobile robots. Synthesis Lec-
tures on Distributed Computing Theory, Morgan &
Claypool, 2012.

[6] P. Flocchini, G. Prencipe, N. Santoro, and G. Vigli-
etta. Distributed computing by mobile robots: solving
the uniform circle formation problem. 18th Interna-

tional Conference on Principles of Distributed Systems
(OPODIS), 217-232, 2014.

[7] P. Flocchini, G. Prencipe, N. Santoro, and G. Vigli-
etta. Distributed computing by mobile robots: solving
the uniform circle formation problem. arXiv:1407.5917
[cs.DC], 2015.

[8] P. Flocchini, G. Prencipe, N. Santoro, and P. Wid-
mayer. Arbitrary pattern formation by asynchronous
oblivious robots. Theoretical Computer Science, 407(1—
3):412-447, 2008.

[9] N. Fujinaga, Y. Yamauchi, S. Kijima, and M. Ya-
mashita. Asynchronous pattern formation by anony-
mous oblivious mobile robots. 26th International Sym-
posium on Distributed Computing (DISC), 312-325,
2012.

[10] I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: formation of geometric patterns. SIAM
Journal on Computing, 28(4):1347-1363, 1999.

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Finding Points in General Position

Vincent Froese* Iyad Kanjt

Abstract

We study the GENERAL POSITION SUBSET SELECTION
problem: Given a set of points in the plane, find a
maximum-cardinality subset of points in general posi-
tion. We prove that GENERAL POSITION SUBSET SE-
LECTION is NP-hard, APX-hard, and present several
fixed-parameter tractability results for the problem.

1 Introduction

For a set P = {p1,...,pn} of n points in the plane, a
subset S C P is in general position if no three points in S
are collinear (that is, lie on the same line). A frequent
assumption for point set problems in computational ge-
ometry is that the given point set is in general position.
Nevertheless, the problem of computing a maximum-
cardinality subset of points in general position from a
given set of points has received little attention from
the computational complexity perspective, although not
from the combinatorial geometry perspective. In particu-
lar, to the best of our knowledge, the classical complexity
of the aforementioned problem until now was unresolved.
Formally, the decision version of the problem is as fol-
lows:

GENERAL POSITION SUBSET SELECTION

Input: A set P of points in the plane and k£ € IN.

Question: Is there a subset S C P in general posi-
tion of cardinality at least k?

A well-known special case of GENERAL POSITION
SUBSET SELECTION, referred to as the NO-THREE-IN-
LINE problem, asks to place a maximum number of
points in general position on an n X n-grid. Since at
most two points can be placed on any grid-line, the
maximum number of points in general position that
can be placed on an n x n-grid is at most 2n. Indeed,
only for small n it is known that 2n points can always
be placed on the n x n-grid. Erdés [19] observed that,
for sufficiently large n, one can place (1 — €)n points
in general position on the n x n-grid, for any ¢ > 0.
This lower bound was improved by Hall et al. [13] to

*Institut fur Softwaretechnik und Theoretische Informatik,
TU Berlin, Germany, {vincent.froese, andre.nichterlein,
rolf.niedermeier}@tu-berlin.de

TSchool of Computing, DePaul University, Chicago, USA,
ikanj@cs.depaul.edu. Supported by the DFG project DAPA (NI
369/12) during a Mercator fellowship when staying at TU Berlin.

André Nichterlein'

Rolf Niedermeier!

(3 — €)n. It was conjectured by Guy and Kelly [12] that,
for sufficiently large n, one can place more than %n
many points in general position on the n x n-grid. This
conjecture remains unresolved, hinting at the challenging
combinatorial nature of NO-THREE-IN-LINE, and hence
of GENERAL POSITION SUBSET SELECTION as well.

A problem closely related to GENERAL POSITION SUB-
SET SELECTION is POINT LINE COVER: Given a point
set in the plane, find a minimum-cardinality set of lines,
the size of which is called the line cover number, that
cover all points. Interestingly, the size of a maximum
subset in general position is related to the line cover
number (see Observation 1). While POINT LINE COVER
has been intensively studied, we aim to fill the existing
gap for GENERAL POSITION SUBSET SELECTION by pro-
viding both computational hardness and fixed-parameter
tractability results for the problem. In doing so, we par-
ticularly consider the parameters solution size k (size
of the sought subset in general position) and its dual
h := n — k, and investigate their impact on the com-
putational complexity of GENERAL POSITION SUBSET
SELECTION.

Related Work Payne and Wood [18] provide lower
bounds on the size of a point set in general position,
a question originally studied by Erdés [6]. In his Mas-
ter’s thesis, Cao [3] gives a problem kernel of O(k*)
points for GENERAL POSITION SUBSET SELECTION
(there called NON-COLLINEAR PACKING problem) and a
simple greedy O(y/opt)-factor approximation algorithm
for the maximization version. He also presents an Integer
Linear Program formulation and shows that it is in fact
the dual of an Integer Linear Program formulation for
PoINT LINE COVER. As to results for the much more
studied POINT LINE COVER, we refer to the work of
Kratsch et al. [15] and the work cited therein.

Our Contributions We show that GENERAL POSITION
SUBSET SELECTION is NP-hard and APX-hard. Our
main algorithmic results, however, concern the power of
polynomial-time data reduction for GENERAL POSITION
SUBSET SELECTION: We give an O(k®)-point problem
kernel and an O(h?)-point problem kernel, and show
that the latter kernel is asymptotically optimal under
a reasonable complexity-theoretic assumption. Table 1
summarizes our results. Due to the lack of space, some

28" Canadian Conference on Computational Geometry, 2016

Table 1: Overview of the results we obtain for GENERAL POSITION SUBSET SELECTION, where n is the number of
input points, k is the parameter size of the sought subset in general position, h = n — k is the dual parameter, and ¢

is the line cover number.

Hardness

Tractability

NP-hard (Theorem 2)

APX-hard (Theorem 2)

no 2° . n®M_time algorithm® (Theorem 2)
no O(h%~¢)-point kernel® (Theorem 13)

(15k3)-point kernel (running time O(n?logn)) (Theorem 4)
O(n?logn + 41% . k?*)-time solvable (Corollary 5)

0(2.08" + n3)-time solvable (Proposition 8)

(2h? + h)-point kernel (running time O(n?)) (Theorem 10)

(120¢3)-point kernel (running time O(n?logn)) (Corollary 7)
O(n?logn + 41%¢ - (2¢)**)-time solvable (Corollary 7)

Unless the Exponential Time Hypothesis fails.
bUnless coNP C NP/poly.

details are omitted and can be found in a full version®.

2 Preliminaries

Geometry All coordinates of points are assumed to be
represented by rational numbers. The collinearity of a
set of points P is the maximum number of points in P
that lie on the same line. A blocker for two points p, q is
a point on the open line segment pq.

Graphs Let G = (V(G), E(G)) be an undirected graph.
We write |G| for |V(G)| + |E(G)]. A vertex u € V(G)
is a neighbor of (or is adjacent to) a vertex v € V(G) if
{u,v} € E(G). The degree of a vertex v is the number
of its neighbors.

An independent set of a graph G is a set of vertices
such that no two vertices in this set are adjacent. The
NP-complete INDEPENDENT SET problem is: Given a
graph G and k € IN, decide whether G has an indepen-
dent set of cardinality k.

Parameterized Complexity A parameterized problem
is a set of instances of the form (Z, k), where Z € ¥* for
a finite alphabet set X, and k € IN is the parameter. A
parameterized problem Q is fized-parameter tractable,
shortly FPT, if there exists an algorithm that on in-
put (Z, k) decides whether (Z, k) is a yes-instance of Q
in f(k)|Z|°M) time, where f is a computable function
independent of |Z|. A parameterized problem @ is ker-
nelizable if there exists a polynomial-time algorithm that
maps an instance (Z, k) of @ to another instance (Z', k')
of @) such that:
(1) |Z’| < A(k) for some computable function A,
(2) k' < X(k), and
(3) (Z,k) is a yes-instance of @ if and only if (Z', k') is
a yes-instance of Q.

L Available at arxiv.org/abs/1508.01097.

The instance (Z', k') is called a problem kernel of (Z, k).
A parameterized problem is FPT if and only if it is
kernelizable [2]. A general account on applying methods
from parameterized complexity analysis to problems
from computational geometry is due to Giannopoulos
et al. [9].

Exponential Time Hypothesis The Exponential Time
Hypothesis (ETH) [14] states that 3-SAT cannot be
solved in 2°(") . n©M) time, where n is the number of
variables in the input formula.

3 Hardness Results

In this section, we prove that GENERAL POSITION SUB-
SET SELECTION is NP-hard, APX-hard, and presumably
not solvable in subexponential time. Our hardness re-
sults follow from a transformation (mapping arbitrary
graphs to point sets) that is based on a construction
due to Ghosh and Roy [8, Section 5], which they used
to prove the NP-hardness of the INDEPENDENT SET
problem on so-called point visibility graphs. This trans-
formation, henceforth called ®, allows us to obtain the
above-mentioned hardness results (using reductions from
NP-hard restrictions of INDEPENDENT SET to GEN-
ERAL POSITION SUBSET SELECTION). Moreover, in
Section 4.2, we will use ® to give a reduction from VER-
TEX COVER to GENERAL POSITION SUBSET SELECTION
in order to obtain problem kernel size lower bounds with
respect to the dual parameter (see Theorem 11 and The-
orem 13). We start by formally defining some properties
that are required for the output point set of the trans-
formation. As a next step, we prove that such a point
set can be realized in polynomial time.

Let G be a graph with vertex set V(G) = {v1,...,v,}.
Let C = {p1,...,pn} be a set of points that are in
strictly convex position (that is, the points in C are
vertices of a convex polygon), where p; € C corresponds
to v, i = 1,...,n. For each edge e = {v;,v;} € E(G),

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

we place a blocker b. on the line segment p;p; such that
the following three conditions are satisfied:

(I) For any edge e € F(G) and for any two points
pi,p; € C, if be, p;, p; are collinear, then p;, p; are
the points in C' corresponding to the endpoints of
edge e.

(II) Any two distinct blockers be, b.s are not collinear
with any point p; € C.

(III) The set B := {b. | e € E(G)} of blockers is in
general position.

Proposition 1 There is a polynomial-time transforma-
tion ® mapping arbitrary graphs to point sets that satisfy
Conditions (I) to (III). Moreover, no four points in the
point set C'U B produced by ® are collinear.

Proof. Given a graph G, let n = |V(G)| and let
C = {p1,...,pn} be a set of rational points that are
in a strictly convex position; for instance, let p; :=
(2L, 1=

1472 1457
the unit circle centered at the origin [20]. To choose
the set B of blockers, suppose (inductively) that we
have chosen a subset B’ of blockers such that all block-
ers in B’ are rational points and satisfy Conditions (I)
to (III). Let b, ¢ B’ be a blocker corresponding to an
edge e = {v;,v;} in G. To determine the coordinates
of be, we first mark the intersection points (if any) be-
tween the line segment p;p; and the lines formed by
every pair of distinct blockers in B’, every pair of dis-
tinct points in C'\ {p;,p;}, and every pair consisting of a
blocker in B" and a point in C'\ {p;,p;}. We then choose
b. to be an interior point of p;p; with rational coordi-
nates that is distinct from all marked points. To this
end, let g be the first marked point on the segment p;p;
(starting from p;), and let b, be the midpoint of p,q.
This point is rational since it is the midpoint of rational
points. It is easy to see that C'U B can be constructed in
polynomial time and that all points in C'U B are rational
and satisfy Conditions (I) to (III). Moreover, it easily
follows from the construction of C'U B that it satisfies
Conditions (I) to (III) and that no four points in C U B
are collinear. O

) for j € {1,...,n} be n rational points on

Using transformation ®, we can prove (proof omit-
ted) the following hardness results via reductions from
(variants of) INDEPENDENT SET.

Theorem 2 The following are true:

(a) GENERAL POSITION SUBSET SELECTION is NP-
complete.

(b) MAXIMUM GENERAL POSITION SUBSET SELECTION
is APX-hard.

(¢) Unless ETH fails, GENERAL POSITION SUBSET SE-
LECTION is not solvable in 2°" . nOM) time.

We note that parts (a)-(c) above even hold for the
restriction of GENERAL POSITION SUBSET SELECTION
to instances in which no four points are collinear.

Currently, the best approximation result for MAXI-
MUM GENERAL POSITION SUBSET SELECTION is due to
Cao [3], who provided a simple greedy /opt-factor ap-
proximation algorithm. Therefore, a large gap remains
between the proven upper and the lower bound on the
approximation factor.

4 Fixed-Parameter Tractability

In this section, we prove several fixed-parameter
tractability results for GENERAL POSITION SUBSET SE-
LECTION. In Section 4.1 we develop cubic-size problem
kernels with respect to the parameter size k of the sought
subset in general position, and with respect to the line
cover number /. In Section 4.2, we show a quadratic-
size problem kernel with respect to the dual parame-
ter h := n — k, that is, the number of points whose
deletion leaves a set of points in general position. More-
over, we prove that this problem kernel is essentially
optimal, unless an unlikely collapse in the polynomial
hierarchy occurs.

4.1 FPT Results for the Parameter Solution Size &

Let (P, k) be an instance of GENERAL POSITION SUBSET
SELECTION, and let n = |P|. Cao [3] gave a problem
kernel for GENERAL POSITION SUBSET SELECTION of
size O(k*) based on the following idea. Suppose that
there is a line L containing at least (kEQ) + 2 points
from P. For any subset S’ C P in general position with
|S’| = k — 2, there can be at most (kEQ) points on L
such that each is collinear with two points in S’. Hence,
we can always find at least two points on L that together
with the points in S” form a subset S in general position
of cardinality k. Based on this idea, Cao [3] introduced
the following data reduction rule:

Rule 1 ([3]) Let (P,k) be an instance of GENERAL
POSITION SUBSET SELECTION. If there is a line L that
contains at least (k;2) + 2 points from P, then remove

all the points on L and set k .=k — 2.

Cao showed that Rule 1 can be exhaustively applied
in O(n3) time ([3, Lemma B.1.]), and he showed its
correctness, that is, an instance (P’, k") that is reduced
with respect to Rule 1 is a yes-instance of GENERAL
POSITION SUBSET SELECTION if and only if (P, k) is
([3, Theorem B.2.]). Using Rule 1, he gave a kernel for
GENERAL POSITION SUBSET SELECTION of size O(k*)
that is computable in O(n?) time ([3, Theorem B.3.]).
We shall improve on Cao’s result, both in terms of the
kernel size and the running time of the kernelization
algorithm. We start by showing how, using a result
by Guibas et al. [11, Theorem 3.2], Rule 1 can be ap-
plied exhaustively in O(n?logn) time. Notably, the idea
of reducing lines with many points (based on Guibas

28" Canadian Conference on Computational Geometry, 2016

et al. [11]) also yields kernelization results for POINT
LiNE COVER [16].

Lemma 3 Given an instance (P, k) of GENERAL PoOSI-
TION SUBSET SELECTION where |P| = n, in O(n?logn)
time we can compute an equivalent instance (P’ k')
such that either (P’ k') is a trivial yes-instance, or the
collinearity of P’ is at most (k/2_2) + 1.

Proof. Let A\ = (kf) + 2. We start by computing the
set L of all lines that contain at least A points from P.
By a result of Guibas et al. [11, Theorem 3.2], this can be
performed in O(n?log (n/\)/)\) time. We then iterate
over each line L € L, checking whether L, at the current
iteration, still contains at least A points; if it does, we
remove all points on L from P and decrement k by 2.
For each line L, the running time of the preceding step is
O()), which is the time to check whether L contains at
least A points. Additionally, we might need to remove all
points on L. If k reaches zero, we can return a trivial yes-
instance (P’, k") of GENERAL POSITION SUBSET SELEC-
TION in constant time. Otherwise, after iterating over all
lines in £, by Rule 1, the resulting instance (P, k) is an
equivalent instance to (P, k) satisfying that no line in P’
contains A\ points, and hence the collinearity of P’ is at
most (k/; 2) + 1. Overall, the above can be implemented
in time O((n?log (n/A)/A) - A) = O(n?logn). a

We move on to improving the size of the problem
kernel. Payne and Wood [18, Theorem 2.3] proved a
lower bound on the maximum cardinality of a subset in
general position when an upper bound on the collinearity
of the point set is known. We show next how to obtain
a kernel for GENERAL POSITION SUBSET SELECTION of
cubic size based on this result of Payne and Wood [18].

Theorem 4 GENERAL POSITION SUBSET SELECTION
admits a problem kernel containing at most 15k3 points
that is computable in O(n?logn) time.

Proof. By Lemma 3, after O(n?logn) preprocessing
time, we can either return an equivalent yes-instance of
(P, k) of constant size, or obtain an equivalent instance
for which the collinearity of the point set is at most
(k§2) + 1. Therefore, without loss of generality, we can
assume in what follows that the collinearity of P is at
most A = (kgz) + 1.

Payne and Wood [18, Theorem 2.3] showed that any
set of n points whose collinearity is at most A\ con-
tains a subset of points in general position of size at
least an/vnln A+ A2, for some constant o € R. A
lower bound of o > \/6/72 can be computed based on
Payne [17, Lemmas 4.1, 4.2, and Theorems 2.2, 2.3,
4.3]. Since A < (kgz) + 1, we can compute a value
of n, as a function of k, above which we are guaranteed

to have a subset in general position of cardinality at

least k. We do this by solving for n in the inequality
an/vnln A+ A2 > k after substituting A with (I‘EQ) +1
and o with \/6/72. We obtain that if n > 15k2, then the
aforementioned inequality is satisfied for all £ > 29337.
The kernelization algorithm distinguishes the following
three cases: First, if k < 29337, then the algorithm de-
cides the instance in O(1) time, and returns an equivalent
instance of O(1) size. Second, if k > 29337 and n > 15k3,
then the algorithm returns a trivial yes-instance of con-
stant size. Third, if none of the two above cases applies,
then it returns the (preprocessed) instance (P, k) which
satisfies | P| < 15k3. O

We can derive the following result by a brute-force
algorithm on the above problem kernel:

Corollary 5 GENERAL POSITION SUBSET SELECTION
can be solved in O(n?logn + 41% - k2k) time.

Proof. Let (P, k) be an instance of GENERAL POSITION
SUBSET SELECTION. By Theorem 4, after O(n?logn)
preprocessing time, we can assume that |P| < 15k3. We
enumerate every subset of size k in P, and for each such
subset, we use the result of Guibas et al. [11, Theo-
rem 3.2] to check in O(k?log k) time whether the subset
is in general position. If we find such a subset, then we
answer positively; otherwise (no such subset exists), we
answer negatively. The number of enumerated subsets is

P 15K%\ _ (15k3)*
< <
k)~ \ k)~ K
(15K%)" 310k kp.2k
< = (15ek3 /k)F < (40.78)%k2*,
< g = (sek k)" < (40.78
where e is the base of the natural logarithm and k! >
(k/e)k follows from Stirling’s formula. Putting every-
thing together, we obtain an algorithm for GENERAL

POSITION SUBSET SELECTION that runs in O(n?logn +
(40.78)% -k . k2 log k) = O(n?logn+41% - k%) time. O

Let 3-GENERAL POSITION SUBSET SELECTION denote
the restriction of GENERAL POSITION SUBSET SELEC-
TION to instances in which the point set contains no four
collinear points. By Theorem 2, 3-GENERAL POSITION
SUBSET SELECTION is NP-complete. Fiiredi [7, Theo-
rem 1] showed that every set P of n points in which
no four points are collinear contains a subset in general
position of size 2(y/nlogn). Based on Fiiredi’s result
and the idea in the proof of Theorem 4, we get:

Corollary 6 3-GENERAL POSITION SUBSET SELEC-
TION admits a problem kernel containing O(k?/logk)
points that is computable in O(n) time.

Cao [3] made the following observation on the relation
between the cardinality of a maximum-cardinality point
subset in general position and the line cover number,

10

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

that is, the minimum number of lines that cover all
points in the point set. For the sake of self-containment,
we also give a short proof.

Observation 1 ([3]) For a set P of points let S C P
be a mazimum subset in general position and let £ be the
line cover number of P. Then, Vi< |S| < 2¢.

Proof. For the first inequality, note that |.S| points in
general position define (“2‘) < |S|? lines. Since all other
points in P have to lie on a line defined by two points in .S,
it follows that ¢ < |S|2. The second inequality clearly
holds since any maximum subset in general position can
contain at most two points that lie on the same line. [

As a consequence of Observation 1, we can assume
that k& < 2¢ and, thus, we can transfer our results for
the parameter k to the parameter /.

Corollary 7 GENERAL POSITION SUBSET SELECTION
can be solved in O(n?logn+412¢-(20)*) time, and there
is a kernelization algorithm that, given an instance (P, k)
of GENERAL POSITION SUBSET SELECTION, computes
an equivalent instance containing at most 12003 points
in O(n2logn) time.

4.2 FPT Results for the Dual Parameter

In this section we consider the dual parameter number
h := n—k of points that have to be deleted (i.e., excluded
from the sought point set in general position) so that
the remaining points are in general position. We show
a problem kernel containing O(h?) points for GENERAL
POSITION SUBSET SELECTION. Moreover, we show that
most likely this problem kernel is essentially tight, that
is, there is presumably no problem kernel with O(h2~¢)
points for any € > 0.

We start with the problem kernel that relies essentially
on a problem kernel for the 3-HITTING SET problem:

3-HITTING SET

Input: A universe U, a collection C of size-3
subsets of U, and h € IN.

Question: Is there a subset H C U of size at most A
containing at least one element from each
subset S € C?

There is a close connection between GENERAL POsI-
TION SUBSET SELECTION and 3-HITTING SET: For
any collinear triple p,q,r € P of distinct points, one
of the three points has to be deleted in order to ob-
tain a subset in general position. Hence, the set of
deleted points has to be a hitting set for the family of
all collinear triples in P. Since 3-HITTING SET can be
solved in O(2.08" + |C| + |U]) time [21], we get:

Proposition 8 GENERAL POSITION SUBSET SELEC-
TION can be solved in O(2.08" + n?) time.

3-HiTTING SET is known to admit a problem kernel
with a universe of size O(h?) computable in O(|U| +|C|+
h13) time [1]. Based on this, one can obtain a problem
kernel of size O(h?) computable in O(n?) time. The bot-
tleneck in this running time is listing all collinear triples.
We can improve the running time of this kernelization
algorithm by giving a direct kernel exploiting the simple
geometric fact that two non-parallel lines intersect in
one point. We first need two reduction rules.

Rule 2 Let (P, k) be an instance of GENERAL POSI-
TION SUBSET SELECTION. If there is a point p € P that
is not collinear with any two other points in P, then
delete p and decrease k by one.

Clearly, Rule 2 is correct since we can always add a
point which is not lying on any line defined by two other
points to a general position subset. The next rule deals
with points that are in too many conflicts. The basic
idea here is that if a point lies on more than h distinct
lines defined by two other points of P, then it has to be
deleted. This is generalized in the next rule.

Rule 3 Let (P, k) be an instance of GENERAL PoOSI-
TION SUBSET SELECTION. For a point p € P, let L(p)
be the set of lines containing p and at least two points
of P\ {p}, and for L € L(p) let |L| denote the number
of points of P on L. Then, delete each point p € P

satisfying 3 p e o (L] —2) > h.
Lemma 9 Rule 3 is correct.

Proof. Let (P, k) be an instance of GENERAL PoOsI-
TION SUBSET SELECTION and let (P’ := P\ D, k) be
the reduced instance, where D C P denotes the set of
removed points. We show that (P, k) is a yes-instance if
and only if (P’ k) is a yes-instance.

Clearly, if (P’, k) is a yes-instance, then also (P, k) is
one. For the converse, we show that any size-k subset
of P in general position does not contain any point p € D:
For each line L € L(p), all but two points need to be
deleted. If a subset S C P in general position contains p,
then the points that have to be deleted on the lines
in L(p) are all different since any two of these lines
only intersect in p. This means that ;) (L] —2)
points need to be deleted. However, since this value is
by assumption larger than h, the solution S is of size
less than k = |P| — h. O

Theorem 10 GENERAL POSITION SUBSET SELECTION
admits a problem kernel containing at most 2h?+h points
that is computable in O(n?) time.

Proof. Let (P,k) be a GENERAL POSITION SUBSET
SELECTION instance. We first show that applying Rule 2
exhaustively and then applying Rule 3 once indeed gives
a small instance (P’, k’). Note that each point p € P’ is

11

28" Canadian Conference on Computational Geometry, 2016

“in conflict” with at least two other points, that is, p is
on at least one line containing two other points in P/,
since the instance is reduced with respect to Rule 2.
Moreover, since the instance is reduced with respect
to Rule 3, it follows that each point is in conflict with
at most 2h other points. Thus, deleting h points can
give at most h - 2h points in general position. Hence,
if P’ contains more than 2h% 4 h points, then the input
instance is a no-instance.

We next show how to apply Rules 2 and 3 in O(n?)
time. To this end, we follow an approach described by
Edelsbrunner et al. [5] and Gémez et al. [10] which uses
the dual representation and line arrangements. The dual
representation maps points to lines as follows: (a,b) —
y = ax+b. A line in the primal representation containing
some points of P corresponds in the dual representation
to the intersection of the lines corresponding to these
points. Thus, a set of at least three collinear points
in the primal corresponds to the intersection of the
corresponding lines in the dual. An arrangement of
lines in the plane is, roughly speaking, the partition of
the plane formed by these lines. A representation of
an arrangement of n lines can be computed in O(n?)
time [5]. Using the algorithm of Edelsbrunner et al. [5],
we compute in O(n?) time the arrangement A(P*) of
the lines P* in the dual representation of P.

Rule 2 is now easily computable in O(n?) time: Ini-
tially, mark all points in P as “not in conflict”. Then,
iterate over the vertices of A(P*) and whenever the ver-
tex has degree six or more (each line on an intersection
contributes two to the degree of the corresponding ver-
tex) mark the points corresponding to the intersecting
lines as “in conflict”. In a last step, remove all points
that are marked as “not in conflict”.

Rule 3 can be applied in a similar fashion in O(n?)
time: Assign a counter to each point p € P and initialize
it to zero. We want this counter to store the number
> rec(p) (L] = 2) on which Rule 3 is conditioned. To
this end, we iterate over the vertices in A(P*) and for
each vertex of degree six or more we increase the counter
of each point corresponding to a line in the intersection
by d/2 — 2 where d is the degree of the vertex. After
one pass over all vertices in A(P*) in O(n?) time, the
counters of the points store the correct values and we
can delete all points whose counter is more than h. [

We remark that the results in Proposition 8 and The-
orem 10 also hold when replacing the parameter h by
the “number v of inner points”, where we call a point
an inner point if it is not a corner point of the convex
hull of P. The reason is that in all non-trivial instances
we have h <« since removing all inner points yields a
set of points in general position.

We can prove a matching (conditional) lower bound on
the problem kernel size for GENERAL POSITION SUBSET
SELECTION via a reduction from VERTEX COVER. Given

an undirected graph G and £ € IN, VERTEX COVER
asks whether there is a subset C of at most k vertices
such that every edge is incident to at least one vertex
in C. Using a lower bound result by Dell and van
Melkebeek [4] for VERTEX COVER (which is based on the
common assumption in complexity theory that coNP is
not in NP /poly since otherwise the polynomial hierarchy
collapses to its third level), we obtain the following:

Theorem 11 Unless coNP C NP/poly, for any ¢ >
0, GENERAL POSITION SUBSET SELECTION admits no
problem kernel of size O(h?~¢).

Proof. We give a polynomial-time reduction from VER-
TEX COVER, where the resulting dual parameter h equals
the size of the sought vertex cover. The claimed lower
bound then follows because, unless coNP C NP /poly,
for any € > 0, VERTEX COVER admits no problem kernel
of size O(k?~€), where k is the size of the vertex cover [4].

Given a VERTEX COVER instance (G,k), we first
reduce it to the equivalent INDEPENDENT SET in-
stance (G,|V(G)| — k). We then apply transforma-
tion @ (see Section 3) to G to obtain a set of points P,
where |P| = |V(GQ)| + |E(G)|; we set k' = |V(G)] +
|E(G)| — k, and consider the instance (P, k') of GEN-
ERAL POSITION SUBSET SELECTION. Clearly, G has
a vertex cover of cardinality k if and only if G has
an independent set of cardinality |V (G)| — k, which is
true if and only if P has a subset in general position
of cardinality |E(G)| + |V(G)| — k. Hence, the dual
parameter h = |P| — k' equals the sought vertex cover
size.]

Note that Theorem 11 gives a lower bound only on
the total size (i.e., instance size) of a problem kernel for
GENERAL POSITION SUBSET SELECTION. We can show
a stronger lower bound on the number of points con-
tained in any problem kernel using ideas from Kratsch
et al. [15], which are based on a lower bound frame-
work by Dell and van Melkebeek [4]. Kratsch et al. [15]
showed that there is no polynomial-time algorithm that
reduces a POINT LINE COVER instance (P,k) to an
equivalent instance with O(k%*~¢) points for any ¢ > 0
unless coNP C NP/poly. The proof is based on a re-
sult by Dell and van Melkebeek [4] who showed that
VERTEX COVER does not admit a so-called oracle com-
munication protocol of cost O(k*~¢) for e > 0 unless
coNP C NP/poly. An oracle communication protocol is
a two-player protocol, in which one player is holding the
input and is allowed polynomial (computational) time in
the length of the input, and the second player is compu-
tationally unbounded. The cost of the communication
protocol is the number of bits communicated from the
first player to the second player in order to solve the
input instance.

Kratsch et al. [15] devise an oracle communication pro-
tocol of cost O(nlogn) for deciding instances of POINT

12

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

LiNE COVER with n points. Thus, a problem kernel
for POINT LINE COVER with O(k%~€) points implies an
oracle communication protocol of cost O(k2~¢") for some
€ > 0 since the first player could simply compute the
kernelized instance in polynomial time and subsequently
apply the protocol yielding a cost of O(k?~¢ - log(k?~¢)),
which is in O(k2~¢) for some ¢ > 0. This again im-
plies an O(kz_eﬂ)—cost oracle communication protocol
for VERTEX COVER for some €’ > 0 (via a polynomial-
time reduction with a linear parameter increase [15,
Lemma 6]). We show that there exists a similar oracle
communication protocol of cost O(nlogn) for GENERAL
PoOSITION SUBSET SELECTION.

The protocol is based on order types of point sets.
Let P = (p1,...,pn) be an ordered set of points and
denote by ([g]) the set of ordered triples (i, j, k) where i <
j<k,i,jken]:={1,...,n}. The order type of Pis a
function o : ([’37’]) — {-1,0, 1}, where o((i, j, k)) equals 1
if pi, pj, px are in counter-clockwise order, equals —1
if they are in clockwise order, and equals 0 if they are
collinear. Two point sets P and @) of the same cardinality
are combinatorially equivalent if there exist orderings P’
and Q' of P and @ such that the order types of P’
and Q' are identical.

A key step in the development of an oracle communi-
cation protocol is to show that two instances of POINT
LINE COVER with combinatorially equivalent point sets
are actually equivalent [15, Lemma 2]. We can prove
an analogous result for GENERAL POSITION SUBSET
SELECTION:

Observation 2 Let (P, k) and (Q, k) be two instances
of GENERAL POSITION SUBSET SELECTION. If the point
sets P and Q are combinatorially equivalent, then (P, k)
and (Q, k) are equivalent instances of GENERAL POsI-
TION SUBSET SELECTION.

Proof. Let P and @ be combinatorially equivalent point
sets with |P| = |Q| = n and let P’ = (p1,...,pn)
and @ = (q1,...,¢n) be orderings of P and @Q, respec-
tively, having the same order type o.

Now, a subset S C P’ is in general position if and
only if no three points in S are collinear, that is,
o({pi,pj,px)) # 0 holds for all p;,p;,pr € S. Con-
sequently, it holds that o({(g;,gq;,qr)) # 0, and thus
the subset {¢; | p; € S} C Q' is in general position.
Hence, (P, k) is a yes-instance if and only if (Q, k) is a
yes-instance. O

Based on Observation 2, we obtain an oracle com-
munication protocol for GENERAL POSITION SUBSET
SELECTION. The proof of the following lemma is com-
pletely analogous to the proof of Lemma 4.1 in [15]:

Lemma 12 There is an oracle communication protocol
of cost O(nlogn) for deciding instances of GENERAL
POSITION SUBSET SELECTION with n points.

The basic idea is that the first player only sends the
order type of the input point set so that the computation-
ally unbounded second player can solve the instance (ac-
cording to Observation 2 the order type contains enough
information to solve a GENERAL POSITION SUBSET SE-
LECTION instance). We conclude with the following lower
bound result:

Theorem 13 Let € > 0. Unless coNP C NP /poly,
there is no polynomial-time algorithm that reduces an
instance (P, k) of GENERAL POSITION SUBSET SELEC-
TION to an equivalent instance with O(h®~¢) points.

Proof. Assuming that such an algorithm exists, the
oracle communication protocol of Lemma 12 has
cost O(h2~¢') for some ¢ > 0. Since the reduction
from VERTEX COVER in Theorem 11 outputs a GEN-
ERAL POSITION SUBSET SELECTION instance where
the dual parameter h equals the size k of the vertex
cover sought, we obtain a communication protocol for
VERTEX COVER of cost O(k2~¢), which implies that
coNP C NP/poly [4, Theorem 2]. O

Remark on the Kernel Lower Bound Framework of
Kratsch, Philip and Ray As a final observation, we
mention that the framework of Kratsch et al. [15] indeed
is more generally applicable than stated there. It only
relies on the equivalence of instances with respect to
order types of point sets. Hence, we observe that for
every decision problem on point sets for which
1. two instances with combinatorially equivalent point
sets are equivalent (cf. Observation 2), and
2. there is no oracle communication protocol of
cost O(k%~€) for some parameter k and any ¢ > 0
unless coNP C NP /poly,
there is no problem kernel with O(k2~¢) points for
any ¢ > 0 unless coNP C NP/poly.

5 Conclusion and Outlook

The intent of our work is to stimulate further research
on the computational complexity of GENERAL PoOsI-
TION SUBSET SELECTION. The kernelization results we
presented rely mostly on combinatorial arguments; the
main geometric property we used is that two distinct
lines intersect in at most one point. Therefore, a natural
question to ask is whether there are further geomet-
ric properties that can be exploited in order to obtain
improved algorithmic results for GENERAL POSITION
SUBSET SELECTION. We conclude with the following
concrete open questions:

1. Can the (15k3)-point kernel (Theorem 4) for GEN-
ERAL POSITION SUBSET SELECTION be asymptoti-
cally improved? Or can we derive a cubic, or even
a quadratic, lower bound on the (point) kernel size
of GENERAL POSITION SUBSET SELECTION?

13

28" Canadian Conference on Computational Geometry, 2016

2.

Can the FPT algorithm (see Corollary 5) for GEN-
ERAL POSITION SUBSET SELECTION be (signifi-
cantly) improved?

With respect to polynomial-time approximation,
we could only show the APX-hardness of MAXI-
MUM GENERAL POSITION SUBSET SELECTION. It
remains open whether Cao’s O(,/opt)-factor approx-
imation can be improved.

References

(1]

(10]

(11]

(12]

(13]

(14]

(15]

R. van Bevern. Towards optimal and expressive kernel-
ization for d-Hitting Set. Algorithmica, 70(1):129-147,
2014.

L. Cai, J. Chen, R. G. Downey, and M. R. Fellows.
Advice classes of parameterized tractability. Annals of
Pure and Applied Logic, 84(1):119-138, 1997.

C. Cao. Study on Two Optimization Problems: Line
Cover and Maximum Genus Embedding. Master’s thesis,
Texas A&M University, May 2012.

H. Dell and D. van Melkebeek. Satisfiability allows
no nontrivial sparsification unless the polynomial-time
hierarchy collapses. Journal of the ACM, 61(4):23:1—
23:27, 2014.

H. Edelsbrunner, J. O’Rourke, and R. Seidel. Con-
structing arrangements of lines and hyperplanes with
applications. STAM Journal on Computing, 15(2):341—
363, 1986.

P. Erdés. On some metric and combinatorial geometric
problems. Discrete Mathematics, 60:147-153, 1986.

Z. Firedi. Maximal independent subsets in Steiner
systems and in planar sets. SIAM Journal on Discrete
Mathematics, 4(2):196-199, 1991.

S. K. Ghosh and B. Roy. Some results on point visibility
graphs. Theoretical Computer Science, 575:17-32, 2015.
P. Giannopoulos, C. Knauer, and S. Whitesides. Pa-
rameterized complexity of geometric problems. The
Computer Journal, 51(3):372-384, 2008.

F. Gémez, S. Ramaswami, and G. T. Toussaint. On
removing non-degeneracy assumptions in computational
geometry. In Proceedings of the 3rd Italian Conference
on Algorithms and Complexity (CIAC ’97), volume 1203
of LNCS, pages 86-99. Springer, 1997.

L. J. Guibas, M. H. Overmars, and J. Robert. The exact
fitting problem in higher dimensions. Computational
Geometry: Theory and Applications, 6(4):215-230, 1996.
R. K. Guy and P. A. Kelly. The no-three-in-line problem.
Canadian Mathematical Bulletin, 11:527-531, 1968.

R. Hall, T. Jackson, A. Sudbery, and K. Wild. Some
advances in the no-three-in-line problem. Journal of
Combinatorial Theory, Series A, 18(3):336-341, 1975.
R. Impagliazzo, R. Paturi, and F. Zane. Which prob-
lems have strongly exponential complexity? Journal of
Computer and System Sciences, 63(4):512-530, 2001.
S. Kratsch, G. Philip, and S. Ray. Point line cover: The
easy kernel is essentially tight. ACM Transactions on
Algorithms, 12(3):40:1-40:16, 2016.

(16]

(17]

(18]

(19]
20]

(21]

S. Langerman and P. Morin. Covering things with
things. Discrete & Computational Geometry, 33(4):717—
729, 2005.

M. S. Payne. Combinatorial geometry of point sets
with collinearities. PhD thesis, University of Melbourne,
February 2014.

M. S. Payne and D. R. Wood. On the general position
subset selection problem. SIAM Journal on Discrete
Mathematics, 27(4):1727-1733, 2013.

K. F. Roth. On a problem of Heilbronn. Journal of the
London Mathematical Society, 1(3):198-204, 1951.

L. Tan. The group of rational points on the unit circle.
Mathematics Magazine, 96(3):163-171, 1996.

M. Wahlstrom. Algorithms, Measures and Upper Bounds
for Satisfiability and Related Problems. PhD thesis,
Linkoping University, March 2007.

14

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Minimizing the Total Movement for Movement to Independence Problem on
a Line

Mehrdad Ghadiri*

Abstract

Given a positive real value J, a set P of points along
a line and a distance function d, in the movement to
independence problem, we wish to move the points to
new positions on the line such that for every two points
pi,pj € P, we have d(p;,p;) > d while minimizing the
sum of movements of all points. This measure of the
cost for moving the points was previously unsolved in
this setting. However for different cost measures there
are algorithms of O(nlog(n)) or of O(n). We present an
O(nlog(n)) algorithm for the points on a line and thus
conclude the setting in one dimension.

1 Introduction

The problem of minimizing the movement of points
to reach a property was introduced first by Demaine
et al. [4], which was for the most part in graphical set-
tings. Many applications appear for the minimizing
movement problem is in the contexts of reliable radio
networks [1, 2], robotics [8] and map labeling [9][6]. In
simple terms, the problem of movement to independence
on graphs is defined as given a graph G and a set of
pebbles P, move the pebbles such that no two pebbles
occupy the same vertex. They considered the Total Sum
measure on different problems. Although, they proved
different NP-completeness results for other problems,
the problem of whether the movement to independence
problem with Total Sum measure is NP-complete, re-
mains open to this day. Time complexity of the algo-
rithms given in [4] were polynomial in the number of
vertices. However, the number of pebbles can be much
smaller than the number of vertices of the graph. That
is why in [5], they turned to fixed-parameter tractabil-
ity. Dumitrescu et al. [7] were the first to consider the
settings of a real line. They gave LP-based algorithms
for movement to independence on a line and on a closed
curve with the measure of minimizing the maximum
movement of points. In closed-curve version of the prob-
lem, authors defined distance as the length of the small-
est subcurve between two points. Dumitrescu et al. [7]’s

*Computer Engineering department, Sharif University of Tech-
nology, ghadiri@ce.sharif.edu

fComputer Engineering department, Sharif University of Tech-
nology, syazdanbod@ce.sharif.edu

Sina Yazdanbod f

algorithms for both real line settings and closed curve
settings were recently improved by Li et al. [10] with a
linear time algorithm. Owur contribution in this paper
is considering the problem of Total Sum on the same
settings of [7].

The rest of this paper is structured as follows. In
Section 2, we explain preliminaries and the definitions
of our problem. In Section 3, the formal settings of the
problem is presented. The algorithm and its proof are
written in Section 4 and the O(nlogn) implementation
and complexity analysis of it are presented in Section 5.
In the end, we conclude the article in the last section
and give an open problem for further research.

2 Preliminaries

In movement to independence problem, we are given a
positive real value §, a set P of points and a distance
function d and we wish to move the points to new po-
sitions such that any two points are at least § apart.
The goal is to minimize this movement. There are sev-
eral different measures of movement. We consider the
TotalSum measure which is the sum of movements of
all points. We examine this problem in the setting of
real line. In this section, we define our the terminology
and introduce the problems considered in this paper.

Definition 1 (Configuration) For a set of points P,
we define a configuration H of P to be a placement of
points in the domain. For a point p € P, we use H(p)
to denote the location of p in configuration H.

In this paper, we will investigate movement to indepen-
dence problem in the setting defined bellow.

Definition 2 (Independence) Given a set of points
P, a positive value § € RT and a distance function d,
a configuration H is called independent, whenever for
every two points p;,p; € P, we have d(H (p;), H(p;)) >
d.

The formal definition of the movement to indepen-
dence problem with total sum measure is as follows.

Definition 3 Let P = {p1,...,pn} be a set of points
and I be its initial configuration. Given § € RY and a

distance function d, find an independent configuration
F of P, so as to minimizes Y., d(I(p;), F(p;))-

15

28" Canadian Conference on Computational Geometry, 2016

The point set P can be from different domains. In
the following, we define the distance function used for
these domains.

Definition 4 (On a Line) For two points p;,p; €
P and configurations H and H' (not mnecessarily
different) of points P on the real line, we define

d(H (pi), H'(p;)) = [H(p:) — H'(p;)|-

In our algorithm, we make use of chains of points.
In a linear domain, a set of points in a configuration
form a chain, whenever they are tightly put together in
distances of 4.

Definition 5 In a configuration H of points P, we call
a subset C = {q1,...,q;} of P, where H(q1) < --- <
H(gq;), a chain in H, , if we have d(H(¢;), H(¢i+1)) =9
foralli=1,...,j— 1(seeFigure 1).

A chain is maximal if it is not a proper subset of an-
other chain. Unless noted explicitly, we consider chains
to be maximal. Chain partitioning is the act of parti-
tioning independent configuration into maximal chains.
Figure 1 shows an example of this partitioning. In this
figure the rectangles show the chains.

—fo—o—e—fo—9o—o o — [0 —

Figure 1: Partitioning H into chains

3 Setting of a Real Line

In this section we study the problem of movement to in-
dependence in real line domain with total sum measure.
Let a point set P = {p1, ..., ps} be in R with initial con-
figuration I. For the sake of simplicity, we assume that
the input is given in sorted order and that points are
initially in distinct positions. That is I(p;) < I(p;) for
every ¢ < j. The following lemma shows that in fact we
can make such assumptions.

Lemma 1 The initial order of points P is preserved
in the optimal configuration OPT. In other words,
an optimal configuration OPT exists in which for any
two points p;,p; € P with I(p;) < I(p;), we have

Proof. Let OPT be an optimal configuration. Assume
that there exist p;, p; € P violating this. Then, we can
swap the location of p; and p; in OPT, as in Figure 2,
without increasing the total movement of points. Based
on symmetry, one should only consider the three situa-
tions shown in Figure 2. (I

In a given configuration H, We define the sets Ly (.5),
Ry (S) and Og(S) as follows.

I(p;) O(pj) O(py) I(pj) I(p;) O(p;) O(pj) I(pj)
O(p;) Op)) Iny) I(pj) o) Op;) I1(ny) 1(n;)
O(p) I(p;) O(pi) I(p;) O;) I1(pi) O(py) I(n))

Figure 2: Three different situations of unordered points
that can be put in order, without increasing total sum.
Figures on the left shows the problem and figures on
the right show the reordered version without moving
the points

Definition 6 For a given configuration H of points P
with initial configuration I. For a subset S C P.

e Luy(S)={peS|Hpp) <I(p)}
e Ru(S)={pe S|H(p)>I1(p)}
e Ou(S)={peS|H(p) =I(p)}

We may use the notations L(S), R(S) and O(S) in-
stead, when there is no ambiguity.

Our algorithm for real line domain is iterative and
adds one point at a time until all the points are inserted.
Let I be the initial configuration of points P and H; be
the configuration generated by our algorithm at the end
of i-th iteration, which is an independent configuration
(Note that H; is defined over the set {p1,...,p;}). Let
C ={ci,...,c} be the sorted set of chain partitioning
of H;, where ¢y is the rightmost chain.

The main idea in this algorithm is that at the end of
each iteration of the algorithm, the following properties
are preserved for every chain ¢; € C:

Property 1 For every chain c¢; € C, we have

|La,(¢;)| + |Om, (cj)| > | R, (c))]

Property 2 For every chain c¢; € C, we have

|La,(c;)| < 10w, (¢j)| + [Ra, (c5)]

Any configuration with these two properties is ,in a
sense, locally optimal. We show that our algorithm cre-
ates the optimal solution with these properties.

4 The Algorithm

Our algorithm starts from p; and at each iteration adds
one new point to the configuration. Each iteration of
the algorithm consists of two phases. In the first phase,
we insert a new point into the current configuration and
if that violates Property 1, in the second phase, we re-
store that property. In the following, we explain the
procedure for each phase.

16

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

4.1 Phasel

Assume that we have the configuration H; after process-
ing the first ¢ points and let p; 1 be the first remain-
ing point and {e1,...,cr} be the chain partitioning of
H;. In this phase, we construct configuration G;4; over
the set {p1,...,pi+1}, let Giti(p;) = Hi(p;), for all
j=1,...,i. So, we just need to determine the location
of p;y1 in G;41. We consider the two following cases
based on the distance of the new point from the last
inserted point in our created configuration:

Case 1. If d(H;(p;), I(pi+1)) = 0 and I(p;41) is to the
right of H;(p;), then we set Giy1(pi+1) = I(pit1)-
If d(Gi+1(pi),Gi+1(pi+1)) > (S, then the chain parti-
tioning of G;y1 is {c1,...,¢k,Crt1} Where cxyq is a
new chain which its only member is p;11 (Figure 3)
I d(Gig1(pi), Git1(piv1)) = 0, the chain partition-
ing of Giy1 is {c1,...,cr—1,¢,} where ¢}, is a new
chain which is ¢; U p; 1 (Figure 4). Clearly, the new
point is in O (the set of points from cj, that are on
their initial location) or O, ,. That is, the resulting
configuration preserves Property 1 and 2. Therefore,
there is no need to run Phase 2 and we proceed to
the next iteration. Note that in this case H;4; will
be G7;+1.

fe—e oo e ——

I(p;y1)

-FHH—'HE—*—E)—@*

Cl41

Figure 3: This is the case where d(H;(p;), I(pi+1)) > 9.
The new point will create a chain consisting of itself

e S a—

I(pig1)

Figure 4: This is the case where d(H;(p;), I(pit+1)) = 0.
The new point will merge with the previous chain

Case 2. If d(H;(pi),I(pi+1)) < o (Figure 5) or
d(H;(pi), I(pix1)) > 6 and I(p;11) is to the left of
H;(p;) (Figure 6), we set Git1(pi+1) to Hi(p:) +
0. Therefore, the chain partitioning of G,y is
{c1,...,¢ck-1,¢},} where ¢} is a new chain which is
¢t Upir1. The only complication is that Property 1
might get violated in G;1 because pi+1 € Ra,,, (¢},)-
In this case, we proceed to Phase 2, to move the chains
so that Property 1 is restored again. Otherwise, there
is no need to run Phase 2 and we proceed to the next
iteration. Note that in this case H;41 will be G;41.

|..._...

ck I(pi41)

Ck

Figure 5: This is the case where d(H;(p;), I(pi+1)) <9
but the new point is still located after H;(p;).

I(pit1) ck

Figure 6: This is the case where d(H;(p;), I(pi+1)) >0
but the new point is still located before H;(p;).

4.2 Phase 2

In this phase, we construct the configuration H,i;
given the configuration G;; from the previous phase
which its chain partitioning is {c1,...,cx—1,¢}. For
configuration H;yq1, we have H;11(p;) = Git1(pj),
if p;j € ¢c1 U---Ucg—1 and we just need to deter-
mine location of points in ¢, in configuration H, 4.
The reason for running this phase is that Prop-
erty 1 is violated for the chain ¢j in Phase 1, which
means |Rg,,,(¢})] = [La,,., (6)] + [0c,,, (¢)]- Since
|Raiy () = |Ra, (cr)|+1 and R, (cx)| < L, (cx)|+
|Om, (ck)|, we can infer that | R, (¢;)| = |La, ., (¢;)| +
|Og.,,(c},)|- It is clear that Property 1 and 2 still hold
for the other chains and also Property 2 holds for ¢}
To restore Property 1 for ¢}, we do as follows.

Let o = minpjephc;v |d(Gi+1(p;),1(p;))| be the value
of the minimum distance between a point in the new
configuration and their initial configuration. and § =
d(Giy1(pr), Gig1(p1)) — 6, where p, is the rightmost
point of ¢x_1 in configuration G;41 and p; is the left-
most point of ¢}, in that configuration. In other words,
B+ ¢ is the distance of the last point of the chain c;_4
and first point of the chain ¢j. We consider the two
following cases:

Case 1. If a < 3, we set Hi+1(pj) = Gi+1(pj) -
a, for all p; € ¢, It is clear that we
have |Rg,,,(c)l > [Rm,,,(c)l- Therefore
|LHi+1(c;c)‘ + |OH1+1(C;c)| > |RH1+1(C;c)|' We also
know that Lg,,, (¢,) U Og,..(c,) = Lu,. (c;)
and Rg,,,(c;) = Opn,,,(c) U RHH»I(C;C)' Since
[Re, ()] = L ()] + 106, ()], we conelude
that |LH7L+1(C;<:)| < |0Hi+1(c;c)| + |RHi+1(c;c)|' There-
fore, Property 1 is restored and Property 2 is pre-
served.

Case 2. If « > ﬂ, we set Hi+1(pj) = Gi+1(pj) -

17

28" Canadian Conference on Computational Geometry, 2016

B, for all p; € ¢,. It is clear that cxz_; and

C;C are not maximal chains in H;y;. Therefore,
. e . ,

the chain partitioning of H;yq is {c1...,cr—2,¢,_1}s

where ¢j,_; = cx—1 U¢,. We can say two chains

ck—1 and ¢, are merged (Figure 7). We have
|LH1+1(C/;€)| + ‘OH1+1(CI;C)| > |RH1‘+1(/C;€)|7 because
|LGr,:+1(Ck)| + |0Gi,+1 (Ck)l = ‘RGi+l (ck)" We also
have |LHi+1 (Ck,1)| + |0Hi+1 (Ck*1)| > ‘RHH»I (Ck*1)|‘
HGHCG, ‘LH'H»I (C;cfl)| + |0Hi+1 (C;c—l)| > |RH1,+1 (C;c—l)‘
and Property 1 is restored. By a reasoning similar to
previous case, we can conclude that Property 2 holds
for ¢, _; in Hitq.

e o o o
—fo—9o o0 9o 9o oo

Figure 7: When the left chain reaches § radius of the
right chain, they merge.

4.3 Correctness

We claim that this algorithm returns an optimal config-
uration. But before we go on to prove that claim, we
state a lemma.

Lemma 2 Let ¢ = {p;,...,p;} be a mazimal chain in
H,. For alll, where i <1 < j, for the non-mazimal
chain ¢ ={pi,...,pi}, we have

1L, () +10m, ()] > |Ra,, ()]

Proof. In the [-th iteration of the algorithm, p; was
inserted into the configuration. Let {c1,...,ci} be the
chain partitioning of H; and ¢’ = ¢, U---Ucg. We have
|L, ()] + |Om, ()| > |Ru,(c')|, because Property 1
holds for all chains in {ci,...,cx}. After iteration I,
points in the ¢’ only move leftwards or does not move
in each iteration. Thus, the left side of the inequality
is non-decreasing and the right side is non-increasing.
Therefore, at the end of every further iteration, the in-
equality still holds. In particular, the inequality holds
at the end of the algorithm. O

Now we have the sufficient tools to prove optimality
of the output of this algorithm. We make the argument
in two cases, once we take the rightmost difference from
the optimal and second we use the leftmost difference.
In the end, our solution is optimal or simply a shift of
the optimal to the right that does not increase the sum.

Theorem 3 Configuration H,, is optimal.

Proof. Let OPT be an optimal configuration of points
P which preserves the order of initial configuration. Ac-
cording to Lemma 1, this configuration exists. Take the

rightmost point p; in H,, such that OPT(p;) < Hn(pi)
(Figure 8). Assume that this point is in the chain
c¢={pi,...,p;}. Figure 8 depicts this situation.

H(py)

OPT(pl)

Figure 8: The above figure is the chain containing p; in
our solution while below figure show the same points of
the above chain in the optimal solution. This chain is
not necessarily intact, and may have been divided into
several different chains in the optimal solution.

We know from Lemma 2 that for the ¢ = {p;,...,pi}
in H,,, we have:

1L, ()| +10m,, ()] > | R, ()]

For each k = 4,...,l we have H,(px) < OPT(py).
Since, the order of points in OPT is like H, and
also OPT is an independent configuration. There-
fore, Op, (<) U Ly, (') C Lopr(¢) and |Lopr(c)| >
|Oopr()|+|Ropr(c)|. Hence, if we shift the points of
¢ in OPT to right by d(H,(pi), OPT (p;)), the number
of points getting further away from their initial location
will be smaller than the number of points getting closer
and also the points will remain independent from each
other. Hence, total movement of points will decrease,
which contradicts the optimality of OPT. Therefore,
there are no points in the optimal configuration to the
left of their corresponding point in H,,.

On the other hand, let H,(p;) be the leftmost point
such that OPT(p;) > H,(p;)(Figure 8). Assume that
this point is in the chain ¢ = {p;,...,p;} in H,. This
case is shown in Figure 9.

* o o o - slefoe e e e

H(py)

|.._'_._..._._....

OPT(p)

Figure 9: Same as before, rectangles are chains and p;
is the first difference.

This time, we use Property 2. For the chain ¢ we
have:
|Lm,(0) <10m,(c)] + | Ru, (c)].
It is fairly easy to see that:
[Lopr ()| < |Lu,(¢)] <|0mu,(c)] + |Ru, (c)]
giving

0w, ()| + |Ru, (c)| < |Oopr(c)| + [Ropr(c)|

18

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

because the order of points in OPT is like H,, and also
OPT is an independent configuration. If we shift the
points py,...,p; in the configuration OPT to left, total
movement of points will not increase until after p; coin-
cides with H,(p;). That is to say, the total movement
of the solution returned by our algorithm is less than or
equal to that of the optimal configuration. After plac-
ing p; on Hy,(p;) by moving all the points {p;,...,p;} in
the configuration OPT to left, we have a new configura-
tion OPT" with the same (if not less) total movement.
Now, we find the next point from OPT’ with this prop-
erty (leftmost point such that OPT'(p;) > H,(p;)) and
we continue until all the points with this property are
converted to their corresponding point in H,,, therefore,
proving that the cost of our solution is at most that of
the optimal solution. O

A naive implementation of this algorithm runs in
O(n?) time. However, in section 5 we give a more effi-
cient implementation that runs in O(nlog(n)) time.

5 Implementaion and complexity analysis

In each iteration of the algorithm, there are two phases.
In the first one, a point is placed on its initial location or
on the end of the last chain. Obviously, the complexity
of this phase is O(1). In the second phase, we move all
of a chain and possibly merge it with another chain. If
we update location of all the points in this phase then in
each iteration, the complexity of this phase is as the size
of the moving chain. Therefore, in the worst case, the
complexity of the algorithm will be O(n?). We use a lit-
tle trick to reduce the complexity of the algorithm. Let
c1,...,¢, be the chains in a configuration like H. Let
r(cj) be a real number that shows the total movement
of ¢; to the left since it was created. In other words,
r(c;) is the total movement of the left most point of ¢;
to the left since it has been added to the c;.

Let p be a newly added point to the ¢ and its location
be ¢. The trick is that instead of storing the actual
location of p, we store £ —r;. When we need the actual
location of p, we can easily recompute that. Also, when
we move the chain to the left, it is sufficient to update
just r; and we do not need to update a number for each
point. With this trick, we reduce the time complexity of
moving the chains to O(1). There are two other things
that affect the complexity of the algorithm: finding the
amount of movement of a chain in the second phase
of each iteration and merging two chains when we deal
with Case 2 of the second phase.

For finding the amount of movement of a chain, we
can store all the right points of a chain in a min-heap
according to their distances to their initial locations.
When we add a point to the chain, we can easily add it
to the heap in O(logn) and when we move the chain to
the left, we need to remove the point that is locates on

its initial location from the heap which can be done in
O(logn).

In case of merging the chains, let ¢; and ¢j41 be the
chain that merged and the new chain be ¢’. We need to
merge ¢; and ¢j41’s heaps which can be done in O(log n)
if we use a binomial heap[3, p. 462]. The other thing
that we need to do is to set a value for r(c’). To do this
we choose one of ¢; or ¢;41 that have more points and
set r(c') as its r value and update the location value of
the points of the other chain using (¢’). Note that, the
new value of 7(¢’) does not show necessarily the amount
of movement of the new chain but it can be treated as
before. The amortized cost of this action is O(log n) like
the disjoint-set data structure [3, p. 504].

Due to the above analysis, we can conclude that the
cost of each iteration of the algorithm is O(logn) and
the complexity of the algorithm is O(nlogn).

Theorem 4 Running time of the
O(nlog(n)

algorithm is

6 Conclusion

In this paper we considered the problem of minimizing
total sum of movement of points to reach independence
and presented an O(nlogn) algorithm. While the prob-
lem for minimizing the movement of point on a circle(
or a closed curve) still remains unsolved. It is easy to
see that our properties determining a local optimal can
be considered in the circle case as well. However, this
problem shows to be a little more trickier to solve and
these properties might not be enough.

7 Acknowledgment

In the end, we would like to thank our dear friend, Sa-
hand Mozaffari, for his thoughtful comments and sug-
gestions.

References

[1] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and
D. Rus. Deploying sensor networks with guaranteed
capacity and fault tolerance. In Proceedings of the 6th
ACM international symposium on Mobile ad hoc net-
working and computing, pages 309-319. ACM, 2005.

[2] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli,
and G. Sukhatme. Autonomous deployment and re-
pair of a sensor network using an unmanned aerial ve-
hicle. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, vol-
ume 4, pages 3602-3608. IEEE, 2004.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press and McGraw-Hill Book Company, 2001.

[4] E. D. Demaine, M. T. Hajiaghayi, H. Mahini, A. S.
Sayedi-Roshkhar, S. O. Gharan, and M. Zadimoghad-

dam. Minimizing movement. ACM Transactions on
Algorithms, 5(3), 2009.

19

28" Canadian Conference on Computational Geometry, 2016

[5]

[6]

(10]

E. D. Demaine, M. T. Hajiaghayi, and D. Marx. Mini-
mizing movement: Fixed-parameter tractability. ACM
Transactions on Algorithms, 11(2):14:1-14:29, 2014.

S. Doddi, M. V. Marathe, A. Mirzaian, B. M. E. Moret,
and B. Zhu. Map labeling and its generalizations. In
Proceedings of the Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 5-7 January 1997, New
Orleans, Louisiana., pages 148-157, 1997.

A. Dumitrescu and M. Jiang. Constrained k-center and
movement to independence. Discrete Applied Mathe-
matics, 159(8):859-865, 2011.

T. Hsiang, E. M. Arkin, M. A. Bender, S. P. Fekete,
and J. S. B. Mitchell. Algorithms for rapidly dispersing
robot swarms in unknown environments. In Algorithmic
Foundations of Robotics V, Selected Contributions of
the Fifth International Workshop on the Algorithmic
Foundations of Robotics, WAFR 2002, Nice, France,
December 15-17, 2002, pages 77-94, 2002.

M. Jiang, J. Qian, Z. Qin, B. Zhu, and R. J.
Cimikowski. A simple factor-3 approximation for label-
ing points with circles. Inf. Process. Lett., 87(2):101—
105, 2003.

S. Li and H. Wang. Algorithms for minimizing the
movements of spreading points in linear domains. In
Proceedings of the 27th Canadian Conference on Com-
putational Geometry, CCCG 2015, Kingston, Ontario,
Canada, August 10-12, 2015, 2015.

20

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Searching with Advice: Robot Fence-Jumping
(Extended Abstract)

Kostantinos Georgiou*!

Abstract

We study a new search problem on the plane involv-
ing a robot and an immobile treasure, initially placed
at distance 1 from each other. The length 5 of an arc
(a fence) within the perimeter of the corresponding cir-
cle, as well as the promise that the treasure is outside
the fence, is given as part of the input. The goal is to
device movement trajectories so that the robot locates
the treasure in minimum time. Notably, although the
presence of the fence limits searching uncertainty, the
location of the fence is unknown, and in the worst case
analysis is determined adversarially. Nevertheless, the
robot has the ability to move in the interior of the cir-
cle. In particular, the robot can attempt a number of
chord-jump moves if it happens to be within the fence
or if an endpoint of the fence is discovered.

The optimal solution to our question can be obtained
as an evaluation to a complicated optimization problem,
which involves trigonometric functions, and trigonomet-
ric equations that do not admit closed form solutions.
For the 1-Jump Algorithm, we fully describe the opti-
mal trajectory, and provide an analysis of the associ-
ated cost as a function of 8. Our analysis indicates that
the optimal k-Jump Algorithm requires that the robot
has enough memory and computation power to compute
the optimal chord-jumps. Motivated by this, we give an
abstract performance analysis for every k-Jump Algo-
rithm. Subsequently, we present a highly efficient Halv-
ing Heuristic k-Jump Algorithm that can effectively ap-
proximate the optimal k-Jump Algorithm, with very
limited memory and computation requirements.

Key words and phrases. Disk, Fence, Optimization,
Robot, Search, Speed, Treasure.

1 Introduction

Geometric search is concerned with finding a target
placed in a geometric region and has been investigated

*Research supported in part by NSERC.

TDepartment of Mathematics, Ryerson Univer-
sity,konstantinos@ryerson.ca

fSchool of Computer Science, Carleton Univer-
sity,kranakis@scs.carleton.ca

8School of Computer Science, Carleton Univer-

sity,AlexandraSteau@cmail.carleton.ca

Evangelos Kranakis**

Alexandra Steau’

in many areas of mathematics, theoretical computer sci-
ence, and robotics. In each instance, one aims to provide
search algorithms that optimize a certain cost, which
may take into account a variety of important character-
istics and features of the domain, computational abili-
ties of the searcher, assumptions about the target, etc.
In this paper, we introduce and study fence-jumping
search, a new search problem involving a robot, an un-
known stationary fence (barrier), and an unknown sta-
tionary target (or treasure) in the plane.

The location of the treasure is unknown to the robot.
However, the robot has knowledge that at the start it is
located at a distance of 1 (unit) away from the treasure.
Equivalently, the treasure is stationed on the perimeter
of a disk (within the known environment), which is cen-
tered at the start point of the robot. A fence, a given
circular arc of length 3, is placed on the perimeter of
the disk, whose location is also unknown to the robot.
Further, the robot has the knowledge that the treasure
is located on the perimeter but not on the fence. De-
pending on its trajectory, the robot may move along
the perimeter of the circle and occasionally, say when
within the fence, it may want to move along a chord, or
as we say to fence-jump, so as to reduce the time nec-
essary to perform the search. We will analyze several
fence-jumping algorithms that will allow us to reach the
treasure in minimal time.

We study the fence-jumping search problem for one
robot starting at the center of the disk and moving at a
constant speed 1. We assume the treasure is stationary
and placed by an adversary at the beginning of each
round depending on the fence location. The adversary
positions the treasure on the perimeter, but outside the
fence. The robot may move anywhere on the disk in an
attempt to find this treasure; it is also able to use geo-
metric knowledge so as to decrease the amount of time
spent during the search. That is to say, since the robot
knows that the treasure is not located on the fence, it
could try to bypass it by “jumping over the fence”. The
goal of this paper is to determine a trajectory so that
the robot finds the treasure in optimal time.

1.1 Related Work

The type of search problem investigated in our work was
first seen sixty years ago when Beck [4] and Bellman [5]

21

28" Canadian Conference on Computational Geometry, 2016

asked an important, yet simplistic question tied to the
minimization of distance. Motivated from this, several
different natural search problems have been studied in-
cluding the use of a fixed [8, 16] or mobile target [18], the
tools searchers have access to, the number of searchers,
the communication restrictions and many more. Often,
the essential part of the robot activity is the recogni-
tion and/or mapping of the terrain. In the case of a
known structure, the main objective of the search is to
minimize the time to find the treasure. Searching for
a motionless target has been studied in the cow-path
problem [4], lost in a forest problem [12, 15] and plane
searching problem [2, 3].

Baeza-Yates et al in their well known paper [3] study
the worst-case time for search involving one robot and
a treasure at an unknown location in the plane, such as
a simple line. Useful surveys on search theory can also
be found in [6] and [10].

Search by multiple robots with communication capa-
bilities has been considered in [11, 14], while [8, 9] study
the evacuation of k robots searching for an exit located
on the perimeter of a disk. The problem of finding tra-
jectories for obstacle avoidance in both known and un-
known terrains has been considered in several papers
including [1, 7, 17].

1.2 Qutline and Results of the Paper

As a main objective, our approach will have to design al-
gorithms for finding the treasure in optimal time, while
adapting to the fence structure located on the perime-
ter. Thus, leading us to propose algorithms that at-
tempt to deliver the optimal shortcuts necessary to exit
and/or avoid the fence structure.

An outline of our results is as follows. In Section 2, we
introduce the basic concepts and analyze a simple search
algorithm for finding the treasure without involving any
jumps. In Section 3, we introduce and analyze the opti-
mal 1-Jump search algorithm. Meanwhile, in Section 4,
we propose a generic description of k-Jump algorithms.
In Section 5, we study a k-Jump algorithm based on a
halving heuristic, which approximates the optimal jump
without relying on solutions of trigonometric optimiza-
tion problems. In Section 6, we contrast the choices
and performance of the Halving k-Jump Algorithm with
the choices and performance of the Optimal k-Jump Al-
gorithm that was obtained using optimization software
packages, for k£ < 3. We conclude with Section 7. Due
to space limitations, all omitted lemma proofs can be
found in the extended paper [13].

2 Preliminary Observations

First, we introduce the basic concepts and assumptions
of our model. Initially, we make the assumption that
the robot is located in the center of the disk with a

radius of 1, and a treasure is located at distance of 1
from the robot, on the perimeter of the disk. We de-
fine this treasure to be a point on the disk and, thus,
does not take any space on the perimeter. The treasure
location is always unknown to the robot until it moves
directly over its point location. That is to say, the robot
has no vision capabilities, in that it becomes aware of
what each point on the circle is, i.e. a fence point, trea-
sure or nothing special, only if the point is visited. The
robot moves at the same speed throughout its search
on the disk and the movement of the robot from the
center always takes 1 unit of time. The robot has the
computational power to numerically solve trigonomet-
ric equations through the use of deterministic processors
which possess the required memory for these processes.

Recall that robot’s goal is to optimize the length of
its trajectory using various types of movements, i.e. the
robot may walk on the fence or even jump over the fence
moving along a chord (within the interior of the circle).

To begin we provide a naive solution to our trea-
sure finding problem, which we will then improve with
a number of algorithms. In what follows, we denote
the length of the fence by [, given as part of the in-
put. Independently of the algorithm considered, any
deterministic algorithm will first have the robot move
to an arbitrary point on the perimeter of the circle,
thereafter referred to as the basic landing point, with
the intention that the robot will start moving/searching
the circle counterclockwise, which is further examined
in Algorithm 1.

Algorithm 1 0-Jump Algorithm

: Walk to the perimeter of the disk
: Continue walking on the perimeter counterclockwise
if you reach fence endpoint then
Hop along the corresponding chord of length
2sin (8/2)
else
Walk on perimeter until you find treasure

NG

Our work provides a focus on algorithms that per-
form well under worst case analysis. As such, the per-
formance of any algorithm will be determined after an
adversary decides on the location of both the basic land-
ing point, the fence itself, and the treasure. For the sake
of exposition, we now present the worst case termina-
tion time depending on the location of the basic landing
point.

Lemma 1 The worst case termination time of Algo-
rithm 1 is'

) == 1+2r— B +2sin(8/2) Figure la
& = 1+27 Figure 1b

1The usefulness of notation c for the cost of the algorithm
will be transparent in the next sections

22

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

where the reference in the right column indicates the
Figure which applies to the case.

(a) Landing outside (b)
fence. fence.

Landing within

Figure 1: Basic landing point.

Proof. Suppose that the basic landing point is outside
the fence, as seen in Figure la, and say that the clock-
wise distance between the landing point and the fence is
x € (0,27 —). It is straightforward that the adversary
would place the treasure clockwise inbetween the land-
ing point and the fence, at clockwise distance y € (0, z)
from the landing point. Then, for all z € (0,27 — () the
cost of the algorithm would be

sup {1427—F+2sin (8/2)—y} = 14+27—F+2sin (3/2) .

y€(0,x)

In the other case, the landing point is within the fence,
as illustrated in Figure 1b. Suppose that the clockwise
distance between the landing point and the endpoint of
the fence is x € (0, 8). Also suppose that the clockwise
distance between the same fence endpoint and the trea-
sure is y € (0,27 —). Then, the robot will locate the
treasure in time

sup{l + 27 —z —y} =1+ 27.
@y

This proves Lemma 1. (I

It is intuitive that having the basic landing point out-
side the fence is a “favorable event” in that for all 3,
ey <). This follows formally from the fact that the
non-negative expression S — 2sin (5/2) is increasing in
B > 0. Hence, the performance of Algorithm 1 is 1+ 27.

Next, we focus on algorithms that can address the
choice of the adversary placing (basic) landing points
within the fence. In such algorithms the robot will try
to jump in an attempt to land outside the fence.

3 The Optimal 1-Jump Algorithm

In this section we analyze the optimal 1-Jump Algo-
rithm, which also serves as a warm-up for the analysis
of the generic k-Jump Algorithm. 1-Jump Algorithms
are fully determined by the (unique) chord jump of cor-
responding arc-length « they make in case the basic
landing point (of the robot) is within the fence.

It is worthwhile discussing the required specifications
for the algorithm to be correct. First, we require the
jump to be in “counter-clockwise” direction, i.e. that
a < 7 (this also breaks the symmetry for the adversarial
placements of the fence and the treasure). Second, we
further require that the chord jump does not pass over
the area that could hold the treasure, landing back to
the fence. For that, it is of importance that o < 27 — 3.
To summarize, the 1-Jump Algorithm is fully deter-
mined by choosing « satisfying 0 < o < min{x, 27— }.

In continuation, with parameter «, Algorithm 2 runs
similarly to Algorithm 1, except from the last landing
case of Algorithm 1 falling within the fence (which hap-
pens to be the basic one). If that happens, Algorithm 2
makes a counterclockwise jump corresponding to arc
length «. If the 1st-jump landing point is in the fence,
then it runs Algorithm 1. Otherwise, the 1st-jump land-
ing point is outside the fence and the robot applies the
following remedy phase: move clockwise along the pe-
riphery of the circle till the endpoint of the fence is
found, say at arc distance x, and then return to the 1st-
jump landing point along the corresponding chord of
length 2sin (z/2), and continue executing Algorithm 1.

(b) 1st jump landing is
inside fence.

(a) 1st jump landing is
outside fence.

Figure 2: 1-Jump Algorithm basic landing point.

Algorithm 2 1-Jump

1: Walk to the perimeter of the disk
2: if your landing point is inside the fence then
3: make a ccw chord jump of arc length a

4: Perform Algorithm 1

Lemma 2 Depending on the landing points, the cost of
Algorithm 2 with parameter o is

¢t = 1427 — B+ 2sin(3/2) Figure 1a

el = ¢} +4sin(a/2) — 2sin (B/2) Figure 2a

et = 1427 — (o — 2sin (a/2)) Figure 2b
(1)

with the understanding that ¢}, cl, c} are functions on 3
and o, and the reference in the right column indicates
the Figure which applies to the case.

Critical to our analysis toward specifying the optimal
choice of « is the solution to a specific equation that

23

28" Canadian Conference on Computational Geometry, 2016

does not admit a closed form. Consider expression o +
2sin («/2) which is monotonically increasing. As such,
for every 8 € R, the equation a+2sin («/2) = 8 admits
a unique solution in a. Motivated by this observation
we write that “ag is the unique real number satisfying
equation ag + 2sin (ag/2) = 57.

Moreover, since « + 2sin («/2) is increasing in the
variable «, so is ag in the variable 3. We are now ready
to define and analyze the optimal 1-Jump Algorithm.

Theorem 3 Let v be the unique solution to equation
m = —sin(v/2) (v~ 4.04196). The optimal 1-Jump
Algorithm chooses jump step corresponding to arc length
a=agif B<~vy, a=2r—pFif 5> and terminates
m time

1+{ 21 — ag + 2sin (ag/2)

if B <~
8+ 2sin (8/2) (2)

if B> .

Proof. By Lemma 2, the optimal 1-Jump Algorithm is
determined by choosing « that minimizes

sup {co, c1(a), ex(a)},
0<a<min{m,7m—pB}

where in the expression above, we make the dependence
on « explicit. Again, it should be clear that having
the basic landing point outside the fence is a “favorable
event”. Intuitively, this is the only case that the robot
makes full use of the fact that the treasure does not lie
within the fence, jumping over it and using the corre-
sponding chord. Effectively, this implies that for all 5, a
we have ¢} < min{ci(a),ci(a)}.

Next, for any 5 € (0,27) we need to choose a so
as to minimize max{cl(a),ci(a)}. To that end, note
that cf,c} exhibit different monotonicities with respect
to a so that, if possible, the minimum will be attained
when the two costs are equal. Equating the two costs
gives that « + 2sin(«/2) = B. Recall that we have
denoted the unique solution to the equation by oz which
is increasing in . Since the jump step needs to stay no
more than min{n, 27 — 8}, the choice a = ag (which is
the best possible) is valid only when ag < min{w, 27 —
B}. Numerically we can compute «, ~~ 1.66, which due
to the monotonicity of ag implies that the dominant
constraint is that ag < 2m — 8. Hence, any restrictions
will be imposed for 8 > w. Indeed, in setting ag =
27 — B, and substituting in ag + 2sin (ag/2) = 5, we
obtain 2w — S+ 2sin (7 — 8/2) = B. The value of 3 that
satisfies this equation is v ~ 4.04196.

To resume, as long as 8 < ~, the best choice for the
jump is the solution to the equation a+2sin (a/2) = S.
When 8 > «, the best jump step is equal to 27 — 5.

From the discussion above, the induced cost when
B < v would be equal to ¢} (ag), as it reads in Lemma 2.
Finally, when 8 > ~ the induced cost would be

max{ci (21 — B),cy(2m — B)}

=1+ 27 4+ max{4sin (7 — §/2) — 8, 2sin (7 — 5/2) —
27 + B}

=14 27+ 2sin (5/2) + max{2sin (8/2) — 8, —27 + B}

=1+ p5+2sin(8/2)

where the last equality is because 8 > -, the definition
of v and the fact that —27 + § is increasing in . This
proves Theorem 3.]

Notably, the proof of Theorem 3 suggests that for
the best strategy a as a function of 8, we have that
c§ < cd(a) < ci(a). This was expected, since having
the basic landing outside the fence is intuitively more
favourable than having it inside the fence and without
needing the remedy phase, which is more favourable
than needing the remedy phase. It is also interesting
to note that for B3 < ~, the best jump choice ag at-
tains values close to 3/2. This suggests an alternative
approach to the problem that does not require the abil-
ity to solve technical trigonometric equations, and that
will be explored later. Finally, there is a nice suggested
recursive relation between costs ¢, ci that is soon to be
generalized for k-Jump Algorithms.

4 Generic Description of k-Jump Algorithms

Analogously to the previous sections, the k-Jump Algo-
rithm has parameters ag,...,a; and runs similarly to
the (k-1)-Jump Algorithm, except from the case that
the last landing point of the (k-1)-Jump Algorithm (if
this is realized, it will be the (k-1)st-jump landing point)
is within the fence. If that happens, the k-Jump Algo-
rithm makes an additional counterclockwise jump cor-
responding to arc length ay. If the kth-jump landing
point is in the fence, then it runs Algorithm 1. Other-
wise, the kth-jump landing point is outside the fence,
and the robot applies the remedy phase from Algo-
rithm 2 in Section 3.

Algorithm 3 k-Jump Algorithm
1: Walk to the perimeter of the disk
2 140
3: while landing point is inside the fence & i < k do
4: 14— 1+1
5
6

make a ccw chord jump of arc length o
: Perform Algorithm 1

It is clear from the discussion above that any k-Jump
Algorithm is specified by the jump steps ay, as, ..., ak,
where the ¢th jump is realized only if the basic landing
point, along with the landing points of the previous i —1
jumps fall within the fence. In order to preclude the
possibility that a jump passes over the area that holds

24

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

the treasure and bring the robot back to the fence we
require that a; < 3. Moreover, for the jumps to be in
counterclockwise direction (and to break the symmetry)
we also require that a; < 7.

Similarly, for the 1-Jump Algorithm we required that
a1 < min{r, 27— 8}. However, according to Theorem 3,
the optimal jump step is less than 8 (for all 8), mean-
ing that the correctness condition for choosing the jump
step could have been replaced by oy < min{3, 2w — 3}.
Indeed, our intuition tells us that an algorithm, which
after the basic landing point within the fence makes
a jump more than the length of the fence, will land
outside the fence and subsequently will, unavoidably,
need to apply the (suboptimal) remedy phase. Moti-
vated by this observation, we require the following con-
dition regarding the step sizes of k-Jump Algorithm’s:
o; <min{m, 27— 0}, i=1,...,k.

The next lemma generalizes Lemma 2 and provides a
handy recurrence description of the cost of the k-Jump
Algorithm with jump steps aq, ..., a; depending on the
first landing point outside the fence. In this direction,
we denote by cf to be the worst case cost of the k-Jump
Algorithm when the basic landing point along with the
landing points of the first £ — 1 jumps fall all inside the
fence and the robot lands outside the fence in the the
tth jump, which is shown in Figure 3. Let us observe
that, cf is the cost of the case when the basic landing
point is outside the fence, while c’,j 41 corresponds to
the case that the landing points of all k jumps, as well
as the basic landing point, fall inside the fence.

Figure 3: k-Jump Algorithm

Lemma 4 For any B, let ag = 5. Depending on the
landing points, the cost of the k-Jump Algorithm with

jump steps aq, ..., q 18
ck = 1427 — ap + 2sin(ag/2)
ck = cf_; +4sin(ay/2) — 2sin (w—1/2) (3)

1427 — Zle (c; — 2sin (e /2))

with the understanding that cf are functions on 3 and
1, ... 041, fort=1,...k+ 1.

5 The Halving Heuristic k-Jump Algorithm

In this section, we present a simple heuristic that is
meant to approximate the optimal jump steps without
relying on solutions of trigonometric optimization prob-
lems. Most importantly, our algorithm requires very
limited memory and does not need to perform numer-
ical operations other than simple algebraic manipula-
tions. In fact, there are only constant many operations
needed to determine every possible jump size. More-
over, parameter k, i.e. the number of jumps, may not
necessarily be determined in advance, and is allowed to
be even infinite. First, we present the algorithm and
analyze it. Then, in Section 6, we contrast it to the
Optimal k-Jump Algorithm (for certain values of k).

Closely examining the optimal solution for the 1-
Jump Algorithm in Section 3, we are tempted to choose
an alternative first jump step equal to 8/2, which is a
good approximation to ag. This choice is valid, as long
as the jump does not exceed 27 — 3, and indeed for large
enough values of 3, i.e. for 5 > 4.041, as per Theorem 3,
the best choice for just one jump is 2w — 3. Note that
changing the first jump from ag to §/2 results to a new
threshold value %ﬂ' ~ 4.188 after which the first jump
should become 27— 3. Interestingly, the pattern repeats
also in the optimal k-Jump Algorithms (see Section 6).

The previous observation suggests a natural heuristic
for k-Jump Algorithms. First, go to an arbitrary point
on the circle. While in some unknown position on the
fence, make a valid jump (i.e. no more than m, 27 — 3)
equal to half of the unexplored fence, unless this value
exceeds 27 — (in which case the jump should be 27 — 5.
Formally, the description of the heuristic follows if we
can determine the length of the chord-jump «; in every
i-th jump, and then invoke Algorithm 3.

Algorithm 4 Halving Heuristic jumps

1: explored < 0

2: temp W

3: if temp < 27 — [then

4: a; < temp

5: else

6 jump < 2w — f3

7: explored < explored + jump

Note that the calculations of jumps a; can be incor-
porated within Algorithm 3 and do not need to be com-
puted in advance. As the maximum number of jumps
can be part of the input, Algorithm 4 can be performed
only for k£ many landings within the fence (see Algo-
rithm 3), or as long as the the jump step does not drop
below a given threshold. Interestingly, the definition
of step sizes on the fly by Algorithm 4 even allows for
k = oco. That would correspond to the theoretical case
that the robot makes an infinite number of jumps for
which all landings happen within the fence. Still, the

25

28" Canadian Conference on Computational Geometry, 2016

time for the robot to reach the endpoint of the fence
would be finite (Zeno’s paradox).

The process above fully determines the jump step of
the t-th jump as a function of 3, for every t =1,...,k,
and for every k. In what follows we provide an analytic
description of these values so that we can analyze the
performance of the algorithm. The lemma below will
allow us to derive later a nicer closed formula for the
jump steps of the halving Algorithm.

Lemma 5 Let hy = % fort>1 and hg = 0. For
any B € (0,27), the value of the i-th jump in the Halving

Algorithm equals

SRR
_ 273
i { 2r —

if B<h; and B € (h'j—lyhj]
if B> h;

We are now ready to present a closed formula for the
jump steps of the Halving Algorithm along with its per-
formance, as a function on the number of jumps.

Theorem 6 For any § € (0,2m), let pg =
max{QB_%,l}. The value of the i-th jump (i > 1)

22—
in the Halving Algorithm equals

2 — 3
Q= 2n—[psl(2m—B)

Si—Tpg1H1

if i < pg
otherwise

Proof. According to Lemma 5, § > h; is satisfied as
long as i < 25:_2”. Hence, if i < pg we have a; = 27— .
For the same reason 8 < h; if and only if ¢ > pg, so pg
is the smallest integer for which 8 < h,,, meaning that
B € (hps—1,hp,]. Therefore, again by Lemma 5, we
set j = [pg] (and rearrange the terms) to derive the
promised formula. This proves Theorem 6. (I

In Figure 4, we depict the behaviour of the decreasing
sequence «; (in i) as a function of 8 for a1 =1,2,3,4,5
and 6. Notably, for every k there is some threshold value
of 3, after which «; = 2w — 8 for all i < k.

0 1 2 3 4

Figure 4: The plot jumps a3 > ag > ... > ag of the
Halving Algorithm as a function of 3.

Finally, we use the closed formula for the jump steps
to derive a closed formula for the cost of the Halving
k-Jump Algorithm. The main idea for the proof is to
show that the worst case for the algorithm is when all

k jumps fall within the fence, and that the performance
is strictly decreasing in k. This is what the next lemma
establishes.

Lemma 7 The Halving k— JumpAlgorithm incurs the
mazimum possible cost when all jump landings (includ-
ing the basic one) fall within the fence.

We are ready to conclude with the cost of the Halving
k-Jump Algorithm.

Theorem 8 The cost of the Halving k-Jump Algorithm
1s strictly decreasing with k and it equals

[ps](2m — B) — 2w

2k—[psl+1

+2([ps] — 1) sin (8/2) +

where pg = max { e, 1} and apy,) = 7 — 52 (27 —
B).

Proof. Using the terminology of Lemma 4, and by
Lemma 7, the cost of the Halving k-Jump Algorithm
equals

k
chi = 1+27r—6—2(ai — 2sin (o /2))

i=1

where the jump steps are as determined in Theorem 6.
From the expression above, it is immediate that the cost
is strictly increasing in k, as long as all jump steps are
positive. Next, we compute the summation in parts.
We have,

k
B+ Zai
i=1

[ps]—1 k
=p+ Z Qj + Z oy
i=1 i=[p]
k—lpsl
=B+ (ps] - Der—B)+ Y —22
=0

=B+ ([ps] =127 — B) + afp, (2 - ﬁ)

=5+ (a1 - Der - 0) + (v - Zln -).

9 1
"~ 9k—Tps]

_ [psl@r—B) 2
2k—[psl+1 ’

26

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Finally,
k [ps]—1 k
Zsin(ai/2): Z sin (o /2) + Z sin (o /2)
i=1 i=1 i=[ps]
k—pg] a
= (fos] ~sin(3/2)+ Y sin (Sl

=0

Putting the two expression together gives the
promised cost. This proves Theorem 8.

Figure 5 summarizes the cost of the Halving k-Jump
Algorithm for k£ = 1,2,3 and 4.

1 2 3 4 5 6

Figure 5: The performance of the Halving Algorithm for
1,2,3 and 4 jumps (decreasing in the number of jumps,
respectively) as a function of §.

6 Some Optimal k-Jump Algorithms & Comparison

It is apparent from Lemma 4 that choosing the optimal
jump steps ag,...,ar amounts to solving the involved
optimization problem ming, .. a, maxtzl,,_ﬂk_}_l{cf},
where «; < min{m, 27 — 8}. In this section, we con-
trast the choices and performance of the Halving k-
Jump Algorithm with the choices and performance of
the Optimal k-Jump Algorithm that was obtained us-
ing optimization software packages, for k < 3 (except
from k = 1 whose formal analysis appears in Section 3).
Our findings are summarized in the figures below.

—_ Optimal 2-Jump Alg I

— Halving 2-Jump Alg

1 2 3 4 5 6

Figure 6: Performance comparison between the Optimal
2-Jump Algorithm and the Halving 2-Jump Algorithm,
as a function of f.

1.0
_ Jump: Optimal 1-Jump Alg
0.5 —_— Jump: Halving 1-Jump Alg
' 1 2 3 4 5 6

Figure 7: Comparison of jump choices between the Op-
timal 1-Jump Algorithm and the Halving 1-Jump Algo-
rithm, as a function of j3.

Optimal 1-Jump Alg
— Halving 1-Jump Alg

0 1 2 3 4 5 6

Figure 8: Performance comparison between the Optimal
1-Jump Algorithm and the Halving 1-Jump Algorithm,
as a function of 3.

e Optimal 2-Jump Alg
—_— Halving 2-Jump Alg

Figure 9: Comparison of the two jump choices between
the Optimal 2-Jump Algorithm and the Halving 2-Jump
Algorithm, as a function of 5. The first jump of each
algorithm is always no smaller than the second one, and
eventually they all attain the value 27 — 3.

—_— Optimal 2-Jump Alg
Halving 2-Jump Alg

Figure 10: Comparison of the three jump choices be-
tween the Optimal 3-Jump Algorithm and the Halving
3-Jump Algorithm, as a function of 5. For both al-
gorithms, the first jump of each algorithm is always
no smaller than the second one, which is no smaller
than the third one. Eventually they all attain the value
2 — 3.

27

28" Canadian Conference on Computational Geometry, 2016

_ Optimal 2-Jump Alg
e Halving 2~Jump Alg

1 2 3 4 5

Figure 11: Performance comparison between the Op-
timal 3-Jump Algorithm and the Halving 3-Jump Al-
gorithm, as a function of S. Notably, performance is
nearly the same for all values of g > 5. The bigger dis-
crepancy is observed for values of 8 close to 4, for which
also the jump steps between the two algorithms exhibit
the larger gaps (see Figure 10).

For k = 1,2,3 we numerically compute the optimal
k-Jump Algorithm (note that for & = 1, the rigorous
analysis appears in Section 3). Then, we contrast the
performance of the optimal and of the Halving algo-
rithm (for the same number of jumps), as well as con-
trasting their corresponding jump steps. The numerical
calculations indicate that the choices of the Halving al-
gorithm are nearly optimal for a wide spectrum of 3
(with the largest discrepancy for 8 &). Interestingly,
for larger values of 3, the choices of the Halving algo-
rithm are nearly optimal that also reflects on the cost
of the two algorithms which becomes nearly identical.
More importantly, experiments indicate that for large
values of 3, the optimal choices for k jump steps is to
make all equal to 2w — 3, which is also the choice of the
Halving algorithm.

7 Conclusion

In this paper we investigated a new search problem for a
mobile robot to find a stationary target placed at an un-
known location at distance 1, in the presence of a fence
placed on the perimeter of a unit disc. First we deter-
mined the optimal 1-Jump algorithm for the robot to
find the target. Then we provided a generic description
of k-Jump algorithms and analyzed their cost depending
on the jump landings. Subsequently, we analyzed the
Halving k-Jump algorithms, where & is the max num-
ber of jumps the robot makes so as to overcome the
fence and find the target. Several interesting questions
remain open, when e.g., there are multiple fences on
the perimeter of the disc, and the robot’s speed changes
when traversing a fence.

References

[1] S. Badal, S. Ravela, B. Draper, and A. Hanson. A
practical obstacle detection and avoidance system. In

2]

8]

(4]
(5]

(6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Appl. of Computer Vision, 1994., Proceedings of the
Second IEEE Workshop on, pages 97-104. IEEE, 1994.

R. Baeza-Yates and R. Schott. Parallel searching in the
plane. Computational Geometry, 5(3):143-154, 1995.

R. A. Baezayates, J. C. Culberson, and G. J. Rawlins.
Searching in the plane. Information and computation,
106(2):234-252, 1993.

A. Beck. On the linear search problem. Israel Journal
of Mathematics, 2(4):221-228, 1964.

R. Bellman. An optimal search.
5(3):274-274, 1963.

SIAM Review,

S. Benkoski, M. Monticino, and J. Weisinger. A survey
of the search theory literature. Naval Research Logistics
(NRL), 38(4):469-494, 1991.

A. Blum, P. Raghavan, and B. Schieber. Navigating
in unfamiliar geometric terrain. In STOC 1991, pages
494-504. ACM, 1991.

J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis,
R. Martin, and D. Pajak. Evacuating robots via un-
known exit in a disk. In DISC 201}, Austin, TX, USA,
October 12-15, 2014. Proceedings, pages 122—-136, 2014.

J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan,
J. Opatrny, and B. Vogtenhuber. Evacuating robots
from a disk using face-to-face communication (extended
abstract). In CIAC 2015, Paris, France, May 20-22,
2015. Proceedings, pages 140-152, 2015.

J. Dobbie. A survey of search theory. Operations Re-
search, 16(3):525-537, 1968.

S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro.
Mobile search for a black hole in an anonymous ring. In
DISC 2001, Lisbon, Portugal, October 3-5, 2001, Pro-
ceedings, pages 166—179, 2001.

S. R. Finch and J. E. Wetzel. Lost in a forest.
American Math. Monthly, 111(8):645-654, 2004.

K. Georgiou, E. Kranakis, and A. Steau.
Searching with advice: Robot fence-jumping
(http://arxiv.org/abs/1606.08023), 2016.

F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The
polygon exploration problem. SIAM Journal on Com-
puting, 31(2):577-600, 2001.

J. Isbell. An optimal search pattern. Naval Research
Logistics Quarterly, 4(4):357-359, 1957.

B. O. Koopman. The theory of search: III. the optimum
distribution of searching effort. Operations research,
5(5):613-626, 1957.

C. Pozna, F. Troester, R.-E. Precup, J. K. Tar, and
S. Preitl. On the design of an obstacle avoiding trajec-

tory: Method and simulation. Mathematics and Com-
puters in Simulation, 79(7):2211-2226, 2009.

L. D. Stone and H. R. Richardson. Search for targets
with conditionally deterministic motion. SIAM Journal
on Applied Mathematics, 27(2):239-255, 1974.

The

28

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

On the Stability of Medial Axis of a Union of Disks in the Plane

David Letscher*

Abstract

We show that the medial axis of union of disks in the
plane is stable provided that the topology is preserved
and every disk meets the boundary in a single arc. If
the second condition is removed, the medial axis is no
longer stable, but if pruned using any of four significance
measures (circumradius, erosion thickness, object angle
or potential residue) it remains stable.

1 Introduction

The medial axis of a shape has proven to be one of the
most useful tools in computational geometry. One of
its most important properties is that it represents the
full topology of the shape [5]. For most shape repre-
sentations there are no known algorithms to calculate
the medial axis exactly. The only context where it can
be calculated efficiently for sizable datasets is when the
shape is a union of balls [2]. Because of this, most prac-
tical algorithms that utilize the medial axis do so for
shapes represented as a finite union of balls.

For general shapes, it is well known that the medial
axis is unstable under small perturbations. One ap-
proach to stability has been to deal with subsets of the
medial axis, such as the A-medial axis, which can be
shown to represent the topology of the shape and be
stable under small perturbations of the shape [4].

In this paper, we consider a different approach; we
restrict our family of shapes to be a union of disks in
the plane and study how the medial axis can change
when disks move and change size. The one restriction
that we will use thoughout is that the topology of the
shape will not be allowed to change.

First we will show that if we add the additional as-
sumption that each disk meets the boundary of the
shape in at most one arc then the medial axis is sta-
ble, i.e. the medial axis changes continuously in the
Hausdorff metric.

The second result applies to several significance mea-
sures on the medial axis. If we allow disks to change
their intersection patterns with the boundary but not

*Department of Mathematics and Computer Science, Saint
Louis University, letscher@slu.edu. Research partially sup-
ported by NFS grant I1S-1319944.

TDepartment of Mathematics and Computer Science, Saint
Louis University, ksykes2@slu.edu. Research partially supported
by NFS grant CCF-1054779.

Kyle Sykes®

Figure 1: The medial axis of a union of disks. The sin-
gular points and vertices of the medial axis are marked.

the topology of the shape, the medial axis can change
substantially but the significance measures are still sta-
ble. This implies that is we were to truncate the medial
axis using these significance measures, similar to the
A-medial axis, then the truncated medial axis change
continuously in the Hausdorff metric.

2 Maedial Axis of a Union of Disks

Both Attali and Montanvert [3] and Amenta and Kol-
luri [2] have characterized the medial axis of a union
of balls. A simple modification of either yields the fol-
lowing characterization of the medial axis of a union
of disks in the plane. It utilizes the Voronoi diagram
of the singular points, the points of intersection of the
boundary of two or more disks. These points are pre-
cisely where the boundary of the union of disks fails to
be differentiable.

Lemma 1 Suppose that X C R? is a union of disks that
is also a surface with boundary then the medial axis of
X s a graph where
o Vertices are either vertices of the Voronoi diagram
of the singular points of X or centers of disks with
two or more singular points on their boundaries.
o Fdges between vertices connect two vertices and are
equidistant from two singular points with no closer
singular point.

29

28" Canadian Conference on Computational Geometry, 2016

Definition 2 A union of disks, X C R2, is generic if

e The disks have positive radii and distinct centers.

e No three centers are co-linear.

e X is a manifold with boundary.

e No singular point lies on the boundary of three or

more disks.

Any disks contained in X that has four or more
singular points on its boundary is one of the disks
comprising the union.

Otherwise, the union of disks is called degenerate.

For generic unions of disks, the vertices of its medial
axis are either centers of disks or Voronoi vertices with
exactly three adjacent edges. See Figure 1 for an exam-
ple.

3 Configurations of Unions of Disks

We will distinguish between the set of disks and the
shape their union forms. A single disk in R? can be
represented as a tuple (x,y,r) storing the disk’s center
and radius (which is required to be non-negative). The
set of configurations of n disks in R? will be denoted C,,
which is a subset of R3". For a configuration a € C,,
we will denote the corresponding shape X, C R? as the
union of the disks specified by a.

Consider a path 7 in C,, and the corresponding unions
of disks. As the disks move around and change sizes
there are two ways the medial axis can change. The
first is that singular points could appear or disappear.
The second is the Voronoi diagram of the singular points
changes. In the study of dynamic Voronoi diagrams, it
has been shown that if points move continuously in the
plane then the Voronoi diagram changes continuously in
the Hausdorff metric and it combinatorics change when
more than three points lie on a circle simultaneously [1].

Each possible change to the medial axis corresponds
to a particular degenerate configuration of the disks. We
will show that any path in the configuration space can
be infinitesimally perturbed to hit these degeneracies in
isolated points and only one at a time. By studying
what happens at each of these degeneracies we will be
able to understand the stability of the medial axis.

The degenerate configurations correspond to each of
the conditions in definition 2. Each can be described by
a set of polynomial constraints, shown below. Assume
that {(z;,y:)} are the centers of the disks and {r;} are
their radii. We will use (s;,¢;) to represent the coordi-
nates of a singular point.

Zero radius disk Some fixed disk has zero radius.

r; = 0 for some 1

Centers coinciding Two fixed disks have identical
centers.

(@i, yi) = (z4,y,) for some i # j

Co-linear centers Three of more centers of circles are

co-linear.
xi Yy 1
z; y; 1 |=1for some distinct 7, j, k
T yp 1

Co-tangent disks The boundaries of two specified
disks are tangent to each other.

(2 — ;) + (s — y;)? = (rs £ v;)? for some i, j

Triple point A singular point is the intersection of
the boundary of three of the disks.

(i —2)*+ (g —2)? =r2Viel

where |I| = 3 and (z,y) are the coordinates of the
triple point
Co-circular singular points There are four specified
singular points that lie on a circle that is not the
boundary of one of the disks in the configuration.
2

T

(zi —s5)% + (i — 1)
(=) + (y —1;) r?

Where each pair (7, j) determines which circles the

singular points lie on and (z,y) is the center of the

circle of radius r the singular points lie on

Since solutions to polynomial systems have zero mea-
sure you can immediately show the following.

Proposition 3 For any configuration o € C,, and e > 0
there exists a genmeric configuration B € C, such that

d(a, B) < e.

The results in this paper utilize two main techniques.
The first, allows us to perform infinitesimal perturba-
tions of paths in the configuration space to ones that
are generic almost everywhere along their length. The
medial axis changes smoothly between these few degen-
erate configurations. By analyzing what happens to the
medial axis at each of these degeneracies we will be able
to see exactly how the medial axis can change and what
happens to several significance measures.

Proposition 4 For any path v : [0,1] — C,, with end-
points being generic configurations and € > 0 there exists
a path v.[0,1] — C,, such that
® 7e(0) =7(0),7(1) = (1)
e length(v.) < length(y) + €
L4 dH (’Ye, 7) <€
e For all but finitely many values of t, y(t) is a
generic configuration and at those values the con-
figuration has exactly one degeneracy.

30

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

If we define G,, C C,, to be all configurations that have
at most one degeneracy, then the proposition implies
that

dg, (a, B) = de, (o, B)

So instead of having to worry about configurations with
multiple degeneracy, we can assume that we only have
configurations that are either generic or have exactly
one degeneracy. The major steps in the proof are:

1. Perturb the path so that no disk has zero radius.

2. The set of configurations where two centers coincide
is a co-dimension 2 linear subspace of the configu-
ration space. Any path can be perturbed off of all
of these subspaces.

3. The configurations that do not satisfy the other
genericity conditions form an algebraic variety in
a possibly extended set of coordinates. It can be
shown that the singular points of these varieties
and the intersections of these varieties are all co-
dimension 2 or higher and can be avoided.

4. Finally, the path can be perturbed to intersect each
of the manifold regions of these varieties trans-
versely.

4 Changes to the Medial Axis at Degenerate Con-
figurations

Figure 2 shows the changes to the medial axis at
each type of degenerate configuration. The figures are
slightly before, at and slightly after the degenerate con-
figuration. Only configurations where the topology of
the union of disks is unchanged and where the medial
axis combinatorics are changed. At all other degenera-
cies the medial axis moves continuously.

The first of the three cases deals with co-tangent
disks. Notice that this tangency occurs with one disk
contained in another. If they were adjacent then either
the point would be in the interior of another disk or a
change in topology would occur. In the first case there
is not change in the combinatorics of the medial axis
and the second violates our assumptions. When one
disk is contained in another, immediately after the disk
emerges a new edge is created. This edge goes between
the centers of the two disks.

In the second case in the figure, a disk emerges from
the union of disks passing through a singular point in
the boundary. Similar to the previous case a new edge
appears instantaneously. The edge goes between the
center of an emerging disk and a newly formed Voronoi
vertex. In the degenerate configuration this Voronoi
vertex lies on a pre-existing edge that is adjacent to the
singular point the disk is passing through.

In the final case, the singular points change posi-
tions but do not appear or disappear. This case is cov-
ered in the literature on dynamic Voronoi diagrams [1].

Before Degenerate After

= z <
< > ’ \
/ \) \
I |

A7 ON

|
/
N ’

Figure 2: The changes in the medial axis for (a) cotan-
gent disks, (b) triples points and (c¢) four circular sin-
gular points. The relevant portion of the medial axis is
shown in blue. The red edges represent edges of the me-
dial axis that appear instantaneously after the moving
circle meets the boundary.

One edge of the medial axis collapses to a point and
a different edge emerges. Throughout this combinato-
rial change, the medial axis changes continuously in the
Hausdorff metric.

If we are willing to change the shape slightly, then
we can assume each hits the boundary in a single arc.
If this property is maintained through a perturbation
singular points never appear or disappear and the only
changes in the combinatorics of the medial axis are edges
shrinking to a point and the reverse. Away from these
changes in combinatorics, the disks, singular points and
vertices of the medial axis all move continuously. This
shows that, in the Hausdorff metric, the union of disks
change continuously.

Theorem 5 If B C G, consists of configurations of
disks where every disk meets the boundary of the shape
in at most a single arc, then the medial axis of X, varies
continuously in the Hausdorff metric as o varies con-
tinuously over configurations in B.

It is worth noting that the analogous result is not true
in 3-dimensions.

5 Stability of Significance Measures

We will examine several significance measures on the
medial axis. These are all real valued functions, with

31

28" Canadian Conference on Computational Geometry, 2016

larger values corresponding to more significant regions.
These measures we study are circumradius, object an-
gle [9], potential residue [7] and erosion thickness [6, 8].
Note that the A»-medial axis uses circumradius as its sig-
nificance measure to prune the medial axis.

Consider a simply connected shape X C R? and a
point x on the medial axis M. The significance measures
can be defined as follows:

Circumradius R(z) is the minimum radius of a disk in
X containing the two closest points on the bound-
ary to x.

Object angle OA(x) is the angle between the vectors
from z to the two closest points on 90X to x.

Potential residue PR(z) is the distance on 0X be-
tween the two closest points on 90X to .

Erosion thickness We choose a definition equivalent
to the one in [6], ET(z) is defined as

max{min{dys (x,)+D(1), dps (x,1")+D(')}—D(x)}

where dps(z,y) is distance measured on the medial
axis, D(z) = d(z,0X) and the maximum is taken
over all leaves [,l’ such that x is on the path be-
tween the two leaves.

As a shape is perturbed, we will show that each of
these significance measures changes continuously as the
vertices move. In particular, when new spurs are created
in the medial axis, see Figure 2, all of these significance
measures are zero on the newly created points. We will
adapt the Hausdorff metric to measure the differences
between functions with different domains.

Definition 6 Consider two sets X,, Xo C R? and func-
tions f; : X; — R, the extended Hausdorff distance
dpu (X1, f1), (X2, f2)) is defined as dy(Y1,Y2) where
Y, ={(z, fi(z)) | v € X;} U (R2 X {0})

Notice that two spaces are considered close in this
extended Hausdorff distance if every point has a small
function value or it is close to a point on the other set
that has a similar function value.

We can examine what happens to each of these signif-
icant measure as the union of disks changes under the
assumption that there is no change in the topology of
the union of disks. There are two ways an edge could
disappear: shrinking continuously to a point and disap-
pearing when two disks become cotangent. An edge ap-
pears in the reverse of either of these processes. See Fig-
ure 2 for examples. Consider a point on one of these
edges that appear instantaneously. Immediately after
the edge appears, there are two singular points that are
closest to the edge. As you get closer to the time where
the edge appears, these singular points merge. In the
limit cirucumradius, object angle and potential residue
are all identically zero on the edge. Erosion thickness
is also zero on the edge at the time the edge appears

since the shortest path from any point on the edge to
the boundary goes through a leaf of the medial axis.

Away from these degenerate configurations the singu-
lar points and the medial axis all move continuously. It
is easily shown that all four significance measures also
change continuously with the changes in the shape. This
yields the following theorem.

Theorem 7 If f is either circumradius, object angle,
potential residue or erosion thickness then MA(X,,)
varies continuously as a moves continuously in G,.

Corollary 8 For everyt > 0,
My ={ze MA(X,) | f(z) >t}

varies continuously in the Hausdorff metric as o mowves
continuously in G,.

This corollary implies that if you truncate the me-
dial axis using any of these significance measures then
it changes continuously as the union of disks are per-
turbed. An example of this is shown in Figure 3 using
erosion thickness. It is worth noting that for arbitrary
truncation values, only erosion thickness is known to
preserve topology. This corollary is already known for
sufficiently small thresholds for circumradius since in
this case M, + is the A\-medial axis.

Future Work

There are several natural extensions that are worth
considering. These include considering more general
shapes and extending to three dimensions. Another nice
project would be building kinetic data structure to effi-
ciently track the changes in the medial axis as the balls
move around.

Acknowledgments

We would like to thank Erin Chambers, Tao Ju and
the anonymous reviewers for helpful suggestions on this
work.

References

[1] G. Albers, L. J. Guibas, J. S. Mitchell, and T. Roos.
Voronoi diagrams of moving points. International
Journal of Computational Geometry € Applications,
8(03):365-379, 1998.

[2] N. Amenta and R. K. Kolluri. The medial axis of a
union of balls. Computational Geometry, 20(1):25-37,
2001.

[3] D. Attali and A. Montanvert. Computing and simplify-
ing 2d and 3d continuous skeletons. Computer Vision
and Image Understanding, 67(3):261-273, 1997.

32

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

9o
(D

550 QOO

i

-
%

K
AN
; B
VoS N
LN A7)
'r‘A.“‘q H 4§»“:”3’l
=

Figure 3: Two poses of a ballerina. Top row: the union
of disks representing the shapes. Middle row: the me-
dial axes. Bottom row: the medial axes pruned using
erosion thickness. As the dancer moves these pruned
medial axes transform continuously (in the Hausdorff
metric) from one to the other.

[4]

8

F. Chazal and A. Lieutier. Stability and homotopy of
a subset of the medial axis. In Proceedings of the ninth
ACM symposium on Solid modeling and applications,
pages 243-248. Eurographics Association, 2004.

A. Lieutier. Any open bounded subset of R™ has the
same homotopy type as its medial axis. Computer-
Aided Design, 36(11):1029-1046, 2004.

L. Liu, E. W. Chambers, D. Letscher, and T. Ju. Ex-
tended grassfire transform on medial axes of 2d shapes.
Computer-Aided Design, 43(11):1496-1505, 2011.

R. Ogniewicz and M. Ilg. Voronoi skeletons: The-
ory and applications. In Computer Vision and Pattern
Recognition, 1992. Proceedings CVPR’92., 1992 IEEE
Computer Society Conference on, pages 63-69. IEEE,
1992.

D. Shaked and A. M. Bruckstein. Pruning medial axes.
Computer vision and image understanding, 69(2):156—
169, 1998.

A. Sud, M. Foskey, and D. Manocha. Homotopy-
preserving medial axis simplification. International
Journal of Computational Geometry € Applications,
17(05):423-451, 2007.

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

kth Nearest Neighbor Sampling in the Plane*

Kirk P. Gardner
University of Connecticut
kirk.gardner@uconn.edu

Abstract

Let B be a square region in the plane. We give an effi-
cient algorithm that takes a set P of n points from B,
and produces a set M C B with the property that the
distance to the second nearest point in M approximates
the distance to the kth nearest point of P. That is, there
are constants a, 8 € R such that for all z € B, we have
adpy(z) < dpye(z) < Bdpi(z), where dps2 and dpy
denote the second nearest and kth nearest neighbor dis-
tance functions to M and P respectively. The algorithm
is based on Delaunay refinement. The output set M also
has the property that its Delaunay triangulation has a
lower bound on the size of the smallest angle. The pri-
mary application is in statistical density estimation and
robust geometric inference.

1 Robust Sizing Functions

Since the pioneering work of Chew [3] and Rup-
pert [9], Delaunay refinement has remained an impor-
tant approach to mesh generation (see for example the
book [2]). The algorithm: Starting from the Delau-
nay triangulation of the input points P (restricted to
a bounding box B), repeatedly add the circumcenter
of any triangle whose circumradius is more than a con-
stant times larger than the length if its shortest edge.!
Such a triangulation is said to have bounded radius-edge
ratio and will be referred to as a quality mesh and will
necessarily also have a lower bound on the size of the
smallest angle. Ruppert showed that not only does this
remarkably simple algorithm terminate, it produces a
point set that is asymptotically optimal in size [9].

The key to Ruppert’s analysis is the so-called feature
size function, which for a point set P is the distance to
the second nearest point of P, denoted dps : R? — R.
There is a constant + such that output set M has the
property that

ydp2 <dpy2 < dpp.

The optimality of the approach comes from proof that
if M is the vertex set of a quality mesh containing P,

*This work was partially supported under grants CCF-1464379
and CCF-1525978.

LRuppert’s analysis also works for more general inputs includ-
ing line segments as well.

Donald R. Sheehy
University of Connecticut
don.r.sheehyQ@gmail.com

then

120 (] o drator)

The preceding integral defines a measure, whose den-
sity is related to the second nearest neighbor density
estimator used in statistics. It is a useful feature of
Delaunay refinement that it reveals this function with-
out explicitly computing or estimating it. However, for
the convergence of such estimators, one must generally
choose k as a function of n = |P| so that k(n)/n — 0
and k(n)/log(n) — oo as n — oo [5]. So, for example,
taking k(n) = y/n is reasonable and sufficient. Moti-
vated by this relationship between mesh generation and
density estimation, we address the following problem.

Problem 1 Given a set P in a bounding box B C R?,
find a quality mesh with vertex set M C B such that

adpy < dpp2 < fdpy
for some constants o and (3.

We show how to solve this problem using a variation of
Delaunay refinement.

2 Background

We will denote the Euclidean distance between points
a,b € R? as ||a—b||. For any set S C R? and integer k >
1, define dg ; : R? — R so that dg (z) is the distance to
the kth nearest point of S to € R2. Formally, letting
(i) denote the set of k element subsets of S,

dsi(2) ;= min max||z — yl.
selw) = min oo~ |

The distance from a point x € R? to a set S is dg ()
and will be denoted dg(z).

We define the ball centered at a point € R? with
radius 7 as

ball(e,r) = {y € B | |z — y| < r}.

The smallest ball centered at a point # € R? containing
k points in a set S will be denoted

ball, g, := ball(z,dgk(x)).

34

28" Canadian Conference on Computational Geometry, 2016

For aset S C R? we will define a triangle with vertices
u,v,w € S as the convex closure of the points u, v, w:

tyuww ={au+bv+cw|a+b+c=1, a,b,c€Rxp}

The circumcenter of a triangle ¢ = ¢,, ,,,,, is the unique
point that is equidistant to each vertex w, v, w, and will
be denoted cc(t). This distance to each vertex u, v, w is
the circumradius of ¢, and will be denoted rad(t) so
that

rad(t) = [lec(t) — ull = [[ec(t) = v[| = [[ec(t) — w]|

The circumcircle of ¢ is the smallest ball containing the
points u, v, w, and will be denoted cball(t). Formally,

cball(t) := ball(cc(t), rad(t)).

2.1 Delaunay Triangulations and Voronoi Diagrams

Definition 1 For a set S C R? the Delaunay trian-
gulation of S is the set of triangles t =t . such that
no point p € S\{u,v,w} is contained in the circumcircle
of t and is denoted

Delg := {ty,vw | cball(tyyw) NS = {u,v,w}}

The set of Delaunay vertices of Delg is the set .S itself.
The Voronoi cell of a point u € S is the set of points
x € R? that are closer to v than any other point in S.

Vors(u) := {z € R? | dg(x) = |lu — 2|}

Definition 2 For a set S C R? the Voronoi diagram
of S is the set of all Voronoi cells of the points in S and
is denoted

Vorg := {Vorg(u) | u € S}.

For a set S C R? the Voronoi diagram Vorg is dual
to the Delaunay triangulation Delg. That is, Delau-
nay vertices u € S correspond to Voronoi cells (faces)
Vorg(u) and the Delaunay triangles ¢ € Delg corre-
spond to Voronoi vertices, defined to be the circum-
centers cc(t). The set of Voronoi vertices corresponding
to a point u € S will be denoted

Vorl(u) := {cc(tuww) € Vors(u) | ty . € Dels}.

The Voronoi edge corresponding to points u,v € S is
the intersection of the Voronoi cells of © and v and will
be denoted

Vorg(u,v) := Vorg(u) N Vorg(v).

For any w,v € M such that Vorg(u,v) # () the Voronoi
edge Vorg(u,v) corresponds to an edge of the Delaunay
triangulation, defined to be the convex closure of the
points u and v.

The outradius of a Voronoi cell Vorg(u) is the radius
of the smallest ball centered at u containing Vor%(u),
and will be denoted

R(u) :== max |c— ull

ceVor (u)

The outradius of u is the distance to the farthest
Voronoi vertex of Vorg(u), denoted

farCorner(Vorg(u)) := argmax |jc — u]|.
cevVor (u)

Definition 3 The aspect ratio of a Voronoi cell
Vorg(u) is the ratio of the distance to its farthest corner
to the distance to its nearest edge and is denoted

~ 2R(u)
a dsg(u).

A set S C R? is said to be T-well spaced if

aspect(Vorg(u)) :

aspect(Vorg(u)) <7

forallu € S.

2.2 Periodic Point Sets

To avoid additional boundary conditions we will work
in a covering space of the flat torus, which can be
defined as T? = R?/Z? (see [1]). That is, we will restrict
ourselves to a bounding box B = [0, 1)? and use copies
of a set S C B to simulate periodicity.

For any finite point set S C B we will define the
corresponding periodic point set as the set S + Z2
imbued with an equivalence relation so that x ~ y if
there exists some a € Z? such that y = z + a. Noting
that s € P for all s € S we may therefore refer to the
set of periodic copies of s by the equivalence class

s]={zeS+7Z*|3acZ? : z=s+a}.

3 Algorithm

For a bounding box B = [0,1)? the following algorithm
will use periodic points € B + Z? to denote equiva-
lence classes [z] of which 2 € B are representative. The
use of periodic points is a technical requirement of the
algorithm in order to avoid additional points along the
edge of the bounding box. As our analysis does not de-
pend on the use of periodic points we will return to the
original sets in the following sections.

Algorithm 1 takes as input a finite point set P C B,
a set of initial mesh vertices My C B which we will take
as a set of points arranged along a square in B, and
constants 7 > 2, k > 1. The algorithm constructs a
periodic set of mesh vertices M C B + Z? satisfying

aspect(Vorp (v)) < 7

35

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

for all v € M and Figure 1 depicts an application of the CLEAN proce-
dure to a point v € M such that aspect(Vory (v)) > 7,
[Vorn(v) N P| <k, dpy(cc(t)) > rad(?) resulting in the insertion of farCorner(Vors(v)).

for all v € M, t € Dely,.

Figure 2: An example of the BREAK procedure applied
to an instance with v € M such that Vorp(v) (red
cell, left) containts at least & = 4 points in P (blue
rings) initiating the insertion of farCorner(Vorys(v))
(red point, right).

Figure 2 illustrates an application of the BREAK pro-
cedure to a Voronoi cell containing at least k& = 4 points
in P, initiating the insertion its farthest corner. Sim-
ilarly, Figure 3 depicts an application of the BREAK
procedure to a configuration in which a Delaunay cir-
cumcircle contains at least k& = 4 points in P, initiating
the insertion its circumcenter.

Figure 1: An application of the CLEAN procedure which
chooses a point v € M with aspect(Vors(v)) > 7 (red
cell, top) and adds farCorner(Vor,s(v)) (red point,
bottom).

Algorithm 1 KNNREFINE(P, Mo, 7, k) Figure 3: An example of the BREAK procedure applied
1: Mo+ My+7Z2, P+ P+72% M+ M, to an instance with ¢ € Del,s such that cball(t) (red
2. while there is a v € M or t € Dely such that disk, left) contains at least k = 4 points in P (blue rings)

dpy(cc(t)) < rad(t) or |[Vorp (v) N P| >k do initiating the insertion of cc(t) (red point, right).
3 M <+ BREAK(M, P)
4 while Jv € M with aspect(v) > 7 do Restricting ourselves to the bounding box B = [0,1)?
5 M « CLEAN(M, v) the remainder of this section will provide upper and
6: procedure BREAK(M, P) lower bounds on the second nearest neighbor function
7 if 3¢t € Delys with dpi(cc(t)) < rad(t) then djs2 in terms of the kth nearest neighbor function dp
8 M — MU {cc(t)} in order to prove Theorem 6 stated below.
9 else if Jv € M with |Vor,(v) N P| > k then
10: M + M U {farCorner(Vor;(v))} Theorem 6 (Main Theorem) Let P C B be a finite

point set and T > 2, k > 1 be constants. Let My C B be
a set of initial mesh vertices.
If KNNREFINE(P, My, 7, k) terminates the resulting

11: procedure CLEAN(M,v)
12: M + M U {farCorner(Vor(v))}

36

28" Canadian Conference on Computational Geometry, 2016

set of mesh vertices M is T-well spaced,
[Vorp(v) N P| < k, dp(cc(t)) > rad(t)
for allve M, t € Dely, and

adpy < dyp < Bdpg

_ T2 _3—9, _ 1
where o = £, B = = and ¥r = /1 — .

3.1 Lower Bound

We will first show that the second nearest neighbor func-
tion das2 to the output set M C B is not too small
compared to the kth-nearest neighbor function dpy to
the input set P C B.

Let My € M be a set of input vertices and v; be
the ith circumcenter added to M. We define an order
relation < on M such that for all ¢ > 0

Uy < Vi—1 < U;
where ug € My.

Definition 4 For a set M C B imbued with the order
relation < the insertion radius of a v € M is the
distance from v to its nearest predecessor and is denoted

Ay := min |ju — v||.
u<v

The insertion radius A,, of the ith vertex is the dis-
tance to the closest point in M; C M where M; =
{v; | 0 < j <i} is the ordered set of mesh vertices in
M before the point v; is added. Note that the insertion
radius of a point v; will be at most |lv; — v;|| for all
v € M;.

Lemma 1 shows that it suffices to bound the insertion
radius for each v € M in order to bound dps 2 by dp
over M.

Lemma 1 Let K > 0 be a constant.
Ifdpi(v) < (K — 1)\, then

dpr(v) < Kda2(v)
forallve M.

Proof. Let v € M and u € M \ {v} be such that |ju —
v|| = dp2(v). If w < v then by assumption
dp’k<1}) < (K — 1))\1, < KM\,
< Klu— v = Kdara(v).
So, we may assume v < wu, which implies
Ay < HU - ’U” = dM72(U). Thus,
dpi(v) < dpg(u) + |lu— v
< (K =D+ flu—vf
S Kd]mg(v).

[dpyk. is Lipschitz]
[dp,k(u) < (K — 1>)\u]

[%u < dp2 (v)]

We now apply Lemma 1 to the kth-nearest neighbor
function to provide a lower bound for ds 2 by induction
on the set of mesh vertices M produced by Algorithm 1.
We will set A, > dpi(up) for all ug € Mp.

Lemma 2 Let My C B be a set of initial mesh ver-
tices such that dp(ug) < Ay, for all ug € My. For
constants T > 2, k > 1 let M C B be a set of mesh
vertices imbued with the order relation < resulting from
KNNREFINE(P, My, 7, k).

If M is T-well spaced then for all v € M

dpi(v) < Kda2(v)

where K = %
Proof. Lemma 1 implies that it suffices to show that
dpi(v) < (K — 1)\, for all v € M. We will show this
by induction on the number of circumcenters added.

Let M; denote the set of mesh vertices in M before the
ith circumcenter is added. In the base case we require
dpi(ug) < Ay, for all ug € My. It follows dp(ug) <
(K — 1)\, as K > 2.

Assume inductively that dpj(v) < (K — 1)\, for all
v € M;, and note that Lemma 1 implies

dp7k(v> S KdMi’g(’U)

for all v € M;.

Let v; be the ith circumcenter added and let u €
M; be the vertex whose Voronoi cell had poor quality,
initiating the insertion of v;. Letting w € M, be the
second nearest neighbor of u so that w # u and ||u —
w|| = dag, 2 we have

dpk(vi) < dpk(u) + [lu— vl
< Kd, 2(u) + [lu—vill
< Klju— wl| + [lu — v

< lu— vl (¥ + 1)

< flu — wil (K — 1)
< Ao, (K —1).

[dP L is 1-Lipschitz]
[Lemma 1 and hypothesis]

[Deﬁnition of w]

[aspect(Vor (W) > T]

<= 5]

[Deﬁnition of u}

Asdpy(v) < (K—1)A, for all v € M; by our inductive
hypothesis, Mi+1 = MiU{Ui}, and dp)k(vi) <)\'Ui (K*l)
it follows that dpy(v) < (K — 1)\, for all v € M;44.
It follows by induction that dpr(v) < (K — 1)A, for
all v € M = |J M; by induction, and we may therefore
conclude

dpk(p) < Kda2(p)

for all p € M by Lemma 1. O

Figure 4 illustrates the proof of Lemma 2, depicting
the Voronoi cell Vor y, (u) with bad aspect ratio in the
top figure, and the resulting Voronoi diagram Vorys, ,
after the insertion of v; on the bottom. Note, the inser-
tion radius A,, = ||v; —u|| of v; satisfies min, <, ||[v—v;]|

37

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

as the closest point to v; is the point w initiating its
insertion. This fact allows for the inductive proof of
Lemma 2 as for all ¢ such that aspect(Vory, (u)) > 7
for some u € M; the ith mesh vertex added to M is
v; = farCorner(Voryy, (u)) and Ay, = ||v; — u]|.

Theorem 3 extends the bound on dps 2 over M pro-
vided by Lemma 2 to all points in B for 7-well spaced
sets M.

Figure 4: An illustration of Lemma 2 in which
aspect(Voryy, (u)) > 7 in Vory, (red cell, top) and the
insertion radius A,, of v; = farCorner(Vor,, (u)) is the
distance from u to v; (red point, bottom).

Theorem 3 Let P C B be a finite point set and let
My C B be a set of initial mesh vertices such that
dpi(ug) < Ay for all wy € My. For constants
T >2, k> 11let M C B be a set of mesh ver-
tices imbued with the order relation < resulting from
KNNREFINE(P, My, 7, k).

If M is T-well spaced then for all x € B

O[dp’k({L') S dM’g({L').

_ T2
where o = £—5.

Proof. First note that because M is a ordered and
dpi(ug) < Ay, for all ug € My Lemma 2 implies

dpi(v) < Kdar2(v)

for all v € M.
Let z € B and v € M be such that = € Vor(v).
Because dj,2 and dpj, are 1-Lipschitz, it follows

dpi(z) = llz —v| < dpi(v)
< K(dpa(z) + llz —vl),

therefore, because ||z — v|| < das2(z) we have
dp(z) < Kdaz(2) + [lo = of|(K + 1)
<dme(x)2K +1)

where K = 27 which implies adp(z) < da2(z) for

all x € B. O

3.2 Upper Bound

We now must show that the second nearest neighbor
function to the mesh vertices M C B is not too large
compared with the kth-nearest neighbor function to the
input set P. We will first show that the distance from
any point x € Vors(p) to two points in M is within a
constant factor of the distance from p to the circumcen-
ter cc(t) of some Delaunay triangle ¢ € Dely,.

Lemma 4 Let M be a Tt-well spaced such that
[Vorpy(v) N P| < k for allv € M and let B > 1 be
a constant. Let p € M be such that x € Vor(p) for
any x € B.

If dpr(z) < %sz(m) then there exists a Delaunay
triangle t € Delys with cc(t) € Vor$,(p) such that

I Ll

Proof. Note that because [Vorps(v) N P| < k for all
v € M we have that ball, p, ¢ Vorp(v), and there
therefore must exist some ¢ € M such that ball, p, N
Vorp(q) # 0 and Vors(p,q) # 0. It follows that there
exists some 2’ € Vor(p, q) Nball, p, with das2(2’) =
lp — 2’|l = llg — 2’| such that

duya(z) <dme(z) +llz—a'| |
=lp=2l+llz=2" [ir-2"1 = a2
<lp—2'[+ dpi(x) (

djpg.o s 1-Lipschits]

e — 'l < dp ()]

1
<llp =/l + Gdna@) [anuc < Janac)]
Thus, dya(e) < 525 lp — o/
Because the point 2’ lies on the Voronoi boundary
Vor s (p, q) there must exist some ¢ € Del s with cc(t) €

38

28" Canadian Conference on Computational Geometry, 2016

VorY, (p) NVorY,(q) such that |[p—a'|| < ||p—cc(t)|. It
follows that

O

Theorem 5 states that when Algorithm 1 terminates
dyre < Bdpy. We will draw a contradiction, depicted
in Figure 5, in which there must be some Voronoi cell or
Delaunay circumcircle containing at least k points in P
whenever there exists some « € B such that dpy(z)
is within a constant factor less than dps2(x), as in
Lemma 4.

q, -
o
Vorm(P,) £ 0 gt © fc(t)
ar
o o T |
ball, p,

Vory(p,q)

Figure 5: An illustration of the contradiction drawn
in Theorem 5 (top) in which ball, p, (gray disk) is
contained in the circumcircle of ¢ (red disk). In this
case, Algorithm 1 would not have terminated, as an-
other BREAK move could be performed (bottom).

Theorem 5 Let P C B be a finite point set and T > 2,
k > 1 be constants. Let M C B be a T-well spaced set
such that |Vorp(v) N P| < k for allv e M.

If dp(cc(t)) > rad(t) for all t € Delys then

dy2 < Bdpg

3—9, / 1
=4/1—- —.
T where U, =

Proof. Suppose, for the sake of contradiction, there ex-
ists a point € B such that dp(z) < %dMg(m). Let-
ting p,q € M, t € Delys, and 2’ € ball, p, NVor s (p, q)
be such that z € Vorp(p) and cc(t) € Vorl,(p) N
VorY,(¢) as in Lemma 4 we have

for a constant

B =

<P o).

dara(z) < -1

To simplify notation we will set the point o = P54
at the origin. Because the Delaunay edge of ¢ contain-
ing the points p, ¢ and the Voronoi edge Vors(p, q) are
orthogonal we can bound the distance from z’ to the
circumcenter of ¢ by the Pythagorean Theorem as fol-
lows.

l2” = ce(®)[|* < llec(t) — ol
2 2
<llp = cec®I” = llp - oll

1 2 Ilp — ce(®)l]
< - = — . P et o,
S (1 7_2) lp = cc(t)] [<

Noting that rad(t) = ||p — cc(t)|| we can now prove
that there are at least k points in P is the circumcircle
of t.

dpi(cc(t) < dpr(z’) + l|lz’ — ce(t)||
<dpi(z) +[lp — cc(t)]|9-
<2dpx(z) + [lp — cc()||19-

['iP,k is 1-Lipschitz]
[1a’ = cet)ll < 0]
[dP,Ic(”:l) < 2dP,k(”3)]

2
< Gdua(@) +lp = ce®lr [apuco < Sanaco]

S(E%T+00HP—WUW

< llp = ce(®)]l-

[temma 4]

3— 9,
= 125]
It follows that dpg(cc(t)) < ||p — cc(t)]] = rad(t),
a contradiction, as we assumed dpy(cc(t)) > rad(¢)
for all ¢ € Dely;. We may therefore conclude that if
M C B is 7-well spaced, |[Vorp/(v) N P| < k for all
v e M, and dpy(cc(t)) > rad(t) for all ¢t € Dely,, then
dye < Bdpg. O

3.3 Main Theorem

Our final Theorem 6 states that when Algorithm 1 ter-
minates the output set M is 7-well spaced with strictly

39

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

less than k points from P in each Voronoi cell and De-
launay circumcircle. It will then follow from Theorems 3
and 5 that the second nearest neighbor distance func-
tion dps 2 defined on the bounding box B = [0, 1)2 is
bounded above and below by the kth-nearest neighbor
function of the input set P C B.

Theorem 6 (Main Theorem) Let P C B be a finite
point set and T > 2, k > 1 be constants. Let My be a
set of initial mesh vertices with dpy(uo) < Ay, for all
ug € M.

When KNNREFINE(P, My, 7, k) terminates the result-
ing ordered set of mesh vertices M C B is T-well spaced,

[Vorys(v) N P| <k, dp(cc(t)) > rad(t)
forallve M, t € Dely, and

adpr <dp2 < Bdpg

_ T—2 _ 3-9, _ _ 1
where o = =5, B = i and ¥, = /1 — —.

Proof. First note that each v € M, t € Dely
must satisfy aspect(Vorps(v)) < 7 in order for
each internal CLEAN loop to complete. That is, if
aspect(Vorys(v)) > 7 KNNREFINE(P, My, 7, k) will
not have terminated, as another CLEAN procedure can
be performed.

In order for each outer BREAK loop to complete we
must have that |[Vory;(v) N P| < k and dpy(cc(t)) >
rad(t) for each v € M, t € Dely. Otherwise,
KNNREFINE(P, My, T,k) will not have terminated, as
an additional BREAK procedure can be performed.

So, we may assume aspect(Vorpy(v)) < 7,
[Vorp(v) N P| < k, and dpy(cc(t)) > rad(t) for all
v € M, teDely. As M is an indexed set, dp i (ug) <
Ay, for all ug € My, and aspect(Vory(v)) < 7 for all
v € M it follows from Theorem 3 that

adpy < dpso.
Moreover, because |Vorp(v) N P| < k, and

dpi(cc(t)) > rad(t) for all v € M,t € Dely, it follows
from Theorem 5 that

dyr2 < Bdpp.
We may therefore conclude that in order for Algo-
rithm 1 to terminate the set M of mesh vertices con-

structed by KNNREFINE(P, My, 7, k) must satisfy

adpy, <dy 2 < Bdpi

_ T2 I
for constants a = £—5 and 8 = o U

4 Point Location

At the heart of any Delaunay refinement algorithm is
an incremental Delaunay triangulation algorithm, con-
structing the Delaunay triangulation one vertex at a
time. The standard approach in computational geom-
etry for bounding the running time is to use random-
ization, yielding the randomized incremental algorithm.
However, Delaunay refinement does not permit such ar-
bitrary reordering of the points, because the points to be
added are discovered in the course of running the algo-
rithm. Thus, the original Chew and Ruppert algorithms
could have O(n?) running times. This was improved
by Miller [6] and later by Hudson et al. [4] who de-
veloped the so-called Sparse Refinement approach with
their Sparse Voronoi Refinement (SVR) algorithm.

As the algorithm needs to know the number of in-
put points contained in every Voronoi cell as well as the
number of points contained in every Delaunay circum-
ball, we will maintain two different point location data
structures. The first is a 2-way mapping between points
of P and the Voronoi cells (points of M). The second
is a 2-way association between the points of P and the
Delaunay circumballs. For each local update to the De-
launay triangulation induced by a single insertion, some
Voronoi cells are affected as well as some circumballs.
The sparse refinement approach always maintains some
guarantee on the quality of the underlying triangulation.

We adopt the vocabulary used by Hudson et al. [4]
when describing the algorithm in terms of BREAK and
CLEAN moves. In fact, we will do a strict subset of the
operations that would usually be performed by SVR.
The difference is that in SVR, if any input point from P
has not yet been added, then the algorithm will con-
tinue, whereas our algorithm will halt early if every
Voronoi cell and every Delaunay circumball contains
fewer than k points. Thus, it follows immediately that
our algorithm will also achieve a running time (and out-
put size) of O(nlogA). Here, A denotes the spread of
the input defined as the ratio of the largest to smallest
pairwise distances. We only need to observe that count-
ing the points in a Voronoi cell or Delaunay cicumball
is not more expensive than iterating through the list of
these points which happens anyway each time a Voronoi
cell changes or a Delaunay circumball is created or de-
stroyed.

5 Conclusions and future work

We have shown how a simple modification of Delau-
nay refinement solves the kth nearest neighbor sampling
problem. Several interesting open problems remain.

1. Does the algorithm work in R? for d > 2?7 We
believe the answer is yes.

40

28" Canadian Conference on Computational Geometry, 2016

2. Is it possible to eliminate the dependence on log(A)

as was done for Voronoi refinement of points [7, 8]?

3. Is the size of the sample we produce asymptotically

optimal? Specifically, we would like to extend the
optimality theory of Ruppert [9].

References

[1]

M. Bogdanov, M. Teillaud, and G. Vegter. Cov-
ering spaces and delaunay triangulations of the 2d
flat torus. In 28th European Workshop on Compu-
tational Geometry, 2012.

S.-W. Cheng, T. K. Dey, and J. R. Shewchuk. De-
launay Mesh Generation. CRC Press, 2012.

L. P. Chew. Guaranteed-quality triangular meshes.
Technical Report TR-89-983, Department of Com-
puter Science, Cornell University, 1989.

B. Hudson, G. Miller, and T. Phillips. Sparse
Voronoi Refinement. In Proceedings of the 15th
International Meshing Roundtable, pages 339-356,
Birmingham, Alabama, 2006. Long version avail-
able as Carnegie Mellon University Technical Report
CMU-CS-06-132.

D. O. Loftsgaarden and C. P. Quesenberry. A non-
parametric estimate of a multivariate density func-
tion. Ann. Math. Statist., 36(3):1049-1051, 1965.

G. L. Miller. A time efficient Delaunay refine-
ment algorithm. In J. I. Munro, editor, Proceed-
ings of the Fifteenth Annual ACM-SIAM Sympo-
stum on Discrete Algorithms, SODA 2004, New Or-
leans, Louisiana, USA, January 11-14, 2004, pages
400-409. STAM, 2004.

G. L. Miller, T. Phillips, and D. R. Sheehy. Beating
the spread: Time-optimal point meshing. In Pro-
ceedings of the 26th ACM Symposium on Computa-
tional Geometry, pages 321-330, 2011.

G. L. Miller, D. R. Sheehy, and A. Velingker. A fast
algorithm for well-spaced points and approximate
delaunay graphs. In Proceedings of the 29th annual
Symposium on Computational Geometry, pages 289—
298, 2013.

J. Ruppert. A Delaunay refinement algorithm for
quality 2-dimensional mesh generation. J. Algo-
rithms, 18(3):548-585, 1995.

41

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

NearptD: A Parallel Implementation of Exact Nearest Neighbor Search using
a Uniform Grid

David Hedin*

Abstract

We present NearptD, a very fast parallel nearest neigh-
bor algorithm and implementation, which has processed
107 points in E® and 184 - 108 points in E3. Tt uses 1/5
the space and as little as 1/100 the preprocessing time
FLANN (a well-known approximate nearest neighbor
program). Up to E*, its query time is also faster, by up
to a factor of 100. NEARPTD uses Nvidia Thrust and
CUDA in C++ to perform parallel preprocessing and
querying of large point cloud data. Nearest neighbor
searching is needed by many applications, such as col-
lision detection, computer vision or machine learning.
This implementation is an extension of the Nearpt3 al-
gorithm performed in parallel on the GPU for a variable
number of dimensions. NEARPTD shows that a uni-
form grid can outperform a kd-tree for preprocessing
and searching large datasets.

1 Introduction

Nearest neighbor searching is an operation performed
in many applications, in fields such as computer graph-
ics, computer vision, statistics and machine learning.
Nearest neighbor searching typically consists of prepro-
cessing the data into a search structure to reduce the
time needed for future queries on that dataset. A pop-
ular data structure for preprocessing spatial data is the
kd-tree[4]. Kd-trees cost ©(NlogN) time to preprocess
N fixed points and an average ©(logN) time per query.

NEARPTD uses a uniform grid[1], which stores the
fixed points in a flat search structure. This reduces the
time and space complexity of kd-trees. Because the uni-
form grid used by NEARPTD is not a hierarchical data
structure, the data can be preprocessed, with the appro-
priate choice of grid size, into a grid with a cost of O(NV).
Because querying against the uniform grid does not in-
volve traversing a tree structure, NEARPTD can obtain
expected query times of ©(1). It is possible for adver-
sarial input to increase query times to ©(N), but these
inputs are not often found in real world datasets. Some
of our test datasets have very unevenly spaced data, but
NEARPTD still processed them quickly. These types of

*Rensselaer Polytechnic Institute, david.hedin13@gmail.com
fRensselaer Polytechnic Institute, mail@wrfranklin.org

W. Randolph Franklin'

input would still induce many levels in a hierarchical
data structure, which would slow them as well.

Exact nearest neighbor searching can be an expensive
operation. It often requires continuing to search after
one near neighbor has been found, to ensure that it is,
in fact, the nearest neighbor. One method to increase
the performance of many data structures is to perform
approximate nearest neighbor search instead of exact[6].
This reduces the time required to ensure the validity
of the output, only ensuring that it is ”good enough”
for the application. However, NEARPTD shows that it
can perform exact nearest neighbor searching and still
outperform approximate searching.

2 Related Work

This work is mainly based on Nearpt3[2], a nearest
neighbor search algorithm which uses a uniform grid
in 3 dimensions. NEARPTD extends Nearpt3 to allow
the flexibility of any number of dimensions to be used,
though practicality limits this to 6 dimensions.

A widely used nearest neighbor search library is
the Fast Library for Approximate Nearest Neighbors
(FLANN)[3], a part of the OpenCV library. FLANN
is an approximate nearest neighbor library that utilizes
kd-trees and k-means trees[5] to preprocess data into a
search tree. The Computational Geometry Algorithms
Library (CGAL)[7] also offers both approximate and ex-
act nearest neighbor searching using kd-trees.

3 Parallel Programming in Geometry

NEARPTD executes in parallel on Nvidia GPUs. Per-
haps 1/3 of all PCs have them, intended to acceler-
ate graphics. However, they can also be used for gen-
eral parallel programming. The low-level access is via
CUDA, a small set of extensions to C++ together with a
library. Higher level APIs like Thrust add more power-
ful tools like a functional language paradigm, at the cost
of less low-level control. GPUs provide so much com-
puting power that geometric algorithms that are not
parallelizable are quite possibly obsolete. The challenge
is that parallelizable algorithms require simple regular
data structures and algorithms.

For parallel programming, multicore CPUs present
an attractive alternative to GPUs. All modern pow-

42

28" Canadian Conference on Computational Geometry, 2016

erful CPUs are multicore, even those in smart phones.
The two types of parallel hardware have different capa-
bilities. Thrust can also be compiled to use multicore
CPUs, so that many algorithms can use either.

4 Algorithm

4.1 Antepreprocess

As described later, the query step will spiral out from
the cell containing the query point. A table of cells,
called the spiral order table, containing the order in
which to spiral out, cell is computed before preprocess-
ing the data. The table is computed as follows.

1. Generate coordinates (x1,x2,...,zq) for all grid
cells such that 0 < 27 < 29 < ... < 24 < R for
some R, calculated to ensure the total number of
cells will be less than 22°.

2. Sort coordinates by v12 + 222 + ... + 242

3. For each cell, ¢, find its stop cell, whose closest point
to the origin is at least as close as the farthest point
in c.

This table does not depend on the data. It also con-
tains the stop cell, which says many more cells to query
after the first cell containing a fixed point is found. This
is to ensure the nearest neighbor is, in fact, found, be-
cause a later cell in the spiral order might contain a
closer point than the first point found. The spiral or-
der table’s size in the GPU memory depends only on
the dimensionality of the data, shown in Table 1. The
spiral order table can be computed by the programmer
while developing NEARPTD, and distributed in a file to
be read at run time.

Dimensions Memory
2 8MB
3 10MB
4 12MB
d (2d + 4)MB

Table 1: GPU memory usage of cells array.

4.2 Preprocess

The uniform grid will contain G cells in each dimension,
for a total of G cells, where d is the dimensionality
of the data. G is called the grid’s resolution. Before
preprocessing the data, G must be determined. We use
G = G, {/Ny, where Ny is the number of fixed points,
and G, is a scaling factor, usually 0.5 < G, < 3, though
the ideal factor is another possible area of research. As
G, varies, parts of NEARPTD run faster, and others
more slowly, so that the total time varies relatively little

even as G, varies a factor of two away from its optimum.
However, larger values of G, do increase the memory
footprint.

Next, three arrays are allocated, as follows.

1. cells, an array of size Ny, to contain pointers to the
points in each cell,

2. base, an array of size G + 1 for the indices of the
start of each cell within cells, so that the j-th point
of the i-th cell is point # cells[base[i]+j], and

3. index, a temporary array of size Ny allocated to
preprocess the points, and discarded afterwards.

Preprocessing the data into a uniform grid is done on
the GPU in parallel using these three arrays, as follows.

1. Store a sequence from 0 to Ny in index, to maintain
the initial order of the array.

2. Calculate the ID of the cell that each fixed point
belongs to, and store it in cells.

3. Sort cells and index based on the calculated IDs,
to group points together by cell.

4. Calculate the index of the start of each cell, and
store it in base.

5. Scan across each cell to calculate the number of
points in each cell, stored in cells.

6. Resort cells by the original index array, to restore
the original order of the points.

7. Transform the index array to contain the offset of
each point within its cell, calculated from the cells
and base arrays.

8. Fill cells with a sequence from 0 to Nf to keep
track of the order of the array.

9. Sort index and cells by the offset of each point.

10. cells now contains the index of each point, sorted
by their position in the grid.

If only the points’ coordinates are relevant, and not,
say, their location in some other data structure, then
cells could contain the points’ coordinates themselves
instead of pointers. In machine-level programming, this
is called immediate mode. The benefits are decreased
memory use and increased locality of memory reference.
On either CPUs or GPUs, that can reduce memory ac-
cess times by reducing cache misses.

43

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

4.3 Query

There are three possible types of query that can be per-
formed for a given query point, ¢, denoted as the fast
case, the slow case, and the exhaustive case. A fast case
query is performed if ¢, the cell containing ¢, contains at
least one fixed point. If ¢ is empty, a slow case query is
performed, spiraling out from ¢, checking if any nearby
cells contain fixed points for querying against. If the
slow case query fails, erhaustive querying is performed
to query against every fixed point.

This implementation supports querying many points
at once, which is performed in parallel on the GPU,
returning a list of the index of the closest fixed point
for each query point, as well as single point queries. In
more detail:

1. Calculate the number of fixed points in the cell con-
taining each query point.

2. For all queries that contain at least one fixed point
in their cell, perform a fast case query.

3. For all queries that don’t contain a fixed point in
their cell, perform a slow case query.

4. If the slow case query failed to find a fixed point,
perform an exhaustive query.

4.3.1 Fast Case Query

This query is only performed if there are fixed points in
c. Each point in the query cell is tested and the closest
fixed point, f, is found. It is possible, however, that a
neighboring cell could contain a point closer to ¢ than
f, if, for instance, ¢ was near a wall of ¢. So, calculate
the nearby cells that could contain a point closer than
f, and search them for the closest fixed point.

4.3.2 Slow Case Query

If ¢ does not contain any points, the next step is to be-
gin searching around c for cells that may contain points.
This is done by using the spiral order table computed
in the antepreprocessing step to spiral out from c. For
each cell in the table, we derive other reflected and ro-
tated cells. For d dimensional data, there are up to
2¢d! possible reflections and permutations, although if
some indices are zeros or repeated values, this number
can be smaller. These could be pre-computed in the
antepreprocessing stage, but this would require much
more fixed memory. If a fixed point is found in one of
these cells, we continue spiraling out until the stop cell
is reached, ensuring that the closest point is found.

4.3.3 Exhaustive Query

Exhaustive queries are the worst case query performed if
neither ¢ nor any cells near ¢ contain a fixed point. This

is very rare, not happening once in any of the real 3D
datasets that we tested. However, an adversarial query
could generate such a case. We exhaustively query by
linearly searching all the fixed points, in parallel on the

GPU.

5 Performance

All tests were run on an Intel i7-5820k with 32 GB of
DDR4 memory and a Nvidia GTX 980Ti with 6GB of
GDDRS5 memory.

NEARPTD was implemented using Thrust 1.8.2 in
C++ with CUDA 7.5, compiled using nvee and clang++
3.5 with level 3 optimization. (Thrust is an efficient API
on top of C++ and CUDA that adds a functional pro-
gramming paradigm.) For uniform datasets, a G, = 0.5
was used, and for all other datasets G, = 1.0.

Nearpt3 was compiled using clang++ 3.5 with level
3 optimization, using the same scheme to choose G, as
NEARPTD.

FLANN was compiled using clang++ 3.5 with level 3
optimization, preprocessing the data into a kd-tree with
default parameters and performing a KNN search with
default search parameters and k = 1.

The following datasets were used as real world com-
parisons of NEARPTD, Nearpt3 and FLANN in 3 di-
mensions. We are grateful to these projects for kindly
making this data available.

e uniXXX: A uniformly and independently dis-
tributed set of 10* to 108 random points.

e bunny (Ny = 35,947): Stanford University Com-
puter Graphics Laboratory[9].

e hand (Ny = 327,323): Clemson’s Stereolithogra-
phy Archive, via Georgia Tech[10].

e dragon (Ny = 437,645): Brian Curless, via Stan-
ford and Georgia Tech.

e bone6 (Ny = 569,636): The Visible Human
Project, and William E. Lorensen, via Georgia
Tech.

e blade (Ny = 882,954): Visualization Toolkit

(VTK), via Georgia Tech.

e powerplant (Ny = 5,423,053): The complete pow-
erplant from the University of North Carolina’s
UNC Chapel Hill Walkthru Project[11].

e david (Ny = 28,168,109), and

o stmatthew (Ny = 184,098, 599): The Stanford Dig-
ital Michelangelo Project Archive[8].

44

28" Canadian Conference on Computational Geometry, 2016

Fixed Time vs Number of Fixed Points
103

Nearpt3 -
NearptD - e--
10? |{ FLANN -oae oo

[

10t V]
= -~
< 10° L
= y § .
- o : /./
e e -
PL I
S .._,_|’...r__ PR L
g
106 107 10°

Number of Fixed Points

Figure 1: Time to preprocess fixed points into a search
structure, not including 1/0.

NEARPTD has some fixed costs independent of data
size, mainly the antepreprocessing step to create the
cell search order necessary for slow case queries, as well
as overhead to run tasks on the GPU. For this reason,
smaller datasets can take longer than existing programs,
but on larger datasets, this cost is negligible. NEARPTD
exhibits an order of magnitude speedup over Nearpt3 on
larger datasets, and two orders of magnitude speedup
vs FLANN. Figure 1 shows that NEARPTD becomes
faster than both FLANN and Nearpt3 for preprocess-
ing datasets of at least 10% points, with an order of
magnitude speedup as the number of points increases.

Arguably the antepreprocessing costs should not be
included any more than the compilation costs, since
both are incurred only once, not once per dataset.

Time per Fixed Point vs Number of Fixed Points
104 :

Nearpt3 ---a---
NearptD - - -
1w £ o
2
g
T I
[]
El
& e
.
10° -
10* 10° 109 107 10%

Number of Fixed Points

Figure 2: Per point time to preprocess fixed points into
a search structure, not including 1/0.

Figure 2 compares the time per point for each pro-
gram to preprocess the fixed points into their respective
search structures, and we see that NEARPTD benefits

from its parallelism more on larger datasets. FLANN
averages roughly 753ns per fixed point, and Nearpt3
averages around 95ns per fixed point. NEARPTD can
take up to 2.5us per fixed point for smaller datasets, but
preprocesses stmatthew in just 3.5ns per fixed point.

Query Time vs Number of Fixed Points
10*

Nearpt3 - f—
NearptD - --e-- J
FLANN ose

10°

Time (s)
S
L

1072 Lo

10* 10° 109 107 108

Number of Fixed Points

Figure 3: Time to complete 10* queries sampled from
the fixed distribution.

To compare query times, each dataset had 10* points
sampled from it to use as query points, with the rest
preprocessed into a search structure. Figure 3 shows
that as the number of fixed points increases, NEARPTD
becomes faster than either existing program. For small
datasets, it does not demonstrate any speedup, likely
due to the GPU overheads necessary to compute these
queries. Even for extremely adversarial data, such as
the powerplant dataset (the large spike in Figure 3 at 5
million points), where 98% of fixed points are contained
within one cell, NEARPTD still performs just well as
FLANN. These results used an unoptimized grid res-
olution, however, and doubling the grid resolution re-
duces query time by 3 times, although it increases the
memory usage.

The powerplant dataset is important because it dis-
proves the notion that an adaptive dataset like the kd-
tree will process uneven data better than the uniform
grid. All three programs become significantly slower
when querying such an adversarial dataset, and the end
result is that NEARPTD and FLANN have about the
same query time here, with NEARPTD being a little
faster.

There are two reasons. On such uneven data, the kd-
tree has many levels and more of its cells are empty.
These cells are allocated on the memory heap, whose
time cost is superlinear (the more objects on the heap,
the more time that allocating and freeing each object
costs). Each query has to walk down the deep tree. In
contrast, with the uniform grid, empty cells are almost
free to allocate, since only the complete grid is allocated,
and that in one step. Querying a grid with mostly empty

45

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

cells is cheaper, the only unknown is how far we need
to spiral out.

Query Time vs Number of Query Points

10°
Nearpt3 ---a---
NearptD - -e--
102 1{ FLANN e
10 » e
s 100 e ST
10°!
10-2 "',.—./ Lol)
1073
10* 10° 109 107

Number of Query Points

Figure 4: Time to complete queries on 10® fixed points
vs number of queries.

Figure 4 shows the speedup NEARPTD has as the
number of query points increases, with 108 fixed points.
FLANN and Nearpt3 take 28.9us and 1.4us per query
point, respectively, while NEARPTD takes 1.0us per
query on small numbers of queries and 0.15us per query
on larger numbers of queries.

Fixed Time vs Number of Fixed Points

NearptD - -
FLANN -

10? 1

10°

10!

Time (s)

%
oo

10° 108 107 108
Number of Fixed Points

Figure 5: Time to preprocess fixed points into a search
structure for varying number of dimensions. The dark-
est line is 6 dimensional data, with lighter colors indi-
cating lower dimensions, down to 2.

For preprocessing fixed points, NEARPTD exhibits
over two orders of magnitude speedup vs FLANN, even
for higher dimensional data, as shown in Figure 5. At
5 and 6 dimensions, the 10% dataset did not fit into the
GPU memory, so it is not shown. Preprocessing points
into a uniform grid is largely independent of the dimen-
sionality of the data, for both FLANN and NEARPTD.

Concerning the limited size of the GPU’s memory:

There will always be datasets too big to fit into the
available memory. However, that occurs less often than
is generally realized. Later in 2016, Nvidia GPUs with
32GB of memory are expected to become available. In
addition, the bandwidth between the GPU and the CPU
is increasing, so that the cost of the GPU accessing the
CPU memory is shrinking. Indeed, one problem with
our research into designing parallel algorithms on GPUs
today, to process the large datasets expected in the fu-
ture, is finding large real test datasets today.

Query Time vs Number of Query Points
10*

NearptD - =
103 FLANN oooa e
102 . e
= 10
E g0 peni
10t
102
10-3 ‘
10* _ |

Number of Query Points

Figure 6: Time to perform queries on 107 fixed points
for varying number of dimensions. The darkest line is
6 dimensional data, with lighter colors indicating lower
dimensions, down to 2.

Figure 6 shows the time to perform queries against
107 fixed points for dimensions 2 to 6. NEARPTD ex-
hibits an order of magnitude slowdown in query time
for each extra dimension. While NEARPTD is signifi-
cantly faster than FLANN in 2 to 4 dimensions, it per-
forms worse as dimensionality increases. Query times
for FLANN are completely independent of the dimen-
sionality of the data.

6 Space Complexity

Ny Fixed NEARPTD Nearpt3 FLANN
1M 57 115.9/137.7 36.9 263.8
10M 57.2 173.3/225.6 156.8 2594.1
100M 572.2 682.4/2223.6 1358.4 25897.6

Table 2: Comparison of total memory footprint of dif-
ferent programs, in MB, as well as the size of the fixed
points. NEARPTD values are given as CPU/GPU mem-
ory usage.

Besides speed, another benefit of a uniform grid is
the relatively small memory footprint to maintain the
search structure. As the number of fixed points grows,

46

28" Canadian Conference on Computational Geometry, 2016

almost the entirety of host memory used by NEARPTD
is dedicated to simply holding the fixed points. The uni-
form grid is constructed entirely on the GPU, as well as
a copy of the fixed points. FLANN requires an order of
magnitude more memory to hold the kd-tree in memory,
almost exceeding the amount of host memory available
in the largest test case.

7 Future Work

The main limiting factor for the data size NEARPTD
can handle is the memory of the GPU. While the largest
real world dataset, stmatthew, fits into the 6GB of mem-
ory on the test machine, higher dimensions can reduce
the effective maximum size of the data that can be pro-
cessed on the GPU. Although GPU memory is con-
stantly increasing, modifying the NEARPTD algorithm
to preprocess the data in chunks that could fit into GPU
memory would allow for arbitrarily large datasets to
be processed, especially in higher dimensions. Another
possible solution would be to utilize Unified Memory in
CUDA along with Thrust to process datasets too big to
fit into GPU memory, but this could lead to lower per-
formance with the high cost of moving large amounts of
data between the CPU and GPU. Extending NEARPTD
to utilize multiple GPUs could also help in processing
large datasets.

If the Thrust library implements C++11 variadic tem-
plates for tuples, NEARPTD could be refactored to use
variadic templates, which would remove the need for
template specialization. This could reduce the compila-
tion time and make the code more straightforward.

NEARPTD could also be extended to a k nearest
neighbor search by simply extending the query scheme
to continue searching until the k& nearest neighbors are
found. For fast case queries where the cell contains at
least k fixed points, this does not increase the running
time in any significant manner. If a cell is empty or
contains less than k points, a slow case queries could be
performed until k fixed points are found, falling back on
exhaustive querying only when necessary.

8 Conclusion

This paper presented NEARPTD as an improvement on
more common nearest neighbor libraries that utilize kd-
trees to preprocess data. The uniform grid used by
NEARPTD has lower time and space complexity com-
pared to traditional kd-trees and by utilizing the GPU,
NEARPTD exhibits an order of magnitude speedup for
larger datasets over existing libraries for both prepro-
cessing and querying. On a dataset with over 184 mil-
lion points, each point can be preprocessed into a search
structure in just 3.5ns. When performing 10 million
queries on 100 million points, queries completed in an

average of 0.15us. NEARPTD shows that a non hierar-
chical search structure can enable exact nearest neigh-
bor searching to outperform even approximate searching
using kd-trees.

The broader lesson from NEARPTD is that, counter-
intuively, simple data structures work better to process
large datasets in parallel. An implementation of this
code is freely available for nonprofit research and edu-
cation at github.com/Lucky1313/NearptD.

9 Acknowledgments

This research was supported by NSF grant CCR-
0306502. We are grateful to be able to use datasets
from the Stanford University Computer Graphics Lab-
oratory, including the Stanford Digital Michelangelo
Project Archive, Georgia Institute of Technology’s
Large Geometric Models Archive, and the University of
North Carolina’s UNC Chapel Hill Walkthru Project.

References

[1] Varol Akman, W. Randolph Franklin, Mohan Kankan-
halli and Chandrasekhar Narayanaswami Geomet-
ric Computing and the Uniform Grid Data Technique
Computer Aided Design 21(7):410-420, 1989.

[2] W. Randolph Franklin Nearest Point Query on 184M
Points in E* with a Uniform Grid Canadian Conference
on Computational Geometry 17:239-242, 2005.

[3] Marius Muja and David G. Lowe Scalable Nearest
Neighbor Algorithms for High Dimensional Data Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on 36, 2014.

[4] Jon Louis Bentley Multidimensional binary search tress
used for associative searching Communications of the
ACM 18(9):509-517, 1975.

[6] Fukunaga, Keinosuke, and Patrenahalli M. Naren-
dra A branch and bound algorithm for computing k-
nearest neighbors Computers, IEEE Transactions on
100(7):750-753, 1975.

[6] Ting Liu, Andrew W. Moore, Alexander Gray and Ke
Yang An Investigation of Practical Approximate Near-
est Neighbor Algorithms Advances in neural informa-
tion processing systems 825-832, 2004.

[7] CGAL The CGAL home page hitp://www.cgal.org/
2016.

[8] Marc Levoy The Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/ 2003.

[9] Marc Levoy The Stanford 3D Scanning Repository
http://graphics.stanford.edu/data/3Dscanrep/ 2005.

[10] Greg Turk and Brendan Mullins
Large Geometric Models Archive
http://www. cc.gatech.edu/projects/large_models/

2003.

[11] UNC Chapel Hill Walkthru Project Complete Power
Plant Model http://www.cs.unc.edu/ walk/ 1997.

47

CCCG 2016, Vancouver, British Columbia, Aug 3 — Aug 5, 2016

Realizing Farthest-Point Voronoi Diagrams

Therese Biedl * Carsten Grimm

Abstract

The farthest-point Voronoi diagram of a set of n sites
is a tree with n leaves. We investigate whether arbi-
trary trees can be realized as farthest-point Voronoi di-
agrams. Given an abstract ordered tree T with n leaves
and prescribed edge lengths, we produce a set of n sites
S in O(n) time such that the farthest-point Voronoi dia-
gram of S represents T'. We generalize this algorithm to
smooth, strictly convex, symmetric distance functions.
Lastly, given a subdivision Z of R*¥ with k a small con-
stant, we check in linear time whether Z realizes a k-
dimensional farthest-point Voronoi diagram.

1 Background

In 1999, Liotta and Meijer posed the following question:
Given a tree T', can one draw T in the plane so that the
resulting embedding is the Voronoi diagram of some set
of sites in the plane? They consider the ordered model:
The tree T is given as an abstract ordered tree, i.e., as
a set of vertices, a set of edges, and a cyclic order of the
of the edges incident to each vertex. We are searching
for a set of sites S such that the vertices and edges of
the Voronoi diagram of S form an embedding of 7" that
respects the cyclic order of the edges around each vertex
in T'. Liotta and Meijer showed that every ordered tree
can be realized as a Voronoi diagram [7, 8.

Quite related to this is the Inverse Voronoi Problem,
which asks the question in the geometric model. Here we
are given a tree (or more generally a graph) and also a
drawing of it, i.e., coordinates for all interior nodes and
rays to infinity for all edges to leaves. We are searching
for a set of sites S such that the Voronoi diagram of

*David R. Cheriton School of Computer Science, University of
Waterloo, Canada, biedl@uwaterloo.ca. Supported by NSERC.

TComputational Geometry Lab, School of Computer Science,
Carleton University, Ottawa, Ontario, Canada.

fInstitut fiir Simulation und Graphik, Fakultdt fiir Infor-
matik, Otto-von-Guericke-Universitat Magdeburg, Magdeburg,
Germany carsten.grimm@ovgu.de.

8Dept. of Computer Science and Engineering, University of
JIoannina, Greece, palios@cse.uoi.gr.

9T Computer Science Division, University of California, Berke-
ley, CA, USA, jrs@cs.berkeley.edu. Supported by the National
Science Foundation under Award CCF-1423560.

School of Electrical Engineering and Computer Sci-
ence, University of Ottawa, Ottawa, ON, Canada,
sander@cg.scs.carleton.ca. Supported by NSERC and
the Ontario Ministry of Research and Innovation.

Leonidas Palios §

Jonathan Shewchuk ¥ Sander Verdonschot

S is exactly this tree with this drawing. The problem
was introduced by Ash and Bolker [4] and the question
can be answered in linear time [6], even if the tree has
vertices of degree exceeding three [5].

A number of variants have been studied. Aloupis et
al. [3] posed an extension-version of the Inverse Voronoi
Problem. Other papers study the straight skeleton,
rather than the Voronoi diagram. Aichholzer et al. re-
solved this for the ordered model [2], and (with different
coauthors) for the ordered model where edge directions
are given [1]. The Inverse Straight Skeleton Problem
was resolved by Biedl et al. [5].

Our results. We ask whether trees can be realized by
yet another computational geometry construct, namely,
the farthest-point Voronoi diagram (defined below). We
consider both models and obtain the following results.

Ordered Model: Similarly as in [3, 8], for the ordered
model the answer is always “yes”. Thus for any given
ordered tree T, we can find a set of sites S in convex
position such that the farthest-point Voronoi diagram of
S'is T', with the edges in the specified order. In contrast
to related results, we can also realize edge lengths, i.e.,
if each interior edge e is assigned a positive weight w(e),
then we can find sites so that e has length w(e).

We give the construction first for the “normal” (Eu-
clidean) farthest-point Voronoi diagram, and then gen-
eralize it to any convex distance function for which the
unit circle is smooth and strictly convex.

Geometric Model: Similarly as in [5, 6], for the geo-
metric model not every geometric tree can be realized.
Nonetheless, one can test in polynomial time whether
for a given geometric tree 1" there exists a set of points
whose farthest-point Voronoi diagram is T'. If so, then
the set of sites is not always unique, but it can be de-
scribed as the solution space of a linear program.

We describe this result for arbitrary fixed dimension.
For a given convex subdivision Z of R¥ with n cells, we
formulate a linear program with k variables that tests
whether there exists a set of n sites whose farthest-point
Voronoi diagram realizes Z. This linear program can be
solved in linear time if k is a small constant [10].

2 Preliminaries

Let S be a set of sites and let p be a point in the plane.
Let Fs(p) be the smallest disc centered at p that con-

48

28" Canadian Conference on Computational Geometry, 2016

tains all sites in S; we call this the full disc of p with
respect to S. For a set S of sites, the farthest-point
Voronoi diagram of S, denoted by fVor(S), is defined as
follows: A point p is a vertex of fVor(S) if and only if
Fs(p) passes through three or more sites in S. A point
p is located in the relative interior of an edge of fVor(.S)
if and only if Fg(p) passes through exactly two sites in
S. tVor(S) divides the plane into convex cells, and one
easily verifies that each cell consists of all points that
are farthest from one site s. We say that site s is rel-
evant if there is a point in the plane for which s is a
farthest point, and proper if there is a point for which
s is the unique farthest point. (For strictly convex dis-
tance functions “relevant” and “proper” are the same
thing; see Section 4.2 for more details.)

The structure of the farthest-point Voronoi diagram
is closely related to the convex hull CH(S) of S: (i) A
site s € S is proper if and only if s is an extreme point
of S. (ii) Two sites s and s’ are adjacent along CH(S)
if and only if the farthest-point Voronoi cells of s and s’
share an unbounded edge (ray or line). (iii) The circular
order of the sites along CH(S) is the circular order of
the farthest-point Voronoi cells in fVor(.S).

3 Ordered Trees

Consider the farthest-point Voronoi diagram fVor(S) of
a set S of sites in the plane. We introduce symbolic ver-
tices as endpoints for the unbounded edges of fVor(S).
We say that fVor(S) is a realization of an ordered tree
T if T is isomorphic to the abstract ordered tree formed
by the Voronoi vertices, the symbolic vertices and the
Voronoi edges of fVor(S). In the following, we con-
sider only ordered trees without degree two vertices,
since there are no degree two vertices in a farthest-point
Voronoi diagram.

region of s

(a) (b)

Figure 1: (a) An ordered tree T'; (b) a realization of T
as a farthest-point Voronoi diagram. Empty squares are
leaves; also symbolic endpoints of unbounded edges.

Given an ordered tree T, we seek to determine a set
S of sites in the plane such that fVor(S) realizes T. We
proceed in an incremental fashion where we place sites
to create the internal vertices of T one by one.

Realizing a star. We begin with an ordered tree T;
with one internal node v of degree ¢. We realize T by
placing /¢ sites s1, S2,...,S¢ on a unit circle C' centered
at the origin. The origin becomes the Voronoi vertex
that we identify with v.

Any subsequent site s has to be placed at a location
that is safe for the current sites S in the following sense:
Every vertex in the diagram for S remains a vertex in
the diagram for S U {s} and every bounded edge in the
diagram for S remains a bounded edge in the diagram
for S U {s}. It is acceptable for a safe site to increase
the degree of a vertex of the diagram. After the initial
step, every point s strictly inside C' is safe.!

On the other hand, any subsequent site s must be
proper. Any site outside the convex hull CH(S) is
proper.! Thus, all additional sites will be placed in the
lunes that remain when we remove CH({s1,...,s¢})
from the disc bounded by C.

(a) (b)

Figure 2: (a) An ordered tree with one internal vertex;
(b) a realization of that ordered tree as a farthest-point
Voronoi diagram. All subsequent sites will be placed in
the lunes (shaded blue).

Realizing larger trees. Suppose we can realize every
ordered tree with k& > 1 internal vertices as farthest-
point Voronoi diagram, for some k£ € N. Consider an
ordered tree Ty1q with k + 1 internal vertices. There is
an internal vertex v in T4 that becomes a leaf when all
leaves adjacent to v are deleted. Let T} be the tree that
results from deleting the leaves adjacent to v. Since T}
is an ordered tree with k internal vertices, we can find
a set S of sites such that fVor(S) is a realization of T}.
We seek to place additional sites such that the resulting
farthest-point Voronoi diagram realizes Ty 1.

Vertex v is a leaf in T}, hence corresponds to a sym-
bolic endpoint in fVor(S) that lies on a ray r. Let u
be the internal vertex at which r ends (hence u is the
neighbor of v in T). Ray r separates the regions of two

1In the appendix, we provide full proofs for the claim for
smooth, strictly convex, symmetric distance functions.

49

CCCG 2016, Vancouver, British Columbia, Aug 3 — Aug 5, 2016

Figure 3: Extending the realization of an ordered tree.

sites s and §’, so by the definition of fVor(S), for every
point p € r the full disc Fg(p) goes through s and s’
and contains all other sites in its interior.

We want to place sites such that we create a Voronoi
vertex at some point p on ray r (and then assign this
point to v). To create a Voronoi vertex at p, we have
to place a new site s” on the boundary of Fg(p). To
make its region appear between the ones of s and s, we
should place s” on the (shorter) circular arc A(p, s, s’)
from s to s’ along Fg(p). If v is adjacent to ¢ leaves in
Ti+1 (€ > 1 since we have no vertices of degree 2), then
we should place £ — 1 new sites along A(p, s, s').

Observe that the choice of p is arbitrary, as long as
it is on the ray. We can therefore choose the distance
between u and p (the future location of v) and real-
ize any specified edge length of (u,v). To summarize,
we can realize every ordered tree T as a farthest-point
Voronoi diagram by placing the sites for some vertex
of T on a circle and then repeatedly expanding the re-
sulting farthest-point Voronoi diagram by placing the
next vertex on the appropriate ray and sites for it on
the corresponding arc. We place n sites for an ordered
tree with n leaves. The entire construction takes O(n)
time, since computing the coordinates of each site takes
constant time in the real RAM model of computation.

Theorem 1 For every ordered tree T withn > 2 leaves,
without vertices of degree two, and with edge lengths for
edges connecting non-leaves, we can find a set S of n
sites in O(n) time such that the farthest-point Voronoi
diagram of S is a realization of T where every bounded
edge in fVor(S) has a prescribed length.

4 Other Distance Functions

Voronoi diagrams and farthest-point Voronoi diagrams
can naturally be generalized to a wider class of distance
functions defined as follows: a distance function d is
specified by giving its unit circle Cy, i.e., all those points
considered to have distance one from the origin. We
assume throughout that d is convex and symmetric, i.e.,

Cy is a closed curve that bounds a convex shape that
has 2-fold rotational symmetry about the origin.

To measure distances, we use homothets of Cy, i.e.,
scaled and translated copies. We call such a homothet
a d-disc and say that it is centered at p if the origin was
translated to p. Given a set S of sites, let the full d-disc
F‘é(p) be the smallest d-disc centered at p that encloses
all sites of S. The d-farthest-point Voronoi diagram of a
set S of sites, denoted by fVory(S), is defined as before
by letting p be a vertex (resp. interior point of an edge)
if and only if F%(p) contains three (resp. two) sites.?

We briefly argue that this indeed expresses “farthest”
correctly. For two points p and ¢, the distance d(p, q)
(with respect to the distance function defined by Cy)
is defined to be the smallest scaling factor at which a
d-disc centered at p touches ¢. Since d is symmetric,
we have d(p,q) = d(q,p). In particular, a site s € S
is farthest from the point p if s is on the boundary of
Fé(p). If p is a point on an edge of fVory(S), then by
definition there are two sites s,s’ on F&(p). Thus p is
equidistant from s, s’ and all other sites are no farther.
Hence any edge of fVorg(S) bounds a region where all
points have the same farthest point. See Figure 4.

4.1 Smooth Strictly Convex Symmetric Distances

We call a distance function d strictly conver if the
boundary of Cy contains no line segments, and smooth if
every point on the boundary of C; has a unique tangent.
We now show that we can realize arbitrary ordered trees
as d-farthest-point Voronoi diagram for any smooth and
strictly convex symmetric distance function d.

Figure 4: A d-farthest-point Voronoi diagram.

The approach is the same as for the Euclidean case,
with the only change that we use Cy, rather than geo-
metric circles, to define arcs to place sites on. Thus, for
a tree T} with a single interior node v with ¢ incident
leaves, place ¢ sites on the unit circle Cy. The origin
becomes the Voronoi vertex that we identify with v.

2For non-symmetric convex distances, the full d-disc is a mir-
rored homothet of Cy and the correspondence to vertices and
edges of the diagram no longer holds [9].

20

28" Canadian Conference on Computational Geometry, 2016

To create sites for a tree Tjy; with k£ + 1 interior
nodes, find one node v that is adjacent to only one other
interior node u, and remove all incident leaves of v. Re-
cursively find sites for the resulting tree Ty. Find the
unbounded edge r from u on which the symbolic end-
point for v resides, and pick an arbitrary point p on
it. Find the full d-disc F&(p); this contains the two
sites s, s’ whose farthest regions meet at edge r on their
boundaries. Turn p into a vertex of the d-farthest-point
Voronoi diagram by placing sites at the shorter arc of
F%(p), placing ¢ — 1 sites if v was incident to £ leaves.

It remains to argue that this is correct, i.e., that all
newly placed sites are safe and proper. In a nutshell,
this holds because they are strictly inside F%(u) and
strictly outside CH(SS). We give a proof in the appendix.

Theorem 2 Let d be a smooth and strictly convex sym-
metric distance function. For every ordered tree T with
n > 2 leaves, without vertices of degree two, and with
edge lengths for edges connecting non-leaves, we can find
a set S of n sites in O(n) time such that the d-farthest-
point Voronoi diagram of S is a realization of T where
every bounded edge has its prescribed length.

4.2 Polygonal Convex Symmetric Distances

We now illustrate some of the challenges that arise when
our distance function is not smooth or not strictly con-
vex. Unlike for strictly convex distances, the d-bisector
of two sites s and s’ (i.e., the set of all points that are
equidistant from s and s’ with respect to d) is not nec-
essarily homeomorphic to a line, and indeed, may be
a 2-dimensional region. Ma [9] shows that this occurs
precisely when the line segment ss’ is parallel to a line
segment on the boundary of the unit circle Cy that de-
fined d. This limits our ability to realize ordered trees as
d-farthest-point Voronoi diagrams when d is polygonal,
i.e., Cy is a k-sided convex polygon.

Theorem 3 Let d be a convex distance function defined
by a polygon with k edges and let T be a tree with more
than k leaves. There is no set of sites S such that the
d-farthest-point Voronoi diagram of S realizes T .

Proof. For every edge e of the unit circle Cy, at most
one site can be extreme in the direction normal to e.
More precisely, for any half-plane & O S whose bound-
ing line ¢ is parallel to e, there is at most one site on
¢—otherwise fVorg(S) is not a tree. So if fVory(S) is
a tree, then at most k sites in S have nonempty cells,
hence the tree has at most k leaves. Therefore, we can-
not realize trees with more than k leaves.]

For example, for the L;-distance and the L.-
distance, the unit circle Cy is a 4-sided polygon, so
no tree with more than four leaves can be realized as
farthest-point Voronoi diagrams under these distances.

region of s”

bisector of,
!
s and s

Figure 5: If some portion of Cy (red) is a line segment,
two sites on that line segment (e.g., s, s’) can have a
two-dimensional bisector (grey region). The general-
ized convex hull H(S) (green) may strictly include the
convex hull (dashed). Here, the site s is a vertex of the
(ordinary) convex hull but s is not proper: removing s
leaves the generalized convex hull unchanged.

A second problem with distance functions that are
not strictly convex is that not all extreme points of the
convex hull are proper; for example point s in Figure 5
is an extreme point of CH(S) but any point p for which
s is farthest also has s’ as farthest point.

However, we can prove a similar relationship. Let
H(S) be the intersection of all d-discs that contain
S. We refer to H(S) as the generalized convex hull
of S. We call a site s an extreme point of H(S) if
H(S) # H(S \ {s}). We give in the appendix the fol-

lowing characterization:

Lemma 4 A site s in S is proper if and only if s is an
extreme point of the generalized convex hull H(S).

We may attempt to follow the steps of the algorithm
from the Euclidean setting, in the hope of always find-
ing proper sites. We now show that this can fail. As
before define v, u, r, s, s’ in the expansion step. Presume
we are in a situation where F%(u) contains s, s’ on adja-
cent straight-line edges. Then the generalized hull #(S)
coincides with F&(u) on the stretch between s and s'.
Thus, the region where we placed sites for strictly con-
vex distances is empty, giving no suitable, safe, proper
candidates. Put differently, we cannot longer realize or-
dered trees in the carefree online fashion we use for the
Euclidean distance. Rather, we need to know the or-
dered tree in advance and we need to decide a priori
which site will occupy which edge of Cy. We conjecture
that with a judicious choice, we can realize every tree
with at most k leaves if C is a k-sided polygon, but this
remains an open problem. Without giving details, we
note that all ordered trees can be realized by any con-
vex symmetric distance function for which Cy is strictly
convex and smooth in at least one region, by placing all
initial sites and later additions only within that part of

Ca.

51

CCCG 2016, Vancouver, British Columbia, Aug 3 — Aug 5, 2016

5 Geometric Trees

In this section, we study how to test whether a speci-
fied geometric tree is a farthest-point Voronoi diagram
in the Euclidean metric. We are given a tree with a fixed
drawing in the plane, with the leaves at infinity. Rein-
terpreting this, we are given a subdivision of the plane
into cells, and we ask whether there exists a set of sites
whose farthest-point Voronoi diagram comprises these
cells. An affirmative answer is possible only if every cell
of the subdivision is convex and unbounded.

Our approach generalizes to arbitrary dimension k, so
assume that we are given a convex subdivision Z of R¥,
where each cell in Z is a convex, unbounded polyhedron.
We wish to determine whether Z is the farthest-point
Voronoi diagram of some set S of sites. Each cell in
Z has some number of (k — 1)-dimensional facets (e.g.,
edges if kK = 2), and we assume that for each such facet
f we know a unit normal vector ny. Thus, for each facet
f, its affine hull has the form {p : (ns,p) = oy}, where
oy is a suitable scalar. Let f,, denote a facet whose
incident cells are o and 7, where ny is directed from
into o and thus o is the cell whose interior points have
a positive signed distance from f,, (i.e., (ng,p) > af
for all points p € ¢.)

Suppose Z can be realized as farthest-point Voronoi
diagram. In this realization each cell o is assigned a site
p(o) such that the points in o are exactly those points
for which p(o) is the farthest site. We will describe any
(putative) realization as such a function p(o).

The following result holds for realizations of farthest-
point Voronoi diagrams in arbitrary dimension (and also
for ordinary Voronoi diagrams [5]).

Lemma 5 (bisector condition) Let p be a realiza-
tion of Z. For every facet for in Z, the affine hull
of for must be the bisector of p(o) and p(T).

Hence, given p(o) we can compute p(7) by reflecting
p(O’) about fa i'e'7 p(T) = p(o‘) - 2(<nf7p(0)> - Olf)nf
As this is an affine equation in p(o), it can be expressed
in the matrix form

p(r) | _ p(o)
7 =[]
where R, is a (k+1) x (k41) matrix determined solely
by the normal vector and scalar of the face f,,. Thus
we have a system of k£ + 1 equations for each facet of
Z. Let 7 denote the vector [p(7) 1]*, so the equation
becomes T = R,,0.

We need a second condition. In the ordinary Voronoi
diagram, a site must lie inside the cell of points for which
it is the nearest site. For the farthest-point Voronoi dia-
gram, we need a condition that is essentially the inverse.

Lemma 6 (outside condition) Let p be a realization
of a subdivision Z. For every facet f incident to a cell

o, the affine hull H of f has the cell ¢ on one side and
the site p(o) on the other.

Proof. Say the facet is f = f,r. According to the
bisector condition, p(o) and p(7) are on opposite sides
of H, and every point on the same side of H as p(o) is
closer to p(o) than it is to p(7). No point p € o can
lie on the same side of H as p(0), as p’s farthest site
cannot be p(o). O

We express the outside condition as the two inequal-
ities
(g7, p(0)) < Agr < (N7, p(7)),
where, as before, n,, is a unit vector normal to f,. such
that (nyr,p) > @y, for all points p € o and (-, p) <
Qq, for all points p € 7. Crucial to our testing routine
is the following.

Theorem 7 Let Z be a convex subdivision of R*. Let
S = p(+) be an assignment of sites to cells in Z. Then
Z is the farthest-point Voronoi diagram of S if and only
if the bisector condition and the outside condition holds
for every facet of Z.

Proof. Necessity has been shown already. Suppose for
the sake of contradiction that the two conditions hold,
yet Z is not the farthest-point Voronoi diagram of S.
Then there exists some cell o of Z containing an interior
point p for which the farthest site in S is not p(o) but
instead some other site p(7) assigned to a cell 7.

Shoot a ray from the interior of 7 toward p, and let
frw be the first facet (breaking ties arbitrarily) of 7 that
the ray strikes. The ray strikes f., before reaching p,
as p is in the interior of a cell other than 7; therefore,
p is on w’s side of the affine hull of f.,,. By the outside
condition therefore p is not on p(w)’s side of the affine
hull of fr,. As fr. bisects p(w) and p(7) by the bisector
condition, therefore p is closer to p(7) than to p(w),
contradicting the fact that p(7) is the site in S that is
farthest from p. The result follows. O

Theorem 7 implies that we can answer the question
by finding a set S of sites that satisfy all the bisector
conditions and outside conditions—one of the former
and two of the latter for each facet of Z—or by showing
that no such set of sites exists. As the bisector con-
ditions are linear equations and the outside conditions
are linear inequalities, the question reduces to finding a
feasible point of a linear program.

For efficiency, we recommend reducing the linear pro-
gram to k variables prior to solution by performing sub-
stitutions of the bisector conditions. We achieve this
with a propagation procedure that exploits the dual
graph of the convex subdivision Z, as Biedl et al. [5]
do for the ordinary Voronoi diagram. Form the dual
graph G of Z: G’s vertices correspond to the k-cells of

52

28" Canadian Conference on Computational Geometry, 2016

Z and G’s edges correspond to Z’s facets. Choose a
distinguished k-cell o in Z (hence a distinguished node
in the graph). The variables in our system are the co-
ordinates of the putative site p(c), hence the first k
entries of vector 6. Perform a depth-first search of G,
during which we express the coordinates of every other
site as a linear combination of ’s coordinates by com-
posing reflections of the form 7 = R,,w. Composing
these reflections is simply matrix multiplication; thus
we obtain a linear relationship of the form 7 = R/ .5
for every cell 7, even those that do not share a facet
with 0. (R.. = Ry, if (0,7) is an edge of G.)

Next, consider the edges of G that the depth-first
search did not traverse. Each such edge (w,T) corre-
sponds to a facet of Z that introduces an additional
reflection equation of the form @ = R, 7, which hence
becomes another linear equality constraint imposed on
. Rl ., = R;,R. 5. However, these constraints are
often redundant or trivial (i.e., @ = 7). We can stack
these linear equations (k + 1 equations per untraversed
edge) in the form of a matrix equation M = b, where
M has k + 1 columns and O(mk) rows, and m is the
number of facets in Z. This linear system hence defines
an affine subspace A of vectors & that are compatible
with the bisector condition. Typically A is a single point
or empty, but it could have dimension as high as k.

The outside condition imposes another system of
O(mk) linear inequalities, two per facet. If A is a sin-
gle point, it is now a simple matter to check whether it
satisfies all these inequalities. If A is a larger subspace,
we restrict the inequalities to the subspace A and solve
the consequent linear program. Any feasible point can
be used for & (hence gives the site p(v)), and we can
compute the other sites by applying the reflection equa-
tions. The solution space may have dimension up to k,
as Figure 6 illustrates. If A =) or the linear program
is infeasible, Z is not a farthest-point Voronoi diagram
of any set of sites.

Suppose Z has n cells and m facets in k& dimensions.
It takes O(nk?) time to compute the propagation matri-
ces R/ _ (accounting for fewer than n multiplications of
(k+1) x (k+1) matrices); O(mk?) time to compute the
remaining equations and inequalities due to the bisec-
tor and outside conditions; and O(f(k)(n+m)) time to
solve the linear program where f(-) is a function (typi-
cally exponential) [10]. As the size of the input subdi-
vision Z is Q(m+n), the total running time is linear in
the input size if the dimension £ is a small constant.

Theorem 8 Given a convex subdivision Z of RF, where
k is a small constant, we can test in linear time whether
there exists a set of sites whose farthest-point Voronoi
diagram is Z.

Figure 6: A farthest-point Voronoi diagram (thick
edges) and three sets of sites (discs, circles, crosses) that
realize it. Once one site is fixed in the open gray cell G,
the others follow by reflection at the bisectors (thick or
dashed). Sites on the boundary of G (e.g., the square)
yield sites that coincide, and sites outside G generate
sites that violate the outside condition.

References

[1] O. Aichholzer, T. Biedl, T. Hackl, M. Held, S. Huber,
P. Palfrader, and B. Vogtenhuber. Representing di-
rected trees as straight skeletons. In Graph Drawing
and Network Visualization (GD ’15), pages 335-347,
2015.

[2] O. Aichholzer, H. Cheng, S. L. Devadoss, T. Hackl,
S. Huber, B. Li, and A. Risteski. What makes a tree a
straight skeleton? In Canadian Conference on Compu-
tational Geometry (CCCG ’12), pages 253258, 2012.

[3] G. Aloupis, H. Pérez-Rosés, G. Pineda-Villavicencio,
P. Taslakian, and D. Trinchet-Almaguer. Fitting Vor-
onoi diagrams to planar tesselations. In Intl. Workshop
on Combinatorial Algorithms (IWOCA 2013), pages
349-361, 2013.

[4] P. Ash and E. Bolker. Recognizing Dirichlet tessela-
tions. Geometriae Dedicata, 19:175-206, 1985.

[5] T. Biedl, M. Held, and S. Huber. Recognizing straight
skeletons and Voronoi diagrams and reconstructing
their input. In 10th International Symposium on
Voronoi Diagrams in Science and Engineering (ISVD
2013), pages 37-46, 2013.

[6] D. Hartvigsen. Recognizing Voronoi diagrams with lin-
ear programming. ORSA J. Comput., 4:369-374, 1992.

[7] G. Liotta and H. Meijer. Voronoi drawings of trees. In
Graph Drawing (GD ’99), pages 369-378, 1999.

[8] G. Liotta and H. Meijer. Voronoi drawings of trees.
Comput. Geom., 24(3):147-178, 2003.

[9] L. Ma. Bisectors and Voronoi Diagrams for Convex
Distance Functions. PhD thesis, FernUniversitat Ha-
gen, 2000.

[10] N. Megiddo. Linear programming in linear time when
the dimension is fixed. J. ACM, 31(1):114-127, 1984.

23

CCCG 2016, Vancouver, British Columbia, Aug 3 — Aug 5, 2016

A Smooth Strictly-Convex Distance Functions

Recall that the distance function d is given by specifying
its unit circle Cy, a d-disc is a homothet of Cy, and the
radius of a d-disc D is the scaling factor used to obtain
D from Cy. In this section, we show in detail that if
Cy is strictly convex and smooth, then our algorithm
to find sites whose farthest-point Voronoi diagram re-
alizes a given ordered tree T works correctly. There
are two things that must be shown: every added site
s is d-proper (there exists a point p for which s is the
unique farthest site) and d-safe (all previously placed
sites remain d-proper).

A.1 Proper Sites

Recall that an extreme point of the convex hull CH(S)
is a site s € S such that CH(S'\ {s}) is a strict subset of
CH(S). Equivalently, a site s € S is an extreme point
of S if there exists a half-space ¢ that has all points in
S\ {s} in its interior and s in its exterior.

Theorem 9 Let S be a set of sites in the plane and let
d be a smooth strictly convex distance function.

1. A site s is d-proper if and only if s is an extreme
point of the convex hull of S.

2. The regions of two sites s; and s; share an un-
bounded edge if and only if s; and s; are consecutive
extreme points of the convex hull of S.

3. The d-proper sites appear in the same order along
the convex hull of S as their corresponding regions
in the d-farthest-point Voronoi diagram.

Proof. To show the first claim, suppose the site s is
d-proper. Then there is a point p such that F% (p) has
only the site s on its boundary. Since Cy is convex, the
convex hull CH(S) is contained in F&(p). Since Cy is
strictly convex, CH(S) intersects F%(p) only in point s.
Hence, CH(S\ {s}) is strictly inside F&(p), which proves
that CH(S \ {s}) € CH(S) and, thus, the site s is an
extreme point of the convex hull CH(S).

Conversely, suppose s is an extreme point of CH(.S),
say half-space ¢ separates s from the rest of S. Since Cy
is smooth, there exist two points on C; whose tangent
has the same slope as the affine hull of ¢. By scaling Cy
sufficiently much, we can hence find a homothet D of Cy
that in the vicinity of one of these points is arbitrarily
close to £. Hence D contains S\ {s} and not s. Scaling
D while keeping its center then yields a d-disc with only
s on its boundary, proving that the region of s is non-
empty.

The proof of (2) and (3) is very similar to part (1)
after observing that (s;, s;) is an edge of the convex hull
if and only if there exists a half-space ¢ that contains
all points in S\ {s;,s;} in its interior and s;,s; in its

exterior. With this we can find an unbounded region of
points whose farthest site is either s; or s;, and therefore
there must be an unbounded edge separating their two
regions. O

As we will see below, we always choose the next site(s)
to be outside the convex hull of the current sites. As
such, all sites that we choose will be d-proper.

A.2 Properties of Homothets

Before proving safety, we need some basic observations
about homothets of a strictly convex smooth Cjy.

Theorem 10 (Ma [9]) Let D and D’ be two different
homothets of a compact convex set Cy. Then the bound-
aries of D and D' intersect in at most two points, or in
a point and a line segment, or in two line segments.

Corollary 11 Let D and D’ be two different homothets
of a strictly convex smooth compact set Cy. Then the
boundaries of D and D' intersect at most two points.

Proof. The claim follows from Theorem 10, since the
boundary of a homothet of a strictly convex compact set
does not contain any line segments, by definition. O

We say that two curves C,C’ truly intersect at some
point p if they have p in common, and any sufficiently
small circle centered at p intersects the curves in four
points and in order C,C’,C, C".

Lemma 12 Let D and D’ be two different homothets of
a strictly convex smooth compact set Cy. If the bound-
aries of D and D’ intersect in two points a,b, then they
truly intersect at both a and b.

Proof. We consider the situation near a. Since D and
D’ are smooth, there are unique tangents ¢, and t/, at
a for D and for D', respectively. We argue that these
tangents have different slopes.

Since Cy is strictly convex, the slope of the tangent
determines the point on Cy uniquely, up to reflection
through the center-point, and the line from this point
to the center-point has the same slope regardless of how
we scale or translate Cy. Thus, the line from a to the
center-point p of D has the same slope as the line from
a to the center-point p’ of D', so p,a,p’ are all on one
line.

Repeating the argument at b, we see that p, b, p’ (and
therefore also a) are all on one line. But then D and D’
must have the same scale-factor (else they could not
both contain both a and b), and therefore the same
center-point, and so are the same homothet. Contra-
diction, so t, and t/, have different slopes. Since D and
D’ are smooth, their boundary locally follows the lines
along t, and ¢/, which means that they truly intersect

a’

at a. U

o4

28" Canadian Conference on Computational Geometry, 2016

Finally we need a rather technical observation, which
will be crucial for defining the “lunes” which are used
for placing sites safely.

Lemma 13 (Inside-Outside Lemma) Let a and b
two points in the plane and let h and h be the half-
planes bounded by the line through a and b. Consider
two d-discs D and D’ such that

(a) the centers of D and D' both lie in h,

(b) the radius of D’ is larger than the radius of D, and
(¢) the boundaries of D and D’ intersect at a and b.
Then we have the following.

(1) Within the half-plane h, the d-disc D’ contains D,
e, hOD ChnND'.

(2) Within the half-plane h, the d-disc D contains D',
i.e., hn D' C hnD.

Figure 7: Two d-discs D (blue) and D’ (red) that have
their centers p and p’ on the same side as the line
through their two intersection points a and b. The ray
p from p through p’ first hits D, then p hits a copy D"
of D centered at p’ (dotted, blue), and finally p hits D’.

Proof. Let p be the center of D and p’ the center of D’.
Consider the ray p that shoots from p through p’. We
argue that p hits D strictly before D’.

As illustrated in Figure 7, we place a copy D" of D
centered at p’. The ray p hits D before D”, since D" is
a copy of D translated from p to p’. Furthermore, the
ray p hits D" strictly before D', since D’ is a strictly
larger copy of D" with the same center. This means
that the ray p hits the boundary of D strictly before
the boundary of D’. Since D and D’ are strictly convex
and homothetic, the boundaries of D and D’ cannot
have any intersection other than a and b. Therefore,
within the half-space h, the boundary of D lies in the
interior of D', i.e., hN D C hnN D’. This proves (1).

To show (2), observe that since the boundaries of D
and D’ intersect in two points, at both points we have
true intersections. Due to (1), we enter D as we traverse
the boundary of D’ from h to h through a (or through
b). Since the boundaries of D and D’ intersect only at
a and b, we know that, within &, the boundary of D’
lies in the interior of D, i.e., h N D’ C hN D. O

A.3 Lunes and Safe Sites

Let us assume that the sites are numbered s1, s, ..., S,
in an arbitrary manner. Let v; ;1 be the point equidis-
tant to sites s;, s;, and sg; and let e; ; be the edge (if
any) on the bisector of sites s; and s;. Suppose p is a
point along an unbounded edge e; ; defined by the sites
s; and s;, and we want to place a new site s on the
d-arc Aq4(p, i, sj) to create a new vertex at some point
p. Define the d-lune Lune,(s;, s;) to be the union of all
d-arcs Aq(p, S;, $;) such that p is an interior point of ray
r. Figure 8 depicts an example of a d-lune.

U3,4,5

Figure 8: The d-lune Lunegy(ss, s4) for the sites from
Figure 4 together with its defining edge e34. A new
site s in this d-lune creates a new vertex at p along es 4,
where p is the center of the d-disc through s3, s4, and
s.

Lemma 14 For any two consecutive vertices s;,s; on
CH(S), if vi i is the finite end of edge e; ;, then any
point in Luney(s;, s;) belongs to F&(v; ;1) \ CH(S).

Proof. Consider Fds(p) for some point p on e; ;. By
definition of a full circle it contains all sites in S,
so CH(S) C F&(p) since Cy4 is convex. Therefore
A(p, s;, s5) is outside CH(S). On the other hand, both
p and v; ;; are within one half-plane h defined by the
line through s;,s; (since e; ; consists of those points
for which these are the farthest sites). By the Inside-
Outside lemma therefore A(p,s;,s;) (which is outside
h) therefore is within F(v; ;) N h. O

So as promised previously, all newly placed sites are
outside the convex hull of preexisting sites, and so are
proper. Now we are ready to prove safety.

95

CCCG 2016, Vancouver, British Columbia, Aug 3 — Aug 5, 2016

Lemma 15 (Safety Lemma) For any two consec-
utive wvertices s;,s; on CH(S), every new site in
Luney(s;, s5) is safe.

Proof. Let s be be a new site for S that is contained
in Luneq(s;, s5). Let e; ; be the unbounded edge where
the regions of s; and s; meet, and let v; ; 1, be the vertex
where e; ; ends. By the definition of Luneq(s;, s;), the
new site s is contained in the full d-disc F%(v; ;1) that
passes through s; and s;. Thus, s is safe for v; j .
Consider a vertex v; 1, that is connected to v; j by
the edge e; ;. We argue that Luneg(s;, s;)—and, there-
fore, the new site s—is contained in FCSl (p) for any point
D € €;k, i.e., the new site s is safe for e; ; and v; ;.
Let hs be the half-plane containing s that is bounded
by the line through s; and s;. We apply Lemma 13 in
two ways, depending on whether p lies in hg or not.

Figure 9: An example for the case p ¢ hy from the proof
of Lemma 15 withi =3, j =4, k=5, and [= 1.

Suppose p ¢ hs, as illustrated in Figure 9. We ap-
proach s; and s, when we walk from v; ;1 along e; 1 to-
wards v; 1, ;. Therefore, F&(v; ;) is larger than Fg(p).
Since p, v; .k ¢ hs, Lemma 13 implies hs N Fds(vi,k’l) C
hsﬂng(p). We know s € Luneg(s;, s;) = hsﬂFg(vi,M).
Therefore, s € hy N Fg (p), and, thus, s is safe for p.

Suppose p € hg, as illustrated in Figure 10. Then
there is a point w along e; ;, that intersects /; 1, since
Vi ik ¢ hs. We move away from s; and s; when we
walk from w along e;j to v; ;. Therefore, F‘é(p) is
larger than F&(w). Since p,w € h,, Lemma 13 implies
he NF&(w) C hy NFE(p). We know from the previous
case, when p ¢ hg, that s € hy N FdS(w) Therefore,
5 € hy NF%(p) and, thus, the new site s is safe for p.

In summary, if s € Luneqy(s;, s;) is safe for v; ;5 then
s is safe for all edges incident to v; ;, except for the
unbounded edge e; ;. We can repeat the above argu-
ment for all neighbors of v; ;1 and their neighbors and
so forth. In this fashion, the safety of s propagates to
all vertices and all bounded edges of the d-farthest-point
Voronoi diagram of S.3 Therefore s is safe for S. O

3In fact, the safety of s extends to all unbounded edges other

Figure 10: An example for the case p € hg from the
proof of Lemma 15 with i =3, j =4, k=5, and [= 1.

B Polygonal Distance Functions: Proof of Lemma 4

Proof. Suppose s is a proper site in S. Then there
is a point p such that F‘é(p) has only the site s on its
boundary. All other sites of S are in the interior of
Fé(p) by definition of full disc. Scaling F%(p) down
while staying centered at p gives another homothet D of
Cy; note that D € F&(p) since d is convex. If we shrink
little enough then D hence contains all of S\ {s}, but it
does not contain s. Therefore, H(S'\ {s}) C D does not
contain s. By definition, s is an extreme point of H(S).

Conversely, suppose s is an extreme point of H(S).
That means there is a homothet D of Cy that contains
S\ {s} and that does not contain s. Let p be the center
of D. Suppose we grow D until we arrive at a d-disc D’
centered at p with s on the boundary. We have D C D/,
since both D and D’ are convex and symmetric to p.
Hence, D’ is a d-disc centered at p that contains S and
has only the site s on its boundary. This means s is the
only d-farthest point from p, i.e. s is a proper site. [J

than e; ; in the diagram for S, as well.

26

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Recognition of Triangulation Duals of Simple Polygons With and Without
Holes

Martin Derka*

Abstract

We investigate the problem of determining if a given
graph corresponds to the dual of a triangulation of a
simple polygon. This is a graph recognition problem,
where in our particular case we wish to recognize a
graph which corresponds to the dual of a triangulation
of a simple polygon with or without holes and interior
points. We show that the difficulty of this problem de-
pends critically on the amount of information given and
we give a sharp boundary between the various tractable
and intractable versions of the problem.

1 Introduction

Triangulating a polygon is a common preprocessing step
for polygon exploration algorithms [10] among many
other applications (see [7]). The exploration of the poly-
gon is thus reduced to a traversal of the triangulation,
which is equivalent to a vertex tour of the dual graph of
the triangulation. In the study of lower bounds for such
a setting, the question often arises if a given constructed
graph is or is not the dual of a triangulation of an actual
polygonal region (with or without holes) [10]. Thus, the
recognition of a graph class is a well established prob-
lem of theoretical interest and given the importance of
triangulations likely to be of use in the future. More
formally, given a graph, does it represent a triangula-
tion dual of a simple polygon? There are three aspects
of this problem: the geometric problem, the topological
problem and the combinatorial problem!. In the geo-
metric problem, we are given a precise embedding of the
graph. In the topological problem, we are given a topo-
logical embedding (also called “face embedding”). In
the combinatorial problem, we are given the adjacency
matrix only. Furthermore, the problem can be stated
in both the decision version when the task is to recog-
nize the graph of a triangulation, and the constructive
version when the task is to realize the corresponding
triangulation. For some graph classes, recognition may
be easier than realization.

*University of Waterloo. The first author was supported by
Vanier CGS. The authors would like to thank T. Biedl for valuable
suggestions and discussion.

'In [14], Sugihara and Hiroshima call “the topological embed-
ding problem” what we call “the combinatorial problem” here.

Alejandro Lépez-Ortiz*

Daniela Maftuleac*

Aspect
Geometric Topological Combinatorial
a necessary condition that
w/o holes | €an be checked in ©(n) time ©(n) O(n)
= [Theorem 2] [Theorem 6] [Theorem 8]
S
S0
= fion th O(n) if holes are assigned
a necessary condition that o faces [Theorem 11] -~
& | w holes can be checked in ©(n) time ces [heore NP-complete
[Theorem 12] NP-complete w/o hole [Theorem 14]
assignment [Theorem 13]

Table 1: Summary of results.

Some specialized versions of this problem were stud-
ied in the past. Sugihara, and Hiroshima [14] as well
as Snoeyink and van Kreveld [13] consider the prob-
lem of realization of a Delaunay triangulation for the
combinatorial version of the problem. In [12], the au-
thors define three aspects of the recognition problem
of a Voronoi/Delaunay diagram, where the first two of
them are what we call the geometric and topological
aspects. The most relevant part of their work is the
following question in the geometrical setting [12, Prob-
lem V10, p. 108]: Given a triangulation graph, decide
whether it is a (non-degenerate) Delaunay triangulation
realizable graph. For this case, the authors give neces-
sary and sufficient conditions for a graph to be Delaunay
triangulation realizable graph in the geometric setting.

In this paper, we study the problem of recognizing
the dual of a triangulation of a simple polygon with
or without holes and interior points in the geometric,
topological and combinatorial setting. To the best of
our knowledge, this paper is the first work which con-
siders the problem for general triangulations of poly-
gons. We draw a clear line between tractability and NP-
completeness of the problem as the degrees of freedom
increase from the geometric to the topological to the
combinatorial problem and as we consider holes. Our
results are summarized in Table 1. The recognition al-
gorithms presented in this paper are constructive and
allow realization of the polygon.

2 Preliminaries

Let P be a simple polygon with or without holes with
n vertices, S a set of m interior points located inside P
and T a triangulation of the n + m given points inside
P (for an example of a triangulation, see solid lines in

o7

28" Canadian Conference on Computational Geometry, 2016

b

Figure 1: (a) An example of a triangulation of a polygon
(solid lines) and its graph (solid and dashed lines), (b)
a polygonal region P with one (white) hole (shown in
solid black lines and gray interior); its triangulation 7
(in solid black lines); the graph G of the triangulation
T (in black, solid and dashed lines); the dual graph G*
of the triangulation (in solid red lines).

Fig. 1(a)). Let G be the graph of the triangulation T as
the graph on vertices P U S plus an additional vertex v
“at infinity” located outside P and the edges of G are
the edges of T plus the edges connecting every vertex
on the boundary of P to v (see Fig. 1).

This paper reconstructs triangulations of polygons
from duals via reconstructing their graphs (which in-
clude the point at infinity). As we show, the point at
infinity provides one with tools which are fully sufficient
for such a reconstruction. If graphs of triangulations
were defined without points at infinity, one would dis-
cover that there are many triangulations of a polygon
with the same dual (see [3, Fig. 1]). Furthermore, we
suggest that adding the point at infinity to represen-
tations of triangulations is easy to accomplish: Given
a triangulation T of a polygon, one can construct its
graph G by adding the point at infinity. In the other di-
rection, if the vertex at infinity is known, one can easily
construct triangulation 7 from its graph G. The infor-
mation about which is the point at infinity can be given
as a part of the input, or in some cases, this may be
even implicitly determined by formulation of the prob-
lem (see Definition 1; TDR~without-holes).

Given a plane graph I', the dual graph of ', denoted

by IT'*, is a planar graph whose vertex set is formed by
the faces of I" (including the outer face), and two vertices
in I'* are adjacent if and only if the corresponding faces
in I" share an edge.
Let G be a graph of a triangulation of a polygon P and
G* its dual graph. For brevity, we say that G* is the
dual graph of the triangulation T and from now on we
will use this notion instead of “the dual graph of the
graph of a triangulation 7.”

Definition 1 (The TDR Problems) Given a planar
graph G*, decide if G* is a dual graph of a triangula-
tion of a polygon P with a set of interior points S. We
distinguish between: (1) TDR~without-holes if P is not
allowed to have holes and S = (; (2) TDRS-without-
holes if P is not allowed to have holes and S may be

non-empty; (3) TDR-with-known-holes if P is allowed
to have holes, S = (), and the positions of holes are part
of the input; and (4) TDR-with-unknown-holes if P is
allowed to have holes, S =, and the positions of holes
are unknown.

The following proposition summarizes some well-
known facts about planar graphs and their duals (see [3]
for the proof).

Proposition 1 1. The dual of a planar graph G is a
planar graph. 2. The embedding of a 3-connected graph
is unique up to the choice of the outer face. 8. The dual
graph of a 3-connected planar graph is a 3-connected
planar graph.

3 Triangulation Dual Recognition (TDR)

We present a sequence of increasingly complex dual
recognition problems. We draw a clear line between
the tractability of the problem and the NP-completeness
depending on the degrees of freedom in the particular
setting being considered. We first establish some prop-
erties of the triangulation dual of a polygon that will
allow us to decide if the input graph is a dual of a trian-
gulation or not. We consider separately the cases where
the triangulated polygon has holes or not, and contains
interior points or not.

We consider three aspects of this problem depending
on the amount of information given. In the most re-
stricted case, we are given a geometric embedding of
the dual of a triangulation. Each triangle of G is rep-
resented in the dual G* by a distinguished point in its
interior. In particular, following Hartvigsen [6] we con-
sider the circumcenter of the triangle (which does not
necessarily lie inside the triangle) and we are given the
edge adjacencies between the triangles. In the second
case we are given the faces of the dual of the triangu-
lation but not their precise geometric embedding. This
forms the topological recognition problem. Lastly, in the
least restrictive case we are simply given a dual graph
without any knowledge of which vertices form a face in
the triangulation dual. This is the combinatorial recog-
nition problem.

Geometric TDR- and TDRS-without-holes. For the
geometric recognition problem, we do not consider the
point at infinity, since it does not have a natural geo-
metric representation. Thus, in this problem the input
is a geometric embedding of the dual of the triangu-
lation 7. In the dual, each triangle is represented by
a distinguished point. The natural choices for such a
point are (a) the circumcenter, (b) the incenter, (c) the
orthocenter, (d) the centroid or (e) an arbitrary point
in the interior of the triangle.

o8

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

For the case of (a), the circumcenter, which is the
choice of Hartvigsen for the recognition of Delaunay tri-
angulations [6], we use a similar technique and create a
two dimensional linear program. This is based on the
observation that the edges in the triangulation are per-
pendicular to the dual edges in the geometric embed-
ding. The intersections of such edges are the vertices
of the polygon. Observe as well that the center of the
triangulation edges lies on the corresponding dual edge.
We can then set up a linear program with the coordi-
nates of the vertices of the polygon as unknowns, and
the orthogonality and bisection equations as linear con-
straints. We then solve the two dimensional LP program
in linear time using Megiddo’s fixed dimension LP algo-
rithm [11]. If there is no feasible solution then we know
that necessarily the given input graph is not the dual of
a triangulation since otherwise, the actual triangulation
graph satisfies the given linear constraints.

A similar approach works for the case of (¢) the cen-
troid. See [3] for details.

Theorem 2 The linear program described above gives a
necessary condition for the realization of the geometric
TDR- and TDRS-without-holes problems in linear time
with input G* given the triangulation graph with the cir-
cumcenters/centroids of the triangles of G* as vertices.

However, it is important to observe that the feasible
solution by the LP only obeys orthogonality /median
constraints and has no knowledge of planarity con-
straints of the resulting triangulation. Thus, the pro-
posed solution might not be a realizable triangulation.
One way of resolving this problem is testing (in linear
time) if the proposed solution is planar. If it is, we
now have a realization of the triangulation. If on the
other hand the solution is not planar, we cannot decide
if there is not another realization that would have been
planar. This is illustrated in [3, Fig. 3] and [3, Fig. 4],
where we give different solutions to the LP constraints
over the same dual triangulation graph, one leading to
a feasible triangulation and the other does not.

It remains an open problem if recognition is possi-
ble under either of this models, as well as any bounds
for necessary and/or sufficient conditions under other
choices for triangle representatives.

To the best of our knowledge, planarity constraints
between two triangles are a disjunction of three linear
constraints which leads to a third degree equation which
cannot be resolved using the LP program. Thus full
recognition of geometric graphs remains open.

Topological TDR- and TDRS-without-holes. There
are two cases of the problem in this setting: (1) the
output triangulation possibly contains interior points
(TDRS-without-holes) and (2) the triangulation does
not contain any interior points (TDR~without-holes).

TDRS-without-holes. See [3, Lemma 1] for the proof
of the following lemma:

Lemma 3 Let P be a polygon without holes, S be a set
of points in the interior of P, and T a triangulation
of PUS. The graph G of T is a 3-connected mazimal
planar graph.

We establish necessary (Lemma 4) and sufficient
(Lemma 5) conditions for a graph to be a dual graph of
a triangulation of a polygon with no holes.

Lemma 4 If G* is a dual graph of a triangulation of a
polygon P and set S of interior points inside P with no
holes, then G* is a planar 3-regular 3-connected graph.

Proof. The fact that G* is planar and 3-connected fol-
lows from Lemma 3 and Proposition 1. As the graph
G of the triangulation is a maximal planar graph, every
face of G is a triangle. Hence, every vertex in G* has
precisely three incident edges. O

Lemma 5 If G* is planar, 3-reqular and 3-connected,
then G* is a dual graph of a triangulation of a polygon
without holes P and a set S of interior points.

Proof. By Proposition 1(3), G* has a dual graph G
which is 3-connected, and thus G can be uniquely em-
bedded in the plane up to the selection of the outer face
(Proposition 1(2)). Such an embedding can be achieved
using straight lines only (see e.g. [2]). Now, remove
the vertex v of G which represents the outer face of
G*. As G is 3-connected, by removing v, we obtain a
2-connected plane graph G’. Hence, every face of G’
is a simple cycle, and it is a triangulation of a poly-
gon formed by its outer face. Moreover, since the graph
G* is 2-connected and every face is a triangle, it is the
triangulation of a polygon. O

Theorem 6 The answer to the topological TDRS-
without-holes problem is “yes” if and only if the input
G* is a 3-connected 3-regular planar graph. Further-
more, such a polygon can be constructed in linear time.

Proof. The first part of the claim follows directly from
Lemmas 4 and 5. The linear running time follows from
linearity of verifying 3-connectivity of a graph [8]. The
reconstruction is linear as the number of faces in any
planar graph is linear due to Euler’s formula, so the dual
graph can be constructed in linear time. The straight
line embedding can be found in linear time as well [2],
and deleting a vertex from an embedded graph takes at
most O(n) steps too. O

TDR-without-holes. Previously, we showed that
topological TDRS-without-holes problem can be solved
in linear time. This can be done even if the set of inte-
rior points S is required to be empty (i.e., the graph of

29

28" Canadian Conference on Computational Geometry, 2016

the triangulation should consist only of vertices at the
boundary of the polygon P, and one vertex outside P).
The following is proved in [3, Prop. 2]:

Proposition 7 Let G* be a 3-regular planar graph and
G* the subgraph of G* obtained by removing the vertices
of the outer face. G* is a tree if and only if it corre-
sponds to a polygon with no holes or interior points.

Combinatorial TDR- and TDRS-without-holes. 1t is
easy to see that the topological and combinatorial in-
put are equivalent in this case. Since G* must be 3-
connected and 3-regular, the algorithm can first verify
this necessary condition. If it is satisfied, it can con-
struct the embedding (e.g., applying the linear straight
line embedding algorithm of [2]) and proceed with the
topological input.

Theorem 8 The answer to combinatorial TDR- and
TDRS-without-holes problems is affirmative if and only
if the input G* is a 3-connected 3-reqular planar graph.
Furthermore, such a polygon can be constructed in linear
time.

Topological TDR- and TDRS-with-known-holes. Let
us start with the following observation:

Proposition 9 If a polygon has a hole, the dual graph
G* of its triangulation contains vertices of degree 2 or
less.

From the proof of Proposition 9 (see [3, Prop. 3]),
we can see that vertices of degree 2 in G* are adjacent
to holes in the initial polygon. Observe that if P is a
polygon with or without holes, the triangles of the graph
G of a triangulation created by the point at infinity and
the outer face of the polygon form a 3-connected graph.
Thus, the dual graph G* cannot contain a 2-cut on the
outer face corresponding to these triangles.

We can associate each degree 2 vertex to its adjacent
hole. Formally, let G* be a planar graph that contains
at least one vertex of degree 2. We define an assignment
of a vertex u of degree 2 to a face of G*, as a mapping
‘H from the set containing u to the set of faces incident
to u of G*, such that if u is incident to faces F' and F’ in
G*, then H(u) € {F, F'}. The same way we can define:
an empty assignment, which does not assign any vertex
of degree 2 to a face of G*; a partial assignment, which
assigns a subset of vertices of degree 2 to their incident
faces in G* and a total assignment which assigns all the
vertices of degree 2 to faces of G* (see [3, Fig. 11] for a
total assignment example).

Lemma 10 Let {G*, H} be such that G* is a dual graph
of a triangulation of a polygon with holes. A face that
is assigned vertices of degree 2 contains a hole in the
initial polygon. Moreover, H assigns to each face of G*
zero or at least three vertices of degree 2.

Proof. The claim follows from the proof of Proposi-
tion 9; the proof is provided in [3, Lemma 4]. O

We know that the presence of a vertex of degree 2
in the graph G* means there is a hole in the output
polygon in one of the faces incident to this vertex in G*.
The reason to define an assignment of vertices of degree
2 to faces of the graph is to establish in which of the
two incident faces the hole is contained (see [3, Fig. 5]).
We call ‘H a wvalid assignment if we can realize G* as a
triangulation dual of a polygon with holes. A polygon
P with holes is a realization of {G*, H} if the polygon
is a realization of G* and H is a valid assignment with
respect to P.

Let us now focus on the one-edge cuts in G*, such
as the one shown in Fig. 2(a). These one-edge cuts in
the dual represent edges in the original polygon where a
straight line cut applied to that edge would separate the
polygon into two disjoint subpolygons. The two possible
cases of how this separation looks like are illustrated in
Fig. 2(b) and (c).

Figure 2: (a) Dual graph with an one-edge cut (shown
in blue) and its two connected components G and G3,
(b) The realization of G5 and G from (a) as P, and
Py, (c) Another possible realization of two components
of an one-edge cut.

Now we observe that when the first such cut is ap-
plied, the case shown in Fig. 2(c) is not possible since
the outer face is 3-connected due to the point at infinity
and the upper and lower chain of the original polygon.
So in what follows, we need only consider case (b) in
the figure. Let G7 and G5 denote the subgraph du-
als of P; and P,, respectively in G*. The algorithm
now recursively creates a topological embedding for Py
and P5 and merges the two embeddings. We show in [3]
that this process is deterministic and results in a unique
topological graph which can be embedded using straight
line edges. This resulting polygonal graph is a simple
polygon with point at infinity if and only if G* is a tri-
angulation dual of a simple polygon. Hence, we have
the following theorem (proof in [3, Thm. 4]).

Theorem 11 Given an input {G*,H}, the topological
TDR- and TDRS-with-known-holes problems are decid-
able in linear time.

Geometric TDR- and TDRS-with-known-holes.
Given a precise geometric embedding of the input

60

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

graph, we want to decide if the graph is the triangu-
lation dual of a polygon with holes with or without
interior points.

Theorem 12 The linear program described in Sec-
tion 3 gives a necessary condition for the realization of
the geometric TDR- and TDRS-with-known-holes prob-
lems with input {G*,H} in linear time given the trian-
gulation graph with the circumcenters/centroids of the
triangles as vertices.

Proof. Note that if a vertex v is of degree 2 in G*, de-
ciding which face incident to v contains the associated
hole can be done by observing the location of the con-
vex angle formed by the two edges of the triangulation
perpendicular to the edges incident to v in G*. (For
an illustration, see [3, Fig. 5(a)] in which the hole can
only reside in the right face.) We then set up an LP as
in Theorem 2 which gives a potential realization of the
triangulation. We then test this solution to verify that
the polygon and holes obtained are simple. O

Topological TDR- and TDRS-with-unknown-holes.
The input for this version of the problem is a planar
graph G* with its face-embedding. However, the to-
tal assignment of its vertices of degree 2 to faces of G*
is unknown. Here, we only state that the problem is
NP-complete (Theorem 13) and proceed in our analy-
sis. The proof of this claim is provided in Section 4.

Theorem 13 Determining if an input graph G* is the
dual of a triangulation of a polygon with holes and with
or without interior points is NP-complete.

Combinatorial TDR- and TDRS-with-unknown-holes.
In this subsection, the input graph G* is given by its ad-
jacency matrix. We will show that the 3-SAT reduction
from the topological TDR~ and TDRS-with-unknown-
holes problems (see Section 4) holds as well. If the em-
bedding found by the combinatorial TDR solver is the
same as in the reduction, we would need to solve the
3-SAT problem. However, it remains to be shown that
there does not exist a different embedding with an alter-
nate polygonal realization and the answer being “yes”,
without this embedding necessarily implying satisfiabil-
ity of the 3-SAT formula.

Recall that a 3-regular graph has a unique embedding
in the plane. We now remove the vertices of degree 2
from the 3-SAT reduction graph and replace them by an
edge, thus giving a 3-regular graph with a unique em-
bedding. If the combinatorial TDR- and TDRS-with-
unknown-holes problems found a different embedding,
we can replace the vertices of degree 2 in this alternate
embedding with a single edge, thus obtaining a different
embedding for the 3-regular graph, which is a contradic-
tion. Hence, the combinatorial graph obtained from the

reduction above has a polygonal realization if and only
if the underlying formula is satisfiable and we obtain:

Theorem 14 The combinatorial TDR- and TDRS-
with-unknown-holes problems are NP-complete.

4 NP-Completeness of topological TDR- and
TDRS-with-unknown-holes problems
In this section, we prove Theorem 13. Let X =

(z1,%2,...,%m) be a set of boolean variables. Let ¢ be
a 3-SAT boolean formula of the type ¢ = (a11 V a1z V
a13) VAN (021 V ago V Cl23) VANIRAN (anl V ap2 V an3)7 where
a;; is either xy, or -y (called a literal). We restrict our
attention to planar 3-SAT formulae. A planar 3-SAT
formula, by definition, can be represented by a planar
graph which has a vertex for every clause and every vari-
able, and has an edge connecting said variable to every
clause in which it appears (negated or non-negated).
Planar 3-SAT is known to be NP-complete [9]. We
will reduce planar 3-SAT to dual triangulation recogni-
tion by constructing a graph G* that is the dual of a
triangulation of a polygon with holes if and only if given
formula ¢ is satisfiable. Our reduction creates G* which
consists of four types of gadgets (Fig. 3(a)—(d) resp.):

1. variable faces which correspond to variable vertices;
2. clause gadgets which correspond to clause vertices;

3. splitter faces which correspond to some edges con-
necting a variable vertex to a clause; and

4. absorber gadgets which act as dead ends for extra
splitter wires which are not needed.

variable —V- -
& ue
(a) (b) (c) (d)

Figure 3: The types of faces and gadgets of G*: (a)
a variable face, (b) a clause gadget, (c) a splitter face
and (d) an absorber gadget.

See [3] for the detailed description of the gadgets and
their roles.

We construct a graph such that if the variable x; cor-
responding to the variable face Fy, is false in a satisfiable
assignment of ¢, the degree 2 vertices are assigned to
F,, (the red arrows in our figures point inwards), and
if the variable is true in the assignment, then all the
degree 2 vertices are assigned to the other face. The
construction begins by constructing the planar graph
G, which represents ¢, and embedding it in the plane.

61

28" Canadian Conference on Computational Geometry, 2016

Later, we will replace its vertices by corresponding gad-
gets. However, for this to be possible, the graph needs
to be modified first.

Each edge in G, indicates a “transfer” of a degree
2 vertex. We first need to modify the graph so that
the vertices representing variables of ¢ have degree pre-
cisely 3. If the degree of such a vertex x; is less than 3,
we increase it by attaching the required number of new
vertices (those will be replaced by absorber gadgets). If
the degree of z; is more than 3, we reduce its degree by
detaching deg(x;) — 2 edges consecutive in cyclic order
around z; (with respect to the embedding of G,,), rout-
ing them into a new splitter vertex s, and connecting
x; to the splitter. Note that this negates the variable
x;, so some of the edges may need to be routed through
another splitter to cancel this negation. This produces
a plane graph where z; has degree 3 and the splitter
vertex s has degree deg(z;) — 1. Repeatedly applying
this construction, the degree of s can be decreased to 3.

By the construction above, we obtain a plane graph
H, where all the variable, splitter and clause vertices
have degree 3, and absorbers have degree 1. Now we
replace every vertex with the respective gadget so that
every edge in H, is represented by a degree 2 vertex
surrounded by edges shared between two gadgets, and
so that the topology of the gadgets is equivalent to the
embedding of H,, (this is similar to constructing a dual
graph of H,). Let us denote the obtained graph by
H*. The embedding of H* contains some “void” ar-
eas between some gadgets. Those areas can be suitably
attributed to faces of gadgets by removing edges. We
obtain graph G*, call it the gadget graph of ¢, formed
by vertices of degree 3 and 2. See [3, Fig. 13(b)] for an
example of a formula with its gadget graph.

We can now argue that graph G* is a triangulation
dual if and only if the formula ¢ is satisfiable. See [3,
Lemma 5] for the proof.

Lemma 15 The gadget graph G* of formula ¢ is dual
of a triangulation of a simple polygon with holes if and
only if ¢ is satisfiable.

5 Conclusions and Open Questions

We provided an exhaustive analysis of the triangula-
tion dual recognition problem. We showed that some
of them can be solved in linear time and some of them
are NP-complete. Our work focused on duals of general
triangulations of simple polygons. We proposed sev-
eral models for the geometric setting. We presented a
method which in linear time finds a candidate solution,
or rejects. The candidate solution needs to be further
tested. As our approach is not capable of enumerating
all the candidate solutions, it remains an open problem
if recognition is possible under either of these models.

Any bounds for necessary and/or sufficient conditions
under other choices for triangle representatives are open.

References

[1] M. De Berg, O. Cheong, M. van Kreveld, M. Over-
mars, Computational Geometry: Algorithms and
Applications, Springer-Verlag, 3rd rev. ed. (2008).

[2] H. De Fraysseix, J. Pach, R. Pollack, How to
draw a planar graph on a grid, Combinatorica vol.
10(1):41-51 (1990).

[3] M. Derka, A. Lépez-Ortiz and D. Maftuleac, Recog-
nition of Triangulation Duals of Simple Polygons
With and Without Holes, arXiv:1607.05739.

[4] R. Diestel, Graph Theory, 4th Edition, Grad. texts
in math. 173, Springer (2012).

[5] B. Grunbaum, Convex Polytopes, 2nd Edition,
Springer (2004).

[6] D. Hartvigsen, Recognizing Voronoi diagrams with
linear programming, ORSA Journal on Computing,
4(4), 369-374 (1992).

[7] ©. Hjelle and M. Dehlen, Triangulations and
Applications (Mathematics and Visualization),
Springer-Verlag New York (2006).

[8] J.E. Hopcroft, R.E. Tarjan, Dividing a graph
into triconnected components, STAM J. Comput.
2(3):135-158 (1973).

[9] D. Lichtenstein, Planar Formulae and Their Uses,
SIAM J. Comput. 11(2), 329-343 (1982).

[10] D. Maftuleac, S. Lee, S.P. Fekete, A.K. Akash,
A. Lopez-Ortiz, J. McLurkin Local Policies for Effi-
ciently Patrolling a Triangulated Region by a Robot
Swarm, International Conference on Robotics and
Automation (ICRA), 2015.

[11] N. Megiddo, Linear Programming in Linear Time
When the Dimension Is Fized, Journal of the As-
sociation for Computing Machinery, 31 (1984), No.
1, 114-127.

[12] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu,
Spatial tessellations: concepts and applications of
Voronoi diagrams, ISBN: 978-0-471-98635-5, 2000.

[13] J. Snoeyink, M. van Kreveld, Linear-Time Recon-
struction of Delaunay Triangulations with Applica-
tions, European Symposium on Algorithms (1997).

[14] K. Sugihara, T. Hiroshima, How to Draw a De-
launay Triangulation with a Given Topology, Ab-
stracts 13th European Workshop Comput. Geom.
(1997), 1315.

62

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Sliding k-Transmitters: Hardness and Approximation

Therese Biedl*

Abstract

A sliding k-transmitter in an orthogonal polygon P is
a mobile guard that travels back and forth along an
orthogonal line segment s inside P. It can see a point
p € P if the perpendicular from p onto s intersects the
boundary of P at most k times. We show that guarding
an orthogonal polygon P with the minimum number of
k-transmitters is NP-hard, for any fixed k > 0, even if
P is simple and monotone. Moreover, we give an O(1)-
approximation algorithm for this problem.

1 Introduction

Art gallery problems are one of the standard problems
in computational geometry. In the original setting, we
are given a polygon (modelling the art gallery) and we
want to know a set of points (modelling guards or cam-
eras) that can see any point in the polygon, where “see”
in the original setting means that the line segment from
the guard to the point is inside the polygon. There have
been numerous result, concerning bounds on the num-
ber of guards needed, NP-hardness and approximation
algorithms. See e.g. [13, 10] and the references therein.

Recently, motivated by covering a region with wire-
less transmitters, Aichholzer et al. [1] introduced vari-
ants where guards can see through a limited number of
walls. Hence a k-transmitter is a point p in a polygon P
that is considered to see all points ¢ in P for which the
line segment pq intersects the boundary of P at most k
times. Only cases of even k are interesting.

We combine in this paper the concept of a k-
transmitter with the concept of a mobile guard. A mo-
bile guard is a guard that is not stationary, but walks
along a line segment s inside the polygon, and can see
all points that are visible from some point of s. For
orthogonal polygons, a common restriction has been to
demand that line segment s is horizontal or vertical, and
that it guards only those points p that it can see in an
orthogonal fashion, i.e., the perpendicular from p onto s
is inside P. This is called a sliding camera. We combine
the concept of sliding cameras with k-transmitters, and
hence define a sliding k-transmitter as follows: It is a
horizontal or vertical line segment s inside an orthogo-
nal polygon P and it can see all points p such that the

*David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, Waterloo, Canada. {biedl, smehrabi,
z44yu}Quwaterloo.ca

Saeed Mehrabi*

Ziting Yu*

perpendicular from s onto p intersects the boundary of
P at most k times. We allow sliding k-transmitters to
include edges of the polygon.! The objective is to guard
P with the minimum number of sliding k-transmitters.

Related Work. Sliding cameras were introduced by
Katz and Morgenstern [9]. Finding the minimum set of
sliding cameras is NP-hard in polygons with holes [§],
even if only horizontal sliding cameras are allowed [4].
The optimum set of sliding cameras can be found in
polynomial time for monotone polygons [7]. The com-
plexity for simple polygons is open.

Finding the minimum set of k-transmitters is NP-
hard in simple polygons [6], regardless whether the
transmitters are points or polygon-edges. Numerous
bounds are known on the number of k-transmitters that
are necessary and sufficient, depending on the type of
transmitter (point or edge) and the type of polygon
[1, 2, 3, 6]. Regarding sliding k-transmitters, an approx-
imation algorithm for monotone polygons is claimed
in [12], but the algorithm needs a minor modification
to deal with an example (private communication); it is
not clear whether this modification suffices. Other op-
timization criteria for sliding k-transmitters have also
been considered [11].

Our Results. In this paper, we study the complexity
of finding the minimum set of sliding k-transmitters to
guard an orthogonal polygon. Unsurprisingly, we can
show that this is NP-hard, but we prove NP-hardness
even in a very restricted version: The polygon is orthog-
onal and y-monotone, and there is an optimal solution
with only horizontal sliding k-transmitters. We are not
aware of any other variant of the art gallery problem
that is NP-hard on orthogonal monotone polygons (the
traditional art gallery problem is NP-hard for mono-
tone polygons [10], but slanted edges are crucial for the
reduction to work).

As a second result, we show that the O(1)-
approximation algorithm that we recently developed
for sliding cameras [4] works similarly for sliding k-
transmitters. Hence we have an O(1)-approximation
for finding the minimum set of sliding k-transmitters, in
any (not necessarily simple) orthogonal polygon. The
algorithm works also (and becomes even easier) if only
horizontal sliding k-transmitters are allowed.

1With some minor modifications, the results in this paper also
hold if guards must be strictly inside P except at their end.

63

28" Canadian Conference on Computational Geometry, 2016

2 NP-Hardness

In this section, we show that guarding with sliding k-
transmitters is NP-hard, even if the polygon is orthog-
onal and monotone (hence simple). We first prove this
for k = 2 and then extend to larger k.

2.1 Sliding 2-Transmitters

We use a reduction from Minimum Vertex Cover in a
graph G, which is known to be NP-hard even if G is
required to be planar and 2-connected (see e.g. [5]). So
the objective is to compute a minimum set C' of vertices
such that every edge has at least one endpoint in C.

Given a planar 2-connected graph G with n vertices
and m edges, we first compute a bar visibility representa-
tion of G in which each vertex is assigned a horizontal
line segment (called bar) and for each edge there is a
vertical strip with positive width that connects the bars
of endpoints and does not intersect other vertices. It
has been shown multiple times (see e.g. [14]) that this
exists and can be computed in linear time. We may
move vertex-bars up and down slightly as needed so that
all vertex-bars have distinct y-coordinates. Also, since
edge-strips have positive width, we can make them thin
enough such that no two of them have overlapping x-
range. Since the graph is 2-connected, the construction
in [14] guarantees that all vertices except the bottom-
most one have a neighbour below, and all vertices except
the topmost one have a neighbour above.

Gadgets. We start by thickening each vertex-bar into a
box, and place three copies of this box above each other
with the same xz-range. These three boxes are connected
to each other by channels, which are thin vertical corri-
dors (thin enough so that their z-range is strictly within
that of the vertex-box, and does not intersect an edge-
strip). We place these two channels at opposite ends of
the vertex-boxes, resulting in a Z-shape or an S-shape
(the choice between the two is arbitrary for now, but
will be determined later). We call the result a vertez-
gadget; see Fig. 1. By making the height of boxes small
enough, we may assume that no two vertex-gadgets have
overlapping y-range.

For each edge e, the edge-gadget of e is a small axis-
aligned box placed strictly within the strip representing
e in such a way that its y-range intersects no y-range
of another (vertex- or edge-) gadget. See Fig. 1. Notice
that from any edge-gadget there are vertical lines-of-
sight to the vertex-gadgets of the endpoints of the edge.

The Reduction. Let P’ be the polygon obtained by
replacing all vertex-bars and edge-strips with these gad-
gets. P’ is y-monotone (i.e., any horizontal line inter-
sects it in one interval), but not connected (for now we
allow the polygon to be disconnected, but we will dis-
cuss the modifications to make it connected later).

vertex-gadget of w

line-of-sight
from e to v
— [Jedge-gadget of e
line-of-sight
from e to w

vertex-gadget of v

bar representing v

Figure 1: Vertex- and edge-gadgets. The pink (falling
pattern) region is guarded by the red (dotted) horizontal
2-transmitter. Note that it includes everything that the
green (dashed) vertical 2-transmitter can see.

Since no y-ranges overlap, one can easily verify that
vertical 2-transmitters are never required.

Observation 1 Any vertical sliding 2-transmitter in
P’ can be replaced by a horizontal sliding 2-transmitter
that guards at least as much.

See also Fig. 1. We call the three boxes of a vertex-
gadget the top, middle and bottom box, and also use
outer bozres to mean the top and bottom box.

Lemma 1 For any set S of horizontal sliding 2-
transmitters that guard P’ entirely, there ewists a set
S’ of horizontal sliding 2-transmitters that guard P’ en-
tirely such that |S'| < |S| and no sliding 2-transmitter
of 8" is located in an edge-gadget.

Proof. Let s € S be a sliding 2-transmitter that lies
in an edge-gadget B corresponding to edge e = (v, w).
After possible renaming, assume that (the vertex-gadget
corresponding to) v is below e and w is above e.

Assume first that one of v, w (say v) has a horizontal
sliding 2-transmitter s’ in the outer box facing e. Af-
ter possibly extending s’ we may assume that it spans
the entire outer box of v. Since the z-range of B is
within the z-range of v, s’ sees everything that s saw
and that was below s. So we can replace s by a sliding
2-transmitter in the outer box of w facing e, and this
can only increase the guarded region.

So now assume that neither v nor w has a horizontal
sliding 2-transmitter in the outer box facing e. Consider
a point p in the top box of v that is just outside the -
range of B, but still within the z-range of w. The only
horizontal sliding 2-transmitters that could guard p are
in the bottom box of w or in the middle box of v. By
assumption we therefore have a sliding 2-transmitter in
the middle box of v. Likewise w must have a sliding 2-
transmitter in the middle box of w. We can thus move
the sliding 2-transmitter in B to the bottom box of w
without decreasing the guarded region. O

64

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Lemma 2 Let S be a set of horizontal sliding 2-
transmitters that guard P’ entirely and that do not lie in
edge-gadgets. Then for any verter v, there must be at
least one sliding 2-transmitter intersecting the vertez-
gadget of v. If there is exactly one such sliding 2-
transmitter, then it must be in the middle box of v.

Proof. Pick a point p in the middle box of v that is not
in the z-range of the channels. Let s be a horizontal
sliding 2-transmitter that guards p. Then s must be in
one of the three boxes of v.

Assume now that exactly one sliding 2-transmitter
intersects the vertex-gadget of v, and it is not in the
middle box. Say the sliding 2-transmitter is in the bot-
tom box. If v has any neighbour w above, then let p be
a point in the top box of v and in the same z-range as
the edge-gadget of (v,w). To guard p, we need either
a sliding 2-transmitter in the edge-gadget (which was
excluded) or in the top or middle box of v (which was
also excluded). So v cannot have any neighbour above.
By construction that means that v is the topmost of all
vertices. To guard the top box of v, we then must have
a sliding 2-transmitter in the top or middle box of v.
Again contradiction. |

Lemma 3 The following statements are equivalent:
(i) G has a vertex cover of size k, (ii) P’ can be guarded
by n + k sliding 2-transmitters, and (iii) P’ can be
guarded by n + k horizontal sliding 2-transmitters.

Proof. Given a vertex cover C of G, we place horizontal
transmitters as follows: If v € C', then place a maximal
horizontal sliding 2-transmitter in both outer boxes of
v, else place a maximal horizontal sliding 2-transmitter
in the middle box of v. Clearly we have n + |C| sliding
2-transmitters and every vertex-gadget is guarded. For
every edge e, one endpoint v is in C, and hence both
bottom and top box of v contain sliding 2-transmitters.
The one in the outer box of v that faces e then guards
the edge-gadget of e.

Vice versa, assume that set S of sliding 2-transmitters
guards P’. By the above results, we may assume that
they are all horizontal and none are in an edge-gadget.
Define C' to be all those vertices whose vertex-gadgets
are intersected by at least two sliding 2-transmitters.
Since every vertex-gadget intersects at least one sliding
2-transmitter we have |C| < |S| — n. For every edge
(v,w), the edge-gadget must be guarded by a sliding
2-transmitter that is in an outer box of v or w, say v.
Then v must contain at least two sliding 2-transmitters
by Lemma 2, so v € C'. Hence C is a vertex cover. [J

Connecting the Polygon. Now we explain how to
make the polygon connected while staying monotone.
Let g1, ..., gman be the gadgets in P’, sorted in bottom-
to-top order (since y-ranges are disjoint, this is well-
defined). The idea is to connect each g; to g;11 using

1 :Connector—
i ! gadget

bl 1

Figure 2: Connecting an edge-gadget to a vertex-gadget
if there is no line of sight between them. We again
show how some vertical transmitters can be replaced by
horizontal transmitters.

a connector-gadget. This is an S-shaped or Z-shaped
gadget much like a vertex-gadget, except that the top
and bottom box both add a zig-zag near the end. Also,
one of the channels has flexible height, so that the
connector-gadget can have arbitrary height. We attach
the ends of the connector-gadget C' to corners of g; and
gi+1. Fig. 2 shows how to do this if the z-range of C
is disjoint (except at the ends) from the ones of g; and
gi+1, and the inset in Fig. 3 shows how to do this if C
shares z-range with them (in case of which we push the
zig-zag to the very end to avoid overlap.)

However, we cannot connect consecutive gadgets if
the connector-gadget would cross a line-of-sight. To
avoid doing this, we will subdivide edges.

Observation 2 (Folklore) If G® results from graph G
by subdividing one edge twice, then G has a vertex cover
of size k if and only if G® has a vertex cover of size k+1.

We proceed as follows. First “parse” the bottommost
gadget g1: use an S-shape for it and fix as current corner
its top right corner. Assume now we have parsed gadget
g; already, and fixed one top corner c of it as current
corner. Let g;+1 be the next gadget above g;. Consid-
ering its two bottom corners, we choose the corner ¢’ so
that cc’ crosses as few lines-of-sight as possible.

If line segment cc’ crosses no line-of-sight, then attach
a connector-gadget between ¢ and ¢’, using as shape
(i.e., S or Z) the one that has ¢ and ¢’ at its ends. Let
"’ be the diagonally opposite corner from ¢’ in gadget
gi+1 and (if g;+1 is a vertex-gadget) use as shape (i.e., S
or Z) for it the one that has ¢/ and ¢ at its ends. This
finishes (in this case) the parsing of gadget g;1+1, and
we continue to connect to the next gadget with current
corner c”.

65

28" Canadian Conference on Computational Geometry, 2016

Figure 3: Connecting an edge-gadget to a vertex-gadget
if there are lines of sight between them.

Now assume that cc’ crosses some lines-of-sight, say
l1,...,lp in order from c to ¢’. For all j, line-of-sight
l; represents an edge e;; subdivide e; twice. This adds
two new vertex-gadgets and two new edge-gadgets that
we place along I;, in the y-range between g; and g;41.
We make their height small enough and move them up
and down suitably (while staying between g¢; and g;11),
so that all their y-ranges are disjoint and the ones of [;
are below the ones of [;;, for all j.

All these gadgets can be connected with line segments
that do not cross a line-of-sight. See Fig. 3. We can
hence connect all these gadgets as explained above. The
only difference is that the next current corner ¢’ must
be chosen to be the end of the line segment connecting
to the next gadget. Normally ¢” will again be diagonally
opposite from the previous corner ¢’, but there is one ex-
ception per set of gadgets added for subdivisions. With
that we have connected to g¢;1+1, and we repeat from
there (after choosing its shape and the current corner
as before).

Reduction Revisited. With the addition of
connector-gadgets, Observation 1 (vertical transmitters
can be replaced by horizontals) is not as obvious any-
more, but still holds as long as sliding k-transmitters
may run along polygon-edges. See Fig. 2. With this,
Lemma 1, Lemma 2, and the equivalent of Lemma 2 for
connector-gadgets, also hold. Let Ny be the total num-
ber of subdivisions that we did over all connecting of all
gadgets (N; is even), and let G’ be the graph that re-
sults. We started with n4+m € O(n) vertex-gadgets and
edge-gadgets and 2m € O(n) lines-of-sight. Connecting
two of these gadgets hence creates O(n) subdivisions,
and therefore Ny € O(n?) is polynomial. After all sub-
divisions we have n + m + 2N, gadgets, and hence use
N, :=n+m+ 2N, — 1 connector-gadgets to connect
all of them into one polygon P. So the construction is

Figure 4: Vertex- and connector-gadget for k = 4.

polynomial. G has a vertex cover of size k if and only if
G’ has a vertex cover of size k' := k + N,/2 if and only
if P can be guarded with k' 4+ n 4+ N, horizontal sliding
2-transmitters.

With that, the reduction is complete for k& = 2.
Note that the constructed polygon is connected and y-
monotone (and in particular therefore simple).

2.2 k-Transmitters for & > 2

We now generalize to sliding k-transmitters for any fixed
k > 0. The reduction is exactly the same as before,
with the exception of the definition of vertex-gadgets
and connector-gadgets.

The vertex-gadget now consists of k + 1 copies of
the thickened bar in the visibility representation (ear-
lier we had 3 = 2 + 1 copies). They are connected
with k& channels at alternate ends, resulting in a zig-
zag line. The connector-gadget is a vertex-gadget with
additional small zig-zags in the top and bottom box
(possibly pushed towards the end.) See Fig. 4.

We can verify that again vertical sliding k-
transmitters are never better than horizontal ones. De-
fine for a vertex-gadget the middle box to be the
(k/241)st box (recall that k is even), and the outer
bozes to be the top and bottom box as before. With
that, the proofs of Lemmas 1 and 2 carry almost verba-
tim, and the reduction holds again. We conclude:

Theorem 4 For any k > 0, guarding a polygon with
the minimum set of sliding k-transmitters is NP-
complete, even if (i) the polygon is a simple y-monotone
orthogonal polygon, and (ii) only horizontal sliding k-
transmitters are allowed.

Notice that every gadget is a thickened path obtained
by sliding a unit square along an orthogonal path. With
suitable rescaling, in fact the entire polygon can be
made into a thickened path, with one exception: When-
ever we subdivide edges, we must (at one edge-gadget)
attach both connecting gadgets on the same (left or
right) side, hence have a “leg” sticking out. (This could
perhaps be called a thickened caterpillar.) We suspect
that the construction could be modified to become a
thickened path, but have not been able to work out the
details yet.

66

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 5: Horizontal partition-segments (blue dashed),
one horizontal slice-segment (red solid) and two vertical
guard-segments (green dot-dashed) for k = 2.

3 An O(1)-Approximation Algorithm

In this section, we give an O(1)-approximation algo-
rithm for the sliding k-transmitter problem, using as key
ingredient an O(1)-approximation developed in [4] for a
certain hitting problem among segments. The main dif-
ference between our approach and the one in [4] is that
we need to define the segments differently so that we
encapture that guards can see through £k walls.

Let P denote an orthogonal polygon with n vertices,
and let § P denote the boundary of P. We first compute
a subdivision of P and then define sets of orthogonal line
segments in P which will be used to define the hitting
set problem.

Slices. Define horizontal partition-segments as follows:
Start with a horizontal edge e. Expand e leftwards until
we hit a vertical edge of the polygon, coming from the
strict inside of P, for the (k/2)th time. Likewise expand
e rightwards. If there are not enough such intersections,
then stop at the last one. See Fig. 5.

The horizontal partition-segments split the interior of
the polygon into rectangles that we call horizontal slices.
Since any edge gives rise to one partition-segment, and
any partition-segment intersects O(k) vertical edges, we
have O(kn) horizontal slices.

The following lemma argues that this partitioning is
“correct” in the sense that any transmitter either guards
all or nothing of the interior of a slice.

Lemma 5 Let o be a horizontal slice and let ¢ be a
point in its interior. If a mazimal vertical sliding k-
transmitter g sees c, then it sees all points of o.

Proof. Let g be the point on g where the perpendicular
from ¢ onto g ends. By assumption the horizontal line
segment ¢q intersects the boundary of P at most k times.
Expand ¢q until it spans the z-range of ¢; this cannot
add crossings since ¢ C P. Now sweep the resulting
segment s’ upward until we hit either the top side of o
or a horizontal edge of P. Say we hit an edge e first.
We created a partition-segment from e, which extends
in both directions until it hits at most (k/2) vertical

edges from the inside, hence at most k vertical edges.
This partition segment contains the entire (translated)
s’ and splits B, so we have reached the top side of B.
So we can sweep the region of B above s’ without
encountering new edges of P, which shows that g guards
all of this. Likewise we can sweep downward until the
bottom side of B, and so g guards all of B. O

Slice-segments. We now assign a segment to each
horizontal slice that captures “being guarded”. For any
horizontal slice o, let s be a horizontal segment strictly
inside 0. Extend s (much like we did for partition-
segments) to both sides until it hits a vertical edge from
the inside for the (k/2)th time. We call the resulting
segment s’ the slice-segment of o. See also Fig. 5.

We define vertical slices of P and vertical slice-
segments in an analogous fashion. There are O(kn)
slice-segments since there are O(kn) slices.

Guard-segments I'. Our definition of sliding k-
transmitters allowed any horizontal or vertical segment
to be used as such. We now describe a finite set of slid-
ing k-transmitters and argue that these suffice. Let s be
a horizontal edge of P. Define a sliding k-transmitter s’
obtained by extending s until we hit an interior point of
a vertical edge of 0 P. (If some vertices are aligned, then
s’ may run along multiple horizontal edges of P.) The
resulting segments are the horizontal guard-segments
I'y. Define vertical guard-segments I'y, similarly, and
set I' = 'y UT'y to be the guard-segments. We have at
most n guard segments (one per edge).

Crosses X: Let a pizel be any rectangle that has the
form oz Noy for a horizontal slice oy and vertical slice
oy. Let ¢ be the point where the slice-segments sg, sy
corresponding to o and oy intersect; we call ¢ a cross,
and say that sy and sy support c. Note that c is in the
interior of the pixel since slice-segments were defined
using segments strictly in the interior of the slice. We
denote the set of crosses by X.

We say that a cross c is hit by a guard-segment g
if g intersects the supporting slice-segment of ¢ that is
perpendicular to g. We now show that reducing the
problem to just crosses and guard-segments is enough.

Lemma 6 A set S of m sliding k-transmitters guards
P if and only if there exists a set S" C T' of m guard-
segments such that every cross c is hit by some guard-
segment v € S’.

Proof. (=) Suppose that we have a set S of m sliding
k-transmitters that guards P entirely. Fix one sliding
k-transmitter s. Translate s in parallel (i.e., move it
horizontally if s is vertical, move it vertically if s is hor-
izontal) until we reach 6P. Thus s is now intersecting
an edge of P. Extend s so that it is maximal while still
within P. Both operations can only increase the region

67

28" Canadian Conference on Computational Geometry, 2016

seen. The resulting segment s’ is a guard-segment. Af-
ter doing this to all sliding k-transmitters, we now have
a set of guard-segments S’ that sees all of P. Now con-
sider any cross ¢ € X. Since ¢ is a point in P, it is
guarded by some guard-segment v € S’. Thus, there
exists a point g € ~ such that the line segment gc is
normal to v and intersects § P in at most k points. But,
gc is part of the slice-segment that supports ¢ and is per-
pendicular to . So g is the intersection point between
that slice-segment and guard-segment ~.

(«=) This is straightforward by Lemma 5 since (i) any
point in P belong to at least one pixel, (ii) there is a
1-to-1 correspondence between the pixels and crosses of
P, and (iii) crosses are interior points of pixels. ([l

Our problem has now been discretized as follows:
Given the set X of all crosses, each supported by two
line segments, find a subset S C I" such that for every
cross one of the two line segments is intersected by at
least one guard-segment in S. We call this the cross-
hitting problem. This problem is ezactly the same prob-
lem as studied in [4] when solving the sliding-cameras
problem (the only difference is in the choice of support-
ing segments of crosses, which are longer for sliding k-
transmitters). They give an O(1)-approximation algo-
rithm for this problem which uses no information about
how the segments were obtained (other than that they
are horizontal or vertical). Using this, we hence have:

Theorem 7 For any k > 0, there exists a polynomial-
time O(1)-approximation algorithm for guarding an or-
thogonal polygon with sliding k-transmitters.

As in [9], we also consider the variant when only hor-
izontal sliding k-transmitters are allowed. This also re-
duces to the cross-hitting problem, with the only change
that we use I'y in place of I'. This in fact simpli-
fies the problem, because now only vertical supporting
segments are relevant for crosses. So there is also an
O(1)-approximation algorithm for guarding an orthog-
onal polygon with horizontal sliding k-transmitters.

4 Conclusion

In this paper, we studied how to guard an orthogo-
nal polygon using the minimum number of sliding k-
transmitters. We showed that this is NP-hard, even
if the polygon is y-monotone. We also gave an O(1)-
approximation algorithm.

The main open problem is to find better approxima-
tion factors. (The “O(1)” in [4] stems from the use of
e-nets, and the constant is unspecified but likely quite
large.) Is the problem APX-hard? Also, for what sub-
class of polygons is guarding with sliding k-transmitters
polynomial? This is true for orthogonally convex poly-
gons (one or two guards are always enough), but are
there other, less trivial classes?

References

(10]

(11]

(12]

(13]

(14]

[1] O. Aichholzer, R. F. Monroy, D. Flores-Penaloza,
T. Hackl, J. Urrutia, and B. Vogtenhuber. Modem illu-
mination of monotone polygons. In Furopean Workshop
on Computational Geometry, pages 167170, 2009.

[2] O. Aichholzer, R. F. Monroy, D. Flores-Pefaloza,
T. Hackl, J. Urrutia, and B. Vogtenhuber. Mo-
dem illumination of monotone polygons. CoRR,
abs/1503.05062, 2015.

[3] B. Ballinger, N. Benbernou, P. Bose, M. Damian, E. D.
Demaine, V. Dujmovic, R. Y. Flatland, F. Hurtado,
J. Iacono, A. Lubiw, P. Morin, V. S. Adinolfi, D. L. Sou-
vaine, and R. Uehara. Coverage with k-transmitters in
the presence of obstacles. J. Comb. Optim., 25(2):208—
233, 2013.

[4] T. Biedl, T. M. Chan, S. Lee, S. Mehrabi, F. Montec-
chiani, and H. Vosoughpour. On guarding orthogonal
polygons with sliding cameras. CoRR, abs/1604.07099,
2016. Submitted.

[5] T. C. Biedl, G. Kant, and M. Kaufmann. On triangu-
lating planar graphs under the four-connectivity con-
straint. Algorithmica, 19(4):427-446, 1997.

[6] S. Cannon, T. G. Fai, J. Iwerks, U. Leopold, and
C. Schmidt. Combinatorics and complexity of guarding
polygons with edge and point 2-transmitters. CoRR,
abs/1503.05681, 2015.

[7] M. de Berg, S. Durocher, and S. Mehrabi. Guarding
monotone art galleries with sliding cameras in linear
time. In Combinatorial Optimization and Applications
(COCOA 2014), volume 8881 of LNCS, pages 113-125,
2014.

[8] S. Durocher and S. Mehrabi. Guarding orthogonal art
galleries using sliding cameras: algorithmic and hard-
ness results. In Proceedings of Mathematical Founda-
tions of Computer Science (MFCS 2013), volume 8087
of LNCS, pages 314-324, 2013.

[9] M. J. Katz and G. Morgenstern. Guarding orthogo-
nal art galleries with sliding cameras. Inter. J. Comp.
Geom. & App., 21(2):241-250, 2011.

E. Krohn and B. J. Nilsson. Approximate guarding
of monotone and rectilinear polygons. Algorithmica,
66(3):564-594, 2013.

S. S. Mahdavi, S. Seddighin, and M. Ghodsi. Cover-
ing orthogonal polygons with sliding k-transmitters. In
Proceedings of the 26th Canadian Conference on Com-
putational Geometry, CCCG 2014, Halifax, Nova Sco-
tia, Canada, 2014, 2014.

S. Mehrabi and A. Mehrabi. A note on approximating
2-transmitters. CoRR, abs/1512.01699, 2015.

J. O’Rourke. Art Gallery Theorems and Algorithms.
The International Series of Monographs on Computer
Science. Oxford University Press, New York, NY, 1987.

R. Tamassia and I. Tollis. A unified approach a visibility
representation of planar graphs. Discrete € Computa-
tional Geometry, 1:321-341, 1986.

68

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

The Length of the Beacon Attraction Trajectory

Bahram Kouhestani, David Rappaport, Kai Salomaa *

Abstract

We study the attraction trajectory of a point under the
beacon model. We show that when a point object p is
attracted to a point beacon b inside a simple polygon, its
trajectory is at most v/2 times longer than the geodesic
distance between p and b. We show that in polygons
with holes, the ratio between the length of the beacon
trajectory and the length of geodesic distance can be
unbounded.

1 Introduction

Consider a dense sensor network deployed in a known
environment. Geographic greedy routing is a common
and efficient strategy to send messages between sensors
(nodes) of the network. Each node is assumed to know
its planar location and the location of the destination
that may be obtained through a local service. Each
node has a mneighbourhood of a constant number of
near neighbours that are used for all of its communi-
cations. A sensor communicates with a destination by
forwarding a message to a node in its neighbourhood
that is closest to the destination. The message travels
through the network until it reaches the destination or
gets stuck on a node that is closer to the destination
than any of its neighbours. Geographic greedy routing
tends to be efficient, computationally inexpensive,
and low-state, that is, each node only needs to store
information related to nodes in its neighbourhood.
However, it has the drawback of messages at times not
reaching their destination.

Motivated by geographic greedy routing, Biro et
al. [3] introduced the “beacon model”. A beacon is
a point with a force of attraction that pulls objects
towards it. The beacon represents the destination of a
message in a dense sensor network. The attraction of
the beacon causes a point object to move towards it
as long as its Euclidean distance towards the beacon is
decreasing. The trajectory of the point represents the
path of a message in the sensor network.

Let P be a simple polygon with n vertices. A beacon
is a stationary point inside P that can induce a force

*Queen’s University, Kingston, ON,
{kouhesta,daver,ksalomaa}@cs.queensu.ca

Canada,

of attraction within P. When beacon b is activated, it
can attract a point p in P so that it moves towards b
always getting closer to b. Note: we use p to denote the
initial location as well as the name of a moving point.
The trajectory of point p as it moves toward beacon b
either pulls in a straight line towards b or it slides on the
boundary of P. See Fig. 1 for an illustrative example.

===

Figure 1: The movement of a point p on its trajec-
tory towards beacon b alternates between being pulled
straight towards the beacon and sliding on the polygon
boundary.

The beacon model can be used to study and answer
various questions that arise in geographic greedy
routing, such as the set of destinations a particular
node can successfully send a message to, the set of
sources a particular node can receive a message from,
the set of all nodes that can send a message to any
other nodes in the network and the set of all nodes that
can receive a message from any node in the network.

A compendium of interesting results pertaining to
beacon routing can be found in Biro’s PhD thesis [2].
Biro et al. [3] studied the combinatorics of guarding a
polygon with beacons and showed that [%] beacons are
sometimes necessary and always sufficient to succesfully
route between any pair of points in a simple n-gon.
They also proved that it is NP-hard to find a minimum
cardinality set of beacons to cover a simple polygon.
In 2013, Biro et al. [5] presented a polynomial time
algorithm for routing between two fixed points using a
discrete set of candidate beacons in a simple polygon
and gave a 2-approximation algorithm where the
beacons are placed with no restrictions. For polygons
with holes, Biro et al. [4] showed that [%] — h — 1
beacons are sometimes necessary and [%W + h -1
beacons are always sufficient to guard a polygon with
h holes. Combinatorial results on the use of beacons
in orthogonal polygons have been studied by Bae

69

et al. [1] and by Shermer [9]. Examining another
special case Kouhestaniet al. [7] give an O(nlogn) time
algorithm for beacon routing in a polygonal terrain. In
[8] Kouhestani et al present algorithms to efficiently
compute the inverse attraction region of a point for
simple, monotone, and terrain polygons with respective
time complexities O(n?), O(nlogn) and O(n).

In this paper, we compare the length of a “successful”
beacon trajectory to the length of the shortest path. We
show that in a simple polygon the length of a successful
beacon trajectory is less than v/2 times the length of
a shortest (geodesic) path. In contrast if the polygon
has internal holes then the length of a successful beacon
trajectory may be unbounded.

1.1 Definitions

Let e be an edge of P and let L be the supporting line
of e. Let h be the orthogonal projection of b on L as
shown in Fig 2. Observe that h is the point on L closest
to b, so if a point slides on edge e on its trajectory to
b the direction of the slide must be towards h. If A
is located in the interior of the edge e then a point p
sliding on e will stop when it reaches h, otherwise, p
slides all the way to an endpoint, v, of e. Let ¢’ denote
the neighbour of e sharing endpoint v. From v, the point
p is pulled straight towards b if possible, or p slides on
e’ or p remains stuck on v depending on the location of
the orthogonal projection of b on e’ (See Fig. 3).

Figure 2: A point object following the beacon trajectory
slides on the edge e towards the orthogonal projection
of the beacon onto the supporting line of e.

A point p in P is attracted by beacon b if its
trajectory makes it all the way to b without getting
stuck. The attraction region of a beacon b is the set
of all points in P that b can attract. In [2, 5] Biro et
al. show that the attraction region of a beacon can be
computed in linear time. Whenever p is attracted to b
we define its attraction trajectory, denoted by AT (p,b),
as the path from p to b. We use |AT(p,b)| to denote
the length of AT(p,b). Recall, a traversal AT(p,b)
from p to b alternates between pulling straight towards

Figure 3: Three outcomes after a point object slides to
an endpoint of e. (a) It pulls straight towards b. (b) It
slides on the adjacent edge, ¢’. (c) It get stuck on the
endpoint. Here A’ is the orthogonal projection of b on
the supporting line of the edge €’.

b and sliding on the edges of the polygon. An edge of
AT (p,b) is called a pull edge if it pulls straight towards
b, otherwise it is called a slide edge. A polygon P is
called a routable polygon if for any two points x and y
in P, x attracts y. A routable polygon is shown in Fig. 4.

Let b and p be two points inside a simple polygon P.
The Euclidean shortest path (geodesic path) between p
and b, denoted by SP(p,b), is a path inside P that con-
nects p and b and among all such paths has the smallest
path length. Note that SP(p,b) only turns at reflex ver-
tices of P and has the so called outward convex property,
i.e. the angle facing the exterior of P at every turn on
SP(p,b) is convex [6]. We use |SP(p,b)| to denote the
length of SP(p,b).

1.2 Related work

Tan and Kermarrec [10] have shown that for any pair
of points b and p in a routable polygon, |AT(p,b)| <
3|SP(p,b)|. Their proof is based on the claim that in
a routable polygon, the attraction path between b and
p passes through all reflex vertices on SP(p,b). We
provide an example in which this claim does not hold.
We also give conditions when a reflex vertex is shared
between the attraction trajectory and the shortest path.
The main result of this paper is that in a simple polygon,
when b attracts p,

[AT (p, b)|

S <V

We also show that in polygons with holes

|AT (p, b)]
|SP(p,b)|

may be unbounded.
2 The length of attraction trajectory

Let P be a simple polygon. We begin by studying con-
ditions under which reflex vertices of P are shared by
AT (p,b) and SP(p,b).

70

Observation 1 AT (p,b) does not necessarily pass
through all reflex vertices on SP(p,b) (see Fig. 4).

Figure 4: The attraction trajectory AT(p,b) does not
necessarily pass through all reflex vertices of SP(p,b)
even if the polygon is routable.

The following two lemmas indicate which reflex ver-
tices are always common to SP(p,b) and AT (p,b).

Lemma 1 Assuming that p does not see b, let vy be the
last reflex vertex on the shortest path from p to b. Then
AT (p,b) passes through vy.

Proof. Consider the visibility polygon of b in P, i.e. all
points in P visible to b. A window of b is the boundary
between points that are visible and points that are not
visible to b. This window can be computed by extending
buy, from vy, to the first intersection with the boundary
of P. Observe that vy is the base of a window (shown
in dashed red in Fig. 5).

Note that any path from p to b must cross this win-
dow. In the attraction of b, a point on the window will
move towards b and therefore it moves along the win-
dow until it reaches v. Thus, we conclude that AT(p, b)
passes through vy. O

Let SP(p,b) be the polygonal chain p,vy,va, ..., v, b
and assume that b attracts p. We call the edge v;0,571 €
SP(p,b) a separating diagonal if cutting through v;v; 11
partitions P into two sub-polygons such that b and p
are not in the same sub-polygon.

Lemma 2 Let v;0;51 € SP(p,b) be a separating diago-
nal. Then at least one of v; or vi11 is on AT(p,b).

Proof. We extend 7;7;77 from each endpoint until it
intersects the boundary of P. Let w; (w;4+1) be the first
intersection of the extension from v; (v;4+1) with the
boundary of P (Fig. 5). The line segment v;w; cuts P
into two sub-polygons. Due to outward convexity of the
shortest path, p belongs to the sub-polygon below v;w;.
Similarly, v;57w;+1 cuts P into two sub-polygons and b
belongs to the sub-polygon above U;;1w; 1. There are
two cases to consider.

Case 1: b is below the supporting line of 7;0,71. We
show that AT(p,b) passes through v;. Consider
a point on the open line segment w;w;. In the
attraction of b, this point cannot move above v;w;
(directly) without a slide movement. As v; and
w; are mutually visible, the only slide movement
that can move a point above v;w; occurs at v;.
Therefore, the attraction trajectory must pass
through v;.

Case 2: b is on or above the supporting line of 7;v;17.
We show that AT(p,b) passes through v;1;. Con-
sider a point on the open line segment w;v;. This
point cannot move below T;v;71 (directly) with-
out a slide movement. Similarly, as v; and v;11
are mutually visible, the only slide movement is
through v; 1. Therefore, the attraction trajectory
of p passes through v, 1.

Thus we have shown that at least one of v; or v;41 is
on AT (p,b).
O

....................

Figure 5: Proof of Lemma 2. The coloured region indi-
cates the possible positions of p.

We compare the lengths of AT (p,b) and SP(p,b) to
the Euclidean distance between p and b.

Lemma 3 The attraction trajectory can rotate an ar-
bitrary number of times around b and the length of
AT (p,b) and SP(p,b) can be arbitrarily longer than the
Euclidean distance between b and p (See Fig. 6).

Proof. Let b be a beacon which we assume is at the
origin of a plane coordinate system. Let m be an ar-
bitrary positive integer. We partition the plane into m
equal angles around b so that each angle has a degree
of § = 2x/m (in Fig. 6, m = 16 and 6 = 7/8). Next
we construct a spiral shape as follows. We begin at
a point p on the negative side of the z-axis and going
counter-clockwise we draw a line segment from p orthog-
onal to the next line. We continue this process to obtain

71

Figure 6: The attraction trajectory AT(p,b) and
SP(p,b) follows the polygon boundary and may rotate
an arbitrary number of times around b.

a polygonal spiral. This polygonal chain approximates
the Archimedean spiral [11]. It is straightforward to
construct a simple polygon by adding a convex chain
around the spiral as in Fig. 6. Now consider the move-
ment of p in the attraction of b. It slides along the spiral
and eventually it is attracted by the beacon. O

In order to determine the quality of the attraction
trajectory we compare its length to the length of
SP(p,b). We partition AT (p,b) into maximal sub-
paths that alternately coincide with and diverge from
SP(p,b). We then show that each maximal divergent
sub-path of AT(p,b) is at most /2 longer than the
corresponding part of SP(p,b).

Let u and v be points common to both SP(p,b) and
AT (p,b) such that, AT (p,b) diverges from SP(p,b) at
u and only returns to a common point at v. We call
the subpath of AT (p,b) between the points u and v the
uv fragment of AT (p,b). We use the notation F(u,v)
to denote the uv fragment of AT (p,b).

Without loss of generality we assume that the input
is oriented so that the line from the point u to the bea-
con b, denoted by L, is horizontal, with u to the left
of b and v above L,, ;. We adopt a polar coordinate sys-
tem with polar reference point b, with the components
r (the distance of the point to b) and ¢ (the counter
clockwise angle between the axis and a line joining b to
the point). Note that SP(u,v) does not go below the
line L, p, because otherwise F'(u,v) and SP(u,v) will
intersect before they reach v.

Lemma 4 Let F(u,v) be the uv fragment of AT(p,b)
oriented as described above. The traversal of F(u,v)

from u to v monotonically decreases in its r-coordinate
and is non-increasing in the ¢-coordinate.

Proof. Note that the r-coordinate represents the
Euclidean distance between b and (the current position
of) p. Therefore by the definition of beacon model the
r-coordinate monotonically decreases.

Recall that every attraction trajectory is made up
of two types edges, pull and slide edges. Observe that
the ¢-coordinate stays constant as a moving point p
is pulled along a pull edge. We complete the proof
by showing that the ¢-coordinate decreases along all
slide edges. Observe that a slide edge can begin at a
vertex of polygon P or begin from a point interior to
a polygon edge. We consider each of these two cases
separately.

If a slide begins on a polygon vertex, then it does so
because there is no direct pull to . This implies that
the ¢-coordinate must decrease along the slide.

For the case where a slide begins at an interior point
we consider the closed curve obtained by concatenat-
ing F(u,v) and SP(u,v) (See Fig. 7). Observe that
this closed curve bounds a simply connected subset of
the simple polygon P. (Note: This is the crucial point
where the absence of holes in P is necessary.) Based on
the orientation assumptions, the interior of this simply
connected region lies to the left in a counter clockwise
traversal of F(u,v). Therefore, if a slide begins from a
point interior to a polygon edge again the ¢-coordinate
must decrease along the slide.

O

Figure 7: A simple closed subset of polygon P is
bounded by concatenating F'(u,v) and SP(u,v).

We have established the characteristics of a maximal
fragment of AT (p,b) that diverges from SP(p,b). Using
these characteristics we obtain an upper bound on the
length of this divergent fragment.

72

Figure 8: An attraction trajectory is shown in red. Note
that we have not drawn portions of the polygon where
the sliding occurs. The green path shows a longer at-
traction trajectory than the original red one.

Theorem 5 In a simple polygon P, for any two points
b.p € P, [AT(p,b)| < VZ|SP(p,b)|.

Proof. We partition AT'(p, b) alternating between frag-
ments that are congruent to SP(p, b) and fragments that
are divergent from SP(p,b). We only need to consider
the divergent fragments. Consider one such divergent
fragment beginning at u and ending at v as given above,
and described as the wv fragment of AT(p,b). Let
F(u,v) be used to denote the uv fragment of AT(p,b).
Let |uv| denote the length of the line segment uv. As
[av| < |SP(u,v)|, it is sufficient to show that

Pl _

[wv]

In Fig. 8 the red path represents a fragment F'(u,v)
of the attraction trajectory AT(p,b). We convert this
path to a longer one by considering each slide to end
on a right angle with the line going through b and the
end of slide (shown in green). Next we convert to an
even longer attraction trajectory by forcing each slide
to be parallel to the green ones but with an end point
located on the edge wo (shown in blue in Fig. 9). Note
that parts of the blue and the green chains that do not
collide form a trapezoid where the angle between the
two green segments is greater than m/2. This guar-
antees that the blue chain is longer than the green chain.

Now consider a triangle bounded by two adjacent blue
line segments and the portion of wv between these two
line segments. As the angle between the blue line seg-
ments is at least 7/2, the total length of the blue path
is at most v/2 times the length of uw. O

3 The length of attraction trajectory in a polygon
with holes

In this section we show that in polygons with holes, the
length of the attraction trajectory may be arbitrarily
longer that the length of the shortest path between b
and p. Fig. 10 illustrates an example with this property.

Figure 9: Converting to a longer attraction trajectory.

In this figure, holes are represented as thin spiral shapes
which are approximated by a polygonal chain similar to
the case shown in Fig. 6. The length of the shortest path
between b and p is roughly equal to the length of the
line segment bp, while the attraction trajectory slides on
each spiral portion, and therefore it can be arbitrarily
long.

Figure 10: The attraction trajectory can be arbitrarily
longer than the shortest path in a polygon with holes.

4 Conclusion

We show that the length of the attraction trajectory
is at most /2 of the length of the shortest path,
indicating that beacon attraction is not only inexpen-
sive to compute but also efficiently short. It remains
an open question whether this bound is tight. We
conjecture that it is tight, i.e., for any small positive
number €, there exists a simple polygon P and points
b,p € P such that v2—¢ < |[AT(p,b)| / |SP(p,b)| < V2.

In [10] Tan and Kermarrec present a routing protocol
which is at most 7 times longer than the shortest path.
In their paper they consider the attraction trajectory to
be at most 3 times longer than the shortest path. Our
result immediately improves their approximation ratio

73

to 4++/2. We hope that this paper will further motivate
the use of greedy routing in various applications.

References

1]

[4]

(8]

(10]

(11]

S. Bae, C. Shin and A. Vigneron. Tight Bounds for
Beacon-Based Coverage in Simple Rectilinear Polygons.
Latin American Theoretical Informatics Symposium,
2016.

M. Biro. Beacon-based Routing and Guarding. PhD
Dissertation, Stony Brook University, 2013.

M. Biro and J. Gao, J. Iwerks, I. Kostitsyna and J. S.
B. Mitchell. Beacon-based routing and coverage. Pro-
ceedings of the 21st Fall Workshop on Computational
Geometry, 2011.

M. Biro, J. Gao, J. Iwerks, I. Kostitsyna and J. S. B.
Mitchell. Combinatorics of beacon routing and cover-
age. Proceedings of the 25th Canadian Conference on
Computational Geometry, 2013.

M. Biro, J. Iwerks, I. Kostitsyna and J. S. B. Mitchell.
Beacon-Based Algorithms for Geometric Routing. Pro-
ceedings of the 13th International Symposium on Algo-
rithms and Data Structures, 2013.

S. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, 2007.

B. Kouhestani, D. Rappaport, K. Salomaa: Routing in
a Polygonal Terrain with the Shortest Beacon Watch-
tower.Proceedings of the 26th Canadian Conference on
Computational Geometry, 2014.

B. Kouhestani, D. Rappaport, K. Salomaa. On the In-
verse Beacon Attraction Region of a Point. Proceedings
of the 27th Canadian Conference on Computational Ge-
ometry, 2015.

T. Shermer. A Combinatorial Bound for Beacon-based
Routing in Orthogonal Polygons. Proceedings of the
27th Canadian Conference on Computational Geome-
try, 2015.

G. Tan, A. Kermarrec. Greedy geographic routing in
large-scale sensor networks: A minimum network de-
composition approach. IEEE/ACM Transactions on
Networking, 20(3), 864-877, 2012.

Wikipedia contributors. Archimedean spiral. Retrieved
March 14, 2016, from https://en.wikipedia.org/
wiki/Archimedean_spiral.

74

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

A Competitive Strategy for Walking in Generalized Streets for a Simple
Robot

Azadeh Tabatabaei*

Abstract

In this study, we consider the problem of walking in
an unknown generalized street or G-street, for a sim-
ple robot. The basic robot is equipped with a sensor
that only detect the discontinuities in depth information
(gaps). In the former recent researches some competi-
tive strategies for walking the robot in street polygons
have been presented. In this research we have empow-
ered the robot by adding a compass to patrol a more
general class of polygons. We present an online strategy
that generates a search path for the empowered robot
in G-streets; a more general class of polygons that con-
tains all streets properly. The empowered robot, using
the local information gathered through its sensors and
using some pebbles as marker, locates target ¢, starting
from a vertex s in a G-street. Length of the traveled
path by the robot is at most 9.06 times longer than the
shortest path. The competitive ratio is optimal.

1 Introduction

Exploring an unknown environment is a fundamen-
tal problem characterized by researcher in robotics,
computational geometry, game theory and online algo-
rithm [9, 12]. An autonomous mobile robot without
access to the geometry of the scene depending the in-
formation collected through its sensor moves to reach
a goal. Variants of robot models, and problems have
been studied in this context [1, 4, 7]. We are interested
in using a minimalist robot model system for walking in
unknown scene.

Our basic robot is a simple point robot with the sens-
ing model of gap sensor. At each point the robot locates
the depth discontinuities (gaps) of its visibility region in
a circularly ordered, (Figure 1). All times the robot can
track the gaps and detects each topological changes of
the gaps. These changes are the appearance, disappear-
ance, merging, or splitting of gaps which are called crit-
ical events. While the robot traverses an environment,

*Department of Computer Engineering, Sharif University of
Technology, atabatabaei@ce.sharif.edu

TSharif University of Technology and School of Computer Sci-
ence, Institute for Research in Fundamental Sciences (IPM), gh-
odsi@sharif.edu

fDepartment of Computer Engineering, Qazvin Branch, Is-
lamic Azad University, Qazvin, Iran, shapouriQqiau.ac.ir

Mohammad Ghodsit

Fardin Shapourit

it can rotate as often as each of the critical events arises,
or a target point enters in its visibility region.

In order to measure the performance of an online
search strategy, the notation of competitive analysis is
used. The competitive ratio is the worst case ratio of
the path traveled by the robot in the unknown envi-
ronment to shortest path. Tabatabaei and Ghodsi de-
signed an online strategy for the simple robot to walk
in streets. By the strategy the robot explores a street
from a vertex s to a vertex ¢ such that the traveled dis-
tance by the robot is at most 9 times longer than the
shortest path [15]. A street polygon is characterized by
the feature that the two boundary chains from s to ¢
are mutually weakly visible.

In this study, our goal is equipping the simple robot
with a smallest set of additional capabilities to empower
the robot for searching more general classes of polygons
by a competitive search strategy. So, we consider the
following extension of the simple robot. The robot car-
ries a compass that denotes to it the north, west, south
and east directions. It can moves toward the directions,
in additional to the gap tracking. Also, it can put a peb-
ble for marking anywhere. We present an online search
strategy for exploring a generalized street environment,
from a vertex s to a vertex ¢, for the empowered robot
with the competitive ratio of 9.06. A generalized street
is a polygon for which every point on its boundary is
visible from a point on a horizontal line segment that
connects the two boundary chains from s to ¢, see Fig-
ure 1.

Our robot sensing model is strongly weaker than
model of the robot in the previous research. Datta
and Icking presented an optimal online strategy with
a competitive ratio of 9.06 for searching a generalized
street [2]. Datta and Icking robot equipped with a 360
degrees vision also, it memorized the map of the scene
has seen so far while our robot using the local infor-
mation gathered through its sensor walks in the street.
The ratio of 9.06 is optimal, Lopez-Ortiz and Schuierer
have shown the lower bound of 9.06 in [9].

Related Works: Klein presented the first competi-
tive strategy for walking in streets problem for a robot
that was equipped with a 360 degrees vision system [8].
Many online algorithms for patrolling unknown environ-
ments such as street, generalized street, and star poly-
gons are proposed in [6, 10].

5

28" Canadian Conference on Computational Geometry, 2016

] Rdmin
/gap A

sV

~
o
~

Figure 1: (a) A G-street polygon. The colored region
is the visibility polygon of the point robot at the start
point s. (b) The position of discontinuities in the depth
information (gaps) reported by the sensor and directions
of the compass.

The basic sensing model (gap sensor) that our robot
is equipped with, in this study, was first introduced by
Tovar, Murrieta-Cid, and LaValle [17]. They offered
Gap Navigation Tree (GNT) as a means to record and
update the gaps seen along an exploring path. Other
researcher presented some strategies, using GNT, for
searching unknown environments [5, 11, 13]. An opti-
mal search strategy with minimum number of turns, for
the basic simple robot equipped with the gap sensor,
presented in [16].

Another minimal sensing model offered by Suri, Vi-
cari, and Widmayer [14]. They assumed that the sim-
ple robot can only sense the combinatorial (non-metric)
properties of the environment. The robot can locate
the vertices of the polygon in its visibility region, and
can report if there is a polygonal edge between them.
Despite of the minimal capability, they showed that the
robot performs many non-trivial tasks. Then, Disser,
Ghosh, Mihalak, and Widmayer empowered the robot
with a compass to solve the mapping problem in poly-
gons with holes [3].

2 preliminaries

2.1 Workspace

Generalized street polygons are considered as the robot
workspace. So, we briefly repeat its definitions, and
some of its properties. In a simple polygon P with two
vertices s and ¢ the counter-clockwise polygonal chain
from s to t is called the right chain or Rcpein, and
the clockwise one from s to ¢ is called the left chain or
Lchain~

Defnition 1 /8] A polygon is a street polygon if each
point on the left chain is visible from at least one point
on the right chain and vice versa.

Defnition 2 [2]/ A chord is a horizontal line segment
inside a polygon P such that its both end points are on
the boundary of P. The chord is called an LR-chord
when it touches both the L.pgin and Renain -

Defnition 3 [2] A simple polygon in the plane is called
a generalized street or G-street if for every boundary
point p € LU R, there exists an LR-chord ¢ such that p
1s visible from a point on c.

Figure 1 displays an example of a G-street, and Some of
its LR-chords, the horizontal lines. Class of the gener-
alized street polygons is strictly larger than class of the
street polygons that our empowered robot explores it.

2.2 Sensing Model and Motion

From the vertex s in an unknown G-street, a simple
robot starts walking to achieve the target t. The robot
based on the local information collected by its sensor
explores the scene. The basic robot is a point robot
equipped with a sensor that detects each discontinuity
in depth information that referred as gaps. The sensor
reports a cyclically ordered location of the gaps in its
visibility region. Also, the robot assigns a label of L or R
(left or right) to each gap based on the direction of the
hidden region that is behind the gap [17], (Figure 1).
The robot can only track the gaps and detects their
topological changes. These changes are: appearance,
disappearance, merging, and splitting of gaps. The ap-
pearance and disappearance events arise when the robot
crosses the inflection rays, (at point 3 in Figure 2 gap
R — EG, disappears). The merge and split events oc-
cur when the robot crosses a bitangent complement, (at
point 2 in Figure 2 gap L — EG; splits).

The robot can move along a straight line towards gaps
to cover the region hidden behind it. The robot may
rotate as a critical event occurs, or as soon as the target
enters in the robot’s visibility region. By equipping the
robot with a compass, the robot is empowered; such
that it can detects and tracks the north, west, south
and east directions, see Figure 1. Also, some pebbles
are available to the robot as marker.

2.3 Main Strategy for Walking in Rectilinear G-
streets

Now, we present an online search strategy for walking
in a rectilinear G-street in which all of the edges are
either horizontal or vertical, (Figure 2). From the start
vertex s, the robot starts walking in the G-street to
reach the target ¢, using the information collected by the
gap sensor and the compass. The goal is to minimize
length of the search path.

In contrast with the previous research, our robot has
no access to the map of its visibility region has seen so
far, and especially angles of the region boundary. Only

76

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 2: A rectilinear G-street, and located gaps (in
unexplored region) at points s and p. R — EG; and
L— EG, are essential gaps at point i. Colored bold path
is the robot search path (traversed path for performing
the doubling search strategy to reach the turn points is
omitted). Colored discs are the pebbles for marking the
regions that the robot comes from.

local information about the gaps location and the com-
pass directions, north, south, east and west, are avail-
able to the simple robot.

There is a reflex vertex correspond to each gap. We
refer to the horizontal chord that crosses the vertex as
a gap chord. Each gap chord divides the polygon into
three parts, or two parts as shown in Figure 2. Also,
the edge of the polygon that is collinear with the gap
chord is called as gap edge.

Defnition 4 A gap is an essential gap when the target
is hidden beyond its gap chord. If the gap is a right/left
gap it is denoted by R — EG/L — EG.

From the definition of G-street following Lemma is
straightly obtained.

Lemma 1 The target vertex t or an essential gap is
visible from some point on the horizontal line containing
the start point.

Examples of gap chord, gap edge, and essential gap are
shown in Figure 3. The important key is that the simple
robot how can distinguish if a gap is essential.

Theorem 2 While the robot searching on the horizon-
tal line, it reports an essential gap as soon as it locates
a vertical gap that is collinear with north or south di-
rections of the compass.

Proof. Assume, d is the gap chord of the detected ver-
tical gap. It divides the polygon into three parts, or two

parts. s and ¢t must be in different parts. If they are in
the same part which contains the horizontal line, then
there is at least one point on edge of gap chord which
is not visible from any LR-chord and the polygon is not
a G-street, a contradiction. So, d is an LR~chord that
each path from s to ¢ intersects it. Then, the vertical
gap is an essential gap. See the vertical gap detected at
point 1 in Figure 2. |

We refer to the point in theorem 2 as a turn point.
Note that at the turn point the robot detects a vertical
essential gap.

Theorem 3 If the detected gap, at the turn point is
L— EG, the first right gap which lies clockwise after the
gap is R — EG. Analogously, if the gap is R — EG, the
first left gap which lies counterclockwise after the gap is
L - EG.

Proof. Assume that at the turn point, R — EG is de-
tected, also there is a left gap clockwise after the essen-
tial gap. If the robot moves towards left direction, the
left gap will coincide with the vertical direction. So, by
definition of the essential gap, the left gap is L — EG,
see the turn point 1 in Figure 2. The other case is sim-
ilar. g

Now, by the above discussion, we can describe our al-
gorithm. At the start point the simple robot searches
on the horizontal line containing the start point. Three
cases may arise.

e If all of the detected gaps are in the left side of the
vertical line containing s, the robot moves toward
left to reach the turn point, using the compass.

o If all of the detected gaps are in the right side of
vertical line containing the start point, the robot
moves toward right to reach the turn point. For
example consider point p as start point in Figure 3.

e If there are some gaps in both sides of the vertical
line, we performs the doubling strategy; the robot
walks back and forth on the horizontal line, at each
step doubling the distance to the start point, until
the turn point is reached (start point in Figure 2).

At the turn point, from Theorem 3, the robot can
locate the other existing essential gap. Assume, the es-
sential vertical gap is R — EG; the other case is similar.
The robot moves towards the gap along the vertical di-
rection while maintaining location of L — EG. During
the walking, . — EG may disappears, also it updates as
the robot crosses over bitangent compliment of L — EG
and another left gap, see point 2 in Figure 2. The robot
continues walking along the vertical direction until the
vertical R — EG disappears.

7

28" Canadian Conference on Computational Geometry, 2016

At the event point, the first right gap (if exits) which
lies clockwise after the movement direction is current
R — EG; by a similar argument to the proof of Theo-
rem 3. Now, at the event point, there are three cases:

1. L — EG and R — EG exist (point 3 in Figure 2).
The robot continues walking along the current ver-
tical direction while maintaining and updating the
essential gaps until the two gaps disappear (case 3
arises).

2. One of the essential gaps exists (point 2 in Fig-
ure 3). The robot continues walking along the cur-
rent vertical direction until the gap merges with
another gap, or the gap disappears. In the former
case, the robot turns and moves along the hori-
zontal direction in the region containing the gap
until achieves a turn point in which a vertical es-
sential gap is detected, (point 3 in Figure 3). In the
later case when the essential gap disappears, case
3 arises.

3. No essential gap exists (point 4 in Figure 2). The
robot puts a pebble in the region where it comes
from. Then, same as the start point, it performs
the doubling search strategy on the horizontal di-
rection in region containing its current location for
achieving a turn point. The detected essential gap
must be in a region other than the marked region
by the pebble.

Note that an especial case arises when the robot,
after finding the first turn point and moving along
the vertical direction, has to perform the doubling
strategy again for achieving the next turn point,
without any movement along a horizontal direction.
In this case, the robot resumes the previous dou-
bling strategy (point 4 in Figure 2).

The robot repeats the process until the target ¢ is visible.
At the point, the robot, using the compass direction, can
move a long a rectilinear path to achieve the target t.

2.4 Analysis of the Algorithm

We show that our simple robot, using the local informa-
tion about location of gaps and the compass achieves the
target t starting from s in the G-street. Although our
robot is strongly weaker than Datta and Icking robot [2],
and its search path differs from the robot path, we
demonstrate the competitive ratio of our strategy is 9.06
like their strategy.

Theorem 4 Qur search strategy terminates while a
search path to t is generated, starting from s in the G-
street.

Proof. At the start point, if the target is not visible to
the robot, it is hidden behind the existing gaps. The

L-EGy

chafn

gap chord gap edge
R-EG,| 3.~
Rcbafn

Figure 3: Traversed path between consecutive gap
chords, the Li-shortest path.

robot searches on the horizontal line to reach an essen-
tial gap, then tracks the gap which is a correct vertical
direction. The robot continues moving a long a direc-
tion unless both of R — EG and L — EG disappear.
Then, the robot on the horizontal line searches for an-
other essential gaps, and selects again a correct vertical
direction which results in being one step closer to the
target. So, the strategy terminates. g

Lemma 5 [1] The doubling strategy for searching a
point on a line has a competitive factor of 9 which is
optimal.

Lemma 6 [9] Lower bound of the competitive factor
for each online search strategy in G-street is 9.06.

Theorem 7 Competitive ratio of our strategy is 9.06,
and this is optimal.

Proof. In order to compute the ratio, we compare
length of the generated path with Li-shortest path. As
explained in the strategy our robot always chooses a
correct vertical direction (as shown in Figure 3). For
detecting an essential gap, the robot either moves along
a correct direction or performs the doubling strategy.
So, the horizontal traversed path is most 9 times longer
than the shortest path. It means that looking for a tar-
get in a G-street is at least as hard as searching a point
on a line. So, from Lemma 5, the competitive factor of
our strategy is 9 in L;- metric. Now by an argument,
similar to the proof of the competitive factor of Datta
and Icking strategy [2], we show the competitive ratio
of our strategy is 9.06 in Ly- metric. Note that the two

78

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

paths are different. The length of the Lo-shortest path
between two consecutive turn points in which the essen-
tial gaps are reported is \/x12 4 y12). By our strategy,
length of the simple robot’s path is at most 9z; + y;.
The maximum value of fﬁfyyllz is 9.06. Then, from
Lemma 6 our strategy is optimal.

O

3 Conclusions

In this paper, we studied the problem of walking in gen-
eralized streets for a simple point robot. The basic robot
has a minimal sensing model that can only detect the
gaps and the target in the street. We have empowered
the robot by adding a compass. The robot using local
information reported by its sensor explores the scene
while in the former research a robot that memorizes the
region has seen so far, by its complete vision system,
searches the scene. We demonstrated that, despite the
weakness in our robot system model, performance of
our strategy equals with the optimal strategy for the
stronger robot; the competitive ratio of 9.06. Proposing
a competitive search strategy for more general classes of
polygons and offering other minimal sensing model are
attractive problems for future research.

References

[1] Baeza-yates, Ricardo A., Joseph C. Culberson, and
Gregory JE Rawlins. Searching in the plane. Infor-
mation and Computation 106(2): 234-252, 1993.

[2] Datta, Amitava, and Christian Icking. Competitive
searching in a generalized street. In Proceedings of the
tenth annual symposium on Computational geometry,
pp. 175-182. ACM, 1994.

[3] Disser, Yann, Subir Kumar Ghosh, Matus Mihalak, and
Peter Widmayer. Mapping a polygon with holes using a
compass. Theoretical Computer Science, 553: 106-113,
2014.

[4] Fekete, Sandor P., Joseph SB Mitchell, and Christiane
Schmidt. Minimum Covering with Travel Cost. Journal
of Combinatorial Optimization, 24: 32-51, 2003.

[6] Guilamo, Luis, Benjamin Tovar, and Steven M.
LaValle. Pursuit-evasion in an unknown environment
using gap navigation trees. Intelligent Robot’s and Sys-
tems Proceedings Vol. 4, (pp 3456-8462), 2004.

[6] Ghosh, Subir Kumar, and Rolf Klein. Online algorithms
for searching and exploration in the plane. Computer
Science Review 4(4): 189-201, 2010.

[7] Hammar, Mikael, Bengt J. Nilsson, and Mia Persson.
Competitive exploration of rectilinear polygons. Theo-
retical computer science 854(8): 367-378, 2006.

[8] Klein, Rolf. Walking an unknown street with bounded
detour. Computational Geometry, 1(6): 825-351, 1992.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Lopez-Ortiz, Alejandro, and Sven Schuierer. Gener-
alized streets revisited. Algorithms ESA’96. Springer
Berlin Heidelberg, 546-558, 1996.

Lopez-Ortiz, Alejandro, and Sven Schuierer. Lower
bounds for streets and generalized streets. International
Journal of Computational Geometry and Applications
(11)04: 401-421, 2011.

Lopez-Padilla, Rigoberto, Rafael Murrieta-Cid, and
Steven M. LaValle. Optimal Gap Navigation for a
Disc Robot. In Algorithmic Foundations of Robotics,
Springer Berlin Heidelberg, (pp 123-138), 2012.

Mitchell, Joseph SB. Geometric shortest paths and net-
work optimization, Handbook of Computational Geom-
etry. Elsevier Science Publishers, 1998.

Sachs, Shai, Steven M. LaValle, and Stjepan Rajko.
Visibility-based pursuit-evasion in an unknown planar
environment. The International Journal of Robotics Re-

search 23(1): 3-26, 2004.

Suri, Subhash, Elias Vicari, and Peter Widmayer. Sim-
ple robots with minimal sensing: From local visibility to
global geometry. The International Journal of Robotics
Research, 27(9): 1055-1067, 2008.

Tabatabaei, Azadeh, and Mohammad Ghodsi. Walking
in Streets with Minimal Sensing. Journal of Combina-
torial Optimization, 80(2): 887-401, 2015.

Tabatabaei, Azadeh, and Mohammad Ghodsi. Optimal
Strategy for Walking in Streets with Minimum Number
of Turns for a Simple Robot. Combinatorial Optimiza-
tion and Applications. Springer International Publish-
ing, (pp. 101-112), 2014.

Tovar, Benjamn, Rafael Murrieta-Cid, and Steven M.
LaValle. Distance-optimal navigation in an unknown
environment without sensing distances. Robotics IEEE
Transactions 23(3): 506-518, 2007.

79

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Polynomial volume point set embedding of graphs in 3D*

Farshad Barahimif

Abstract

Two algorithms are presented for computing a point-set
embedding of a graph in 3D on a given point set with a
volume that is polynomial in the size of the graph and
the size of the point set, and with at most a logarithmic
number of bends per edge. This resolves the previously
open general 3D point set embedding problem [12].

1 Introduction

A drawing of a graph, is a mapping of each vertex to
a point in 2D or 3D Euclidean space and each edge to
a simple curve between the mapped points of its end-
points. Although 2D graph drawing has been stud-
ied extensively, there has also been some significant
progress on drawing graphs in 3D. One such model is a
3D Fary grid drawing, in which each vertex is mapped
to an integer grid point in 3D Cartesian coordinate sys-
tem and each edge is mapped to a straight line segment,
such that there is no crossing between edges or vertices.

Cohen, et al. [5] showed that it is possible to have
a 3D Fary grid drawing of any graph with n vertices
such that the volume does not exceed n x 2n x 2n. Al-
though they proved that their O(n?) result is asymp-
totically optimal for complete graphs, other classes of
graphs can be drawn in a lower volume. Calamoneri
and Sterbini [4] showed that it is possible to draw every
4-colorable graph on integer coordinates and with no
crossing in an O(n?) volume. Pach, et al. [13] showed
that for any constant r, every r-colorable graph can
be drawn crossing-free on integer coordinates in O(n?)
volume. They also showed that their result is asymp-
totically tight by showing that a balanced complete 2-
partite graph with n vertices requires Q(n?) volume.

Bose, et al. [2] showed that the maximum number of
non-crossing edges that can be contained in an X xY x 72
volume is exactly (2X —1)(2Y —1)(2Z—1) — XY Z and
as a result, mg” is a lower bound for the volume of a
3D Fary grid drawing of a graph with n vertices and m
edges.

Felsner, et al. [9] showed that it is possible to have a

*Supported in part by the Natural Sciences and Engineering
Research Council of Canada.

fDepartment of Mathematics and Computer Science, Univer-
sity of Lethbridge, farshad.barahimi@uleth.ca

IDepartment of Mathematics and Computer Science, Univer-
sity of Lethbridge, wismath@uleth.ca

Stephen Wismath?

3D Fary grid drawing of any outerplanar graph with n
vertices in O(n) volume, using a 3D prism. It remains
an open problem to determine if all planar graphs can
be drawn in linear volume.

Although in the above results each edge is a straight
line segment, another model of drawing graphs in 3D
introduces bends to subdivide an edge into straight line
segments. Unless otherwise specified, we assume here
that all such bend points occur at points with integer
coordinates.

Dujmovié¢ and Wood [8] showed that it is possible to
obtain a 3D crossing-free grid drawing of every graph
with n vertices and m edges in a O(n + m logq) vol-
ume and with O(log ¢) bends per edge, where ¢ is the
queue number of the graph. The problem of computing
the queue number of a graph is NP-Complete [10]. Di
Battista, et al. [6] showed that the queue number of
every planar graph is O(log2 n) and based on these two
results, every planar graph can be drawn crossing-free
on integer coordinates in an O(nloglogn) volume and
with O(loglogn) bends per edge; they also showed that
any planar graph can thus be drawn in O(nlog8 n) vol-
ume. Dujmovié [7] has recently shown that the queue
number of planar graphs is O(log n), thus improving the
volume bound to O(n logn).

After acceptance of this paper, we were made aware of
a result by D. Wood [15] that uses a technique similar to
ours. Both these results were obtained independently.

1.1 Point set embedding

The class of point set embedding problems studies the
layout of graphs when a set of fixed points are given
for the location of vertices. If the mapping between
the vertices and points is specified then it is called with
mapping otherwise it is called without mapping. In the
with mapping variant of the problem the layout is de-
termined only by establishing the position of the bends,
whereas in the without mapping variant of the prob-
lem, identifying the mapping between the vertices and
the given point set, is also required.

One formulation of the two dimensional point set em-
bedding problem (2DPSE) was suggested by Meijer and
Wismath [12]:

Given a planar graph G with n vertices, V =
{v1,v2,...,v,}, and given a set of n distinct
points P = {p1,pe,...,pn} each with inte-

80

28" Canadian Conference on Computational Geometry, 2016

ger coordinates in the plane, can G be drawn
crossing-free on P with v; at p; and with a
number of bends polynomial in n and in an
area polynomial in n and the dimension of P?

Cabello [3] considered a version of the problem where
bends are not allowed and proved that it is NP-Hard
to determine whether a planar graph has a straight-
line crossing-free drawing on a predefined set of points
when the mapping between the vertices and the points
is not specified. Pach and Wenger [14] proved that it
is possible to draw any planar graph crossing-free on
a predefined set of points with O(n?) bends per edge
where the mapping between vertices and points is fixed
(but bend points are not constrained to occur at integral
coordinates). Kaufmann and Wiese [11] proved that
it is possible to have a crossing-free drawing of every
planar graph, with at most two bends per edge where
each vertex can be positioned at any point of a set of
predefined positions, but the area of the drawing may
be exponential.

In 3D similar issues can be considered. Meijer and
Wismath [12] formulated the three dimensional point
set embedding problem (3DPSE) as follows:

Given a graph G with n vertices, V =
{v1,v2,...,v,}, and a set of n distinct points
P = {p1,p2,...,pn} each with integer coor-
dinates in three dimensions, can G be drawn
crossing-free on P with v; at p; and with a
number of bends polynomial in n and in a vol-
ume polynomial in n and the dimension of P?

In this paper without loss of generality, the bounding
box of P is assumed to range from (1,1,1) to (w,!, h).
In [12], this general problem is stated as an open prob-
lem and solutions to modified versions of the problem
are given. Barahimi [1], in his master’s dissertation pro-
vided two algorithms for the general problem, one of
which is presented in section 2, and the second one is
replaced by another algorithm discussed in section 3.
The first modification to 3DPSE that is considered
in [12] is to remove the polynomial volume constraint
from the problem definition. They prove that K, can
be drawn crossing-free on any predefined set of integer
points in 3D with at most 3 bends per edge, but the vol-
ume is unbounded. The proof incrementally adds edges
to the graph. For each endpoint of each edge, a visi-
ble bend point outside the bounding box of the current
drawing is found and the endpoint is connected to that
bend. The bends found for each edge can be connected
by finding a third visible bend point and connecting
both to it. The idea of finding visible bend points is
used in the proposed algorithms in sections 2 and 3 but
the visible bend points are found in a bounded volume.
The second modification to 3DPSE that is consid-
ered in [12] is to restrict P to the XY plane and the

problem is called 3DPSE,. They proved that a graph
with n vertices and m edges can be drawn crossing-
free in 3D with vertices on a predefined set of integer
points in a W x H rectangular area of the XY plane
using O(logm) bends per edge and within a bounding
box of max(W,m) x (H + 3) x (2 4+ logm). To cre-
ate such a drawing, they first introduce a method to
draw a perfect matching of two sets of m points in 2D
on O(logm) tracks with O(logm) bends per edge and
no X-Crossings. An X-Crossing occurs if there are two
edges (u,v) and (w,z) such that u and w are on the
same track and v and z are both on a different track,
and u appears before w in their track but v appears af-
ter z in their track. This track layout can be converted
to 3D without any edge crossings in a box of volume of
m x 3 X (1+logm) and with O(logm) bends per edge.
This technique is also used in the first proposed algo-
rithm of this paper described in section 2. To draw an
arbitrary graph in 3D, two lines are considered and for
each edge two bend points are added, one on the first
line and one on the second line. In the first line the
order of the bends representing edges is lexicographic
meaning that edges of the vertex v; appear before the
edges of the vertex v;11. For the second line the order
of the bends representing edges is opposite of the first
line meaning that edges of the vertex v; appear after the
edges of the vertex v;+1. The two corresponding bends
of each edge on these two lines are connected on O(log n)
tracks with O(logn) bends using the perfect matching
technique. Next another line is added for vertices of
the graph and vertices are connected to the correspond-
ing bend of their incident edges without creating any
crossings. For the 3DPSE, problem, without loss of
generality it is assumed that the vertices are ordered by
X coordinate and then by Y coordinate in case of a tie.
The vertices are placed in the Z = 0 plane. The first line
for the matching is placed at the Z = —1 plane and the
second line of the matching is put on the Z = 1 +1logm
plane.

Barahimi [1], in his master’s dissertation proposed
two algorithms for the general SDPSFE problem.The
first algorithm which is also presented here creates a
drawing of volume O(m + n + w) x O(m + n + 1) x
O(logn + h), with at most O(logn) bends per edge. A
second algorithm is proposed in this paper which fits
the drawing in a O(m +n+w) x O(m +n+1) x O(h)
volume and uses only one bend per edge.

2 The algorithm with a logarithmic number of bends
per edge

In this section an algorithm is given which will produce
a drawing of size

Om+n+w)xO(m+n+1)x O(logn + h), with at
most O(logn) bends per edge.

81

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

2.1 General idea

The algorithm has three phases and the general ideas
are outlined below while details follow later:

e Phase one: Consider two rectangles R4 and Rp
that lie in planes parallel to the XY plane. R4 is
one unit in front of the bounding box of the points
in the direction of the Z axis and Rp is one unit
from the back of the bounding box of the points
in the direction of the Z axis. For each edge find
two visible integer bend points, one in R4 and one
in Rp. Connect the first vertex of the edge to the
bend point in R4 and connect the second vertex of
the edge to the bend point in Rp.

e Phase two: Consider two lines L 4 and Lp parallel
to the Y axis. L4 is at least one unit in front of
R4 in the direction of the Z axis and two units to
the left of R4 in the direction of the X axis. Lp
is one unit from the back of Rg in the direction of
the Z axis and two units to the left of R4 in the
direction of the X axis. Connect each bend point in
R 4 to a corresponding integer bend point in L 4 and
connect each bend point in Rp to a corresponding
integer bend point in Ly4.

e Phase three: Each edge has two corresponding
bend points in L4 and Lp. If the corresponding
bend points of each edge in L4 and Lp are con-
nected then they form a matching. This match-
ing can be drawn crossing free using the perfect
matching technique of [12] in a bounding box of
3xmx (1+logm).

Figure 1 shows a conceptual picture of Ra, Rp, La,
Lp and the bounding box of the points.

+Y axis

Bounding box of points

+X axis

Figure 1: The conceptual picture of R4, R, La, Lp
and the bounding box of the points.

2.2 Phase one

Let k = max(n,m). Let P4 denote the plane z =h +1
and R, denote the rectangle going from (1,1,h + 1) to
(2k,2k,h+1) in the plane P4. Let Pp denote the plane
z =0 and Rp denote the rectangle going from (1, 1,0)
to (2k,2k,0) in the plane Pg. A point s is visible from
point t if the line segment connecting s to t does not
intersect any vertex of G or any line segment that is
previously drawn. The edges are considered one by one
in m steps. At the i*" step (1 < i < m), the i'" edge
ei, connecting vertices u; and w; is considered. Now a
visible integer bend point a; from w; is found in R4 and
a line segment «; is drawn between u; and a;. Next a
visible integer bend point b; from w; is found in R and
a line segment (; is drawn between w; and b;. At the
end of this phase each edge has one corresponding bend
point in R4 and one corresponding bend point in Rp.

To prove that there is always a visible integer bend
point from u; in Ry, or from w; in Rp, at the it" step
of this phase of the algorithm, consider that there are
only two ways that an integer bend point in R4 or Rp
becomes invisible from wu; or w;:

1. A previously drawn line segment is between R4
and u;, or Rp and w;. The previously drawn line
segment can be any of a; or f; for 1 < j < i,
or «; for w;. There are at most 2k — 1 such line
segments and each line segment can make at most
2k integer points of R4 or Rp invisible. So this
case will make at most (2k — 1)2k integer points of
R4 or Rp invisible. To prove that each such line
segment connecting vertices or bend points ¢ and
t, will make at most 2k integer points in R4 or Rp
invisible from a vertex v which can be u; or w;,
consider the plane P,q containing v, ¢ and ¢t. If
the plane P,4: intersects with the plane P4 or Pg
the intersection will be a line. This line can contain
at most 2k integer points of R4 or Rp. If v, ¢, and
t are collinear, at most one integer point of R4 or
Rp is made invisible.

2. A vertex is between R4 and u;, or Rg and w;: This
can be any vertex other than wu; or w;. Each such
vertex can make at most one integer point of R4 or
Rp invisible. There are at most k — 1 such vertices.
So this case can make at most k — 1 integer points
of R4 or Rp invisible.

Subtracting the maximum number of invisible points
of both cases from the number of integer points of R4
or Rp, leaves at least k + 1 visible points as shown in
equation 1.

4k? — 2k =12k —(k—1) =k +1 (1)

82

28" Canadian Conference on Computational Geometry, 2016

2.3 Phase two

Let A = max(h + 2,logm). Let L4 denote the line
segment going from (—1,1,A) to (—=1,m,\) and let
L denote the line segment going from (—1,1,—1) to
(=1,m,—1).

For each bend point a; in R4, find a corresponding
integer bend point in L4 called a; and draw a line seg-
ment between a; and a;. To find such corresponding
bend points, consider the integer bend points of L4 in
the order of increasing Y coordinate and consider a;
integer bend points in the order of X coordinate and
in case of a tie in the order of Y coordinate, and match
them one by one. This ordering will avoid any crossings.

Similarly, for each bend point b; in Rp, find a corre-
sponding integer bend point in Lg called b; and draw
a line segment between b; and b;. To find such corre-
sponding bend points, consider the integer bend points
of Lp in the order of increasing Y coordinate and con-
sider b; integer bend points in the order of X coordinate
and in case of a tie in the order of Y coordinate, and
match them one by one. This ordering will avoid any
crossings. At the end of this phase each edge has four
corresponding bend points, one in R4, one in L4, one
in Lr and one in Lp.

2.4 Phase three

Each edge e; has a corresponding bend point a; in L4
and a corresponding bend point b; in L. If each a; is
connected directly to each b; they form a perfect match-
ing but it may introduce crossings. To avoid crossings
the perfect matching technique of [12] is used to draw
this perfect matching in 3D. Such a 3D perfect match-
ing drawing can be drawn in a bounding box of size
3 x m x (1+ logm) using the [-2,0] range of X coor-
dinates and at most O(logn) bends per edge. Also it
is notable that this phase does not use any bend point
on the two lines X = 0,Z = Xand X =0,7 = —1,
otherwise it may introduce crossings with the line seg-
ments of the previous phase. This phase will add at
most O(logn) bends per edge, and at most three units
to the dimension of drawing in X direction.

2.5 Summary

Each phase of the algorithm does not create any cross-
ings. Each of the three phases uses different partitions
of space which will avoid crossings between the three
phases.

To find the visible points, for each vertex v, the al-
gorithm maintains a set of integer points in R4 or Rp
that are visible from v. The set is implemented using
a balanced binary search tree. After adding each line
segment at each step of the algorithm, for each vertex
v, the algorithm removes the integer points blocked by
that line segment from the set of visible points of v. The

algorithm has O(m - n - k - logn) time complexity and
O(nk?) memory complexity. The algorithm is summa-
rized in Theorem 1 and Algorithm 2.1. Also figure 2
shows the drawing of K5 on a given point set produced
by the proposed algorithm using software We3Graph [1].

Theorem 1 Given a graph G with m edges, and n ver-
tices, V.= {v1,v2,...,0,}, and a given set of n distinct
points P = {p1,pa,...,pn} each with integer coordinates
in three dimensions, G can be drawn crossing-free on P
with v; at p; and with at most O(logn) bends per edge
and in a O(m+n+w)xO(m+n+1)xO(log n+h) volume
such that each bend has three dimensional integer coor-
dinates. The drawing can be produced in O(m-n-k-logn)
time and O(nk?) memory.

Figure 2: 3D drawing of K5 on a given point set using
the first proposed algorithm. Y axis upward and camera
looking toward the negative side of Z axis direction.

3 The algorithm with one bend per edge

In this section an algorithm is given which will produce
a drawing of size O(m +n+w) x O(m+n+1) x O(h),
with exacly one bend per edge. The algorithm consid-
ers a rectangle parallel to the XY plane in front of the
bounding box of the points in the direction of the Z
axis and for each edge, finds an integer bend point in
that rectangle that is visible from both endpoints of the
edge and connects the endpoints of the edge directly to
the bend point. Here is a detailed explanation of the
algorithm.

Let k = max(n,m). Let Pz denote the plane z = h+1
and R¢ denote the rectangle going from (1,1,h 4+ 1) to
(4k, 4k, h+1) in the plane Po. A point s is visible from
point t if the line segment connecting s to t does not
intersect any vertex of G or any line segment that is
previously drawn. At the i*" step (1 < i < m), the
ith edge e;, connecting vertices u; and w; is considered.
Now an integer bend point a; is found in R¢ that is
visible both from u; and w;. A line segment «; is drawn
between u; and a; and a line segment (; is drawn be-
tween w; and a;. Figure 3 shows a conceptual picture
of R¢ and the bounding box of the points.

83

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Algorithm 2.1 The algorithm with logarithmic num-
ber of bends per edge

R4 denotes the rectangle going from (1,1,h+1) to
(2k, 2k, h + 1) in the plane z = h + 1
Rp denotes the rectangle going from (1,1,0) to
(2k, 2k, 0) in the plane z =0
1: A =max(h + 2,logm)
2: Let S, be the set of all visible integer points from
the vertex v, in R4.
3: Let S, be the set of all visible integer points from
the vertex v, in Rp.
4: for all vertex v in V do
5. for all vertex v5 in V - v do
6: Remove the point in S, or the point in S, that
is blocked by vy from v (if it exists).
7. for all edge e; = (u;,w;) in E do
Let a; be a point in S,
9: Draw a line segment «; from u; to a;.
10: for all vertex v in V do
11: Remove every point in S, and S’U that is
blocked by «; from v.
12: Let b; be a point in S‘wi
13: Draw a line segment (; from w; to b;.
14: for all vertex v in V do
15: Remove every point in S, and S, that is
blocked by (; from wv.

16: counter=1

17: for all o; ordered by x coordinate and in case of a
tie by y coordinate do

18: Draw a line segment between «a; and the point
a; = (—1, counter, \).

19: counter+4+

20: counter=1

21: for all B; ordered by x coordinate and in case of a
tie by y coordinate do

22: Draw a line segment between f3; and the bend
point b; = (—1, counter, —1).

23: counter—++

24: Use the technique of [12] for drawing a perfect
matching in 3D to connect each a; to b;.

To prove that there is always an integer bend point
visible from both of u; and w; in Re at the it" step
of the algorithm, consider that there are only two ways
that an integer bend point in R¢ becomes invisible from
U; Or W;j:

1. A previously drawn line segment is between R¢
and, u; or w;. The previously drawn line segment
can be any of a; or 3; for 1 < j < i. There are
at most 2k — 2 such line segments and each line
segment can make at most 4k integer points of R¢
invisible from w; and at most 4k integer points of
Re¢ invisible from w;. So this case will make at

+Y axis

Bounding box of points

+X axis

Figure 3: The conceptual picture of Ro and the bound-
ing box of the points.

most 2(2k—2)4k integer points of R¢ invisible from
either of w; or w;. To prove that each such line
segment connecting vertices or bend points g and ¢,
will make at most 4k integer points in R¢ invisible
from a vertex v which can be wu; or w;, consider the
plane P4 containing v, ¢ and ¢. If the plane P4
intersects with the plane Po the intersection will
be a line. This line can contain at most 4k integer
points of Reo. If v, g, and t are collinear, at most
one integer point of R¢ is made invisible.

2. A vertex is between Rc and, u; or w;: This can be
any vertex other than u; or w;. Each such vertex
can make at most one integer point of Ro invisi-
ble from wu; and at most one integer point of R¢
invisible from w;. There are at most £ — 1 such
vertices. So this case can make at most 2(k — 1)
integer points of R¢ invisible from either of u; or
wj.

Subtracting the maximum number of integer points
invisible from both u; and w; of both cases from the
total number of integer points of R¢, leaves at least
14k + 2 visible points as shown in equation 2.

16k? — 2(2k — 2)4k —2(k —1) =14k +2 (2)

To find the visible points, for each vertex v, the algo-
rithm maintains a set of integer points in R¢ that are
visible from v. The set is implemented using a 2D ar-
ray. After adding each line segment at each step of the
algorithm, for each vertex v, the algorithm removes the
integer points blocked by that line segment from the set
of visible points of v. The algorithm has O(mk?) time
complexity and O(nk?) memory complexity. The algo-
rithm is summarized in Theorem 2 and Algorithm 3.1.
Also figure 4 shows the drawing of K5 on a given point
set using the proposed algorithm.

Theorem 2 Given a graph G with m edges, and n ver-
tices, V- = {v1,v2,...,0,}, and a given set of n distinct

84

28" Canadian Conference on Computational Geometry, 2016

points P = {p1,pa,...,pn} each with integer coordi-
nates in three dimensions, G can be drawn crossing-free
on P with v; at p; and with exactly one bend per edge
and in a O(m+n+w) X O(m+n+1) x O(h) volume
such that each bend has three dimensional integer coor-
dinates. The drawing can be produced in O(mk?) time
and O(nk?) memory.

Algorithm 3.1 The algorithm with one bend per edge

R¢ denotes the rectangle going from (1,1,h+1) to
(4k,4k,h + 1) in the plane z = h +1
1: Let S, be the set of all visible integer points from
the vertex v, in Re¢.
2: for all vertex v in V do
3: for all vertex vo in V - v do
Remove the point in S, that is blocked by v,
from v (if it exists).

[

for all edge ¢; = (u;,w;) in E do

Let a; be a point in both S,,, and S,

Draw a line segment «; from u; to a;.

Draw a line segment 3; from w; to a;.

for all vertex v in V do
10: Remove every point in S, that is blocked by «;
or 3; from v.

Figure 4: 3D drawing of K5 on a given point set us-
ing the second algorithm. Y axis upward and camera
looking toward the negative side of Z axis direction.

4 Comparison of the two algorithms

While the second algorithm, with lower number of bends
per edge provides an equal or better asymptotic volume,
the first algorithm with a better asymptotic running
time for dense graphs, might result in lower exact vol-
ume since it uses two 2k x 2k rectangles instead of one
4k x 4k rectangle to find visible integer bend points.

5 Conclusions and open problems

Two algorithms were presented to answer a previously
raised question in the 3D graph drawing literature. Al-
though the algorithms run in polynomial time, improv-
ing the practical and asymptotic runtime performance
should be considered. Also, although the algorithms
produce drawings in 3D without crossings, edges can be
very close, thus finding an algorithm which can guar-
antee a particular minimum distance between edges or
vertices is another area which can be investigated.

References

[1] F. Barahimi. Web-based drawing software for graphs
in 3d and two layout algorithms. Master’s thesis, U. of
Lethbridge, Dept. of Math. and Comp. Sci., 2015.

[2] P. Bose, J. Czyzowicz, P. Morin, and D. R. Wood. The
maximum number of edges in a three-dimensional grid-
drawing. J. Graph Alg. & App., 8(1):21-26, 2004.

[3] S. Cabello. Planar embeddability of the vertices of a
graph using a fixed point set is np-hard. J. Graph Alg.
& App., 10(2):353-363, 2006.

[4] T. Calamoneri and A. Sterbini. 3d straight-line grid
drawing of 4-colorable graphs. Information Processing
Letters, 63(2):97-102, 1997.

[5] R. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-
dimensional graph drawing. Algorithmica, 17(2):199—
208, 1997.

[6] G. Di Battista, F. Frati, and J. Pach. On the
queue number of planar graphs. SIAM J. Computing,
42(6):2243-2285, 2013.

[7] V. Dujmovié. Graph layouts via layered separators. J.
of Combinatorial Theory, Series B, 110:79-89, 2015.

[8] V. Dujmovi¢ and D. Wood. Stacks, queues and tracks:
Layouts of graph subdivisions. Discrete Math. € The-
oretical Computer Science, 7(1), 2006.

[9] S. Felsner, G. Liotta, and S. Wismath. Straight-line
drawings on restricted integer grids in two and three
dimensions. J. Graph Alg. & App., 7(4):363-398, 2003.

[10] L. Heath and A. Rosenberg. Laying out graphs using
queues. STAM J. Computing, 21(5):927-958, 1992.

[11] M. Kaufmann and R. Wiese. Embedding vertices at
points: Few bends suffice for planar graphs. J. Graph
Alg. & App., 6(1):115-129, 2002.

[12] H. Meijer and S. Wismath. Point set embedding in 3d.
J. Graph Alg. & App., 19(1):243-257, 2015.

[13] J. Pach, T. Thiele, and G. Toth. Three-dimensional grid
drawings of graphs. In G. Di Battista, editor, Graph
Drawing, volume 1353 of LNCS, pages 47-51. Springer
Berlin Heidelberg, 1997.

[14] J. Pach and R. Wenger. Embedding planar graphs
at fixed vertex locations. Graphs and Combinatorics,
17(4):717-728, 2001.

[15] D. Wood. Three dimensional graph drawing with
fixed vertices and one bend per edge. arXiv:
http://arziv.org/abs/1606.09188, 2016.

85

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Boundary Labeling with Obstacles

Martin Fink*

Abstract

Boundary labeling is a map labeling technique in which
annotations (text labels) are placed along the map bound-
ary, rather than inside the map next to the target sites;
each label is connected to its target site via a line, called
the leader. When many sites in a small area require
annotation, boundary labeling can significantly reduce
clutter. In this paper, we explore the boundary labeling
problem under the natural constraint that the leaders
of different labels do not cross each other and they must
also avoid a prescribed set of obstacles in the map—the
obstacles may be predefined labels of high priority or
important map features that should not be obscured by
the leaders. We present dynamic-programming-based
polynomial-time algorithms for optimizing labelings for
different leader styles. We also show how to extend our
algorithms to the case where areas rather than points
are labeled; this is possible as long as the labeled areas
are obstacles for all other leaders.

1 Introduction

We are given a rectangular map showing, e.g., part of
a city including labels of streets and landmarks. As
an overlay to this map we want to present points of
interest (POIs) such as restaurants, shops, or museums
to a user. As such sites are often close to each other it
is not possible to simply place labels on the map due
to the limited space. Hence, we place the labels on the
boundary (but outside) of the map. We connect each
label by a line (called leader) to its site and try to avoid
crossings of leaders as well as intersections of leaders and
labels on the map.

Problem Definition. Our input map is an axis-aligned
rectangle R. We are further given a set P of points
inside R, for each point p € P a label I(p), and a set O
of obstacles as rectangular polygons. We want to find a
drawing in which each label is placed on the boundary
outside rectangle R and connected by a leader to its
point such that the leaders do not cross and no leader
intersects an obstacle.

Different styles for the leaders can be used; see Fig. 1.
Apart from straight-line segments, rectangular polylines

*Department of Computer Science, University of California,
Santa Barbara, {fink|suri}@cs.ucsb.edu

Subhash Suri*

ﬁ

o—{Label 2] Tex{] e—{Label 2]

T~ {Label 3 Label 3
(a) straight-lines (b) po-style

SIS
o g
a a
—_| =
| =

ﬁ Lab
T

ext| e———Lab

¥ Label 3

<Al
—_— =
DO =

Text| e——
- |

Label 3
(c) opo-style (d) do-style
/— ﬁ
Text] e——{Label 2] Text] e—{Label 2]
T e

(e) Bézier curves (f) straight-line + circular arc

Figure 1: Different leader styles for boundary labeling.

with one (po-style) or two (opo-style) bends are common.
Also leaders with a horizontal segment connected to the
label and a diagonal segment connected to the point
have been used (do-style). Furthermore, curved leaders
are possible. A further distinction of problem variants is
based on the placement of labels. While theoretically all
four sides of rectangle R can be used for placing labels,
the horizontal label text and the smaller height of the
labels lead to a preference for using only the left and the
right boundary for label placement.

Often, the positions of labels are further restricted
by predefining a set of n (e.g., equally spaced) candi-
date positions for placing the labels on the boundary.
Since in the presence of obstacles, this can easily lead
to instances without a crossing-free solution, we do not
follow this restriction. Instead, we allow labels to be
freely distributed (without overlapping) along only the
right (1-sided version) or both the left and the right side
(2-sided version) of the boundary. We assume that each
leader is connected to the center of its labels boundary.

~

Previous Work. Boundary Labeling has been intro-
duced by Bekos et al. [4]. They considered straight-line
and rectilinear leaders (po- and opo-styles) and tried to
minimize total leader length or total number of bends.
Later, also cases such as do-style leaders [2] or leaders
connected to multiple points [1] were considered.

On the other hand, there is little work on treating

86

28" Canadian Conference on Computational Geometry, 2016

Table 1: Runtimes for leader length minimization.

style opo po do straight
I-sided | O(n'Y) | O(n") | On®) | O(n't)
2-sided | O(n?") | O(n'®) | O(n?') | O(n?*7)

obstacles, which are normally just ignored. Bekos et
al. [3] tried combining labels on the map with boundary
labeling. They did, however, not distinguish different
types of label that have to be placed internally or on
the boundary; that is, intersection of leaders and labels
can be avoided by moving an intersected internal la-
bel to the boundary. Benkert et al. [5] presented a
polynomial-time algorithm for boundary labeling in the
po- or do-style (see Fig. 1b and 1d, respectively) that
allows to optimize quality measures for the leaders, e.g.
the total leader length or the number of bends. Their
approach is flexible enough to work with general quality
measures for a single leader which could also take the
underlying map into account, as the authors mention,
although this has not been tried so far. As a starting
point, this could also be used to forbid intersections with
obstacles by making such leaders expensive; however,
note that their work uses the restricted model in which
the n candidate label positions are part of the input.

For a strongly restricted version of boundary label-
ing (po-leaders and congruent, axis-aligned rectangular
obstacles), Loffler and Nollenburg [6] developed an algo-
rithm that labels the input points such that the minimum
number of obstacles is intersected.

Our Results. While the presence of obstacles could
potentially make boundary labeling hard, we show that
boundary labeling with obstacles can be solved in poly-
nomial time if all points’ labels have the same height.
This holds both in the case where all labels must be
placed on the same side of the boundary (one-sided) and
in the case where both the left and the right boundary
can be used for placing labels (two-sided). For straight-
line leaders, po-leaders, opo-leaders, and do-leaders, we
can decide whether a feasible crossing-free solution that
avoids all obstacles exists, both for the one-sided and
the two-sided case. Similarly, we can integrate minimum
distance constraints between leaders and between leaders
and obstacles, and also minimize the total leader length.

Although the different leader styles can be handled
similarly, the runtimes vary since the leaders have dif-
ferent complexity. The resulting runtimes for different
leader styles are as shown in Table 1; the input complex-
ity n is the total number of points and obstacle vertices.
Opo-leaders naturally require a higher runtime than po-
or do-leaders due to their higher complexity. Note that
in contrast to previous works that use opo-leaders, we
actually make use of the flexibility for placing the middle

Table 2: Runtimes with fixed label positions.

style opo po do straight
I-sided | O(n®) | O(n*) | O(n®) | O(n®)
2-sided | O(n?') | O(n?) | O(n'®) | O(n'd)

segment within the drawing region, which helps us route
leaders around obstacles. Straight-line leaders require
the same runtimes as opo-leaders. On the first look,
this seems surprising since straight-line leaders are the
least complex shapes. However, at closer analysis, it
turns out that straight-line leaders make it necessary to
consider a higher number of candidate y-coordinates for
label placement, which increases the complexity. Our
algorithms can also be applied for the case that n (or
O(n)) candidate label positions are part of the input. In
this case, the runtimes decrease; see Table 2.

We also considered the case where one wants to label
(polygonal) regions instead of points. As long as each
region also acts as an obstacle for all other leaders, we
can still solve the different problem variants efficiently,
yet with slightly increased runtimes.

On the other hand, boundary labeling with obstacles
is NP-hard if labels can have different sizes, even if all
labels must be placed on the same side of the boundary
and even if there is only a single rectangular obstacle.
Note that a similar hardness result holds for classic
boundary labeling without obstacles, but only for the
two-sided case, where two opposite sides of the boundary
rectangle are used for placing labels.

2 One-Sided Boundary Labeling with Obstacles

We now show that one-sided boundary labeling with
obstacles can solved in polynomial time using dynamic
programming. We present our result in detail for the
opo-leader style and then explain how to generalize it
to other leader styles. We use the total leader length as
the optimization criterion.

We first discretize the search space by showing that
considering a polynomial set of - and y-coordinates for
label positions and leader segments suffices. We first
assume that labels can come infinitesimally close without
overlapping. Clearly, we have to take all z-coordinates
of points as well as vertices of rectangular obstacles
into account for the middle segments of leaders. Sim-
ilarly, all y-coordinates of points and obstacle vertices
are candidates for label positions. Additionally, in order
to minimize the leader length, labels can be “stacked”
above or below a leader at such a coordinate; see Fig. 2.
This gives rise to up to 2n additional positions with dis-
tance h (the label height) between neighboring positions.
We now show that this set of coordinates is sufficient.

Lemma 1 Let X and Y’ be the sets of x- and y-

87

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

TN B
L} —m
17

Figure 2: 1-sided labeling. Figure 3: Split subinstance.

3

coordinates, respectively, of points and obstacle vertices;
letY ={y+k-h|yeY' ,—n<k<n}. If there is a
crossing-free solution, then there is an optimal solution
in which all x-coordinates of middle leader segments are
in X and all y-coordinates of labels are in 'Y .

Proof. We apply transformations to a given optimal
solution that leave it crossing-free and do not increase
the total leader length. First, we simultaneously move all
middle leader segments to the left (which does not change
the total leader length). We stop moving a segment if
it reaches an z-coordinate in X or if it touches another
middle segment; it is easy to see that the latter implies
that we have reached a coordinate in X.

Now, we try to move the label positions while main-
taining a crossing-free solution, so that the leader length
is minimized. That means that a leader that is above
its point is moved downwards and a leader that is be-
low its point is moved upwards. We stop if we reach
a y-coordinate of a point or obstacle vertex, or if we
touch another label. If in the end there are coordinates
not in Y, there must be some stacks of labels touching
each other and none of the labels in each stack has the
y-coordinate of a point or an obstacle vertex. If the
stack has more labels that should be moved upwards
or more that should be moved downwards, we move
the whole stack in this direction, thus minimizing the
leader length. On the other hand, if the number of labels
that should be moved upwards and downwards are the
same, we arbitrarily choose a direction. If during this
process two stacks touch each other, we merge them
and decide again in which direction to move the whole
stack. Eventually, we reach a situation in which each
stack has a label whose y-coordinate is the y-coordinate
of a point or an obstacle vertex. Since the labels in the
stacks touch, this means that all labels of the stack have
a y-coordinate in Y. (I

From now on, we can focus on the restricted problem
of finding an optimal solution with z- and y-coordinates
in X and Y, respectively. Since |X| = O(n) and |Y| =
O(n?) and each leader can be described by its point, the
z-coordinate of the middle segment, and the y-coordinate
of the label, there are O(n*) potential leaders. In O(n®)
total time, we can precompute for each of them the
length and a possible intersection with an obstacle; in

the latter case we set the length to +00. (Note that this
precomputation could be sped-up to O(n*) total time).
The dynamic program is based on subinstances
bounded by an upper leader and lower leader; see Fig. 3.
All points in the area enclosed by upper and lower leader
and lying right of both leaders’ points must be connected
to a label within the subinstance in any crossing-free
solution. Hence, the optimum cost of labeling points
within the subinstance is independent of anything out-
side. We try all possible leaders connecting the leftmost
point p; of the subinstance to its label; each such leader
splits the subinstance into two new subinstances; see
Fig. 3. Let the upper leader be the one connecting p;
to a label at y = y; with z; as the z-coordinate of the
middle segment; similarly, let the lower leader be de-
scribed by pa, yo, and x2. Let cost[p1, 1, y1, P2, 2, y2]
be the total leader length of an optimal solution for
the subinstance, or +oo if no crossing-free solution
Let left[p1, z1,y1,p2, 2,y2] = pi be the left-
most point in a subinstance; if there is no point in
the subinstance, we set left[p1, 1, y1, p2, 2, y2] = 0 and
cost[p1, x1, Y1, P2, T2, y2] = 0. Then,

exists.

cost[p1, 21, Y1, p2, T2, y2] = min { cost[py, z1,y1, pi, 7, Y]
+ cost[pr, T, Y, p2, T2, y2] + c[p1, 21, Y1, P2, T2, Y2, T, Y]
| pi = left[py, @1, y1, P2, 2, 92), © > (p), @ € X,
1 <y<yyeY},

where ¢[p1, 21, Y1, D2, T2, Y2, T, y| is the cost of the leader
from p; to the label position at y-coordinate y with the
vertical segment at x-coordinate z in the subinstance.
This cost is +oo if the leader intersects with an obstacle
or with the leaders of p; or ps.

By placing dummy points and leaders above and below
the instance, we create an entry in table cost that in the
end contains the cost of an optimal solution. Instances
with no unlabeled point get cost 0. For any other in-
stance, there are O(|X| - |Y]) = O(n3) possible leaders
for p; to be taken into account. Since leader length and
intersection with obstacles were precomputed, we only
have to check for intersections with p; and ps’s leaders,
which takes only constant time. Hence, each entry is
computed in O(n?) time. Since there are O(n®) entries,
the total runtime is O(n'!).

Theorem 2 We can compute a length-minimal one-
sided opo-labeling with unit-height labels in O(n'') time.

Other Leader Styles. For other leader styles, we can
use essentially the same dynamic program; we have
to adjust the representation of possible leaders—with
impact on the runtime—by developing new versions of
Lemma 1; see Appendix A.
e po-leaders are opo-leaders with the middle segment
fixed to the point’s z-coordinate. For Lemma 1,

88

28" Canadian Conference on Computational Geometry, 2016

we get the same set of |Y| = O(n?) possible label
coordinates. This reduces both the complexity of
the subinstances’ (by a factor of ©(n?)) and the
number of possible leaders for p; (by ©(n)). We can
further decrease the complexity of a subinstance
due to the following observation: Since the vertical
segments are at the point’s xz-coordinate, the new
leader of the leftmost point cannot interfere with
previous vertical segments. It suffices to encode the
y-coordinates of the labels and one of the leaders’
points (the one more to the right) so that the left-
most point in the subinstance is specified. Hence,
the total runtime is O(n7).

e do-leaders are very similar to po-leaders (being
a generalization of them). The new version of
Lemma 1 requires a slightly refined proof, but the
result stays the same. We can also optimize do-
leaders in O(n®) time. The above improvement to
O(n") does not generalize to do-leaders.

e Somewhat surprisingly, straight-line leaders require
the same complexity as opo-leaders. The reason is
that the number of possible y-coordinates of labels
increases to O(n®): When minimizing the length of
a single leader, we end up in a situation where the
leader leaves the point and touches another point or
an obstacle—or the leader is a horizontal segment.
This gives rise to O(n?) possible label positions;
stacks of touching labels increase this number to
O(n?). Since this affects both the complexity of
subinstances and the number of possible leaders for
p1, we get a total time complexity of O(n'!).

3 Two-Sided Boundary Labeling with Obstacles

The two-sided case is more complex than the one-sided
case, but still can be solved using dynamic programming.
Again, we focus on opo-leaders and then show how to
extend the result to other leader styles.

First, we show that the sets X and Y of possible coor-
dinates for middle segments of leaders are still sufficient.

Lemma 3 Let X and Y’ be the set of all z- and y-
coordinates, respectively, of points and obstacle vertices
(and 0); let Y = {y+k-h|yeY' ,—n<k<n}. If
there is a crossing-free solution, then there is an optimal
solution in which all x-coordinates of middle segments
are in X and all y-coordinates of labels are in Y.

Proof. Again, we slightly modify a given an optimal
solution—without increasing the total leader length—so
that we get a new optimal solution using only the de-
sired coordinates. Again, we start by moving all middle
segments of leaders to the left; this time we stop moving
also if we reach x = 0, i.e., the left boundary.

When moving labels in the second step, it can now
happen that two segments adjacent to labels of different

— '
1
l Dleft
ST | lsplit
Pright

®
| lrig%‘
- I—
Figure 4: Splitting a 2-sided subinstance.

sides touch and can only be moved in the same direction.
We extend stacks of labels that must be moved together
to include this case. As before, we always move all
labels of a stack in a direction that does not increase
the total leader length, merging stacks if they touch.
Eventually, we end up with a situation in which at least
one label per stack has the y-coordinate of a point or an
obstacle vertex; all other labels of the stack then have a
y-coordinate in Y. O

We now must extend the dynamic program to take care
of the two-sided case. We use the main idea of Benkert
et al. [5] for the subdivision; however, notice that in the
work of Benkert et al. the number and location of label
positions was part of the input.

Consider a crossing-free solution for a two-sided in-
stance. If we can find a vertical line [through the draw-
ing region such that no leader of the instance crosses I,
then we know that all points left of [must be connected
to the left boundary and all points right of [must be
connected to the right boundary. Hence, [separates the
instance into two one-sided subinstances. On the other
hand, if there is no such crossing-free [, there must be at
least one vertical line [that crosses at least one leader
connected to either boundary. Especially, there are two
leaders whose crossings with [are next to each other and
that are connected to labels on different boundaries; see
Fig. 4. Assume that these are a leader [connecting
point piesy to a label on the left boundary and leader
liigne connecting pyighy to a label on the right boundary.
We split the instance by a polyline lyp;, as follows: First,
lspiit follows liepe until it intersects with [; then, s fol-
lows ! down (or up) to the intersection with lyigne; finally,
lspiit follows ijgne to the right boundary.

Line lgp15¢ splits the subinstance horizontally into two
(smaller) subinstances. Note that labels and leaders can
overlap with [g,15¢; however, this is only possible from
one of the subinstances for each boundary, and the shape
of lspiiy makes it clear for which side.

There are O(n*) possibilities for each of the leaders 1
and lyighe. Furthermore, the line [is at an x-coordinate
in X or between two consecutive elements of X. Hence,
the complexity for describing lspuit is O(n?). For each of

the O(n'®) subinstances described by an upper line I},

89

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

and a lower line I2,;,, we have to try O(n”) possibilities

for lspi, to split the subinstance into two subinstances.
For any subinstance containing only a single point, we
try to connect that point optimally (in O(n?) time since
we precomputed the length and obstacle intersection of
each possible leader).

Theorem 4 We can compute a length-minimal two-
sided opo-labeling with unit-height labels in O(n?7) time.

Other Leader Styles. po-leaders are a special case of
opo-leaders with lower complexity. The upper and lower
line separating an instance have a complexity that is
lower in the order of O(n*); there are fewer possibilities
for subdiving by a splitting line, by the same factor.
Hence, the total complexity for leader length minimiza-
tion with po-leaders is O(n'%).

The diagonal segment of do-leaders can intersect with
the vertical part of upper and lower bounding line.
Hence, both have a complexity higher by a factor of
O(n?) compared to po-leaders. The same holds for the
splitting line. Therefore, the runtime for two-sided do-
leaders is O(n?!).

Straight-line leaders, again need the same complexity
as opo-leaders: There are O(n*) possible straight-line
leaders, same as the number of possible opo-leaders.
This carries over to bounding and splitting lines, whose
complexity is O(n?) in both cases.

4 Area Labeling

Connected to labeling points in the presence of obstacles—
usually representing areas of the map—is the general-
ization of labeling polygonal areas. If the areas that
are to be labeled act as obstacles for all leaders except
their own, then our dynamic program for the one-sided
case can be adjusted. The main ideas are the same,
only proving that a discrete set of coordinates suffices
for representing optimal solutions becomes a bit differ-
ent. Since a region acts as an obstacle for all leaders
except its own the region is never split between two
subinstances. However, if we allow leaders to cross re-
gions, this splitting could happens, with the consequence
that the subinstances would not be independent, thus
making the dynamic program fail.

For the same reason, even if regions act as obstacles, a
generalization of the two-sided algorithm fails at the first
glance: The upper and lower bounding lines are not just
leaders, but also contain a vertical segment connecting
two leaders. Such a segment may very well intersect
an area completely, without yielding any information
on which part of the area will be connected to a label;
the two parts lie in different subinstances, thus making
it impossible to solve the subinstances independently.
Fortunately, we can solve that problem: When splitting

g

3
I pey = |
- = | e

Figure 5: Splitting a 2-sided subinstance of labeled areas.

a solution with labels on both sides, we consider the
regions as extensions of their leaders; see Fig. 5. Doing
so, we find a vertical line [with two intersections with
leaders—or their areas—that are connected to different
sides. A different intersected region would break the
adjacency between the defining leaders (or their areas);
this means that the vertical segment cannot intersect
with any area, and every area lies in a unique subinstance.
The obvious—possible—exception are regions defining
the separator; however, the separators’ shape makes
it clear which subinstance they belong to, making the
subinstances independent.

Complexity. The runtime increases slightly for area
labeling. The labeled area no longer fixes where the
leader ends; that may be any point in the area. Hence,
for describing leaders, we must specify the y-coordinate
of the leader segment adjacent to the area for opo-leaders.
This y-coordinate fixes also the area; it is the first area
that is intersected by extending the segment. Therefore,
it is no longer necessary to specify the area. For po-
leaders, we now specify the xz-coordinate of the vertical
segment instead of the area; additionally, we indicate
whether the segment connects to an area above or below
the first leader segment.

By extending the analysis of Lemma 1 and Lemma 3—
with similar movement operations for the respective
segments—it is easy to show that it suffices to consider
coordinates of area or obstacle vertices. In both cases,
the complexity for describing a single leader—bounding
a subinstance—stays the same; however, the number
of possible leaders for connecting the leftmost area in
the subinstance is increased by a factor of n. The new
runtime is O(n'?) for opo-leaders and O(n®) for po-
leaders in the one-sided cases. In the two-sided cases,
the runtimes are still O(n2") and O(n'%), respectively.

The case of do-leaders is essentially the same as po-
leaders, just that instead of the vertical segment, the
z-coordinate of the leader’s bend and the direction of
the diagonal (up or down) are used for describing the
leader. Analogously to labeling points, both versions are
a bit slower than for po-leaders; hence, we can solve area
labeling with do-leaders in O(n?) time in the one-sided

90

28" Canadian Conference on Computational Geometry, 2016

}ax

}2x
}2x

P1¥patpa*pd pTﬁ pTvstg bllsz ‘

Figure 6: Reduction from PARTITION.

case and in O(n?!) time in the two-sided case.

For straight-line leaders, there are O(n?) possible y-
coordinates for labels, determined by pairs of vertices of
obstacles and areas. A leader is described by the label
position and its slope—given by a vertex of the area
or an obstacle; hence, there are O(n*) possible leaders.
The runtime requirement is the same as for opo-leaders.

5 NP-Hardness for Non-Uniform Label Height

We now consider the case of non-uniform label heights.
Even without obstacles, the two-sided version is known
to be NP-hard for basically all leader styles by a simple
reduction from the PARTITION problem [4]. We show
that in the presence of obstacles—in fact, just a sin-
gle obstacle—boundary labeling with non-uniform label
heights is NP-hard even in the one-sided case. Again,
this can be proved by a pretty straightforward reduction
from PARTITION; we present the result for po-leaders,
but other leader styles are hard by only slight modifica-
tions of our reduction.

Assume that we have an instance of PARTITION in
the form of a set S = {a1,a2,...,a,} C N. Let X =
1/2 - 377" | an; the task is to decide whether there is
a subset A C S of the numbers such that ZGGA a =
ZbeS\A b = X. For each number a;, we create a point p;
whose associated label height is a;. The points are placed
in the middle of drawing region, with ordered from left
to right. The idea is to place an obstacle in the middle
of the right boundary so that it is split into two gaps
of height X. However, this does not take into account
that of the labels placed right next to the obstacle, the
upper or lower half can be behind the obstacle, with the
effect that the gaps no longer have equal height. We
work around this problem as follows; see Fig. 6 for an
example. We add two points b; and by with associated
label height 2X each, and place an obstacle of height
2X in the middle of the right boundary, where the map
has height 6 X. We claim that we can label all points if
and only if there is a partition of the numbers.

First, assume that there is a crossing-free labeling of
the points (with any leader style). Neither of the two

gaps is large enough to accommodate the labels for both
b1 and bo, these two labels must lie in different gaps, as
shown in Fig. 6. As a result, there remains total height
at most X in each gap. Since the total height of labels
sums up to 2.X, all available vertical space must be used
for labels, and the assignment of labels to the two gaps
above and below the obstacle immediately gives rise to
a feasible partition of P.

On the other hand, assume we have a set A C P with
2aea = 2pep\ab = X. We assign the label of each
point corresponding to an element of A to the upper
gap, and the label of each point corresponding to P\ A
to the lower gap; by is assigned to the upper and by to
the lower gap. The labels of the upper gap are ordered
from top to bottom according to the left-to-right order
of their points, which already fixes their coordinates;
similarly, the labels of the lower gap are ordered from
top to bottom according to the order from right to left of
their points; see Fig. 6. It is easy to see that this leads to
a crossing-free labeling of all points for all leader styles
(for opo-leaders, we simply us the restricted po-style).

Theorem 5 One-sided boundary labeling with obstacles
and non-uniform label height is NP-hard.

References

[1] Michael A. Bekos, Sabine Cornelsen, Martin
Fink, Seok-Hee Hong, Michael Kaufmann, Martin
Nollenburg, Ignaz Rutter, and Antonios Symvonis.
Many-to-one boundary labeling with backbones. J.
Graph Alg. Appl., 19(3):779-816, 2015.

[2] Michael A. Bekos, Michael Kaufmann, Martin
Néllenburg, and Antonios Symvonis. Boundary label-
ing with octilinear leaders. Algorithmica, 57(3):436—
461, 2010.

[3] Michael A. Bekos, Michael Kaufmann, Dimitrios
Papadopoulos, and Antonios Symvonis. Combining
traditional map labeling with boundary labeling. In
SOFSEM’11, volume 6543 of LNCS, pages 111-122.
Springer, 2011.

[4] Michael A. Bekos, Michael Kaufmann, Antonios
Symvonis, and Alexander Wolff. Boundary label-
ing: Models and efficient algorithms for rectangular
maps. Comput. Geom., 36(3):215-236, 2007.

[5] Marc Benkert, Herman J. Haverkort, Moritz Kroll,
and Martin Noéllenburg. Algorithms for multi-criteria
boundary labeling. J. Graph Algorithms Appl.,
13(3):289-317, 20009.

[6] Maarten Loffler and Martin Nollenburg. Shooting
bricks with orthogonal laser beams: A first step
towards internal /external map labeling. In CCCG’10,
pages 203-206, 2010.

91

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

A p p e n d ix label touches another label. We then proceed by forming

stacks of labels that are moved together. Eventually,

each stack has at least one label with y-coordinate in

A One-Sided Boundary Labeling with Obstacles — Y’, which means that all the labels’ y-coordinates are in
Variants Y. O

Lemma 6 Let Y’ be the set of y-coordinates
of points and obstacle wvertices and let 'Y =
{y+k-h|lyeY' —n<k<n}. If the instance
has a crossing-free solution with po-leaders, then there
also exists an optimal solution in which all y-coordinates
of labels are elements of Y.

Proof. We interpret the po-leaders as opo-leaders and
apply the same transformation as in the proof of
Lemma 1. Since the vertical segments are already on
z-coordinates of points, they are not moved at all. The
labels, however, end up at y-coordinates of Y. (I

Lemma 7 Let Y’ be the set of y-coordinates
of points and obstacle wvertices and let 'Y =
{y+k-h|lyeY' —n<k<n}. If the instance
has a crossing-free solution with do-leaders, then there
also exists an optimal solution in which all y-coordinates
of labels are elements of Y.

Proof. We assume we are given an optimal solution.
We move the labels (and the horizontal leader segments)
as we did in the proof of Lemma 1 so as to not increase
the total leader length. Note that this movement im-
plies shortening/lengthening the horizontal and diagonal
segments accordingly.

We must stop moving a leader if its horizontal segment
touches a point or a vertex of an obstacle, or if the label
touches another label. In the former cases, we are done.
In the latter case, we proceed as we did for opo- and
po-leaders by building stacks of labels and moving them
together. In the end, each stack will have a label at the
y-coordinate of a point or an obstacle vertex, meaning
that all labels in the stack are in Y. (|

Lemma 8 Let Y’ be the set of all y-coordinates
at which a straight-line defined by either two in-
put points or by an input point and an obstacle
vertex intersects the right boundary. Let Y =
{y+k-h|lyeY and —n<k<n}. If the instance
has a crossing-free solution with straight-line leaders,
then there also exists an optimal solution in which all
y-coordinates of labels are elements of Y.

Proof. Again, we start with a given crossing-free solu-
tion and transform it by moving labels up and down so
that the total leader length does not increase. If we can-
not move a label because the leader would then intersect
another leader or an obstacle, the leader’s label must
have a y-coordinate in Y’/ C Y. On the other hand, it
can also happen that we cannot move a leader because its

92

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

On the Biplanar Crossing Number of K,

Stephane Durocher*

Abstract

The crossing number c¢r(G) of a graph G is the minimum
number of edge crossings over all drawings of G in the
Euclidean plane. The k-planar crossing number cry(G)
of G is min{er(Gy) + ¢cr(Ga) + ... + er(G)}, where the
minimum is taken over all possible decompositions of G
into k subgraphs G1,Ga,...,G;. The problem of com-
puting the crossing number of complete graphs, cr(K,,),
exactly for small n and bounding its value for large n
has been the subject of extensive recent research. In this
paper we examine the biplanar crossing number of com-
plete graphs, cro(K,). Since 1971, Owens’ construc-
tion [IEEE Transactions on Circuit Theory, 18(2):277—
280, 1971] has been the best known construction for
biplanar drawings of K, for large values of n. We pro-
pose an improved technique for constructing biplanar
drawings of K, which reduces the lower order terms of
Owens’ upper bound. For small fixed n, we show that
cra(Kio) = 2, era(Ky1) € {4,5,6}, and for n > 12, we
improve previous upper and lower bounds on cra(K,).

1 Introduction

A drawing of a graph G on R? is a mapping of each
vertex of G to a distinct point in R? and each edge of G
to a simple continuous curve between its corresponding
endpoints. Throughout the paper we assume that the
drawings are nice, i.e., the interiors of edges do not pass
through vertices, edges may create crossings but do not
touch otherwise, and finally, no three edges cross in a
point. The crossing number of G is the smallest integer,
denoted by cr(G), such that G admits a drawing with
cr(G) edge crossings.

Determining the crossing numbers of complete graphs
is one of the most studied problems in combinatorial
geometry (e.g., [2, 4, 8, 15, 18, 19]). The problem
of determining cr(K,), i.e., the crossing number of a
complete graph with n vertices, has been studied since

*Department of Computer Science, University of Mani-
toba, Winnipeg, Manitoba, Canada, durocher@cs.umanitoba.ca.
Work of the author is supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

TDepartment of Computer Science, University of Colorado
Denver, Denver, USA, ellen.gethner@ucdenver.edu. Work of
the author is supported in part by a Simons Foundation Collab-
oration Grant for Mathematicians.

IDepartment of Computer Science, University of Manitoba,
Winnipeg, Manitoba, Canada, jyoti@cs.umanitoba.ca.

Ellen Gethner'

Debajyoti Mondalt

the early 1960s [11, 12, 21]. From that time it was
known [11] that ¢r(K,) is bounded from above by Z,,
where Z,, = % L%J L%J L"52J L”T{‘)J Given a com-
plete graph of n vertices, there are several construction
techniques [9] to produce a drawing of the graph with
exactly Z, crossings. In fact, it is conjectured that the
equality cr(K,) = Z, holds in general [12, 21]. Pan
and Richter [17] showed that the conjecture holds for
the case when n < 12.

The definition of crossing number naturally extends
to an arbitrary number of planes. Given a graph
G = (V, E), the k-planar crossing number cri(G) of G
is equal to min{cr(G1) + cr(G2) + ...+ cr(Gg)}, where
the minimum is taken over all possible decompositions
of G into k subgraphs G; = (V;, E;),1 < ¢ < k, such
that V={ViU...UVy}and E={F;U...UE}. In
1971, Owens [16] showed that crq(K,,) is bounded from
above by W,,, where W,, =

2(n—4)(n—8)

Z[n/g]-l-ZLn/gJ-Fi, if n = 4m.

Zinya) + Doy + CDOITO) gy — g 41,
Ziny2) + Ziny2) +W if n = 4m + 2.
Zinj2 + Zinj2) + %, if n =4m + 3.

A rich body of research examines the asymptotic
behaviour of the k-planar crossing numbers of com-
plete and complete bipartite graphs [3, 20], and there
have also been significant efforts to determine tight
bounds on biplanar crossing numbers for these classes
of graphs [6, 7, 10]. While tight bounds for cr(K,)
are known for n < 12 [11, 17], the value of cro(K,) is
known only when n <9 i.e., cra(K,) =0if n < 9, and
cra(Kg) = 1 [14]. In a survey on the biplanar crossing
number, Czabarka et al. [6] posed an open question that
asks to determine cry(K,) when n is small.

A 1-page drawing T of G is a drawing of G on the Eu-
clidean plane such that all the vertices lie on a circle C' in
I" and the edges that do not belong to the boundary of C
lie interior to C'. The 1-page crossing number v(G) of G
is the minimum number of crossings over all the 1-page
drawings of G. The k-page crossing number vi(G) of G
is min{v(G1)+v(G2)+...+v(Gy)}, where the minimum
is taken over all possible decompositions of G into k sub-
graphs G, ..., Gy, and the order of vertices along C' is
the same for all these subgraphs. Observe that a 2-page
drawing of K, with t crossings determines a drawing of

93

28" Canadian Conference on Computational Geometry, 2016

K, into a single plane with exactly ¢ crossings'. Recall
that the currently best known upper bound on cr(K,)
is Z,. Several studies proved that v5(K,) = Z, for dif-
ferent values of n [5, 8, 9], and very recently Abrego et
al. [1] proved the equality for every n € Z*. However, it
is still unknown whether er(K,) is strictly smaller than
vo(Ky,), i.e., we only know that cr(K,) < va(K,,) = Z,,.

An analogous relationship between the k-planar cross-
ing number and 2k-page drawings of K, is cri(K,) <
vor(Ky). Interestingly, we observe that W,,, which is
the best known upper bound on crq(K,,) for large val-
ues of n, is equal to the best known upper bound [9]
on v4(K,), when n = 4m for some m € Z*; see Sec-
tion 2. However, the equality does not hold in general
since cra(Ky) = 1 < v4(Ko) = 3 [9].

In this paper we propose an improved technique
for constructing biplanar drawings, which reduces
Owens’ [16] upper bound on cro(K,). Although the
improvement is obtained by a slight modification of the
Owens’ construction, this is interesting since no such
perturbation is known that can improve the conjec-
tured value of ¢r(K,). For small fixed n, we show that
cro(Kq9) = 2, cro(K11) € {4,5,6}, and for n > 12, we
improve previous upper and lower bounds on crs(K,).

2 Technical Details

De Klerk et al. [9] gave a generalized construction for
k-page drawings of complete graphs. For some cases,
e.g., when n = 4m and m € Z*, their upper bound
on 4-page crossing number (thus the biplanar crossing
number) of K,,, matches exactly the upper bound ob-
tained by Owens [16] for biplanar drawings of complete
graphs. We first briefly recall the construction given by
Owens [16], and then the construction given by de Klerk
et al. [9].

2.1 Owens’ [16] Construction

Given a complete graph K, (assume for convenience
that n = 4m, where m € Z7), in each plane Owens
constructed two vertex disjoint cycles C = (vy, ..., v, /2)
and C" = (u1,...,un/2), each with n/2 vertices. He
constructed the complete graph induced by the vertices
on C using a 2-page drawing of K, /s, i.e., placing the
edges of the ith page, i € {1,2}, interior to the cycle
C in the ith plane. The complete graph induced by
the vertices on C’ was constructed exterior to C’ in a
similar way. The remaining edges that form a complete
bipartite graph K, 3 ,/2 connecting the vertices of C
with the vertices of C’, were drawn as follows: for each
v; on C, the first plane contains the edges from v; to n/4
consecutive vertices on C” starting at wu; in clockwise

Tmagine the drawing on a sphere, where the first page is drawn
on the upper hemisphere, and the second page is drawn on the
lower hemisphere.

2nd page

(U VU7

Figure 1: (a)—(b) Owens’ [16] Construction. (c) De
Klerk et al.’s [9] Construction.

order. The remaining edges of K, 3 , /2 are drawn in the
second plane symmetrically. Figures 1 (a)—(b) illustrate
such a construction for Kig.

2.2 De Klerk et al.’s [9] Construction

De Klerk et al. [9] showed that for complete graphs K,
where n = km with m,k € Z*, the k-page crossing
number of K, is v(Ky) = e (1— 95) n* — 40 +
(557 +) n* — 4n. We can observe that this is equal to
the Owens’ [16] upper bound when k = 4, as follows.
Since n = 4m, we may assume n = 2q with ¢ = 2m.
Then we have

94

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

-4yl 1525

= @q(q - 4)2(q - 8).

From Owens’ [16] upper bound, we have

n?(n —4)(n — 8)
=7+ 72 RS2 AS
Wi =Z1q) + Z1q) + 334

= Ln‘* — i713 + §712 - 1n
~ 1536 16 96 4

= V4(Kn).

To construct the k-page drawing, let the vertices
of K, be vi,...,v,, and let M; be the set of edges
{(va,vp) : 1 < a,b <n,and i = (a+b—2) mod n}.
Now draw the edges M;_1)n/k U ... U Mjy, 51 in the
jth page. Figure 1 (c) illustrates the construction for
K2 on 4 pages. Pairing the k pages and placing them
in each side of a circle yields a [k/2]-planar drawing,
which implies that cry(K,,) < vor(Ky).

3 Biplanar Crossing Number for Small Values of n

In this section we establish some tight bounds on the
biplanar crossing number of K, when n is small. It
has been known for a long time that cry(K,) = 0 if
n < 9, and cro(K9) = 1 [16]. We may thus assume
that n > 9. We first prove that cra(Ki0) = 2 and
cro(Kq11) € {4,5,6}, and then provide a technique to
compute good upper bounds on cry(K,), when n > 9.

Biplanar Crossing Numbers of K;3 and Ki;.
We construct biplanar drawings of Kjg and Kp; with
exactly 2 and 6 edge crossings, respectively, as shown
in Figure 2. We now show that 2 and 4 edge crossings
are necessary for Kjo and Kjp, respectively. Suppose
for a contradiction that K7y admits a biplanar drawing
with fewer than two edge crossings, and let I be such a
biplanar drawing. Since Ko contains Kg as a subgraph,
I’ must contain exactly one edge crossing. Let (u,v) be
an edge on I' that is involved in this crossing. Then the
deletion of v and its incident edges from I'" would give
a biplanar drawing of Ky without any edge crossing,
which contradicts that cre(Ko) = 1.

For ery(K71), we prove a lower bound of 4 as follows:
Let I' be an optimal biplanar drawing with at most 3
crossings. Observe that I' must have at least 3 crossings,
otherwise we can delete some vertex which is incident to
some crossing in I' to obtain a biplanar drawing of Kig
with at most one edge crossing. Observe that no vertex
v in I' can be adjacent to two or more edge crossings,
because otherwise deletion of v from I' would yield a

biplanar drawing of K19 with at most 1 crossing, which
contradicts that crg(K19) = 2. Since every crossing
involves four distinct vertices and every vertex in I is
incident to at most one crossing, I' must have at least
12 distinct vertices, which is a contradiction.

Biplanar Crossing Numbers of K,,, where n >
12. Let T" be a biplanar drawing of K,,. Observe that
one can construct a biplanar drawing of K, 11 by exe-
cuting the following steps:

S1. Pick a vertex v in I" and create a copy v’ of v in
each of the two layers of T

So. In each layer of T', place v’ arbitrarily close to v
and add the edge (v,v’) so that this edge does not
introduce any new crossing.

S3. Let W = {wy,wa,...,wqi o)} be the first half of
the neighbors of v in clockwise order in the ith layer
of T', where d! denotes the degree of v in the ith
layer. For each w € W, we add the edge (v',w)
closely following the edge (v,w) such that v’ ap-
pears after v while examining the neighbors of w in
clockwise order. The edges from v’ to the remain-
ing neighbors {w|4i 241, -,wai } of v are added
symmetrically.

S4. Remove the edge (v,v’) from the second layer.

Let the resulting drawing be I'. Tt is straightfor-
ward to verify that the number of newly created cross-

ings among the edges incident to v and v’ is exactly
S Ldy/21(1dy, /2] -1)+([d,,/2]-1)[d, /2]
i€{1,2} 2

) . Moreover,

a crossing between two edges (v,w) and (z,y), where
v & {z,y}, corresponds to a crossing between (v, w)
and (z,y). Therefore, if v is adjacent to ¢ cross-
ings in the ith layer, then the number of crossings
in T’ is 216{1,2} ([dru/QJ(Ldru/QJ—l);(fdv/ﬂ—l)(%/21 + C;;)
more than the number of crossings in I'.

To obtain better drawings, we choose the vertex v
that minimizes the number of newly introduced cross-
ings (break ties arbitrarily). Table 1 shows the number
of crossings obtained by the above construction tech-
nique, when n € {12,13,...,30}, and the lower bounds

using the imequality era(K,) > (500
4

, which is

widely used to establish lower bounds on crossing num-
ber [7]. Note that the upper bounds of Table 1 are sig-
nificantly smaller than the values 18,37, 53,75, 100, 152,
for n =12,...,17, obtained by Owens’ construction.

4 Upper Bounds on cry(K,,)

Assume that n = 8m+4, where m € Z*. We begin with
the construction of Owens [16], and later we modify the
drawing to improve the number of crossings. We use a

95

28" Canadian Conference on Computational Geometry, 2016

Figure 2: Biplanar drawings of K7y and K;; with two and six edge crossings, respectively.

Table 1: Upper and lower bounds on cry(Ky,), where n € {12,13,...,30}.

n 12|13 |14 | 15|16 | 17 | 18 19 | 20 | 21 22 | 23 | 24 | 25 26 27

UB. |14 |26 | 43 | 62 | 81 | 103 | 148 | 176 | 226 | 332 | 469 | 652 | 717 | 958 | 1261 | 1399

LB.| 6 |9 [13|19|26| 35 | 46 | 60 | 76 | 95 | 118 | 145 | 176 | 212 | 253 | 299
slightly different presentation for Owens’ [16] construc- Cgut be v1,v2,...,V2m+1 in clockwise order. For each

tion, which will be more convenient for the subsequent
description.

4.1 Basic Construction

Let the planar layers of the drawing be L;, where
j € {1,2}. In layer £;, we arrange the vertices into

two circles: C’Zn and C? .. where each of them contains

out»
n/2 vertices. We then embed the cycle Cfn interior to
the cycle CJ,, such that the resulting embedding of the
cycles remains crossing free, as shown in Figures 3(a)—
(b). We now draw the edges that connects the vertices
of CY and C?,,.

In £;, let the vertices on Ciln be v1,v2, ..., Vgm+2 and
the vertices on CJ,, be ui,ua,. .., Usmr2 in clockwise
order. For each j € {1,2,...,4m + 2}, connect u;
to the vertices vj_p,.. .,Vj+m. Note that the
indices wrap around, i.e., for any v;, if j/ < 1 (re-
spectively, j' > n/2), then vj; = vy, 94, (respectively,
Vjs = Vji_p/2). In the other planar layer Ly, let the
vertices on C’fn be uy, ug, ..., usm+1 and the vertices on

5 Ujy e

Jj€{1,2,...,4m + 2}, connect v; to those vertices of
C?, that are not incident to v; in £;. As illustrated in

Figures 3(a)—(b), all these edges lie in the closed region

between C7, and CY,,.

Note that we may now complete the drawing of K,
by adding the edges among {us, ..., u,/2} and the edges
among {v1,...,v,/2}. For the set {vi,...,v,/2}, we
construct a 2-page drawing of K, /3, where the edges of
one page lie inside C}, and the edges of the other page
lie outside of C%,,. Similarly, for the set {u1,...,u,/2},
we construct a 2-page drawing of K, /5, where the edges
of one page lie inside C?, and the edges of the other page
lie outside of C},,. Let the resulting drawing be I'. Since
this construction is equivalent to that of Owens [16], the

number of crossings in I is W,.

4.2 Improvement

We now modify the drawing I' to obtain a biplanar
drawing with fewer crossings, as illustrated in Fig-

ures 3(c)—(d).

96

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

V7 :
V|

v aN
"A\g

Us N\

U

(b) ¢
o 5]

Figure 3: (a)—(b) Basic construction with 324 crossings. (c)—(d) Modification of I" with 322 crossings. The blue and

red edges are shown in bold and dashed lines, respectively.

We first delete the incident edges of vo that lie in-
side C},, and then add these edges outside of C2,,, as
illustrated in thick lines (blue) in Figure 3. We then
remove the edges that lie on the boundary of C} , and
finally, move the vertex vs infinitesimally close to uy in-
side the cycle ug, v1, v3, as shown in dashed lines (red)
in Figure 3. Let the resulting drawing be IV, which has
smaller number of crossings than I". We now show how

to modify the drawing for larger values of n.

Let n =16m+4,n' =n/2, p=|n'/4] + 1 and ¢ =
[p/2]. We now choose v, to carry out the modifications,
note that for n = 20, we have v, = v2. Let the edges
incident to v, that lie inside C}}, in I but moved outside
of C2,, in I, be the blue edges. Denote the incident
edges of v, that lie outside of C}, in I" as the red edges.
Let the number of edge crossings on the blue edges in
I' and IV be a and o/, respectively. Similarly, let the
number of edge crossings on the red edges in I" and I
be 8 and ', respectively. Then the number of edge
crossings in I is W, + (¢/ + ') — (o +). We now
briefly describe the computation of o, o/, 3, 8’

Crossings on the Blue Edges in T (i.e., a): We
partition edge crossings into the following three types.

- A denotes the number of crossings between the edges
(vg, V) and (z,y), where w € {¢+2,...,2p — ¢},
z € {Vg41,---,Vw_1}, and y € {vap,...,vp}. There-

2p— i1 . .
fore, A = 3772 15375115 + (¢ — 2)), as shown in
Figure 4(a).

- B denotes the number of crossings between the edges
(vg,vw) and (z,y), where w € {q + 2,...,p}, © €
{vg41,-. . vw—1}, and y € {vyt1,...,v2p}. There-

i—1 N .
fqre, B =30 22 i—q1((2p = j) — i), as shown in
Figure 4(b).

- C denotes the number of crossings between the edges
(vg,vw) and (z,y), where w € {p+1,...,2p — ¢},
z € {vg+1,...,0p}, and y € {Vy41,...,v2p}. There-
fore, C' = 2?2;21 (2”_‘1_1_;)(2”_(’_1), as shown in Fig-
ure 4(c).

The drawing is symmetric with respect to the axis
through v, and its diametrically opposite vertex. Thus

97

28" Canadian Conference on Computational Geometry, 2016

(%

(e)

Figure 4: Computation with respect to vy, where n = 36. (a)-(c) Computation of a. (d)—(f) Computation of o'.

2m —j

(b)

Figure 5: Crossings on the red edges: (a) T, and (b) I".

98

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

the number of crossings removed from I' by moving
the blue edges from the inner layer is exactly a =
2(A+ B+ C).

Crossings on the Blue Edges in T’ (i.e., o/): We
partition these edge crossings into the following three

types.

- A’ denotes the number of crossings between the edges
(vg,vw) and (z,y), where w € {q+ 2,...,p}, v €
{vg+1,- .-, vw-1}, and y € {vy11, ..., vn }. Therefore,
A =30 E;;ZH 2p—1, as shown in Figure 4(d).

- B’ is an upper bound on the number of cross-
ings between the edges (vq,vy) and (z,y), where

wo€ {p + 1772p - q}v r € {Uq+17--'7vp}7
and ¥y € {Vwt1y--.5 00} Therefore, B’ =

Z?ﬁ;ﬂ ((P -q)(2p—-1)— (iip)(giimlv , as shown in
Figure 4(e).

- (' denotes the number of crossings between the edges
(vg, V) and (z,y), wherew € {p+2,...,2p—q}, z €
{vp+1,---svw-1}, and y € {vy41,...,v}. There-

2p— i—1 : .
fore, C" = Ziipzz j:p+1((2p_1)_2(.7 _p)_(z_.]))a
as shown in Figure 4(f).

The drawing is symmetric with respect to the axis
through v, and its diametrically opposite vertex. Hence
the number of crossings introduced in IV by moving the
blue edges to the outer layer is at most o = 2(A’+ B’ +
ch).

Crossings on the Red Edges in T (i.e., §): The
number of crossings created by the edges (vq,u’) and
(vg4j,u”"), where 1 < j < 2m —1 and u’,u” lie on C},,,
is (2m — j)(2m — j + 1)/2. Figure 5(a) illustrates a
scenario where m = 4. Symmetrically, the number of
crossings created by the edges (vq,u') and (vg—j;,u”) is
(2m — j)(2m — j 4+ 1)/2. Hence the number of crossings

in the red edges is 8 = Z?:_nfl@m —J)2m —j+1).

Crossings on the Red edges in I (i.e., §'): It
is straightforward to observe that the number of such
crossings is 5’ = 2m + 22;’:11 2mi, as illustrated in
Figure 5(b) when m = 4.

Now the number of crossings in I is W,, + (¢/ +
B') — (ae+ B), which can be simplified using Maple [13]
to get an upper bound of W,, — z2:n3+0(n?). Since the
modification we carried out for v, can also be applied
around independently to its diametrically opposite ver-
tex, we can obtain a bound of W, — 75513 +O(n?). The

192
following theorem summarizes the result of this section.

Theorem 1 FEvery K,,, where n = 16m + 4 and m €
7%, admits a biplanar drawing with at most W, —
n3/192 + O(n?) edge crossings.

5 Conclusion

In this paper we have given bounds on the biplanar
crossing number of K,,. For small values of n, our tech-
nique for computing cry(K,) is incremental. Hence it is
natural to ask whether every optimal biplanar drawing
of K, 41 contains an optimal drawing of K,,. We proved
that ero(K11) € {4,5,6}. It would be interesting to find
an analytical argument to prove a better lower or upper
bound on ¢ry(Ky1). Finally, given f(n), how efficiently
can we find k such that cri(K,) € O(f(n))?

References

[1] B. M. Abrego, O. Aichholzer, S. Ferndndez-Merchant,
P. Ramos, and G. Salazar. The 2-page crossing number
of K. Discrete & Computational Geometry, 49(4):747—
777, 2013.

[2] B. M. Abrego, S. Fernandez-Merchant, and G. Salazar.
The rectilinear crossing number of K,: closing in (or
are we?). In J. Pach, editor, Thirty essays in Geometric
Graph Theory, pages 5-18. Springer, 2013.

[3] L. Beineke. Biplanar graphs: A survey. Computers &
Mathematics with Applications, 34(11):1-8, 1997.

[4] P. Brass, W. Moser, and J. Pach. Research Problems in
Discrete Geometry. Springer, 2006.

[5] C. Buchheim and L. Zheng. Fixed linear crossing min-
imization by reduction to the maximum cut problem.
In Proceedings of the 12th Annual International Con-
ference on Computing and Combinatorics (COCOON),
LNCS, pages 507-516. Springer, 2006.

[6] E. Czabarka, O. Sykora, L. A. Szekely, and I. Vrto.
Biplanar crossing numbers I: A survey of results and
problems. In Proceedings of More Sets, Graphs and
Numbers: A Salute to Vera Sés and Andrds Hajnal,
pages 57-77. Springer, 2006.

[7] E. Czabarka, O. Sykora, L. A. Székely, and 1. Vrio. Bi-
planar crossing numbers. II. comparing crossing num-
bers and biplanar crossing numbers using the proba-
bilistic method. Random Structures and Algorithms,
33(4):480-496, 2008.

[8] E.de Klerk, J. Maharry, D. V. Pasechnik, R. B. Richter,
and G. Salazar. Improved bounds for the crossing num-
bers of K, and K. STAM Journal on Discrete Math-
ematics, 20(1):189-202, 2006.

[9] E. de Klerk, D. V. Pasechnik, and G. Salazar. Improved
lower bounds on book crossing numbers of complete
graphs. STAM J. Discrete Math., 27(2):619-633, 2013.

[10] E. Gethner, L. Hogben, B. Lidicky, F. Pfender, A. Ruiz,
and M. Young. On crossing numbers of complete tripar-
tite and balanced complete multipartite graphs. Jour-
nal of Graph Theory, 2016. (To appear).

[11] R. Guy. A combinatorial problem. Nabla (Bulletin of
the Malayan Mathematical Society), 7:68-72, 1960.

99

28" Canadian Conference on Computational Geometry, 2016

(12]

(13]

(14]

(15]

(16]

(17]

18]

(19]

20]

(21]

R. K. Guy. The decline and fall of Zarankiewicz’s the-
orem. In In Proof Techniques in Graph Theory, Pro-
ceedings of the Second Ann Arbor Graph Theory Con-
ference, pages 63-69. Academic Press, 1969.

M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn,
S. M. Vorkoetter, J. McCarron, and P. DeMarco.
Maple 10 Programming Guide. Maplesoft, Waterloo
ON, Canada, 2005.

P. Mutzel, T. Odenthal, and M. Scharbrodt. The thick-
ness of graphs: A survey. Graphs and Combinatorics,
14(1):59-73, 1998.

N. H. Nahas. On the crossing number of K,, . FElec-
tronic Journal of Combinatorics, 10(N8), 2003.

A. Owens. On the biplanar crossing number. IEEE
Transactions on Circuit Theory, 18(2):277 —280, 1971.

S. Pan and R. B. Richter. The crossing number of Ki1
is 100. Journal of Graph Theory, 56(2):128-134, 2007.

R. B. Richter and G. Salazar. Crossing numbers. In J. L.
Gross, J. Yellen, and P. Zhang, editors, Handbook of
Graph Theory, pages 912-932. Chapman & Hall/CRC,
2nd edition, 2013.

M. Schaefer. The graph crossing number and its vari-
ants: A survey. Electronic Journal of Combinatorics,
DS21, 2014.

F. Shahrokhi, O. Sykora, L. A. Székely, and I. Vrfo.
On k-planar crossing numbers. Discrete Applied Math-
ematics, 155(9):1106-1115, 2007.

K. Zarankiewicz. On a problem of P. Turdn concerning
graphs. Fund. Math., 41:137-145, 1954.

100

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Squarability of rectangle arrangements

Matéj Koneény™ Stanislav Kucera*

Michal Opler*

Jakub Sosnovec* Stepan Simsa*

Martin Topfer*

Abstract

We study when an arrangement of axis-aligned rectan-
gles can be transformed into an arrangement of axis-
aligned squares in R? while preserving its structure. We
found a counterexample to the conjecture of J. Klawit-
ter, M. Nollenburg and T. Ueckerdt whether all ar-
rangements without crossing and side-piercing can be
squared. Our counterexample also works in a more gen-
eral case when we only need to preserve the intersec-
tion graph and we forbid side-piercing between squares.
We also show counterexamples for transforming box ar-
rangements into combinatorially equivalent hypercube
arrangements. Finally, we introduce a linear program
deciding whether an arrangement of rectangles can be
squared in a more restrictive version where the order of
all sides is preserved.

1 Introduction

In this paper, we are concerned with the following prob-
lem. Given an arrangement of axis-aligned rectangles in
R?, is it possible to find an arrangement of axis-aligned
squares with corresponding properties? J. Klawitter, M.
Nollenburg and T. Ueckerdt [2] asked which geometric
rectangle arrangements can be transformed into combi-
natorially equivalent square arrangements. While show-
ing some necessary and sufficient conditions for that,
the question whether there exists an unsquarable rect-
angle arrangement without crossings and side-piercings
(see Figure 1) remained open. We show a counterex-
ample for that — an arrangement of rectangles which is
not combinatorially equivalent to any square arrange-
ment. Moreover, our counterexample works even in a
more general case when we only need to preserve the
intersection graph of arrangements and we forbid side-
piercing between squares.

In Section 3 we generalize the problem to higher di-
mensions — considering hypercubes instead of squares
and boxes instead of rectangles. We show that allow-
ing crossings or side-piercings in any dimension leads
to arrangements of boxes for which no corresponding

Charles
E-mails:

*Faculty of Mathematics and Physics,
University in Prague, Czech Republic.
matejkon@gmail.com, stanislav.kucera@outlook.com,
oplerQiuuk.mff.cuni.cz, j.sosnovec@email.cz,
simsa.st@gmail.com, mtopfer@gmail.com

arrangement of hypercubes exists.

Besides constructing counterexamples we also present
an algorithm for deciding whether a given arrangement
is squarable when the order of all sides has to be pre-
served (which implies combinatorial equivalence).

1.1 Preliminaries

Let R denote a given set of axis-aligned rectangles in
R? and S be a mapping from R to axis-aligned squares
in R? satisfying certain restrictions. If such S exists,
we say that R is squarable and S is a squaring of R.
Thus S(R) is a set of squares obtained from R in a way
specific to the particular variant and S(R) is the square
representing the rectangle R € R. In each variant we
explain the restrictions placed on the input set of rect-
angles R and on the output set of squares S(R).

+ |0 7|0

Figure 1: Intersection types. Respectively: corner in-
tersection, side-piercing, cross intersection and contain-
ment.

There are four intersection types: corner intersection,
side-piercing, cross intersection and containment (see
Figure 1). Note that we do not include empty intersec-
tion (formed by disjoint rectangles) as an intersection
type. Also, we only consider sets of rectangles where no
two rectangle sides are collinear.

In all the discussed variants, we assume that the in-
put set R contains no two rectangles with side-piercing
or cross intersection. Allowing these intersection types
easily leads to instances of arrangements of rectangles
that cannot be squared — any two rectangles with the
cross intersection clearly cannot be squared as well as
the arrangement of four rectangles in Figure 2 for side-
piercing.

Without loss of generality, we assume all the rectan-
gles have positive coordinates. If it is not the case we
just translate the whole arrangement. For a rectangle
R we denote:

e i(R) to be the y-coordinate of the top side of R,

101

28" Canadian Conference on Computational Geometry, 2016

| —

= —]

Figure 2: An arrangement that cannot be squared due
to side-piercing intersections.

e bH(R) to be the y-coordinate of the bottom side of
R,

e 7(R) to be the a-coordinate of the right side of R,
e [(R) to be the z-coordinate of the left side of R,
e h(R) to be the height of R: h(R) = t(R) — b(R),
e w(R) to be the width of R: w(R) = r(R) — I(R).

1.2 Variants of the squarability problem

Let R be an arrangement of rectangles and S be a squar-
ing of R. We say that R and S(R) are combinatorially
equivalent if for any R1, Ry € R, the intersection type
of S(Ry) and S(R3) is the same as the intersection type
of R; and Ry and these intersections happen exactly on
the same sides (and corners). For example, if Ry and Ro
have corner intersection that is in the upper left corner
on Ry and the lower right corner of Ry, the same must
hold for S(R;y) and S(Ra).

Note that the above definition of combinatorial equiv-
alence is strictly weaker than the one given in [2]. This
definition is, however, convenient to us as the basic re-
quirement. Since our counterexample works in this less
restrictive case, it is also a counterexample when the
referenced definition is used.

The following are variants of the squarability prob-
lem. They vary in the strength of the assumptions we
put on the mapping S.

Preserve order of all sides. The output S(R) has to
be combinatorially equivalent to R and, moreover,
the respective order of sides on both axes has to be
preserved. On a chosen axis, we can construct the
sequence of sides of rectangles R from left to right
as they appear, i.e., every rectangle will appear ex-
actly twice. Then the same sequence of sides has
to be realized in S(R).

Combinatorial equivalence. The output S(R) has
to be combinatorially equivalent.

Keep intersections, forbid side-piercing. First,
we require that the intersection graphs of R
and S(R) are isomorphic, i.e., it holds that
Rl N R2 7é @ if and only if S(Rl) N S(Rz) 7é (Z)
for all Ry,Ry € R. Additionally, the squares
in the output set S(R) must only have corner
intersections or containment.

Keep intersection graph. We only require that the
intersection graphs of R and S(R) are isomorphic.

Note that if S satisfies “Preserve order of all sides”,
then it satisfies “Combinatorial equivalence”. In the
same sense, “Combinatorial equivalence” implies “Keep
intersection, forbid side-piercing” (by the assumption
that R contains no side-piercing), which implies “Keep
intersection graph”.

2 Counterexamples

In this section we will discuss examples of arrangements
of rectangles, which cannot be squared in terms of the
mapping S. In each subsection we consider squarability
with respect to of one of the variants. We will start with
the most restrictive case and proceed to more general
variants.

2.1 Preserving order of all sides

If we want the resulting arrangement of squares to pre-
serve the order of all sides, there is an easy example of
four rectangles that cannot be squared.

g
Figure 3: An arrangement not squarable in the most
restrictive case.

Theorem 1 The arrangement of rectangles in Figure 3
cannot be squared while preserving order of all sides.

Proof. After squaring the arrangement we would get
w(A) > w(B) = h(B) > h(C) = w(C) > w(D) =
h(D) > h(A) = w(A); thus, the arrangement is un-
squarable. O

This is an easy observation but it is important, be-
cause this arrangement is exactly the one we will find
in latter cases to prove unsquarability of other arrange-
ments.

2.2 Combinatorial equivalence

In the second most restrictive definition of the mapping
S we want the resulting arrangement of squares to not
only have the same types of intersections but also to
have the same position. This means that if there is a
rectangle A and a rectangle B intersecting A in the top
right corner then S(B) will intersect S(A) again in the
top right corner.

102

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

T

\ \
\ \

Figure 4: An arrangement not squarable when S keeps
the combinatorial equivalence.

Theorem 2 The arrangement of rectangles in the left
picture of Figure 4 cannot be squared.

Proof. To prove that, we want to show that the four
bold rectangles form the pattern from Theorem 1. To
do that, we need to prove that there is that cyclic con-
dition on lengths of their sides. It suffices to show the
dependency only for one pair of neighbouring rectangles
since the arrangement is symmetric.

In the right picture of Figure 4, there is the situation
for A and B where only the important rectangles are
drawn. Suppose the rectangles are orientated as in the
picture (orientation is fixed for the whole arrangement).
To prove w(A) > w(B) in all possible mappings S, it is
sufficient to show [(A) < I(B) and r(A) > r(B).

We observe that when two rectangles C' and D in-
tersect a common rectangle E on its top (or bottom)
side, C being the one intersecting it in the left cor-
ner, and C, D do not intersect each other it must hold
r(C) < I(D). When two rectangles F, G intersect each
other then I(F) < r(G). These two observations used
on the red sides of the rectangles in Figure 4 together
give us r(A) > r(B). To prove [(A) < [(B) we use the
observations for the blue sides. (]

2.3 Keep intersections, forbid side-piercing

So far we have been mainly building tools and consider-
ing easy examples. For S which only keeps intersections
without allowing side-piercing in S(R) we still need one
more tool.

We refer to the arrangement depicted in the left pic-
ture of Figure 5 as a X-gadget. It is an arrangement of
rectangles that can be squared even in the most restric-
tive case and we use it to force some useful properties.

Lemma 3 All squarings of the X-gadget that keep in-
tersections but forbid side-piercings are combinatorially
equivalent, up to rotation and reflection.

Proof. First look at the rectangles K, L, M, N in the
middle. There is only one way to square them upon a

0.
=
~

| |

S|

| |

| |

"

M

[| [|
C RS E I

Figure 5: ¥-gadget and its usage.

rotation and reflection. Then we want to square rect-
angles A, B,C and D. Notice that A can be contained
neither in K nor in L because it intersects P. This, and
the fact the side-piercing is forbidden, gives us three
possibilities how to place A, relatively to K and L. It
can be either in the position as in the Figure 5 or in such
position that it contains the intersection of the squares
K and L or in the opposite corner than in the first case.
In Figure 6 we see all the important cases. The first case

A K

L A

Figure 6: Three possible ways of placing rectangle A.

is the one we want. In the second case, the position of
A forces P (and Q) to intersect the bottom left corner
of A because P (Q) needs to intersect D (B) without
intersecting K (L). This means P and @ both inter-
sect the bottom left corner of A and so they intersect
each other, a contradiction. In the last case, A would
intersect M and N, a contradiction. Therefore, there is
only one way to square A and by symmetry the same
is true for B, C' and D. Now the rectangles P, Q, R and
S can also be squared in only one way, completing the
proof. O

First we explain how we use the Y-gadget in an ar-
rangement. If we want another rectangle (or another
Y-gadget) to intersect our Y-gadget in a corner, it must
intersect both the surrounding rectangle and one of
A,B,C or D depending on in which corner it inter-
sects X-gadget. Besides these two it does not intersect
anything else.

Now that we know that the 3-gadget can be squared
in exactly one way and how to use it in an arrangement,
let us explore some of its useful properties. As is illus-
trated in the right picture of Figure 5, the most useful
property comes to play when the ¥-gadget is intersected
by rectangles in opposite corners, lets call them E and

103

28" Canadian Conference on Computational Geometry, 2016

F. Usually this only gives us one of the following con-
ditions:

e 7(E) < I(F) (blue colored sides in the picture).
e t(E) < b(F) (red colored sides in the picture).

The X-gadget provides both conditions at the same
time, which is very useful when forcing the situation
like in Theorem 1. At the same time, if the 3-gadget is
intersected in two corners, we can always say whether
the corners are opposite or adjacent. For the purposes
of arrangements in which the ¥-gadget is used, when
we talk about the height, width, left side and so on, we
always mean the height, width, left side, ... of the outer
rectangle.

Figure 7: An arrangement using Y-gadget not squarable
even in the least restrictive case without side-piercing.

Having such a strong tool it is now easy to create an
arrangement of rectangles that cannot be squared.

Theorem 4 The arrangement from Figure 7 with the
Y-gadget instead of each rectangle cannot be squared.

Proof. We show that rectangles A, B, C' and D form
the same arrangement as we saw in Theorem 1. Rect-
angles 1 and 2 lie on the same side of B. Rectan-
gles 3 and 4 lie in the opposite corners of 1 and 2
respectively with respect to B. Because rectangles 1
and 2 are X-gadgets, this implies {(B) > 7(3) and
r(3) > I(A) since rectangles A and 3 intersect each
other. We showed I(B) > I(A) and similarly using rect-
angles 2 and 4 we can show r(B) < r(A). Together
this gives us w(B) < w(A). Rotating the argument
around the arrangement we show that if the arrange-
ment gets squared it holds w(B) < w(A) = h(4) <

h(D) = w(D) < w(C) = h(C) < h(B) = w(B), which
cannot be true. O

One could think this cannot be all. After all in pre-
vious cases we needed to show there is only one way to
draw the arrangement of squares and we always ended
up with a square which we couldn’t add. Note that we
did just that by showing the Y-gadget can be squared
in only one way.

3 Higher dimensions

In this section we will make some observations about
arrangements of boxes in higher dimensions. We use
the same notation as before, that is R denotes a set
of axis-aligned boxes in R? and S its mapping to a set
of axis-aligned hypercubes in RY. We will often work
with projections of R? to a subset of coordinates. For
aset I C{1,...,d} let u;y : R® — RUI be a projection
that “forgets” all coordinates not indexed by I. Fur-
thermore for a singleton-indexed projection we shorten
its notation py.y = pre. The result of a projection fuy
applied to R is an arrangement of axis-aligned boxes or
hypercubes in RII,

M/ 4

e

2

Figure 8: An arrangement of three boxes in R3 such
that there is no combinatorially equivalent arrangement
of cubes.

The notion of combinatorial equivalence extends nat-
urally to higher dimensions. We can observe that with
each extra dimension we get new intersection types. For
example, consider the following arrangement of only
three boxes in R® from Figure 8. Each pair of these
boxes intersects in such a way that one pierces the edge
of the other. We claim that there cannot be a combina-
torially equivalent arrangement of hypercubes. Assume
that we have such an arrangement of hypercubes A’, B’

104

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

and C’. Then the projection u; forces A’ to be bigger
than B’, similarly puo for B’ and C’. Finally, us forces
C’ to be bigger than A’ and that is a contradiction.

3.1 Boxicity and cubicity

In the beginning we restricted to arrangements without
side-piercings and cross intersections. It is fairly easy to
see how they lead to counterexamples in the more re-
stricted settings. However it is not so clear whether this
restriction is needed in the least restrictive setting, i.e.
preserving just the intersection graph. We will construct
arrangements with these intersections which cannot be
represented by an intersection graph of axis-aligned hy-
percubes up to a given dimension.

Let G be a simple undirected graph. The bozicity of
G is the smallest dimension d such that G can be rep-
resented as an intersection graph of axis-aligned boxes
in R?. Similar notions are the cubicity of G, where
we consider a representation as an intersection graph
of axis-aligned hypercubes, and the wunit cubicity of G,
where all the hypercubes have to be unit. The notion
of boxicity and unit cubicity (usually referred simply
as cubicity) was introduced in 1969 by Roberts [3] and
has since been actively studied, e.g. in [1]. The results
we prove in this section were shown previously for unit
cubicity in [3]. But our definition of cubicity is more
general.

Furthermore, let R(k,d) denote the smallest inte-
ger such that every coloring of the complete graph on
R(k,d) vertices with d colors contains a monochromatic
clique of size k. This is indeed one of the Ramsey num-
bers and it is well known that such a value exists.

As before, we want to construct such a graph that
if there was an intersection-pattern equivalent arrange-
ment of hypercubes it would force a cyclical inequality
of hypercube sizes. However we do not have any tool
yet for showing such inequalities in the most general
setting.

Lemma 5 Let G be a graph and v be a vertex which
has at least R(k+2,d) neighbours that are pairwise non-
adjacent. Suppose G can be represented as an intersec-
tion graph of an arrangement R of axis-aligned hyper-
cubes in R? and f : V(G) — R is the corresponding
mapping. Then there is a neighbour w of v such that
the hypercube f(w) is more than k times smaller than
the hypercube f(v).

Proof. Unsurprisingly, we will prove our claim using a
coloring of the complete graph on R(k + 2, d) vertices.
Each vertex gets labelled by one of the R(k+2, d) neigh-
bours of v. Observe that if two axis-aligned hypercubes
Ry and R, in R? are disjoint then there is an integer
¢ such that pu.(R;) and p.(R2) are disjoint. We will
color an edge with any ¢ such that the corresponding

hypercubes are disjoint under p.. The number of ver-
tices guarantees us a monochromatic clique of size k+ 2.
That means there are k + 2 neighbours of f(v) that are
pairwise disjoint under . for some c. We have k+2 pair-
wise disjoint intervals and all of them need to intersect
the interval p.(f(v)). From this follows that the small-
est interval p.(f(w)) is more than k times smaller than
the interval p.(f(v)). And since we are dealing with
axis-aligned hypercubes, the hypercube f(w) is more
than & times smaller than the hypercube f(v). O

Theorem 6 For every d there is a graph G with boxi-
city 2 and cubicity larger than d.

Proof. Consider a complete bipartite graph G with
each partition of size R(3,d). The boxicity of G is 2
since one partition of G can be represented as a set of
vertical rectangles and the other as a set of horizontal
rectangles (see Figure 9). Now suppose for a contradic-
tion that the cubicity of G is at most d and fix any inter-
section representation with hypercubes in RY, d < d.
Let v be the vertex of G such that the corresponding hy-
percube is the smallest one. Since v has exactly R(3,d)
pairwise disjoint neighbours, by Lemma 5 there must be
a neighbour of v such that its corresponding hypercube
is strictly smaller, that is a contradiction. O

Figure 9: An arrangement of rectangles whose inter-
section graph is a complete bipartite graph with each
partition of size R(3,2) = 6.

4 Deciding squarability via LP

4.1 The problem

In this section we present a linear program deciding
whether a given arrangement of n rectangles R =
{Ry,...,R,} in R? can be squared while preserving or-
der of all sides.

105

28" Canadian Conference on Computational Geometry, 2016

Without loss of generality we can assume that
all the endpoints of the intervals [I(R;),r(R;)] and
[b(R;),t(R;)] have distinct values for all i € {1,...,n}.
Otherwise we could change the endpoints a little with-
out changing intersections between rectangles.

By ordering the endpoints of the intervals of projected
rectangles into an increasing sequence, we obtain the se-
quence aj < ap < --- < ay,, where a} = [(R;) or r(R;)
for some i € {1,...,n} (see Figure 10). Replacing I(R;)
and r(R;) by ¢ then yields the sequence aq, as, . .., ag, of
numbers {1, ..., k}, we call this sequence the z-sequence
of R. Clearly, each i € {1,...,n} appears there ex-
actly twice, thus for every i € {1,...,n} we can define
a(z) = (jl,jg) such that 71 < J2 and aj, = Qj, = 7.
The z-sequence describes the respective ordering of the
rectangles’ x-coordinates. A y-sequence and the corre-
sponding function b are defined analogously.

Wy =t(Ry) oo

W= (R Ry

V= t(Ro) . T

b;; =0 R1§ _____

bh=b(Rs)[. L ;

= bl 220 A L : :
l R/l) 1(32) l R%I) (R/1> 7’(3/2) 7"(R/3>
=a1 =(12 = asg =(l4 =a5 =(lG

Figure 10: The z-sequence is 1,2,3,1,2,3 and the y-
sequence is 2,3,1,2,1,3.

The decision problem can be reformulated in the
following way: Given a family of rectangles R =
{R1,...,Rn}, does there exist a family of squares S =
{S1,...,8n} such that the z-sequence of S is identical
to that of R and the y-sequence of S is identical to that
of R?

4.2 Linear program

Let us present a linear program solving the problem for
an input set R = {Ry,...,R,}. Let a1,a4,...,a9, be
the z-sequence and by, bs, ..., by, the y-sequence of R.
We have variables

TiyeesX2n—1,Y15- -+ Y2n—1 2 17

where the value of x; represents the distance of the
corresponding interval endpoints of rectangles R,; and
R, ., and the value of y; represents the distance of the
corresponding endpoints of R, and Ry, (see Figure
11). Let (x,y) = (z1,.--,%20n-1,Y1,---,Y2n—1) be any
feasible solution to the following set of equalities. For
every ¢ = 1,...,n we have an equality

ja—1 gs—1
Z T = Z Yk, where a(i) = (j1,j2), b(i) = (j1,7J5)

k=4, k=3

Ty T5

| Loal ! ay ad a

Figure 11: The meaning of the variables z1,..., T2, 1.

From the solution (x,y) we construct the correspond-
ing set of squares § = {S1,...,S5,} as follows. Let
a(i) = (j1,72) and b(i) = (41, 75), we set the coordinates
of S; such that

ji—1 Jj2—1
0S) = an, r(S) =Y a,

k=1 k=1

Ji—1 Jz=1

b(S;) = Z Y, (Si) = Z Yk
k=1 k=1

As z;,y; > 1forall i € {1,...,2n — 1}, it is clear that
the z-sequence and y-sequences of R are preserved in
S. The claim that S consists of squares follows immedi-
ately from the constraints of the linear program. Thus
we obtain that if the linear program finds a feasible so-
lution, we can construct an appropriate set of squares.
Reversely, let S be a set of squares that has the same
z-sequence and y-sequence as R. We can construct the
variables x1,...,%9,-1 and y1,...,Y2,—1 as the corre-
sponding distances. It remains to sufficiently “blow up”
this solution so that all of the variables are at least 1.
This is easily accomplished by multiplying the variables
by the inverse of the minimum of them. We obtain a
feasible solution to the linear program, as desired.

5 Acknowledgments

The authors would like to thank Pavel Valtr, Jan Kra-
tochvil and Stephen Kobourov for supervising the sem-
inar where this paper was created. Our gratitude also
goes to the anonymous referees for their helpful com-
ments.

References

[1] L. S. Chandran and K. A. Mathew. An upper bound
for cubicity in terms of boxicity. Discrete Mathematics,
309(8):2571-2574, 2009.

[2] J. Klawitter, M. Nollenburg, and T. Ueckerdt. Combi-
natorial Properties of Triangle-Free Rectangle Arrange-
ments and the Squarability Problem. In Graph Drawing
and Network Visualization: 23rd International Sympo-
stum, GD 2015, pages 231-244. Springer, 2015.

[3] F.S. Roberts. On the boxicity and cubicity of a graph.
In Recent Progress in Combinatorics (Proc. Third Wa-
terloo Conf. on Combinatorics, 1968), pages 301-310.
Academic Press, New York, 1969.

106

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Transforming Hierarchical Trees on Metric Spaces*

Mahmoodreza Jahanseir!

Abstract

We show how a simple hierarchical tree called a cover
tree can be turned into an asymptotically more efficient
one known as a net-tree in linear time. We also in-
troduce two linear-time operations to manipulate cover
trees called coarsening and refining. These operations
make a trade-off between tree height and the node de-
gree.

1 Introduction

There are many very similar data structures for search-
ing and navigating n points in a metric space M. Most
such structures support range queries and (approxi-
mate) nearest neighbor search among others. For com-
putational geometers, two of the most important such
structures for general metric spaces are the cover tree [2]
and the net-tree [8]. Cover trees, by virtue of their sim-
plicity, have found wide adoption, especially for machine
learning applications. Net-trees on the other hand, pro-
vide much stronger theoretical guarantees and can be
used to solve a much wider class of problems, but they
come at the cost of unrealistic constant factors and
complex algorithms. In this paper, we generalize these
two data structures and show how to convert a cover
tree into a net tree in linear time. In fact, we show
that a cover tree with the right parameters, satisfies
the stronger conditions of a net tree, thus finding some
middle ground between the two. In Section 5, we give
efficient algorithms for modifying these parameters for
an existing tree.

Related Work For Euclidean points, Quadtrees [5]
and k-d trees [1] are perhaps the two famous data struc-
tures. Most data structures for general metric spaces are
generalizations of these. Uhlmann [11] proposed ball
trees to solve the proximity search on metric spaces.
Ball trees are generalizations of k-d trees. Yianilos [12]
proposed a structure similar to ball trees called a vp-
tree that allows O(log n)-time queries in expectation for
restricted classes of inputs.

Clarkson [3] proposed two randomized data structures
to answer nearest neighbor queries in metric spaces

*Partially supported by the National Science Foundation under
grant numbers CCF-1464379 and CCF-1525978

TUniversity of Connecticut reza@engr.uconn.edu

fUniversity of Connecticut don.r.sheehy@gmail.com

Donald R. Sheehy?

that satisfy a certain sphere packing property. These
data structures assume that the input and query point
are drawn from the same probability distribution. The
nearest neighbor query time of these structures depends
on the spread A of the input, which is the ratio of the di-
ameter to the distance between the closest pair of points.

Karger & Ruhl [9] devised a dynamic data struc-
ture for nearest neighbor queries in growth restricted
metrics. A closed metric ball centered at p with ra-
dius r is denoted B(p,r) := {q € P | d(p,q) < r}.
Karger & Ruhl defined the ezpansion constant as the
minimum g such that for all p € M and r > 0,
B(p,2r)] < w|B(p,7)]. A growth restricted metric
space has constant p (independent of n). Karger & Ruhl
proved that their data structure has size u®Mnlogn,
and answers nearest neighbor queries in ™M logn.

Gupta et al. [7] defined the doubling constant p of a
metric space as the minimum p such that every ball in
M can be covered by p balls of half the radius. The dou-
bling dimension is defined as v = 1g p. A metric is called
doubling when it has a constant doubling dimension.

Krauthgamer & Lee [10] proposed navigating nets
to answer (approximate) nearest neighbor queries in
20 1og A + (1/£)°™)-time for doubling metrics. Nav-
igating nets require 200y space.

Gao et al. [6] proposed a (1 + ¢)-spanner with size
O(n/e?) for a set of n points in R?. Their data struc-
ture is similar to navigating nets and can be constructed
in O(nlog A/e?) time and answers approximate nearest
neighbor queries in O(log A) time. They also main-
tained the spanner under dynamic updates and contin-
uous motion of the points.

Har-Peled & Mendel [8] devised a data structure
called a net-tree to address approximate nearest neigh-
bor search and some other problems in doubling metrics.
They proposed a linear-time algorithm to construct a
net-tree of size O(p®Mn) starting from a specific or-
dering of the points called an approximate greedy per-
mutation. Constructing a greedy permutation requires
O(p°Mnlog(An)) time. To beat the spread, they pro-
posed a randomized algorithm to generate an approxi-
mate greedy permutation in O(p®Mnlogn) time. Net-
trees support approximate nearest neighbor search in
0(2°M logn) + (1/£)°D) time.

Beygelzimer et al. [2] presented cover trees to solve
the nearest neighbor problem in growth restricted met-
rics. Cover trees are a simplificiation of navigating nets
and can be constructed incrementally in O(u5nlogn)

107

28" Canadian Conference on Computational Geometry, 2016

Figure 1: A hierarchical tree on P = {a,b,c,d,e, f}.
Squares and ovals illustrate points and nodes respec-
tively.

time. The space complexity of cover trees is O(n) inde-
pendent of doubling constant or expansion constant.

Cole & Gottlieb [4] extended the notion of navigat-
ing nets to construct a dynamic data structure to sup-
port approximate nearest neighbor search in O(logn) +
(1/£)°M) time for doubling metrics. Similar to net-
trees, their data structure provides strong packing and
covering properties. To insert a new point, they used
biased skip lists to make the search process faster. They
proved that the data structure requires O(n) space in-
dependent of doubling dimension of the metric space.

2 Definitions

Hierarchical trees. Cover trees and net-trees are both
examples of hierarchical trees. In these trees, the input
points are leaves and each point p can be associated with
many internal nodes. Each node is uniquely identified
by its associated point and an integer called its level.
Leaves are in level —oco and the root is in +o00. The
node in level ¢ associated with a point p is denoted pt.
Let par(p®) be the parent of a node p* € T. Also, let
ch(p®) be the children of p’. Each non-leaf has a child
with the same associated point. Similar to compressed
quadtrees, a node skips a level iff it is the only child
of its parent and it has only one child. Let L; be the
points associated with nodes in level at least £. Let P,
denote leaves of the subtree rooted at p’. The levels of
the tree represent the metric space at different scales.
The constant 7 > 1, called the scale factor of the tree
determines the change in scale between levels. Fig 1
shows an example of hierarchical trees. Note that in
this figure the tree is neither a cover tree nor a net-tree,
because there are not any restrictions on the distance
between points.

Figure 2: Packing and covering balls for a point p at
level £ in a net-tree. White points belong to the subtree
rooted at node p*.

Cover Trees. A cover tree T is a hierarchical tree with
following properties.

e Packing: For all distinct p,q € Ly, d(p, q) > ¢,7".

e Covering: For each 7" € ch(p?), d(p,7) < c.".

We call ¢, and ¢, the packing constant and the cov-
ering constant, respectively, and ¢, > ¢, > 0. We repre-
sent all cover trees with the same scale factor, packing
constant, and covering constant with CT(7, ¢, ¢.). Note
that the cover tree definition by Beygelzimer et al. [2]
results a tree in CT(2,1,1).

Net-trees. A net-tree is a hierarchical tree. For each
node p¢ in a net-tree, the following invariants hold.

e Packing: B(p,c,7") (P C Py.

e Covering: P,c C B(p,c.7%). !

Here, ¢, and c. are defined similar to cover trees.
Fig 2 illustrates both packing and covering balls for a
point p at some level £ in a net-tree. Let NT(7,¢p, cc)
denote the set of net-trees. The algorithm in [8] con-
structs a tree in NT(11, #‘_51), %)

The main difference in the definitions is in the pack-
ing conditions. The net-tree requires the packing to be
consistent with the hierarchical structure of the tree,
a property not necessarily satisfied by the cover trees.
Also, Har-Peled and Mendel [8] set 7 = 11, whereas
optimized cover tree code sets 7 = 1.3.

A net-tree can be augmented to maintain a list of
nearby nodes called relatives defined for each node p*
as follows.

Rel(p®) = {2/ € T with 9 = par(z?) |f < < g, and
d(p, 1‘) < CTTE}

IThe packing condition we give is slightly different from [8],
but it is an easy exercise to prove this (more useful) version is
equivalent.

108

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

We call ¢, the relative constant, and Har-Peled and
Mendel set ¢, = 13.

In this paper, we add a new and easy to implement
condition on cover trees. We require that children of a
node p’ are closer to p than to any other point in L.

3 From cover trees to net-trees

In this section, first we show that for every node in
a cover tree, the size of children and relatives of that
node is constant. Then, we prove that a cover tree with
a sufficiently large scale factor satisfies both stronger
packing and covering properties of net-trees.

Lemma 1 For each node p' in T € CT(7,cp,cc),
)] = O(phee=/r).

Proof. When |ch(p?)| > 1, all children of p’ are in level
¢ — 1. From the packing property, the distance between
every two nodes in this list is greater than c,7¢"!. We
know that all children of p’ are within the distance c.7¢
of p. By the definition of the doubling constant, the
ball centered at p with radius c.7¢ will be covered by

O(p'&<e7/r) balls of radius ¢, 7. O

Lemma 2 Let p* € T and T € CT(r,¢cp,c.). For each
two nodes s¢,tf € Rel(p’), d(s,t) > c,7".

Proof. Let r" = par(s®). By the definition of relatives,
e<fl?{<h. Ife</ then s =r and s € L,. Because
Ly, C Ly, the distance of s to all points in L, is greater
than c,7¢. Otherwise, s is in level . The same argument
holds for t/. Therefore, s,t € Ly, and it implies d(s,t) >

¢ O
cpT".

Lemma 3 For each node p* in T € CT(r,cp,c),
[Rel(p”)| = O(p'8 /)

Proof. By the definition of relatives, all nodes in
Rel(p?) are within the distance ¢, 7¢ of point p. From
Lemma 2, the distance between any two points in
Rel(p?) is greater than c,7¢. Therefore, the total size

of Rel(p®) is O(p'ecr/r). O

Lemma 4 For each descendant zf of ol in T €
CT(,¢p,), d(p,z) < 25 7°

Proof. The covering property and the triangle inequal-
ity imply that

441

T—1

4 o0
d(p,x) < Z et < e Z =, T
i=f i=0
O
Theorem 5 For all 7 > 26% + 1, T € CT(7,¢p, Cc)s

cp(t—1)—2c. c.T
then T € NT(r, 2G-D52ce cor)

Algorithm 1 Augmenting a given cover tree with rel-
atives
1: procedure AUGMENT(T, ¢,)
2: for all p* € T in decreasing order of level £ do
Rel(p’) + p*
if p’ is not the root then
RELATIVES(p®, c,., true)

aow

Proof. From Lemma 4, for a node pf € T, Py C
B(p, %Te). Suppose for contradiction there exists a

point 7 € B(p, %#) such that ¢ P,. Then,

there exists a node =/ € T which is the lowest node with
f>tand r € P,s. Let y9 be the child of 2 such that
r € Pyo. It is clear that g < £. First, Let g < f — 1.
So, z =y and d(p,z) = d(p,y) > c,7*. By the triangle
inequality,

1) -2
d(y,r) > d(y,p) —d(p,7) > 7" — (T 1) —2¢ ,

2(r—1)
ep(T—1)+2¢ ,
2(1 —1) '

T CCTK
Also, d(y,r) < 2579 < %75 Therefore,

T

ep(T—1)+2¢. , et
2(t —1) T—1

This implies that ¢,(7 — 1) < 0, which is a contradic-
tion. Now, let g = f—1. In this case, we have f = ¢ and
g = £ — 1. By the parent property, d(y,p) > d(y,x).
So,

d(y.p) = d(p,z) — d(z,y) > ¢’ — d(y.p) > ¢7"/2.
Also, by the triangle inequality,

¢ ep(T—1) —2¢
d ~d _d Cp e (T = 1) = 2C 4
(y,’f') = (y7p) (p7 70) > 2 T 2(7._ 1)

CCTz

T—1

We get a contradiction because d(y, r) < i%f There-
fore, r € Pye. O

4 Augment cover trees

Theorem 5 shows that for a sufficiently large scale fac-
tor packing and covering properties in a cover tree imply
packing and covering properties of net-trees. However,
net-tree nodes maintain a list of nearby nodes called rel-
atives. Algorithm 1 is a procedure that adds a list of
relatives to each node of a cover tree. Note that RELA-
TIVES is similar to the find relative algorithm in [8], but
it gives a smaller relative constant.

109

28" Canadian Conference on Computational Geometry, 2016

Algorithm 2 Finding relatives of a node p°

1: procedure RELATIVES(p, c,., update)

2 Let ¢™ = parent(p*)

3 for all z/ € Rel(¢™) do

4: Let y9 = par(z7)

5 if d(p,r) < ¢, 7 and f < ¢ < g then

6 Add z7 to Rel(p®)

7 else if update = true and ¢ < f < m and
d(p,r) < ¢, 7/ then

8: Add p* to Rel(a/)

9: candidates < J,.ccgei(gmy ch(r) \ {p*}

10: for all x/ € candidates do

11: Let y9 = par(z¥)

12: if d(p,z) < ¢, 7% and f < ¢ < g then

13: Add z7 to Rel(p®)

14: else if d(p,z) < ¢,77 and £ < f < m then
15: if update = true then

16: Add p® to Rel(zf)

17: candidates + candidates U ch(zf)

Theorem 6 For each node p* in T € CT(r,cp,c.) and
Cr = %, RELATIVES correctly finds Rel(p?).

Proof. Suppose for contradiction there exists z/ with
y9 = par(xz/) such that =/ € Rel(p’), and RELATIVES
does not find it. Therefore, either 2/ ¢ Rel(¢™) or it has
an ancestor s” with h < m — 1 such that p® ¢ Rel(s").
We consider each case separately.

Case 1: z/ ¢ Rel(¢™). In this case, at least one of
the two condigions of relatives does not hold for z/. If
d(q,z) > ﬁﬂ”, then by the triangle inequality,

2
CeT m m
d(p,z) > d(q,z) —d(p,q) > ot T
21 —1 or1
> Ce (T — 1)27

We assumed that z/ € Rel(p?), so d(p,z) < %75.

These inequalities imply 7 < 1, a contradiction. If
2

d(g,z) < (:iiq)zrm and ¢ > f > m, then f > £ is

also a contradiction. The last case d(¢,z) < %Tm

and f < g < m is a special case of p* ¢ Rel(s"), which
is described in the following.

Case 2: p’ ¢ Rel(s"). We know that £ < h < m,
2

so d(p,s) > (TCC_Tl)QTh. Also, 7"=1 > 7¢ because h >

¢ + 1. Using the triangle inequality and then applying

Lemma 4,
2
d(p,s) < d(p,x) +d(z,s) < — o7l 4 gt
(t—1)2 7—1
< CCTQ h—1 + CeT h (7—2) h
—T ™ = co(—s)T".
(t—1)2 T—1 N1 —1)2
This is a contradiction. O

Theorem 7 Algorithm 1 has time
ceT 2
O(plg(cp(rfn) Tn).

complezity

Proof. We use an amortized analysis for the time com-
plexity of RELATIVES. While finding relatives, if a node
is inserted into the relative list of another node, we de-
crease one credit from the node whose relative list has
been grown. Note that in Algorithm 2, for a node x7 in
Rel(g™) or children of Rel(¢™), when =/ ¢ Rel(p*) and
p’ ¢ Rel(x7), p’ is responsible for checking zf. Also, a
child of a node z7 is required to be checked against rel-
ative conditions if p* € Rel(x/). In this case, we charge

node z/ one credit. From Lemma 3, the relative list for
2

ceT

each node has size O(plg (=7). Also, Lemma 1 im-

plies that each node has at most O(plg%) children.
Therefore, the total required credit for each node of

2 2
g _coT e cor
the tree is Oz(pg p(r=D7) 4 2. O(pg ep(r—1)2 plg) =
O(Plg(%(**”) T). So, the total total time complexity is
CeT 27_
O(p™ &)). 0

5 Transform cover trees

For a cover tree, there is a trade-off between the height
of the tree and the scale factor. It is not hard to see that
the height of a cover tree has upper bound O(log, A).
So by increasing the scale factor, the height of the tree
will be decreased. Also, from Lemma 1, increasing the
scale factor results in more children for each node of a
cover tree.

In this section, we define two operations to change
scale factor of a given tree. A coarsening operation
modifies the tree to increase the scale factor. Simi-
larly, a refining operation results a tree with smaller
scale factor. Note that in Theorem 5, we assumed that
T > % + 1. However, in many cases we may have
T < 2(% + 1. For example, Beygelzimer et. al. [2] set
7 = 2, and they found 7 = 1.3 is even more efficient in
practice. In these situations, we can use the coarsening
operation to get a cover tree with the stronger packing
and covering conditions of net-trees.

5.1 Coarsening

The coarsening operation can be seen as combining ev-
ery k levels of T into one level in T’. We define a map-
ping between nodes of T and T”. In this mapping, each

110

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Algorithm 3 Coarsening operation for a given cover
tree

1: procedure COARSENING(T k)
2 T+ 0)
AUGMENT(T, (CCI)Q)
for all p’ € T in increasing order of level £ do
¢™ + the lowest ancestor of p’ with m’ > ¢

3
4
5
6: if p = q then
7
8
9

p' — FINDNODE(high(p), #')
¢ ' < FINDNoODE(high(q), ¢ + 1)

else
10: par < q™
11: relatives < Rel(¢™)
12: if m’ > ¢ +1 then
13: h <« k([¢/k| +2)71
14: RELATIVES(¢", (3601)2 , false) U {¢"}
15: relatives + Rel(q")
16: for all z/ € relatives do
17: if f/=4¢+1 then
18: 2/ < RESTRICTEDNN(p, 2/, k)
19: if d(p,z) < d(p,par) then
20: par — xf
21: par’ < FINDNODE(high(par), ()
22: par®t! « FINDNoODE(high(par), ' + 1)
23: p" « FINDNODE(high(p), ¢')
24: Add p¥ as a child of par? +1

node p’ in T maps to a node p* = pl¥/k) in T’. Here,
we use prime as a function that indicates the level of the
node in 7" that corresponds to p?, i.e. ¢ = [£/k]. We
also assume that each point p in 7" maintains high(p),
which is the highest node of T’ associated to point p.
Algorithm 3 describes the coarsening operation.
COARSENING uses three procedures RELATIVES, RE-
STRICTEDNN, and FINDNODE. The first procedure is
described in Algorithm 2. Note that in Algorithm 3, T’
does not have node ¢*(L¢/k1+2)=1 This node is a dummy
and we set ¢ as its parent. The only reason to use this
dummy node is to bound the running time of the al-
gorithm. The next procedure is RESTRICTEDNN, and
it returns the nearest neighbor to point p among those
nodes of the subtree rooted at 7 such that their levels
in T are greater that ¢/. Finally, FINDNODE receives a
node pel and a level m’ in T”, and it tries to find node
p™ . If it finds that node, the node is returned. Oth-
erwise, pm/ will be inserted in 7" such that it satisfies
all properties of a hierarchical tree. More specifically, if
pm/ has only one child pe' and pe/ has only one child,
then p¢ will be removed from 7’ and the only child of

pe/ will be added as a child of pm/. Then, this new node
will be returned.

Theorem 8 Algom'thm 3 converts a T € CT(7,¢p,cc)
to T' € CT(7%, ¢p, £T).

Proof. The theorem requires showing three invariants
holds: the covering property, the packing property, and
the parent relation. First we prove that T satisfies the
covering property. If ¢ € T is the descendant at most
k levels down from some p’, then from Lemma 4,

CeT 4 CeT
dp,r) < —71° < T
(p,7) T—1 T—1

Because we are combining sets of k consecutive levels,
it follows that each node in 7" will have a node in the
level above whose distance is at most this amount. It
follows that 7" has a covering constant <%

Next, we prove that the packing constant is correct.
If ¢ = k¢, then the minimum distance between points in
level ¢/ of T" is equal to the minimum distance between
points in level £ of T, which is at least ¢,7¢ = ¢,(7')" .
Thus, the points in level 0 of T" satisfy the packmg
condition and the packing constant is cj,.

Now, we prove that this algorithm correctly finds the
parent of p* in 7. Without loss of generality, let £ be
divisible by k. Also, let s be the closest point to p among
all points in Ly4 1, and s has been appeared for the first
time in level e such that ¢/ > ¢'. So, s is the right parent
for p’. For contradiction, assume that s¢ ¢ Rel(¢™) and
s¢ is not resulted from RESTRICTEDNN over all nodes
in Rel(¢™). Let t" be parent of s¢. From Lemma 4,

d(p,s) <d(p,q) < Cch .
—

We have following cases:

Case 1: d(s,q) > (T 1)27'7". By the triangle inequal-
ity,
QCCT m
d(s,q) < d(p,s) +d(p,q) < 2d(p,q) < — 7",

which is a contradiction, because 7 > 1.

Case 2: d(s,q) < 3“627 and e > m. In this case,
there exists a node s9 with g < m, such that it satisfies
both conditions of relatives. So, s¢ € Rel(¢™) and the
algorithm correctly finds s9. 2

Case 3: d(s,q) < (ic_ﬁ; 7™ m > h, and RESTRICT-
EDNN does not find s¢. Let 27 be the highest ancestor
s¢ such that f < m. Then, Lemma 4 implies

d(z,s) < CT_pf o CT_gm,
T—1 T—1

2g can be equal to —oo, in this case we have a long edge from
a node s in a level greater than m to the point s in level —

111

28" Canadian Conference on Computational Geometry, 2016

Also, by the triangle inequality,

d(z,q) < d(x,s) +d(p,s) +d(p,q)
< d(z,s)+2d(p,q)

CT m 2c.t
< -
T — 1T + T—1
3c.T o RI o
T—1 (tr—1)2

Therefore, z/ € Rel(¢™). Because ¢/ > ¢/, RESTRICT-
EDNN returns s¢ as the nearest neighbor to pf, which
is a contradiction. O

Theorem 9 The time complexity of Algorithm 3 is
CeT 2
O D T 1g),

Proof. From Theorem 7, T can be augmented with rel-
coT 2
atives in O(plg(cv(**l)) "n) time. As a preprocessing
step, we can maintain the lowest ancestor of all nodes
in T in O(n) time, which results a constant time ac-

cess in the algorithm. By Lemma 3, the size of each
2

list of relatives is O(p]g ep(r-1)2). The time complexity
of RESTRICTEDNN is O(lg k), because the height of the
subtree is O(k). When Algorithm 3 is processing all
nodes of level £ in T', for each point p in T”, the level of
high(p) is at most £'41. So, FINDNODE requires O(1) to
return a node of 7" in level ¢’ or £'41. Since the number
of edges in T is O(n), finding relatives of dummy nodes
will be done O(n) times for the entire algorithm. Conse-

quently, because c. > ¢, > 0, the total time complexity
cet 2
of the algorithm is O(plg(%(**”) "nlgk). O

5.2 Refining

Decreasing the scale factor is another useful operation
for cover trees, and we call this operation refining. To
refine a given cover tree T, each level ¢ in T is split into
at most k levels k¢,..., (k¢ +k—1) in T". Note that by
this division, a node p’ in T may be appeared at most k
times in levels k¢, ..., (kf+ k — 1) of T”. Similar to the
coarsening operation, suppose that each point p in T’
maintains high(p) which is the highest node associated
to point p. Algorithm 4 describes the refining operation.

Theorem 10 Algorithm 4 turns T € CT(r, cp, cc) into
T € CT(TY* ¢, ce).

Proof. First, we prove that the algorithm correctly
finds parent of each node in 7’. Note that ¢ as the
current parent of p® in T may not be the right parent
of it in 7" because there may exist a node z¢ such that
d(p,z) < d(p,q) and the level of z in T’ be greater than
the level of p in T”. In this case, p should be inserted as
a child of z. To find the right parent of p°, we search its
nearby nodes and select the closest node that satisfies
the covering property with constant c..

Algorithm 4 Refining operation for a given cover tree

procedure REFINING(T, k)
T + 0

AUGMENT(T, (3;0_01)2

2

1:

2

3

4 for all p’ € T in increasing order of level ¢ do
5: Let ¢™ = par(p®)

6: p"" + high(p)

7 if p=qand b < k¢ then

8 p¥* <« FINDNoDE(high(p), k¢)

9 ¢"+1) « FiNDNoDE(high(q), k(£ + 1))

10: else if p # ¢ then

11: par < q™

12: list < Usherer(gm) ch(s")\ {¢‘}

13: for all z/ € list where f = ¢ do

14: 2"« high(x)

15: if d(p,z) < e/ and d(p,z) <
d(p, par) then

16: par «— xf

17: Find an 4 such that c,7"/*F <
d(p,par) < crtTEHD/k

18: par® i1l < FINDNoODE(high(par), k€ +
i+1)

19: par®*+t < FINDNODE(high(par), kl + i)

20: Pkt <« FINDNODE(high(p), k€ + 1)

21: Add pFt? as a child of parktitl

Now, we show that those nodes of T that have ap-
peared for the first time in level ¢ only required to be
checked. Let x have appeared for the first time in level
h > £. By the parent property of T, d(p,q) < d(p,z),
otherwise p should have x as its parent. Therefore, p
cannot be closer to z than ¢ and we can ignore x in the
search process.

We also show that the right parent of p in 7" is in the
set of children of relatives of ¢/*'. Let z¢ serve as the
parent of p in 7”. So, d(p,z) < d(p,q) < c.7T!. From
the previous part, we know that z¢ has parent 3! and
x # y. By the triangle inequality,

d(q,y) < d(g,p) + d(p,z) + d(z,y) < 3¢,7 "
2
3c.T L4
(1 —1)2
It implies that y**! € Rel(¢1).
Now, we should find the right level k¢ + ¢ such that
insertion of p in that level and as a child of x satisfies
both packing and covering conditions with constants ¢,

and c., respectively. So, in this way we guarantee that
these constants in 7" will be the same as T'. O

Theorem 11 Algorithm 4 has time
O((p™ =+ 0 + kyn).

complexity

Proof. By Theorem 7 we can augment 7 in

CeT 27_ .
O(plg(%(f—”) n) time. From Lemma 3 and Lemma 1,

112

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

number of nearby nodes to p’ is O(plg(ﬁ)%)‘ Note
that for each node p’ € T in this algorithm, level of
high(p) in 7" is at most k(¢ +1). Therefore, FINDNODE
requires O(k) to return a node which is in a level be-
tween k(£+1) to k¢ in T'. Also, finding the right interval
i requires O(lg k). Therefore, the time complexity of the

refining algorithm is O((plg(%?::“)% + Ek)n). O

6 Conclusion

In this paper, we add an easy to implement condition to
cover trees and we show that a cover tree with a large
enough scale factor is a net-tree. We also proposed a
linear time algorithm to augment nodes of a cover tree
with relatives. Furthermore, we present two linear-time
algorithms to transform a cover tree to a coarser or finer
cover tree. In fact, these two operations are useful to
trade-off between the depth and the degree of nodes in
a cover tree.

References
[1] J. L. Bentley. Multidimensional binary search trees used for

associative searching. Commun. ACM, 18(9):509-517, Sept.
1975.

2] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for
nearest neighbor. In Proceedings of the 23rd International
Conference on Machine Learning, pages 97-104, 2006.

[3] L. K. Clarkson. Nearest neighbor queries in metric spaces.
Discrete & Computational Geometry, 22(1):63-93, 1999.

[4] R. Cole and L.-A. Gottlieb. Searching dynamic point sets
in spaces with bounded doubling dimension. In Proceedings
of the Thirty-eighth Annual ACM Symposium on Theory of
Computing, pages 574—583, 2006.

[5] R. A. Finkel and J. L. Bentley. Quad trees a data structure
for retrieval on composite keys. Acta Informatica, 4(1):1-9,
1974.

[6] J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners
and applications. Comput. Geom. Theory Appl., 35(1-2):2—
19, Aug. 2006.

[7] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geome-
tries, fractals, and low-distortion embeddings. In Proceed-
ings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 534—, 2003.

[8] S. Har-Peled and M. Mendel. Fast construction of nets in low
dimensional metrics, and their applications. SIAM Journal
on Computing, 35(5):1148-1184, 2006.

[9] D. R. Karger and M. Ruhl. Finding nearest neighbors in
growth-restricted metrics. In Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing, pages
741-750, 2002.

[10] R. Krauthgamer and J. R. Lee. Navigating nets: Simple
algorithms for proximity search. In Proceedings of the Fif-
teenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 798-807, 2004.

[11] J. K. Uhlmann. Satisfying general proximity / similarity
queries with metric trees. Information Processing Letters,
40(4):175 — 179, 1991.

[12] P. N. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Proceedings of
the Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 311-321, 1993.

113

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

On the Triangulation of non-fat Imprecise Points

Vahideh Keikha*

Abstract

In this paper, we address the problem of computing a
triangulation of imprecise points modeled by non-fat
regions posed by Van Kreveld et al. [SIAM J. Com-
put(39), 2990-3000 (2010)]. In particular, we study the
problem of preprocessing a set of n line segments in the
plane so that if one point per region is specified with
precise coordinates, a triangulation of the points can be
computed in o(nlogn) time. We first model the points
with perpendicular line segments and show if imprecise
points have uniform distribution in their corresponding
bounding box, in O(nlogn) preprocessing time a trian-
gulation of any exact set of points can be computed in
expected linear time. Although, we show even comput-
ing an arbitrary triangulation in this model can take
Q(nlogn) time in the worst case. Also some related
lower bound proofs are provided at the end.

1 Introduction

In recent years there has been a marked attention on the
use of exact data, to the use of uncertain data as the
input of some of the geometric algorithms. It is because
we widely have to work with data obtained from devices
for obtaining certain information in applications of the
real world. In this situation, an inherent imprecision
seems to be unavoidable. A very common setting in the
concept of imprecision of data is region based models:
a set of planar regions are given and each of them rep-
resents an estimate about one of the input points. In
this model there is an equal chance of point existence
in everywhere of its corresponding region and also we
know the corresponding region of each point.

In this paper, we study the problem of triangulation
of a set L of n imprecise points modeled as zero-area re-
gions and each of which can intersect with O(n) other re-
gions. There is a fair amount of studies that assume the
input regions have non-zero area. Loffler and Van Krev-
eld [8] considered the problem of computing the largest
and smallest possible convex hull of a set of imprecise

*Laboratory of Algorithms and Computational Geometry, De-
partment of Mathematics and Computer Science, Amirkabir
University of technology, Tehran, Iran, va.keikha®@aut.ac.ir,
mohades@aut.ac.ir

fDepartment of Computer Sciences and Information Technol-
ogy, Institute for Advances Studies in Basic Sciences, Zanjan,
Iran, mdmonfared@iasbs.ac.ir

Ali mohades *

Mansoor Davoodif

points that modeled by line segments and squares and
measured by perimeter and by area. The running times
of their algorithms varied from O(nlogn) to O(n'3).
Some of their results on the area of the convex hull
has been improved by Ju et al. [6]. In [3] Ezra and
Mulzer studied the problem of computing the convex
hull of a set of imprecise points that modeled by lines
and presented an algorithm with quadratic preprocess-
ing time and space and O(na(n)log® n) expected query
time. They also presented that for the problem of com-
puting the convex hull, the closest pair and the sorting
problem on a given query set of exact points, prepro-
cessing of the input regions that include a set of lines is
unlikely to decrease the query time to o(nlogn).

With a translation to imprecise context, there are also
multiple studies related to the non-fat imprecise points,
e.g., Goodrich and Snoeyink [4] studied the problem
of finding a point on each of the given parallel line
segments such that the resulting point set is in con-
vex position. If there exists a solution, their algorithm
can find it in O(nlogn) time, and in O(n?) time the
minimum possible area or perimeter of the solution can
be computed. Mukhopadhyay et al. [12] studied the
problem of computing the smallest possible area convex
polygon that intersects a set of parallel line segments
in O(nlogn) time, and Rappaport [16] considered the
smallest perimeter polygon transversal of a set line seg-
ments in a constant number of directions, after spending
O(nlogn) time cost.

Also some of the efforts have been made for com-
puting triangulation of a set of imprecise points. Held
and Mitchell [5] were the first to study the problem of
triangulation of a set of imprecise points modeled by
disjoint disks of uniform size. After spending O(nlogn)
preprocessing time they computed an arbitrarily trian-
gulation of a set of query points in O(n) time. With
some constraints, their results can be extended to con-
vex regions with non-zero area. Van Kreveld et al. [7]
generalized their results by finding an arbitrary trian-
gulation of a set of imprecise points modeled by polyg-
onal regions. Their algorithm can be extended for a set
of line segments, under the constraint that each region
has constant number of intersections with the other re-
gions (in this paper, we mainly focus on removing this
constraint). Also some studies are concerned with pre-
processing a set of imprecise points mainly modeled by
disks in O(nlogn) time, so that if one point per region
is specified with precise coordinates, Delaunay triangu-

114

28" Canadian Conference on Computational Geometry, 2016

lation of the points can be computed efficiently[1, 9].
In all of the studies computing a triangulation of impre-
cise points, the imprecision regions are fat and intersec-
tion between the regions is a challenging problem. In
fact, the extension of previous algorithms work only to
a class of fat shapes with constrained number of inter-
section between the regions. So an interesting question
is what can be done for more general regions. As said in
previous studies, there is no hope if we have zero-area re-
gions with many intersection between the regions. But
there is no lower bound proof for many of the problems
in these cases. Also some situations may exist that one
can do better. Motivated by these questions we studied
the following problem:

Problem definition. Let L = {ll,lg, .. .,ln} be a set
of n line segments in the plane, each of which represents
the possible location of an imprecise point. We wish to
preprocess them in such a way that whenever an exact
set of points are arrived (one point per region) one can
compute a triangulation of them in o(nlogn) time.

Our results. We will give a lower bound proof for the
problem stated above, although we show if the regions
include perpendicular line segments and have uniform
distribution in their corresponding bounding box, after
O(nlogn) preprocessing time and using O(n) space, one
can compute a triangulation of the query points with
high probability in expected linear time. Furthermore,
we show that even computing an arbitrary triangula-
tion in this model can take Q(nlogn) time in the worst
case. In fact, we will show no preprocessing can result
in computing a triangulation of the query points more
quickly than from scratch. Finally, some related lower
bound proofs are provided at the end.

Assumption 1. Our computational model is unit
cost Ram model, where every operation on real numbers
takes constant time, including |.] operation. We also
assume exact computations.

Assumption 2. Our uniform distribution assump-
tion is one in which by moving a square ! in the corre-
sponding bounding box of the regions, the same order
of regions have been intersected all the times.

It should be noted that in case of uniform distribution
of perpendicular regions, the query points do not neces-
sarily realize the uniform distribution in the bounding
box of the regions (think of the problem in 1D space),
otherwise, one can subdivide the bounding box into a
grid whose size is chosen to make most grid cells con-
tain a constant number of points, construct simple tri-
angulation graphs in the grid cells, and the totally tri-
angulation graph can be constructed in a substantially
sub-linear (e.g., O(y/nlogn)) time with high probabil-
ity. Also, this assumption is not unrealistic as it is pos-
sible a set of uniformly distributed points having some

1With the sidelength larger than the sidelength of smallest
square in intersect with at least one region.

Figure 1: Possible cases for intersection of two triangu-
lation graphs.

imprecisions during their measuring procedure. The De-
launay triangulation also takes Q(nlogn) time in the
worst case in this model, since Seidel [17] showed that
even if the sorted order of a set of points is given, com-
puting the Delaunay triangulation requires Q(nlogn)
time. So even if the input regions contain only paral-
lel line segments (or lines), because any preprocessing
just yields the sorted order of points, computing the De-
launay triangulation of an exact set of points requires
Q(nlogn) time in the worst situation.

2 Triangulation of Imprecise Points

We first define some notation that we will use in subse-
quent sections. For a set P of points, CH(P) and T'(P)
respectively represents the convex hull and the trian-
gulation of P, for a given point Q in R?, Q* and QY
denote the z and y-coordinate of Q). When we use the
index h (v) for an object, we mean that object is a hori-
zontal (vertical) line segment or belongs to a horizontal
(vertical) line segment. Also we use the word segment
instead of line segment.

At first assume that L contains only parallel seg-
ments. Without loss of generality, let the segments be
vertical. Note that any preprocessing can yield only the
sorted order of points. So whenever the exact set of y
coordinates are arrived, compute a x-monotone chain
of sorted points by x-order in linear time. we can com-
pute the convex hull of these points in linear time by
e.g., applying a variant of Melkman’s algorithm [11].
The pockets formed between the monotone chain and
its convex hull are also y-monotone and can be trian-
gulated in linear time. So a triangulation of the query
points in the case of parallel segments can be computed
in linear time. We can store this structure in a DCEL
in O(n) space.

Lemma 1 Let L = {ll,lg, ceey ln} be a set of n parallel
segments in the plane, each of which corresponds to an

115

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 2: An example. (a) The open points located
outside CH (V') show the four possible regions contain-
ing the elements of set O. (b) The segments connecting
open points show the monotone chain of northwest area
points of O and its corresponding monotone chain of
CH(V) that starts in L, and ends with T,.

imprecise point. A triangulation of an exact set of points
(one point per region) can be computed in O(n) time and
space after O(nlogn) preprocessing time.

The problem we first discuss in this section is the fol-
lowing:

Let L = {lvl,lw,...,lvw,lhl,lhm...,lhnh} be a set of
n, vertical and ny horizontal segments where n, +ny =
n, each segment represents an imprecise point and
ny,np, € Q(n). We wish to preprocess them in such
a way that one can compute a triangulation of an ex-
act given set of points (one point per region) with high
probability in expected linear time.

2.1 Preprocessing

We will show that if the imprecise points modeled by
perpendicular segments have uniform distribution in
their corresponding bounding box, called B, it is pos-
sible to find a triangulation of query points with high
probability in expected linear time. As we will show
later in this paper, even computing an arbitrary triangu-
lation of query points in this model can take Q(nlogn)
time in the worst case.

In preprocessing step, we first sort the vertical and hor-
izontal segments separately taking O(nlogn) time, the
sorted lists is stored separately in DCEL structures.
Also we construct a regular m x m grid on B. We set
m to y/n. Without loss of generality assume the lowest
leftmost corner of the grid has the coordinates (0,0).
For each grid cell OO we compute the covered x and y
ranges. These values determine a distinct hash key for
each 0. So every O of B has a unique key; indeed, let @
be any point in [, and consider the pair of integer num-
bers keyd = key(Q) = (|Q*/ length of O], | QY /width
of O]). Obviously, only points inside [J are going to be
mapped to key [J. So by constructing a linear size hash
structure, a point location operation can be performed

in constant time.

2.2 Triangulation Algorithm

In query stage, a set P =
{PorsPoss -3 Dvny s Phys Phos -+ Py, b C R? of ex-
act points are given, where p,, € l,,, pn, € ln,, and
put V.= Ups,, and H = Upp,. Using Lemma 1, the
triangulation of each of V and H can be computed in
linear time. All the cases of possible intersection of two
triangulation graphs are depicted in Figure 1. Also by
the intersection detection algorithm in [13] (chapter
7) and the constructed DCEL structures in previous
step, we can determine the witnessed case and also the
points in intersection area (if any) in linear time. We
will show how we handle each of the illustrated cases
in the following:

Case a. There is no intersection between T'(V') and
T(H).

If there is no intersection between T'(V') and T(H),
there is also no intersection between CH(V) and
CH(H). So the problem reduces to computing T(V)
and T'(H) using Lemma 1 and triangulation of the re-
gion constructed by merging CH (V') and CH (H). Since
we want to find just a triangulation of the points, a
simple idea from the algorithm that find the tangents
between two disjoint convex hulls [15] can be used to
triangulate the area between the hulls.

Case b. There are some points from one set in the
area intersected by the convex hull of other set.

In this case, we fix the constructed triangulation of
one set and handle separately the points of other set
that locating both inside and outside of the convex hull
of first set. It should be noted that if we first compute
the triangulation of both sets, it may happen that all the
triangles of one set intersect with the triangles of other
set (each triangulation is a planar graph, then we may
have two graphs with O(n) pairwise crossing edges). To
the best of our knowledge there is no planarization al-
gorithm for handling such situation in linear time (see,
e.g.. 2)).

Without loss of generality, assume we compute and fix
T(V) and add set H to the existing triangulation graph.
Clearly the points belong to H can located both inside
and outside CH (V). We call I the set of elements of
H that located inside CH(V'), and O the elements in
H\ I. We first explain the handling of set O. Knowing
the elements of I, set O can also be computed in linear
time. Firstly find the topmost, rightmost, bottommost
and leftmost points of CH(V'), that are the axis-extreme
points of V' and denote them with T,,, R,, B, and L,,
respectively. These four points divide the CH (V') into
four convex (and also monotone in y-direction) chains
that are the northwest chain, the southwest chain, the
southeast chain and the northeast chain. The northwest
convex chain, for example, will be the chain that starts

116

28" Canadian Conference on Computational Geometry, 2016

from L, and ends with T, (see Figure 2(b)), etc.

Also with a linear scan of O we can classify its ele-
ments into four disjoint groups according to their coor-
dinates, as in Figure 2(a):

The northwest area points: the points that have x-
coordinate smaller than T}’ and y-coordinate larger than
LY and located in the northwest area of the CH (V).
These points belong to set H that their supporting seg-
ments have been sorted in a DCEL in preprocessing
step. Then one can find a y-monotone chain (possi-
bly a point or segment) by connecting these points in
bottom-to-top direction.

The southwest area points: the points that have x-
coordinate smaller than BY and y-coordinate smaller
than LY and located in the southwest area of the
CH(V).

The southeast area points: the points that have z-
coordinate larger than BY and y-coordinate smaller that
RY and located in the southeast area of the CH (V).

The northeast area points: the points that have x-
coordinate larger than 7.7 and y-coordinate larger than
RY and located in the northwest area of the CH (V).

So we have two monotone chains in each of the four
regions. Although all the points of O are located outside
the CH(V'), but each monotone chain of O may inter-
sect with its corresponding monotone chain of CH (V).
We use a bottom-up sweep line that handles the in-
tersection points by constructing some small monotone
polygons. For brevity of explanation we consider the
triangulation procedure of the northwest region (simi-
larly for other regions) according to Figure 3. We start
sweeping up the events from L, to point ¢ that is the
topmost point of O in the northwest region, and check-
ing for and handling the potential intersections between
the two northwest monotone chains. An event consist-
ing of both the points of each of chains and the inter-
section points (if any). With a slight abuse of notation,
we use C, both for the chain belongs to northwest area
points of set O and the list of segments in C,, and C,
both for the convex chain belongs to CH (V) and the
list of segments in C,,.

In each step, we check two segments from each of
the chains (from two preliminary constructed list of seg-
ments on each chain in bottom-up direction) for poten-
tially intersection. Whenever we find an intersection
between two segments like ¢, € C, and £, € C,, we
ignore £, that causes an intersection and insert ¢/ and
£ into C, instead, for saving the connectivity of C\,. So
£, would be a segment in C, that causes ¢, goes into
CH(V). Also let ¢, € C, be the segment that causes £,
goes out of CH (V') (possibly 0, = {,, if the intersection
happens at an endpoint). If we assume a bottom-to-top
direction of C\, and C,,, £/ is a segment that connects the
firstpoint of £, to the endpoint of £,. Also £ is a seg-
ment that connects the firstpoint of ¢, to the endpoint

Figure 3: (a) Two monotone chains in northwest region.
(b) The construction of small monotone polygons using
two intersected monotone chains. (¢) A triangulation of
the nortwest region.

of £,. Then we will continue with the next segment of
C, and [U, and proceed the lists until we find the next
two intersecting segments.

We repeat this procedure until we reach to the top-
most point of C,. Then connect b and t that are the
first and last point of C, to two appropriate vertices of
C, for closing the boundary of the first and last con-
structed small monotone polygons. Let p,q € C, be
such vertices, then they are respectively two arbitrary
visible vertices from b and t with respectively smaller y
and larger a-coordinates than b and ¢ (care about choos-
ing p, q in such a way that don’t violating the planarity
of the triangulation graph). Now we can triangulate the
simple monotone polygons constructed between some
parts of C, and C, in linear time.

We also do the same procedure for the remaining
three other regions. If there was no intersection be-
tween the chains, we just need to connect the points b
and t to two points like p and ¢ as said above. In this
case, just one monotone polygon has been constructed.
The procedure of finding the intersection points is simi-
lar to the algorithm presented in [14] that works totally
in O(n) time.

Now we have a triangulation graph with non-convex
outer boundary. We compute a maximal triangulation
of this set in linear time using e.g., the idea of the algo-
rithm that finds the convex hull of a simple non-convex
polygon [10]. The algorithm ends up when we walk
around the polygon and triangulate all the pockets mak-
ing the polygon non-convex. It takes O(n) time totally.
Finally, we proceed with a right triangulation of OU V.

We should also handle the set I. in this situation we
have a set of points located in some of the faces of a
triangulation graph. During the past years, a lot of ef-
forts have been made to do efficiently the point location
operation in a triangulation geometrical graph. With
the best of our knowledge, there is no linear time algo-

117

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

rithm for handling such situation. So we try to find the
containing triangles of the points of set I in expected
linear time, and proceed by splitting each triangle into
three new triangles. During the construction of T(V),
whenever a new triangle is created, knowing its three
vertices we can locate the containing grid cells in con-
stant time. In fact, we use these three grid cells to
compute all the cells intersected by this triangle. We
should store all the involved cells for each triangle in an
adjacency list structure. Likewise, during the construc-
tion of above structure, we also store all the triangles in-
volved by a cell. We will demonstrate the first structure
can be constructed in expected linear time, likewise the
second structure constructed during the construction of
the first one and takes expected linear time. So for each
point p € I, we can determine the cell containing it and
also all the triangles involved by this cell in expected
constant time, determine the containing triangle of p
and then easily split it into three new triangles. We will
show that each triangle is contained within the union of
expected constant number of cells and vice versa. It is
important because just in this case we will totally spend
expected linear time. We discuss later that all the times
it is the case with high probability.

Also, the same procedure of case b can be applied for
other possible cases, e.g., in case ¢; we do triangulation
likewise the procedure done in case b knowing I = H
and O =) (similarly in case d, O = H and I =).

2.3 Running Time Analysis

In this section, we show the triangulation process with
high probability can be down in expected linear time.
For this purpose we should demonstrate that all the
above procedures and the required updates for the data
structures will take linear or expected linear time to-
tally. The linearity of some of the procedures has been
explained above. One of the challenges need to be ad-
dressed is that if each triangle is contained within the
union of a constant number of cells and vice versa? We
will show each triangle is contained within the union
of a constant number of cells and each cell belongs to
constant number of triangles with relatively high prob-
ability. We first consider the case of each cell belongs
to many (O(n)) triangles and give a bound on the num-
ber of such cells. Remember the regions have uniform
distribution in their corresponding bounding box B and
we construct a regular /n X v/n grid on B. Assume an
n x n matrix M with only 0 and 1 values. Each row rep-
resents one cell of the grid and we have n (in fact n’ that
n' € O(n)) columns representing each of the constructed
triangles. For each [J; belongs to row i (1 < i < n) if
the triangle belongs to column j (1 < j < n) intersected
by U;, the M;; value would be 1 and is 0 otherwise. In
both problems stated above, the expected number of
triangles involved by a cell, and the expected number of

cells intersected by a triangle reduces to the problem of
finding the expected number of ones in a row or column
of M (with independent indicator random variables).
So the expected number of ones in a row of M would be

T

X =Yz, Pla;=1)=—.
n
=1

Each x; would have a 0 or 1 value and X is the random
variable of the number of triangles involved by grid cells.
Also, r; is the number of cells in row 7 that valued by 1.

r+nro+...+7r,

EX)=E(xi +z2o+...+z) = ~

Note that 7;’s (1 <4 < n) have not the same value due
to not uniformly distribution of the area of the trian-
gles. We call T the value of E(X) that shows the ratio
between the number of all the involved cells to the total
number of triangles.

T > lnn (using Chernoff’s inequality):

—4(In4)(Inn) 1 1
2

P(X >5T) < e 40T < ¢ = SIS 3
Also P(existence of a cell intersected by more than 57
triangles) < n(n%) =1,

Now we should show that the required updates for
the data structures take linear or expected linear time
totally. In each step of the procedure for handling the
case b, we try one point p from set I, and in constant
time we can find the cell contains it. But also the tri-
angles that involved this cell should be found efficiently.
Assume the containing triangle of p is A,. By splitting
A, using p, three new triangles should be added to the
existing structures and A, need to be removed. So we
only need to check the cells intersected by A,. Also
the number of cells may involve by three new created
triangles is same as A,. Likewise the adjacency list of
the corresponding cells should be updated. In each of
the corresponding cell’s list, exactly one triangle should
be removed and three new triangles should be added
and this can be done easily in constant time. Also, the
DCEL contained the triangulation graph should be up-
dated by inserting constant number of edges.

From above we know that for each grid cell that in-
tersected by a constant number of triangles (and vice
versa), updating the data structures in each step takes
constant time and would be linear totally. But the cost
of handling a cell that intersected by O(n) triangles
would be O(n) time and from above, we know that the
number of such cells would be O(Inn) or more with
probability less than #, in which the time of the al-
gorithm would exceed O(n) with probability less than
#, therefore we have an expected linear time algorithm
with probability higher than 1 — ;. Regarding these

n2

118

28" Canadian Conference on Computational Geometry, 2016

results, the adjacency list of triangles and cells can be
constructed and also updated with probability higher
than 1 — % in expected linear time. Clearly as all the
other procedures can be done in linear time in the worst
case, the triangulation can be done in linear time with
probability higher than 1 — L. Now we can write the

F .
following theorem:

Theorem 2 Let L = {ly,... 1o, s lnys--yln,, } be a
set of m, wvertical and mj horizontal segments where
Ny +np = n and ny,np, € Q(n). After O(nlogn) pre-
processing time, a triangulation of an exact set of query
points (one point per region) can be computed in ex-
pected linear time.

3 Lower Bounds

In this section we represent for a set L of n imprecise
points modeled as segments or lines, computing an ar-
bitrary triangulation of an exact set of query points,
any preprocessing is unlikely to decrease the query time
to o(nlogn). Of course sometimes one can obtain bet-
ter bounds if each point lies on a fat region with some
constraints on the intersection between the given input
regions [5, 7].

Let S be a set of exact points in the plan. We first
show even if we have the sorted order of a sub-set of S in
one direction in the plan, and for the remaining points of
S we have the sorted order in the other direction, com-
puting a triangulation of S takes Q(nlogn) in the worst
situation. In this case, we do reduction from dictionary
problem with multiple queries. We know that there is
an Q(nlogn) lower bound for this problem in 1D in
the algebraic computational tree model. The multiple
query version of this problem is given in the following:
Let A = {al,ag, .. .,an} be a set in R with a; <
ay < < a, and for an arbitrary query set
B = {bl,bg, .. .,bn} C R, the problem of determining
whether there exists a j for each b;, 1 < i < n such that
a; < b; < ajy1, and report it [17].

Theorem 3 Let P = {pl,pg, . ,pn} C R? be a set of
points ordered in terms of x, and Q = {ql, q2, - - ,qn} C
R? be a set of points ordered in terms of y, even comput-
ing an arbitrary triangulation of P U Q takes Q(nlogn)
time in the worst case.

Proof. We call this problem Trinagulation with Par-
tially Ordered Input (TPOI), and we do reduction from
the 1D dictionary problem with multiple queries. As-
sume we have some algorithm that solves the problem
of computing some triangulation for every set P and
Q with condition stated in theorem and takes F(n) in
the worst case. We will show this algorithm with an
additional time expenditure of O(n) can solve the 1D
dictionary problem, then F(n) should be (nlogn).

Figure 4: Two possible triangulations for P U @

Let we are given a set A = {a1,as,...,a,} sorted
in terms of values as the dictionary and the set B =
{bl,bg, .. .,bn} as the query set. We can obtain
the set P = {(a1,0), (a2,0),...,(ap,1),...,(an,0)} C
R? from A in linear time such that contains n — 1
collinear points and 1 arbitrary point having a larger
y-coordinate. Note that there is only one possible
triangulation for set P. Also form the set Q
{(61,0), (b2,0),...,(bg,—1),...,(bs,0)} C R? from B
in linear time such that contains n — 1 collinear points
and 1 arbitrary point having a smaller y-coordinate.
Note that one can easily compute the sorted order of
Q according to y. There is also one possible triangula-
tion for set Q.

Then we run some algorithm that can solve the prob-
lem stated in theorem and compute the triangulation of
PUQ in time F(n). There exists only two possible trian-
gulations, as in Figure 4. We then find z = min, (P, Q)
in linear time and run a BF'S algorithm from z that takes
O(n) totally (due to planarity of triangulation graph),
and ignore a, and b,. Afterwards, we just need to lo-
cate b, in the dictionary and retain the influence of a,
that ignored previously. So we answer the dictionary
problem in time F(n) + O(n). Clearly, F(n) must be
Q(nlogn). It is easy to see that this reduction has a
linear running time. O

It can be concluded that this kind of additional input
information we consider in Theorem 3 does not reduce
the Q(nlogn) complexity of the triangulation problem,
in contrast to some of the related geometric problems,
e.g., computing the planar convex hull. We thus con-
clude:

Corollary 4 Let V = {p1,p2, . ,pnv} C R? be a set
of points belong to vertical segments ordered in terms of
x, and H = {ql,qg, ceey q”h} C R? be a set of points be-

119

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

long to horizontal segments ordered in terms of y, where
Ny +np =n and ny,np, € Q(n). Even computing an ar-
bitrary triangulation of V.U H takes Q(nlogn) time in
the worst case.

Obviously the same lower bound holds for the case of
perpendicular lines instead of segments. Now we show
for a set L of imprecise points, if a triangulation of a
query set P can be computed in o(nlogn) time, after
preprocessing L, it would be possible to solve an in-
stance of TPOI problem in the same time, that now we
know this can not happen.

Theorem 5 Let L = {ll,lg, .. .,ln} be a set of lines in
the plane and each of which is corresponding region of
an imprecise point, and let P = {pl,pg, . ,pn} be a
set of query points where p; € l;, even computing an ar-
bitrary triangulation of P (after preprocessing L) takes
Q(nlogn) time in the worst case.

Proof. We do reduction from the TPOI problem. As
it was widely observed that if an algorithmic problem
with a set of real numbers as the input has a lower
bound, some of the special cases of the problem, e.g., the
problem with natural numbers as the given input, holds
also the same lower bound. Now assume a constraint
version of the TPOI problem that is defined as that
which each part of the elements of the input that is
ordered in terms of z (also for y), can achieve only an
integer value between 1 and n, (for y-coordinate this
value would be between 1 and ny,), but the other parts of
each of the elements can achieve an arbitrary value, and
let P = {pvupvza <+ 35 Pvny s Phys Phys - - - aphnh} C R? be
such an instance, where n, +np = n and n,,ny € Q(n).
For i = 1,...,n,, let l; be the line ; : py. = i, and
for j = i+41,...,n, let I; be the line I; : pj = i for
1=1,...,np and let L = {ll,lg, e ,ln}. Every point of
set P must lie on one of the lines of L. We put P =P,
now set P acts as a query set of L. Then we can find
the triangulation of P (and every set of points that lie
on the lines of the grid defined by L, as in Figure 5)
in o(nlogn) time using the information achieved in the
preprocessing of L. It is now easy to see that the output
yields the triangulation of P in o(nlogn) time that it
can not happen, and that this reduction has a linear
running time. O

Obviously the proof works in the case of the regions
including segments instead of lines, with a limitation on
the range of the coordinates of points belonging to P.

4 Discussion

In this section, we first consider the case where a con-
stant number of perpendicular segments violating the
uniform distribution assumption of the regions (there

np - . !

Figure 5: Set L and a triangulation of sub-set of P that
is ordered in terms of z.

is a significant difference between the lengths of some
of them). In preprocessing phase, we can rebuild the
bounding box B such that the regions satisfy the uni-
form distribution assumption. The algorithm could be
applied for handling of such situations, except that B
is built on the set of supporting lines of the segments
that previously constructed the grid cells. Similar to
the mentioned procedure in Sect 2.2, we fix the con-
structed triangulation of set V' and handle the points
of set H afterwards. But now there are three different
types of triangles in T'(V') according to the position of
the vertices of each of the triangles: all the three ver-
tices located inside or on edges of the grid boundary,
the three vertices located both inside and outside of the
grid boundary and all the three vertices located outside
of the grid boundary. We need only to consider the sec-
ond case. In this situation there exist some triangles
that involved by both of bounded and unbounded grid
cells simultaneously. But the portion that belongs to the
unbounded grid cells can not contain any point from the
set H, and there is no need for doing a point location
anyway. For the portion belongs to the bounded grid
cells we do the point location operation as said above.
So the mentioned time analysis can be considered again.

Finally it should be noted that the lower bound proofs
related to perpendicular objects do not work for the
cases either n, or n;, doesn’t belong to Q(n).

References

[1] O. Devillers. Delaunay triangulation of imprecise
points: Preprocess and actually get a fast query time.
J. Comput. Geom., 2(1): 30-45, 2011.

[2] D. Eppstein, M. T. Goodrich and D. Strash. Linear-
time Algorithms for Geometric Graphs With Sublin-
early Many Edge crossings. SIAM J. Comput, 39(8):
3814-3829, 2010.

[3] E. Ezra and W. Mulzer. Convex hull of points lying
on lines in o(nlogn) time after preprocessing. Comput.
Geom. Theory Appl., 46(4): 417-434, 2011.

[4] M.T. Goodrich and J. Snoeyink. Stabbing parallel seg-
ments with a convex polygon. Comput. Vis. Graph.
Image Process, 49:152-170, 1990.

120

28" Canadian Conference on Computational Geometry, 2016

[5]

(6]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

M. Held and J. Mitchell. Triangulating input-
constrained planar point sets. Inf. Process. Lett.,
109(1): 54-56, 2008.

W. Ju, J. Luo, B. Zhu and O.Daescue Largest area con-
vex hull of imprecise data based on axis-aligned squares.
J. Comb. Opt, 26(4):832-859, 2013.

M. Kreveld, M. Loffler and J. Mitchell. Preprocessing
Imprecise Points and Splitting Triangulations. SIAM
J. Comput, 39(7):2990-3000, 2010.

M. Loffler and M. Kreveld. Largest and Smallest Con-
vex Hulls for Imprecise Points. Algorithmica, 56(2):235—
262, 2008.

M. LofHler and J. Snoeyink. Delaunay Triangulations
of Imprecise Points in Linear Time after Preprocessing.
Comput. Geom. Theory Appl., 43(3): 234-2420, 2010.

D. Mccallum and D. Avis. A linear algorithm for finding
the convex hull of a simple polygon. Inf. Process. Lett.,
9:201-206, 1997.

A. Melkman. On-line construction of the convex hull of
a simple polyline. Inf. Process. Lett., 25:11-12, 1987.

A. Mukhopadhyay, C. Kumar, E. Greene and B. Bhat-
tacharya. On intersecting a set of parallel line segments
with a convex polygon of minimum area. Inf. Process.
Lett., 105(2):56-64, 2008.

J. O’'Rourke. Computational Geometry in C. Cam-
bridge University Press, New York, NY, 1998.

S.C. Park and H. Shin. Polygonal chain intersection.
Computers Graphics, 26:341-350, 2002.

F.P. Preparata and S. J. Hong. Convex Hulls of Finite
Sets of Points in T'wo and Three Dimensions. Commu-
nication of ACM, 20(2):87-93, 1977.

D. Rappaport. Minimum polygon transversals of line
segments. Int. J. Comput. Geom. Appl., 5(3):243-256,
1995.

R. Seidel. A Method for Proving Lower Bounds for
Certain Geometric Problems. Technical Report TR84-
592, Cornell University, Ithaca, NY, USA, 1984.

121

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

On the Precision to Sort Line-Quadric Intersections

Michael Deakin

Abstract

To support exactly tracking a neutron moving along a
given line segment through a CAD model with quadric
surfaces, this paper considers the arithmetic precision
required to compute the order of intersection points of
two quadrics along the line segment. When the orders of
all but one pair of intersections are known, we show that
a resultant can be used to determine the order of the
remaining pair using only half the precision that may be
required to eliminate radicals by repeated squaring. We
compare the time and accuracy of our technique with
converting to extended precision to calculate roots.

1 Introduction

In this work, we are concerned with ordering the points
of line-quadric intersections in 3 dimensions, where the
inputs are representable exactly using w-bit fixed-point
numbers. We will actually use floating point in stor-
age and computation, but our guarantees will be for
well-scaled inputs, which are easiest to describe as fixed-
point numbers. A representable point q or representable
vector v is a 3-tuple of representable numbers (z,y, 2).
The line segment from point g to g + v is defined para-
metrically for ¢ € [0,1] as £(t) = ¢ + tv; note that there
may be no representable points on line ¢ except its end-
points (and even g + v may not be representable, if the
addition carries to w + 1 bits.)

A quadric is an implicit surface defined by its 10 rep-
resentable coefficients,

Q(,Y, 2) = Qua®® + QuyTY + ¢uatz + @t + ...
+ szZQ + q-zz + 4ec = 0.

For more accuracy, we can allow more precision for
the linear and quadratic coefficients, since we will need
3w bits to exactly multiply out the quadratic terms, or
we can use a representable symmetric 3x3 matrix M, a
representable vector v, and a 3w-bit constant R to give
a different set of quadrics Q(p) = (p—v)TM(p—v) = R
that is closed under representable translations of wv.
Whichever definition of quadrics is chosen, the param-
eter values for line-quadric intersections are the roots
of Q(4(t)) = 0, which can be expressed as a quadratic
at? + 2bt + ¢ = 0 whose coefficients can have at most

*School of Computer Science, University of North Carolina at
Chapel Hill, mfdeakin@cs.unc.edu, snoeyink@cs.unc.edu

Jack Snoeyink*

3w + 4 bits. (Four carry bits suffice to sum the 3w-bit
products; w = 16 allows exact coefficient computation
as IEEE 754 doubles; w = 33 as pairs of doubles.)

These definitions are motivated by a problem from
David Griesheimer, of Bettis Labs: rather than track-
ing a particle through quadric surfaces in a CAD model,
would it be more robust to compute the intervals of in-
tersections with a segment? We compare three meth-
ods to order line-quadric intersections. Our methods,
particularly the third, are developed and tested for the
case where only one pair of roots has a difference that is
potentially overwhelmed by the rounding errors in the
computation. We comment at the end how to handle
pairs of quadric surfaces that have more than one pair
of ambiguous roots.

2 Methods

This section outlines three methods—Approximate
Comparison, Repeated Squaring, and Resultant—to
sort the intersections with two quadrics, ()1 and Qs,
with a given line £(¢), or equivalently, the roots of two
quadratics, a1t? — 2b1t 4+ ¢y = 0 and aqt? — 2bat + ¢y =
0. For each, we evaluate correctness, precision, and
floating-point arithmetic operations (FLOPs) required.

2.1 Approximate Comparison

The approximate comparison method computes, for
i € {1,2}, the roots rii = (b £ /b? — a;c;)/a; ap-
proximately by computing each operation in IEEE 754
double precision or in extended precision. Actually, to
avoid subtractive cancellation, we calculate one of the
two roots as r; signbi _ —c;/(bi + (signb;)\/b? — a;c;).
The order of any two chosen approximate roots can be
calculated exactly as sign(rif — r).

The rounding of floating point arithmetic means that
even with representable input, the correct order is not
guaranteed unless we establish a gap or separation the-
orem (which are also established using resultants [1, 5])
and compute with sufficient precision. Determining this
precision is a longstanding open problem [4]. Without
a guarantee, this method requires very little computa-
tion. Computing both roots takes 12 FLOPs, with one
more to compute the sign of the difference. Moreover,
the roots can be reused in a scene of many quadrics.

We also use extended precision, where the multipli-
cations and addition in the discriminants are calculated

122

28" Canadian Conference on Computational Geometry, 2016

with 6w bits, square root and addition at 12w bits, and
divisions at 24w bits. To actually perform the compar-
ison, one final subtraction is required at 24 times the
initial precision — 1 FLOP, with an initialization cost of
10 FLOPs per quadric intersecting the line.

2.2 Repeated Squaring

The repeated squaring method computes sigm(rf—L - rgc)
by algebraic manipulations to eliminate division and
square root operations, leaving multiplications and ad-
ditions whose precision requirements can be bounded.
It uses, for x # 0, the property that sign(y) =
sign(z) sign(z - y). Divisions can be removed directly,
since sign(rf — 7)) = sign(aias) sign(ajag(ri — ry)).
One square root can be eliminated by multiplying
by r£ — rf, giving sign(ajasg)sign(aias(ri — 7)) -
sign(a?a3(rf — rE)(rf — r§)). When simplified, the
final sign is computed from a3b? — 2a1a3c; + 2a2azco —
a1a2b1b2 + \/(alang — a%bl)Q(b% — 4&1C1).

The expression under the radical is correctly com-
puted with 8x the input precision; the remaining ex-
pression can be evaluated to a little more than 4x input
precision in floating point, or can be evaluated in fixed
point in 8% input precision by isolating the radical and
squaring one last time.

This method not only requires high precision, but also
a large number of FLOPs. Computing the unambigu-
ous sign of the difference of the roots requires 15 FLOPs
total, and correctly computing the final sign requires an-
other 24 FLOPs. Unfortunately, many of the computed
terms require coefficients from both polynomials; only
the discriminants, squares, and products can be pre-
computed, which reduces the number of FLOPs by 14.
This brings us to 25 FLOPs per comparison, with an
initialization cost of 14 FLOPs per quadric.

Note that this method uses our assumption that we
know sign(rif —rJ) when computing sign(r —r¥), but
we can learn this from a lower precision test against

—by/ag, since r;, < —by/ag <15

2.3 Resultant

This method was previously described in [2], but a de-
scription is included here for completeness.

The resultant method computes the order of two
intersections from the resultant for their polynomi-
als, which can be written as the determinant of their
Sylvester Matrix [7, Section 3.5]. The general Sylvester
Matrix for polynomials P(t) = pmt™ + -+ + po
and Q(t) = qnt™ + - -+ 4 qo is defined as in Equation 1.

P - po O 0
0 pm ... Po 0
0 0 Pm p
res(P,Q) = P o 0 00 (1)
0 g ... qo 0
0 dn - 9o

The resultant is also the product of the differences of
P’s roots, ay, ..., ap, and @Q’s roots, by, ..., by, as in
Equation 2. [7, Section 6.4]

res(P,Q) = ppap [T T1(a: —0)) (2)

i=1j=1

The two expressions for the resultant provide us with
another method of computing the sign of one of the dif-
ferences of the two roots. Under our assumption that
we know the order of all pairs or roots except, say, a1
and by, we can compute sign(a; — by) from the determi-
nant and known signs, as in Equation 3 at the top of the
next page. The signs need not be multiplied; we simply
count the negatives. With quadratics, m = n = 2, so
the signs of the leading p2 and ¢2 will be positive and
can be ignored.

The determinant can be computed with half the pre-
cision and fewer floating point operations than repeated
squaring to correctly compute the sign of the differences
of roots of the polynomials.

Computing a general 4x4 determinant takes about
120 multiplications, and computing the determinant of
the Sylvester matrix itself would naively take 35 FLOPs
for each comparison. We can do better in Equation 5
by writing the determinant in terms of the discriminants
and other precomputed 2x2 minors from each polyno-
mial. This brings us to 11 FLOPs per comparison, with
an initialization cost of 7 FLOPs per intersection.

3 Experimental Evaluation

We experimentally evaluated the resultant method and
the approximate computation method with both ma-
chine precision and extended precision. Repeated
Squaring is dominated by the other methods so was not
tested.

We created two types of test scenes that had touching
surfaces so that random lines might have some chance
(albeit small) to give incorrect orders under approxima-
tion, and count the number of disagreements. We evalu-
ated time per comparison for each method on computers
with different processors. Finally, by varying the num-
ber of surfaces in the second type of scene, we could use

123

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

m n

sign(a; — b1) = sign(res(P, Q)) sign(py,) sign(q") H H[Sign(a,; —b;)sign(ai — bj;) sign(a; — by)] (3)

ay bl C1 0
0 aq bl C1
ag bg C2 0
0 as bg C2

2

i=2 =2

2.2 2 2 2 2
= ajCy + Ciao + b1a202 + b2a101 — b161a2b2 — a1b1b202 — 2@161@262

a;=a;, v =, 6 = ab;, € = a;c;, G =bic;, Dy =b] —¢;, i €1,2 (4)
A =017+ 7100 + Diea + €1Day — (102 — 612 (5)

linear regression to determine the contribution to run-
ning time from per quadric and per comparison terms.

3.1 Experimental Setup

All methods were implemented in C++[3], and were
tested by computing the line-quadric intersection or-
ders along random lines in scenes of quadric surfaces.
The creation of these lines and quadric surfaces is de-
scribed in the next subsection. Machine precision tests
were performed in IEEE 754, with quadratic coeffi-
cients and discriminants stored as single precision floats,
with all machine precision computations performed as
floats. MPFR][6] was used to support arbitrary precision
in both the approximate comparison and the resultant
methods. The approximate comparison method used
24 x the precision of a float. This was done to provide a
more analogous comparison to the resultant comparison
method, which also used 24 x the precision of a float.

The first step of the evaluation for a line £ and quadric
@ was to determined if there was a real intersection
by evaluating the discriminant of the quadratic p(t) =
Q(£(t)). This evaluation was done in machine precision,
so there is a small chance that near tangent intersections
may have been missed due to numeric error in calculat-
ing the discriminant. (In our application, missing near
tangent intersections was allowed, but getting orders
wrong had been known to trap particles into repeatedly
trying to cross the same pair of surfaces, which tends to
worry a physicist.)

If the intersections are deemed to exist, the second
step is to compute the roots at machine precision. These
roots are needed to determine if the order of a pair of
intersections is ambiguous or not. Finally, the STL
sort algorithm is used to sort the intersections. The
full process was timed in nanoseconds with the POSIX
clock gettime function.

The comparison function used for sorting came from
the method being evaluated. The machine precision ap-
proximate comparison just returns the difference of the

previously computed roots. In the increased precision
approximation and the resultant method, the difference
of the roots is compared against a threshold. If the dif-
ference was smaller than a threshold of 2716, the more
accurate method provided is used to determine the or-
der, and an appropriate value is returned. This occurred
infrequently for a random line, and is only expected to
occur a few times for every 100k lines.

We ran tests on two computers with different speeds
and operating systems:
Arch was a Core i3 M370 processor with 2 cores, a 3
MB cache, and 4 GB of DDR3 memory clocked at 1
GHz. It ran an up-to-date installation of Arch Linux,
kernel version 4.4, and used GCC 6.0 to compile the
code with “-O3” as the optimization level. For the tests,
the performance manager was set to keep the CPU clock
at 2.4 GHz, and the process was run at nice —20.
Gentoo was a Core 2 Duo E6550 processor with two
cores, a 4 MB cache, and 8 GB of DDR2 memory clocked
at 667 MHz. It ran an up-to-date installation of Gentoo
Linux, kernel version 4.1, and used GCC 4.9 to compile
the code with “-O3” as the optimization level. For the
tests, the performance manager was set to keep the CPU
clock at 2.3 GHz, and the process was run at nice —20.

A Geekbench benchmark was employed to estimate
the floating point processor speeds, Arch 1702, and Gen-
too 1408. Thus, on average, Arch was capable of about
1.2 times more FLOPS than the Gentoo computer.

3.2 Test Scenes

We created two types of test scenes: a single scene of
Packed Spheres and a set of scenes of Nested Spheres.
All test scenes consisted of quadric surfaces stored as
4x4 matrices of IEEET754 single precision floating point
numbers. We preferred spheres and ellipsoids, since any
intersecting line would intersect twice, possibly with a
repeated root. Sorting isolated single roots is easier,
since, for example, the intersection with a plane requires
less precision. The quadric surfaces were constructed

124

28" Canadian Conference on Computational Geometry, 2016

from the unit cube that has one corner at the origin
and the opposite corner at (1.0,1.0,1.0).

The single scene of Packed Spheres consisted of 1331
spheres in a hexagonal close packing lattice shown in
Fig. 1. This ensures that the spheres each have 12 in-
tersecting or nearly intersecting neighbors. The spheres
each have a radius of about 0.05 units, and are spaced
about 0.05 units from each other. The initial sphere is
centered at the origin, and one of the axes of the lattice
is aligned with the y axis of the coordinate frame. The
coefficients of the spheres are scaled so that the coeffi-
cients of the squared terms were all 1.0. This caused
the exponent range for the non-zero coefficients of the
spheres to be between —8 and 1, which is well within
the limits required for the resultant method to return
correct results.

The random lines generated for the scenes of Packed
Spheres were generated with an intersect from a uni-
form distribution over the unit cube. The directions
were generated by normalizing a vector chosen from a
uniform distribution over the cube with opposite cor-
ners at (—1.0,—1.0,—1.0) and (1.0,1.0,1.0). To ensure
that we are able to compute the order of intersections
exactly with the resultant method, the exponents of the
non-zero terms were constrained between -20 and 0.

We used eleven scenes of Nested Spheres. One,
shown in Fig. 1, had n = 10 spheres, the others had
n = 100¢, for 1 < ¢ < 10. The first sphere was cen-
tered at g = 0.5,y = 0.5, 29 = 0.5 units with a radius
of Ry = 0.5 units. The radius of successive spheres
decreased linearly so that the final sphere’s radius was
R, = 2716 units. Thus, R; = R;_1 — (Ry — R,)/n.
The x position of successive spheres increased linearly
to fix the minimum distance at e = 272 units. Thus,
x; = ¢i—1+(Ro— Ry)/n—e. The exponent range for the
non-zero coefficients of the spheres was chosen to be be-
tween —1 and 0, which is well within the limits required
for the resultant method to return correct results.

Each random line for the scenes of Nested Spheres
was generated by chosing a point p; from a uniform dis-
tribution over the unit cube, with a normalized direc-
tion vector toward (1.0,0.5,0.5) — p;, rounded to single
precision, since (1.0,0.5,0.5) is close to the points of
minimum distance for the sets of spheres. This made
it likely that increased precision would be required to
correctly compute the order of intersections. To ensure
that we are able to compute the order of intersections
exactly with the resultant method, the exponents of the
non-zero terms were constrained between -20 and 0.

3.3 Analysis

The time that it takes to compute the order of inter-
sections between a given line and a scene of quadric
surfaces is expected to be linear in both the number of
quadric surfaces and the number of accurate compar-

04

00 0.5

Figure 1: Test Scenes of 1331 Packed Spheres and 10
Nested Spheres, which is smallest of a family of eleven.
Random lines in Packed Spheres have some chance of
being near sphere contacts. Random lines in Nested
Spheres are unlikely to, unless they are biased to pass
by the near tangency.

125

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

isons made. Because performing accurate comparisons
is so much more expensive than normal comparisons,
we expect there to be a clear linear relation between
the number of accurate comparisons performed and the
time it takes to perform the sorting.

The number of quadrics, on the other hand, can sig-
nificantly affect the number of intersections in the list
to be sorted, especially in antagonistic scenes. However,
most of the time spent sorting will be accounted for
by the time spent making accurate comparisons, which
we have already accounted for. Thus, the remaining
time will instead come from computing the approximate
roots, which is linear.

To analyze the Packed Spheres timing data, we used
least squares to fit a line to the number of comparisons
made and the timing data. A constant term was also
computed for the time taken computing the approxi-
mate roots.

To analyze the set of Nested Spheres scenes, we ag-
gregated the test results for the scenes so that we could
use least squares to fit a plane to the number of com-
parisons made, the number of quadric surfaces, and the
timing data. A constant term was also computed to
catch any hidden initialization costs, though we expect
this to contain mostly noise.

4 Experimental Results

The results of the experiments are shown in Table 1.
The first thing to notice is that increasing the preci-
sion of a computation is not enough to guarantee that
the result will be computed correctly. Despite increas-
ing the precision of the computations to 24x the ini-
tial precision, the increased precision approximation
still fails for 1044/11000 of the random lines in the
Nested Spheres scenes. It did, however, perform signifi-
cantly better than the original calculation, which failed
for 8272/11000 of the lines. More lines are needed to
find examples that cause errors in the Packed Spheres
scene, but based on previous experiments, we can ex-
pect several to occur by the k - 100" test.

In addition to guaranteeing correctness, the resul-
tant method also performed well against the generic in-
creased precision method. For the set of Nested Spheres
scenes, it cost slightly more to compute the order of in-
tersections on a time per quadric basis. The approx-
imate computation with increased precision can cache
intermediate values more effectively, reducing its cost.

The resultant method performed extremely well on
the time per comparison basis, as it actually beat the in-
creased precision method by more than it lost out on in
the time per quadric basis in the Nested Spheres scenes,
and the Packed Spheres scene on the Gentoo machine.

After removing the time per quadric basis in the
tests with the Nested Spheres scenes, the constant term

300 |

250 |

200 |

Detection and Sorting Time (ms)

50

0 500 1000 1500 2000
Accurate Comparisons

Figure 2: Evaluation Time for a Line (ms) vs. the Num-
ber of Comparisons; Sorting the intersections of 1k lines
in each of the Nested Spheres test scenes on the Gentoo
machine; Red Dot’s (above the bars): Approxi-
mation Method at 24x the Input Precision; Blue
Bars (beneath the dots): Resultant Method. The
least squares coefficient for the time per quadrics has
been subtracted out to better show the actual fit. The
lines show the respective least squares fits without the
quadric term.

appears somewhat nonsensical. From previous experi-
ments, we have concluded that this is mostly noise, sug-
gesting that we obtained most of the useful information
from the measured times. This suggests the time per
quadric is the main contributor to the constant time in
the tests with the Packed Spheres scene as we expected.

Figure 2 shows a plot of the results from one of the
tests. It appears to confirm our expectation that the
time required is linearly correlated with the number of
precision increases.

5 Conclusion

In this paper we showed how the resultant method can
guarantee the correct order of line-quadric intersections
at a similar cost to using an increased precision approxi-
mation method. We have also shown that naively using
increased precision to improve accuracy is not enough
to eliminate errors, and that one must take into account
the operations being used and the ranges of the input.

We have assumed that we know the order of all roots
except one pair. Even if one’s application does not pro-
vide this information, for quadratic equations it is rela-
tively easy to obtain using lower precision than it takes
to compare roots. The zero of the derivative z; = —b;/a;

126

28" Canadian Conference on Computational Geometry, 2016

Table 1: Analysis of the timing of the Approximate Comparison and Resultant Comparison. Timing data for 11k
lines was analyzed for the Packed Spheres scene to find the coefficients of the best fitting lines. Timing data for 1k
lines was analyzed for each of the set of 11 Nested Spheres scenes to find the coefficients of the best fitting planes.
The dimensions are the number of quadric surfaces and the number of increased precision comparisons made.

Scene Machine | Method Errors | ms/Quadric ms/Comp Const ms | > Residual (ms?)
Nested | Arch Approximate 8272 0.00425 0.000361 -0.0693 149.084
Spheres Increased Prec. 1044 0.00554 0.105 -0.567 87655.1
Resultant — 0.00670 0.100 -0.746 80544.6
Gentoo | Approximate 8244 0.00379 0.000313 -0.0519 34.4705
Increased Prec. 1042 0.00484 0.146 -0.110 11944.9
Resultant — 0.00584 0.141 0.00485 19872.5
Packed | Arch Approximate 0 - 0.00738 4.54 21.7059
Spheres Increased Prec. 0 - 0.126 4.49 22.4387
Resultant — - 0.130 4.51 23.5822
Gentoo | Approximate 0 - 0.00180 4.37 3.75176
Increased Prec. 0 - 0.156 4.37 3.76225
Resultant — - 0.155 4.41 3.83604

separates r; and r;L by value of the discriminant. If
r1 = x2 then comparing squared discriminants tells us
all we need to know about root orders. When, wlog,
r1 < X2, we use the signs of both quadratics at x; and
9 to bound roots to intervals, and can again compare
squared discriminants to reveal the order for all but one
pair.

6 Acknowledgment

We thank David Griesheimer for discussions on this
problem, and both NSF and Bettis Labs for their sup-
port of this research.

References

[1] W Dale Brownawell and Chee K Yap. “Lower
bounds for zero-dimensional projections”. In: Proc.

Int’l Symp on Symbolic and Algebraic Computa-
tion. ACM. 2009, pp. 79-86.

[2] Michael Deakin. “Fast and Accurate Floating Point
Algorithms”. MA thesis. University of North Car-
olina at Chapel Hill, 2016.

[3] Michael Deakin and Jack Snoeyink. Geometry:
CCCG2016 Version. May 2016. por: 10 .5281/
zenodo.57108. URL: http://dx.doi.org/
10.5281/zenodo.57108.

[4] Erik D Demaine, Joseph SB Mitchell, and Joseph
O’Rourke. The open problems project, Problem 33:
Sum of square roots. http://cs.smith.edu/
~orourke/TOPP/P33.html.

[5]

Toannis Z Emiris, Bernard Mourrain, and Elias P
Tsigaridas. “The DMM bound: Multivariate (ag-
gregate) separation bounds”. In: Proc. Int’l Symp
on Symbolic and Algebraic Computation. http :
//arxiv.org/abs/1005.5610. ACM. 2010,
pp- 243-250.

Laurent Fousse et al. “MPFR: A Multiple-
precision Binary Floating-point Library with Cor-
rect Rounding”. In: ACM Trans. Math. Softw. 33.2
(June 2007). 18sN: 0098-3500. por: 10 . 1145/
1236463.1236468. URL: http://doi.acm.
0org/10.1145/1236463.1236468.

Chee-Keng Yap. Fundamental problems of algorith-
mic algebra. Oxford University Press, 2000.

127

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Adaptive Metrics for Adaptive Samples

Nicholas J. Cavanna
University of Connecticut

Abstract

We generalize the local-feature size definition of adap-
tive sampling used in surface reconstruction to relate
it to an alternative metric on Euclidean space. In the
new metric, adaptive samples become uniform samples,
making it simpler both to give adaptive sampling ver-
sions of homological inference results and to prove topo-
logical guarantees using the theory of critical points to
distance functions.

1 From Surface Reconstruction to Homology Infer-
ence

To reconstruct a surface from a point set, one needs the
sample to be sufficiently dense with respect to not just
the local curvature of the surface, but also the distance
to parts of the surface that are close in the embedding
but far in geodesic distance. Otherwise, algorithms have
no way of identifying which geometrically close sample
points correspond to local neighborhoods in the sur-
face. Adaptive sampling with respect to the so-called
local feature size as introduced by Amenta and Bern [2]
neatly characterizes such “good” samples and was then
used in many later works on surface reconstruction with
topological guarantees [7]. Such adaptive samples are in
contrast to uniform samples for which a single parame-
ter determines the density, usually driven by minimum
of the local feature size and resulting in a much larger
sample.

Later work on generalizations of surface reconstruc-
tion and homology inference related the topology of
unions of balls centered at a sample X near the un-
known set X to the topology of X itself. A union of
balls with a fixed radius can be viewed as a sublevel
set of the distance function to X. If we have an adap-
tive sample, then we would like to scale the radii of the
balls as well. However, if the sample is adaptive with
respect to a local feature size defined as the distance to
an unknown set L, another approximation L near L is
necessary. Indeed, one interpretation of some Voronoi-
based surface reconstruction algorithms is that first an
approximation L to the medial axis L , is computed from
the Voronoi diagram of the sample X of the unknown
surface X.

We present a new perspective on adaptive samples.
For any pair of disjoint, compact sets X and L, we de-

Donald R. Sheehy
University of Connecticut

fine a metric on R?\ L with the property that a uniform
sample of X in the new metric corresponds to an adap-
tive sample in the Euclidean metric. This new metric
can also be extended to an arbitrarily close Riemannian
metric over the same domain. Our main motivation
is to connect adaptive sampling theory to the critical
point theory of distance functions used extensively to
prove topological guarantees in topological data analy-
sis [9, 4, 3]. That theory gives natural topological equiv-
alences between sublevel sets of distance functions to
compact sets in Riemannian metrics. Thus, we propose
to use this new metric as the underlying ideal object
and then relate it to a union of Euclidean balls con-
structed from approximations to X and L. Our metric
can be viewed as a smoothed version of an adaptive met-
ric used by Clarkson [5]. Our new formulation reveals
connections with recent work on path planning [10, 1]
and density-based distances [6].

2 Background

Let L and X be compact subsets of R? with respect to
the Euclidean metric. For x,y € R? define Path(z,y)
to be the set of bounded piecewise-Cy paths from z
to y, parametrized by Euclidean arc-length. Similarly,

Path(z, S) := |J Path(z, s) denotes all paths from x to
seS
a set S.

For any compact set L C R? define fr(-) : R —
R by fr(z) = mingey ||z — ¢||. Define d¥(x,y) =
i epath(z,y) fv iy Note that d” is a Riemannian
metric on R? \ L. The length of a unit-speed path
v :[0,a] — R? is denoted as || := fv dz = [dt.

For y € R? define fE(y) = di(y,X) =

mingex d(y, o), and FE(y) i= mingex L2l

Note that f&(-) is a distance function, while fZ(-) is
not. The latter function can be interpreted as a first-
order approximation of the former.

The two sets resulting from the level sets of these
functions are defined below, with the goal being to ap-
proximate A% (-) by B)L?(-), where L and X are approx-
imations of L and X respectively.

Definition 1 For any compact set X C R\ L, for
some compact set L C RY, the a-offsets with respect to

128

28" Canadian Conference on Computational Geometry, 2016

dL are
A% (a) == {z e R?| f¥(x) < a}.

Note the distance function f1,(-) can be transformed
into an arbitrarily close smooth function fz(-) [8], yield-
ing a Riemannian metric d, defined in an identical man-
ner as dr. From this, one has corresponding a-offsets
A% () that are arbitrarily close to AX (a).

Definition 2 For any compact set X C R%\ L, for
some compact set L C R?, the approximate a-offsets
with respect to A are

B%(a) == (fE)'[0,a] = | ball(z, afr(2)).

reX

A useful property of f&() is that it a 1-Lipschitz
function. In general, a function f between two metric
spaces (X,dx) and (Y,dy) is said to be k-Lipschitz if
for all T,y € X, dY(f(x)7f(y)) < kdX(xay)

Lemma 3 f&(-) is a 1-Lipschitz function from
(R4,d%) to R.

Proof. Fix any a,b € R, There exists z € X and v €
Path(a,z) such that f&(a) = f% de(zz) Likewisi7 there
exists vo € Path(a, b) such that d¥(a,b) = e 7l
This implies 1 + 72 € Path(b, X), where + in this
case is the concatenation of paths in the usual sense.
Thus fE(b) < [, 7% < f(a) + d¥(a,b). By
symmetry of a and b, we obtain the other bound and
we are done. O

We can extend f%(-), a function measuring the dis-
tance from a point to a set, to the resulting Hausdorff
distance, which is a metric between compact sets. This
metric is useful for stating bounds on the quality, or
uniformity, of a sample near a set.

Definition 4 The Hausdorff distance between two
compact sets A, B € (R%,d%) is defined as

dz; (4, B) = max{min f5(a), min £ (b)}

or equivalently,

d%(A,B) =min{r | AC B} and B C A} }.

Using an assumption on the Hausdorff distance be-
tween a compact set and a sample of it, Lemma 5 shows
their a-offsets can be included within each other at par-
ticular scales.

Lemma 5 Consider X,X C R?\ L be such that
A5 (X, X) < 6. Then for alla >0, A% (a) C AL %(a+4)
and A%(a) C AL (a+9).

Proof. Fixy € A% (a). By definition f&(y) < a, which
implies that there exists z € X such that d&(x,y) < a.
d% (X, X) < § which implies that for allz € X, f)%(ac) <
0. Now by Lemma 3, f}%(y) < f}%(z)—‘—dL(x,y) <é+a,
implying y € A% (a+6). By a symmetric argument, the
other statement holds. g

The following is the definition of an adaptive sample
we use, known as an e-sample.

Definition 6 Given compact set L C R? and compact
sets X, X cR? \ L such that Xc X, we say that X is
an e-sample of X, for e € [0,1), szor all x € X, there
exists p € X such that ||z — p|| < efp(z).

This definition is closely related to that of the approx-
imate a-offsets, because if X is an e-sample of X, then
for all x € X, ball(z,efr(x)) N X # 0.

3 Adaptive Sampling

In this section, we prove that a uniform sample in the
induced metric corresponds to an adaptive sample in the
Fuclidean metric and vice versa. The key to this proof
is the following lemma about the relationship between
the two metrics when just considering two points. This
lemma will also be used for the more elaborate inter-
leaving results of Section 4.

Lemma 7 Let L C R? be a compact set and let a,b €
R\ L. Then, the following two statements hold for all
§e0,1).

I
B

(i) If d%(a,b) < & then 1221

—
|
|

<4 then df(a,b) < 15—5.

(ii) 1 17

Proof. To prove (i), we assume d*(a,b) < 6. Let v be
the path in Path(a, b) such that d*(a,b) = f7 ey <6
Then we have the following inequalities following from
the Lipschitz property of fr.

M:/dz:(fL(a)—FM)/m

<@ +h [£
< (f1(o) + 1)

It follows that |v| < 125 fr(2). Because |ja — b|| is the
length of the shortest path between a and b in the Eu-
clidean metric, we conclude [la — b|| < |y] < 125 f1().

Next we prove (ii). Assume ‘}a ul

< 4. For all points

z in the straight line segment ab,

fu(z) =2 frla)=lla—z[| = fr(a) = lla=b] = (1=6)fL(a).

129

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

This implies the following inequality.

inf i
~v€Path(a,b))., fr(2)
dz
a5 f1.(2)

1
< o L
lla — o

T (1-9f(a)
1)

< —.

—1-9

d*(a,b) =

O

We can now state the main theorem relating adaptive
samples in the Euclidean metric to uniform samples in
the metric induced by a set L.

Theorem 8 Let L and X be compact sets, let X cX
be a sample, and let € € [0,1) be a constant. If X is
an e-sample ofX with respect to the distance to L, then
dL(X X) < . Also, if db (X, X)<5< , then X
6—sample of X with respect to the dzstance to L.

1—

Proof. Given z € X, there exists p € X such that
|lz — pl| < efp(x). By Lemma 7, d¥(z,p) < T2 SO
for all x € X, f)%,(x) < 15 As X C X, this proves
df (X, <

d%l()?,X) < e < 1 implies that for all z € X,
fL (z) < e, thus there exists p € X such that d%(z, p) <

€, and thus by Lemma 7 ||x —p| < (z). Since

T —5ample of X. O

€<

4 Interleaving

A filtration is a nested family of sets. In this paper, we
consider filtrations F' parameterized by a real number
a > 0 so that F(a) € R? and whenever a < 8 we
have F(a) C F(B). Often, our filtrations are sublevel
filtrations of a real valued function f : R? — R. The
sublevel filtration F' corresponding to the function f is
the defined as

F(a):={z e R?| f(z) < a}.

Definition 9 A pair of filtrations (F,G) is (h,hs)-
interleaved in an interval (s,t) if F(r) C G(hi(r))
whenever r,hi(r) € (s,t) and G(r) C F(ha(r)) when-
ever r,ho(r) € (s,t). We require that the functions
hi,he be nondecreasing in (s,t).

The following lemma gives us an easy iterative way
to combine pairs of interleavings.

Lemma 10 If (F,G) is (h1, ha)-interleaved in (s1,t1),
and (G, H) is (hs, ha)-interleaved in (sq,t2), then (F, H)
is (h3 o hy, hy o hy)-interleaved in (s3,t3), where s3 =
max{sl, s2} and t3 = min{ty,ta}.

Proof. If r, hg(h1(r)) € (s3,t3), then we have F(r) C
G(h1(r)) € H(hg(hq(r))). Similarly, if r, ho(ha(r)) €
(83,t3), then H(T‘) - (4()) - F(hg(h4(?"))) U

4.1 Approximating X with X

, the offsets in the in-
duced metric, to B)E?, the approximate offsets computed
from approximations (or samples) to both X and L.
This relationship will be given by an interleaving that
is built up from an interleaving for each approximation

step. For each of the following lemmas, let L, L C R¢
and X, X C R\ (L UL) be compact sets.

Ultimately, the goal is to relate A%

Lemma 11 If d4(X,X) < &, then (A%, AL) is
(hy, ha)-interleaved in (0,00), where hy(r) =1 +¢€.

Proof. This lemma is a reinterpretation of Lemma 5 in
the interleaving notation. O

4.2 Approximating the Induced Metric

It is much easier to use a union of Euclidean balls to
model the sublevel sets of the distance function f%. Be-
low, we show that this is a reasonable approximation.
The following results may also be viewed as a strength-
ening of the adaptive sampling result of the previous
section (Theorem 8).

Lemma 12 Given compact set L C RY, and compact
set X CRI\ L, forr €[0,1), AL (r) C BL(), and
forre|0,3), BX(r) C A% (:%).

-r

Proof. Take y € A%(r) so that f%(y) <r. Thus there
exists € X such that d¥(z,y) < r. By Lemma 7, this
implies that ||z — y| < (z), which implies that
y € BX(i%)-

Consider y € B%(r). Thus y € ball(z,rfL(z)), for
some x € X, so ||l —y|| < rfL(z). Applying Lemma 7,
we have then have that d%(z,y) < and as fZ(y) <

1 T
d¥(z,y), y € AX(+55)- D
Corollary 13 The pair (A%,B)LA() are (ha, ho)-
interleaved in (0, 1), where hy(r) = 1=

Proof. This follows from combining the results of
Lemma 12 into the interleaving notation.

0

130

28" Canadian Conference on Computational Geometry, 2016

4.3 Approximating L with L

Usually, the set L is unknown at the start and must
be estimated from the input. For example in the case
that L is the medial axis of X, there are several known
techniques for approximating L by, for example, taking
some vertices of the Voronoi diagram [2, 7]. We would
like to give some sampling conditions that guarantee
that allow us to replace L with an approximation L.
Interestingly, the sampling conditions for X are dual to

those used for L. That is, we require dH(L L) < e

or, in other words, L must be an adaptive sample with
respect to the distance to X.

Lemma 14 If d3% (L L) <6 < 1, then (BL BL) is
(hs3, h3)-interleaved in (0,00), where h3(r) = 155.

Proof. Fix any z € B}L?(T). There is a point p € X
such that % < r. Moreover, there is a nearest point
z € L toz, and so fz(p) = |lp — #||. Lemma 7 and the

assumption that dg(L, E) < 4 implies that there exists
y € L such that

ly — 2]l < fx(Z) (1)
The definitions imply the following.

fz(2) = Hémllz —ql <llz=pl=rfz0). (2

So, we can bound ff(p) in terms of f;(p) as follows.

fo(p) < lly —pll ly € L]
<|ly—=z|+|z—p| [triangle inequality]
< ﬁfz(p) [by (1) and (2)]
So,
le—pl _ le—pl _ r

= h3(r).
o) S0 100
Therefore, = € B}%(hg(?")) and so we conclude that
B&(r) € B;%(hg(?")). The proof is symmetric to show
that BE(r) € BL (hs(r)) O

4.4 Putting it all together

We can now combine the interleavings established in
Corollary 13, and Lemmas 11 & 14, using Lemma 10.

Theorem 15 Let L, E C R? and X, X c R\ (L UL)
be compact sets. Ifd (L L) <6 <1 and db (X X) <

e < 1, then (A%,BL) are (ha, hs)-interleaved in (0,1),
where hy(r) = (1/7;6(16) and hs(r) = 1—5— +¢.

Proof. By Lemma 10 along with the interleavings from
Lemmas 11, 13, (A%, Bf?) is (haohq, hyohs)-interleaved
n (0,1). Combining this interleaving with the one
resulting from Lemma 14 we get that (A%, B}%) is
(hg © hg 0 hi,hy o hy o h3) interleaved in (0,1). Now
we must compute hz o ho o hy and hj o hg o hs.

r+0
1—1"—5)
_ r4+0
(1 —7r—0)(1—¢)

(hg o hg o hl)(T‘) = (h3 e} hg)(?" + 5) = h3(

r r
(h10h20h3)(7’)—(h10h2)(1_5)—h1((1_€)(T
,
:h _—
1(1—€—r)
T
Sioao, 0
So we have that hg(r) = % and hs(r) =
+ 4. 0

1sr

5 Conclusion

In our paper, we present results based on an alterna-
tive metric in Euclidean space that connect adaptive
sampling and uniform sampling. With a metric comes
a distance function with which one can apply classi-
cal results from critical point theory to infer topolog-
ical properties of the underlying space, thus providing
a connection between surface reconstruction (adaptive
sampling) and homology inference (uniform sampling).
Since one does not know the exact compact set X be-
ing reconstructed, nor the reference set L on which the
adaptive sample is based, approximations X and L are
needed.

We show in Theorem 8 that there is a precise rela-
tionship between samples that are uniformly taken with
respect to d¥ at some scale, to those same samples being
adaptive in the FEuclidean metric. In our main result,
Theorem 15, we show that we can interleave the sub-
level sets of our distance function under this alternative
metric with the metric balls resulting from our approx-
imation of the metric, assuming that both X and L are
uniformly well-sampled with respect to the Hausdorff
distance of d and dX. Using all approximations, al-
beit well-chosen ones, one can infer the behavior of the
defined metric as well as the sublevel sets of it with
respect to X.

There is a natural next step building off of this re-
search that broadens its scope, background, and further
applications. With the aforementioned critical point
theory, these interleavings could be extended to homo-
logical guarantees about the compact set X in question.

131

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

An application of such a result could be that obstacle
avoidance results could be reframed as obstacle explo-
ration.

References

1]

2]

[4]

[7]

8]

[10]

P. K. Agarwal, K. Fox, and O. Salzman. An effi-
cient algorithm for computing high quality paths
amid polygonal obstacles. In Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1179-1192, 2016.

N. Amenta, M. Bern, and M. Kamvysselis. A new
Voronoi-based surface reconstruction algorithm. In
SIGGRAPH, pages 415-421, 1998.

F. Chazal, D. Cohen-Steiner, and A. Lieutier. A
sampling theory for compact sets in Euclidean
space. Discrete € Computational Geometry,
41:461-479, 20009.

F. Chazal and A. Lieutier. Smooth manifold re-
construction from noisy and non-uniform approxi-
mation with guarantees. Computational Geometry:
Theory and Applications, 40:156-170, 2008.

K. L. Clarkson. Building triangulations using e-
nets. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages
326-335, 2006.

M. B. Cohen, B. T. Fasy, G. L. Miller, A. Nayyeri,
D. R. Sheehy, and A. Velingker. Approximating
nearest neighbor distances. In Proceedings of the
Algorithms and Data Structures Symposium, 2015.

T. K. Dey. Curve and Surface Reconstruction : Al-
gorithms with Mathematical Analysis. Cambridge
University Press, 2007.

R. Green and H. Wu. C* approximations of con-
vex, subharmonic, and plurisubharmonic functions.
Ann. Sci. Ecole Norm. Sup., 12(1):47-84, 1979.

K. Grove. Critical point theory for distance func-
tions. In Proceedings of the Symposia in Pure Math-
ematics, volume 54, 1993.

R. Wein, J. van den Berg, and D. Halperin. Plan-
ning high-quality paths and corridors amidst ob-
stacles. The International Journal of Robotics Re-
search, 27(11-12):1213-1231, November/December
2008.

132

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Geometric Spanners Merging and its Applications

Davood Bakhshesh*

Abstract

Let G1 = (Pl,El) and Gy = (PQ,EQ) with PLN Py, =0
be two t-spanners (¢ > 1) in the plane. One inter-
esting question is that how one can merge these two
t-spanners to make a t-spanner on P; U P, by only
adding some edges between G; and G,. In this pa-
per, we propose an algorithm to merge G; and G,
in O(nylogny + (n1 + n2)logns) time, where ny =
|P1], n2 = | P»| and without loss of generality we assume
that nqy < ng. Furthermore, using the proposed algo-
rithm, we present some divide and conquer algorithms
to construct a t-spanner and a fault-tolerant ¢-spanner
for a given point set in the plane.

1 Introduction

Let S be a set of n points in R? and ¢t > 1 be a real
number. A geometric graph is an edge-weighted graph
on S C R? such that the weight of each edge is the
Euclidean distance between its endpoints. A geometric
graph G with vertex set S is called a t-spanner for S, if
for each two points p and ¢ in .S, there exists a path @) in
G between p and ¢ whose length is at most ¢ times |pq|,
the Euclidean distance between p and g. The length of
a path is defined to be the sum of the weight of all edges
on the path. The path @ is called a t-spanner path (or
t-path) between p and q. We denote the length of path
Q by |Q|. The stretch factor (or dilation) of G is the
smallest value of ¢ for which G is a t-spanner. The t-
spanners were introduced by Peleg and Schéffer [10] in
the scope of distributed computing and, then by Chew
[6] in the scope of computational geometry, and they are
applicable in many scopes such as graph theory, network
topology design, distributed systems and robotics. We
refer the reader to [5, 7, 8, 11] for reading about the
t-spanners and their applications.

One of the useful properties of a network is the region-
fault tolerance. A network is called region-fault tolerant
if after removing vertices/edges of the network that lie
in a region, the remaining part of the network keeps its
good properties. In 2009, Abam et al. [2] introduced

*Combinatorial and Geometric Algorithms Lab., Depart-
ment of Computer Science, Yazd University, Yazd, Iran
dbakhshesh@gmail.com

fCombinatorial and Geometric Algorithms Lab., Depart-
ment of Computer Science, Yazd University, Yazd, Iran,
mfarshi@yazd.ac.ir

Mohammad Farshi'

the concept of region-fault tolerant spanner for planar
point sets. For a fault region I’ and a geometric graph
G on a point set S, assume GS F is the remaining graph
after removing the vertices of G that lie inside F' and
all edges that intersect F. For a set F of regions in the
plane, an F-fault tolerant t-spanner of S is a geomet-
ric graph G on S such that for any region F' € F, the
graph GS F is a t-spanner for G.(S) © F, where G.(S5) is
the complete geometric graph on S. They used the con-
cept of the semi-separated pair decomposition (SSPD)
which is a data structure similar to the well-separated
pair decomposition (WSPD) to construct a C-fault toler-
ant t-spanner with size of O(nlogn) in O(nlog?n) time
for a set of n points in the plane, where C is any family
of convex regions in the plane. For more details about
SSPD and WSPD, we refer the reader to [1, 3, 4].

In the scope of geometric spanner networks, we usu-
ally face the following problem: given a point set .S and
a real number ¢ > 1, construct a sparse t-spanner of S in
optimal time. The problem of efficient construction of a
sparse t-spanner has been studied extensively. One can
see the major algorithms for building spanners in the
book by Narasimhan and Smid [9]. Now, let G; and G4
be two t-spanners of point sets P; and P, respectively.
One may ask how one constructs a sparse t-spanner on
Py U Py by only connecting G1 to G using the small
number of edges between them? This question may be
raised in the real world for example, connecting two
countries by constructing some roads between them or
connecting two water networks by creating some water
pipelines.

We define the spanners merging problem as follows:

Definition 1 (Spanners Merging Problem) Given
two t-spanners Gy = (P1, E1) and Gy = (Ps, Es) in the
plane, construct a t-spanner G on the point set Py U Py
by only adding small number of edges between G1 and
Gs.

We emphasize that in the spanners merging problem, it
is important that we construct the graph G by adding
edges between G; and G3. Otherwise one can use
some well-known algorithms e.g. greedy algorithm,
Yao graph, ©-graph, on P; U P, to construct a sparse
t-spanner on P; U P». Also, one can merge G and Go
by adding all edges between G; and G2 which needs a
lot of edges.

Throughout the paper, ¢ > 1 will be assumed to be a
real constant, ny = |Py|,n2 = |P»| and without loss of

133

28" Canadian Conference on Computational Geometry, 2016

generality we assume 1y < ns. In this paper, we propose
an algorithm that takes O(njlogni + (n1 + ng2) logns)
time to solve the spanners merging problem. Moreover,
using the proposed algorithm, we propose some divide
and conquer algorithms to construct a t-spanner and
an Hjy-fault tolerant ¢-spanner for a given point set in
the plane, where Hj is the family of half-planes such
that their boundaries are parallel to some line of the
finite set of specific lines with respect to parameter k
(In the next sections, we will define H, precisely). Note
that the proposed divide and conquer algorithms to con-
struct a t-spanner are not asymptotically optimal, and
therefore they are not comparable with the current well-
known algorithms such as ©-graph, WSPD-spanner and
etc. Hence, our purpose to propose these algorithms is
only presenting an application of the spanners merg-
ing problem. Moreover, we show that the proposed di-
vide and conquer algorithm can be used to construct
an Hy-fault tolerant ¢-spanner for a set of n points in
the plane with size of O(n) in O(n?logn) time, and an
‘Hy-fault tolerant t-spanner for a set of n points in the
plane with size of O(nlogn) in O(nlog?n) time. As
we mentioned, Abam et al. [2] using SSPD, presented
an algorithm to construct a C-fault tolerant ¢-spanner
with size of O(nlogn) in O(nlog®n) time for a set of n
points in the plane. Since in the proposed algorithm we
do not need to compute the SSPD for the point set, we
claim that for the regions of Hj, the proposed algorithm
in comparison with Abam et al.’s algorithm is simpler,
and also it improves the size of the resulting graph in
comparison with Abam et al.’s algorithm. It is notable
that the our results can be easily generalized to higher
dimensions.

2 Spanners merging

In the following, we propose an algorithm, denoted by
MERGESPANNERS, to solve the spanners merging prob-
lem. The algorithm is based on the ©-graph algorithm.
Note that since the ©-graph algorithm can be general-
ized to higher dimensions [9], the all results of this paper
can be easily generalized to higher dimensions. Hence,
in this paper, we focus on the space R2.

Let £ > 1 be an integer. We partition the plane
into k cones with angle 27” and apex origin. We denote
the collection of these k£ cones by Cp. For each cone
C € Cy, let {c be an arbitrary fixed line through origin
and that is contained in C, and for any point p in the
plane, let Cp, := C + p be the cone that is obtained by
translating C' such that its apex is p, similarly we have
lc, = Lo + p. The idea behind the algorithm to solve
the spanners merging problem is as follows: for each
cone C € Ci and for each vertex p in GG1, we connect p
to a point r € C, N P, whose orthogonal projection onto
Lo, is closest to p. For more details on the algorithm,

Algorithm 1: MERGESPANNERS(G1, G, t)
input: t-spanners G; = (P1, 1) and
G2 = (P3, E2), and suppose that
[P < [P.
output: ¢-spanner G = (P U Py, E) which is
obtained by merge of G; and Gs.

1 Select an angle 0 < 6 < 7/4 such that
cosf —sind > 1/t;

2 Partition the plane into k = %’T cones. We denote
the set of cones that partition the plane by Cy;

3 B .= El U EQ,

4 foreach cone C in C;, do

5 foreach p in P; do

6 Cp:=CH+p;

7 r = a point of C}, N P, whose orthogonal

projection onto £¢, is closest to p;

/* let {c be a fixed ray that
emanates from the origin and that
is contained in C and
lc, :=Lc+p. The ray {c can be
chosen arbitrarily. */

8 E:=EU{(p,"};

/* (p,r) is an edge. */
9 end
10 end

11 return G(P, U P, E);

see Algorithm 1.

In the following, we prove the correctness of algorithm

MERGESPANNERS. First, we present a useful geometric
lemma.
Lemma 1 ([9]) Let k > 8 be an integer, let 6 = 2T,
let p and q be two distinct points in the plane, and let C
be the cone of C, such that g € Cp,. Let r be a point in
C, such that the orthogonal projection of v onto the line
Lc, is at least as close to p as the orthogonal projection
of ¢ onto Lc,. Then, |rq| < |pq| — (cos @ — sin6)|pr].

Theorem 1 If G; and G2 are two t-spanners of Py
and Ps, respectively, then the graph G generated by al-
gorithm MERGESPANNERS(G1, Ga,t) is a t-spanner of
Py U Py and is constructed by only adding at most kny
edges between Gy and Gs.

Proof. By Algorithm 1, it is clear that G is constructed
by only adding at most kn; edges between G; and Ga.
Now, we prove that G is a t-spanner of P;UP,. Suppose
that p and ¢ are two distinct points of P, UP,. We claim
that there is a t-path @ between p and ¢ in G.

If p,q € Py or p,q € P,, then the claim holds by con-
sidering that G; and G4 are t-spanners of P; and P, re-
spectively. Now, suppose without loss of generality that
p € Py and ¢q € P, and let C be a cone in Cj such that

134

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 1: Illustrating of proof of Theorem 1.

g € Cp. Note that according to the algorithm, we have
k=2 and 0 < 0 < m/4 such that cosf —sinf > 1/¢.
Assume that the algorithm adds (p,r) to G, when it
processes point p and cone C,. If r = ¢, then clearly
the claim holds. Now, suppose that r # ¢. Since Gs is
a t-spanner of P, there is a t-path L between r and ¢ in
G (see Figure 1). Consider the path Q := {(p,7)} UL

between p and ¢ in G. Using Lemma 1, we have

QI = lpr|+ |L| < |pr| + tlrq|
< |pr| + (|pg| — (cos 8 — sin6)|pr|)
= t|pg| — (t(cos @ — sinh) — 1)|pr]|
<t|pq| (since cosf —sinf > 1/t).

Hence, @ is a t-path between p and ¢ in G. This com-
pletes the proof. O

For efficient implementation of algorithm MERGES-
PANNERS, we use the idea behind the efficient construc-
tion of the ©-graph [9]. In the following, we present a
plane sweep algorithm for the efficient implementation
of MERGESPANNERS. We use the notations and termi-
nologies in [9, Chapter 4].

Similar to the efficient implementation of the ©O-
graph, we consider the problem FIND-LEFTMOST-IN-
TRANSLATED-HALFPLANE as follows.

Problem (FIND-LEFTMOST-IN-TRANSLATED-
HALFPLANE) [9]. Let h be a fixed nonvertical line
through the origin. Maintain a set S of n points in a
data structure that supports the following operations:

e MINABOVE(p): Given a query point p € S,
compute a point with the minimum z-coordinate
among all points in S that are above h + p.

o INSERT(p): Insert an arbitrary point p € R? into S.
e DELETE(p): Delete point p from S.

To solve the above problem, Narasimhan and Smid [9]
used a binary search tree 7. We refer the reader for
more details on this problem and the tree T to the
book [9].

Let D be the directed line orthogonal to the line A
that passes through the origin. We define the following

direction on D: D points toward the half-plane con-
sisting of all points in R? that are above h. The order
induced by D on the points of S is defined as follows:
let p and g be two points of S, and let p’ and ¢’ be their
orthogonal projections onto D, respectively. If the vec-

tor p’q’ has the same direction as D, then p is smaller
than or equal to g in the order relation and denoted by
P <D Q.

Lemma 2 [9, Lemma 4.1.9] The binary search tree T
solves the problem FIND-LEFTMOST-IN-TRANSLATED-
HALFPLANE. It supports each of the operations
MINABOVE, INSERT, and DELETE in O(logn) time.
This data structure has size O(n) and can be built in
O(nlogn) time.

Let C be a fixed cone of Ci, and let h; and ho be the
lines through the upper and lower bounding rays of C,
respectively, and that we without loss of generality as-
sume that the ray ¢¢ coincides with the positive z-axis.
Let Dy and D be the lines through the origin that are
orthogonal to hy and ho, respectively. We define the fol-
lowing directions on D; and Dy: D; points toward the
half-plane consisting of all points in R? that are below
h1, and D5 points toward the half-plane consisting of
all points in R? that are above hs.

For efficient implementation of algorithm MERGES-
PANNERS, we propose an algorithm, denoted by
PLANESWEEPMERGING (see Algorithm 2), that for each
point p € Py, computes all edges (p,r) that correspond
to C, where r € C, N P, and whose orthogonal projec-
tion onto £¢,, is closest to p. If we repeat this for all k
cones of Cy, then we obtain all the new edges.

Let Gy = (P1,E1) and Gy = (P», E3) be two geo-
metric t-spanners such that |P;| < |Py|. For the sake
of simplicity, we assume that ny; = |Pi| and ns = |Ps|.
Now, we have

Theorem 2 The rUnNIng time of the
algorithm PLANESWEEPMERGING is
O(nqylogny + (n1 + n2) logna).

Proof. Let ¢;, k; and |T;| be the values of ¢, the number
of points of Lo which are inserted into 7" and the num-
ber of nodes of T in the i-th iteration of the algorithm,
respectively. Clearly lines 5 and 6 of the algorithm take
O(nqlogny + nalogng) and O(1) time, respectively. If
we already sort the points of Lo according to the or-
der induced by D;, using the binary search algorithm
and by Lemma 2, the lines 9, 10 and 11 of the algo-
rithm can be done in O(log Ei)—I—Z?;l O(log(|T;|+74)) =
O(logt;) + O((k; + 1)log(k; + 1 + |T;|)). Moreover,
by Lemma 2, Line 16 takes O(log(|T;|)) time. Now,
let Time(ny,n2) be the time complexity of algorithm

135

28" Canadian Conference on Computational Geometry, 2016

PlaneSweepMerging. Hence, we have

ni
Time(ny,n2) = O(ny logny + nalogng) + Z O(log ;)
i=1

+ nz O((ki + 1) log(k; + 1 + |T3]))

+ > Ollog(ITi))).

Since |T;| < ng and ¢; < no,

Time(n1,n2) = O(ny1logny) + O(nglogng) + O(nq logns)

+ O((n1 + n2) lognz) + O(n1 log na)
= O(nylogny + (n1 + ng) lognsy).

This completes the proof. (I

3 Applications

In this section, we present two applications of the span-
ners merging problem. First, we propose a divide and
conquer algorithm to construct a geometric ¢-spanner
for a given set of n points in the plane. Second, we
propose a divide and conquer algorithm to construct an
‘Hy-fault tolerant t-spanner for a given point set in the
plane, where Hj is the family of half-planes in the plane
such that their boundary is parallel to any ray of any
cone in Cy.

3.1 Constructing a ¢t-spanner

In this section, we propose some divide and conquer al-
gorithms to construct a t-spanner for a given point set in
the plane. The construction is as follows: let ¢ > 0 be an
integer. We first partition the point set into some sub-
sets such that the cardinality of each subset is at most
c. Then, we compute the complete graph on the each
subset. Then, using algorithm PLANESWEEPMERGING
(see Algorithm 2), we merge these subsets repeatedly.
The way of merging theses subsets is important. In the
following, we introduce two types of merging denoted
by serial merging, one-by-one merging. Depending on
the type of merging, the running time and size of the
output differ.

Let S be set of n points in the plane and ¢ > 0 be an
integer constant. We without loss of generality suppose
that the points are in general position in the sense that
no tow points share the same z-coordinate. The parti-
tioning is done by sorting the points of S according to
the their xz-coordinate and then separating the points
of the sorted list as c-tuple members (see Algorithm 3).
Figure 2 shows a set S partitioned with ¢ = 5. Note
that the time complexity of PARTITION is O(nlogn).
Now, let S1,S52,...,5 be the partition of S, where f

Algorithm 2: PLANESWEEPMERGING(G1, Go,t)

input: geometric t-spanners G; = (Py, F1) and
Gy = (Py, Es), and ¢t > 1 (suppose that
IP1] < |Pa)).
output: the geometric ¢-spanner G = (P, U Py, E).
1 Select an angle 0 < § < 7/4 such that
cosf —sinf > 1/¢;
k := 2m/0;
E = E1 U EQ;
4 foreach cone C € C;, do

w N

/* Consider the lines hi,hs, D1, Do

correspond to cone C. */
Sort the points of P; and P, according to the
order induced by the directed line D; and D5,
respectively. Assume that the lists L; and Lo
contain the sorted points of P; and P,
respectively;

6 Initialize an empty data structure 7" for solving
problem FIND-LEFTMOST-IN-
TRANSLATED-HALFPLANE using h := ho;

7 l:=ngy;

8 for i = n; down to 1 do

9 while Ll[l] SDl LQ [(] do

10 Insert point Ly[¢] into T
11 {:=0—1;
12 end
13 if £ > 0 then
14 ‘ (:=041;
15 end
/* Note that the points
Lo[l], Lol + 1] ..., La[ns] are exactly
the points of P, that are below
the line hy + Lq[i]. */
16 Find the point r in T that is above the line
ha 4+ L1[i] and whose z-coordinate is
minimum; that is, it answers the query
MINABOVE(L[i]);
17 E:=FU{(Li],m)};
18 end
19 end

20 return F;

s

Figure 2: Partitioning with ¢ = 5.

is the number of all subsets (f € O(n/c)) and the car-
dinality of S; is at most ¢, and let G; be the complete
graph of S;. Clearly, G; is a t-spanner of S;, and the

136

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Algorithm 3: PARTITION(S, ¢)

1 Sort the points of .S increasingly according to their
z-coordinate. Let L be the sorted list;
for h:=1to %] do
for i =1 to cdo
Create new subset Sy;
Add L[(h — 1) X ¢+ i] into Sp;
end
end
f n is not divisible by c then
Create a new subset S;, and add the remaining
points of S into Sp;

© 00 N O oA W N
-

10 end
11 return all subsets Sy;

number of its edges is O(c?) and can be constructed in
O(c?) time. In the following, we discuss about the two
types of merging, in details.

3.1.1 Serial merging

In this merging, we first merge two graphs, then in each
step we merge another graph with the resulting graph
at the previous step. In particular, the serial merging
is as follows: let G} be the resulting graph of merging
the graphs Gy, ...,G; using serial merging. Then, us-
ing algorithm PLANESWEEPMERGING (see Algorithm
2), we merge G;4+1 with GF. We call the final graph by
G = (S, E). By Theorem 1, it is clear that the graph G
is a t-spanner for S. In the following, we compute the
number of the edges of G, denoted by |F|, and the time
complexity of the construction of G, denoted by T'(n).
By Theorem 1, we have

f f-1
E| = ZO(&) + Z O(ke) = O((c+ k)n), (1)

and by Theorem 2, we have

f f-1
T(n)= Z O(c?) + Z O(clogc + (i + 1)clog(ic)>

= O(fc*) + O(cf?log f) = O(en + ¢ *n?logn).

In the following, let S be a set of n points in the plane, ¢
be a positive integer and ¢t > 1 be a constant real num-
ber. Now, if in Equation (1), & be a constant integer,
then we have

Theorem 3 One can compute a t-spanner of S by a
divide-and-conquer algorithm that splits the point set
into c subsets in divide step and merging them in con-
quer step. The algorithm computes a t-spanner of S
with O(cn) edges in O(cn + ¢ n?logn) time.

Figure 3: One-by-one merging.

In Theorem 3, if we choose ¢ = logn, then we have the
following corollary.

Corollary 1 One can compute a t-spanner of S by a
divide-and-conquer algorithm that splits the point set
into ¢ subsets in divide step and merging them in con-
quer step. The algorithm computes a t-spanner of S
with O(nlogn) edges in O(n?) time.

If ¢ be a constant integer, then we have:

Corollary 2 One can compute a t-spanner of S by a
divide-and-conquer algorithm that splits the point set
into ¢ subsets in divide step and merging them in con-
quer step. The algorithm computes a t-spanner of S
with O(n) edges in O(n?logn) time.

3.1.2 One-by-one Merging

One-by-one merging —similar to the merging sublists
in the merge sort— is as follows: using the algorithm
PLANESWEEPMERGING, we repeatedly merge G;’s to
produce new subgraphs until there is only 1 subgraph
remaining (see Figure 3). By Theorem 1, this will be
a t-spanner of S. We denote the resulting graph by
G = (S, E). By Theorem 1, we have

f gl o
Bl =) _0(c) + > 0(5; (k2 "))
=1 i=1

= O(fc®) + O(kfclog f) = O(cn + knlogn)
= O(knlogn),

137

28" Canadian Conference on Computational Geometry, 2016

and by Theorem 2, the time complexity T'(n) of the
construction of G is

f log f

T(n) = Z O(c?) + Z O(i{?ilclog(flc))

i=1

= O(fc®) + O(cflog® f) = O(en + nlog®n)
= O(nlog®n).

Now, we have:

Theorem 4 One can compute a t-spanner of S by a
divide-and-conquer algorithm that splits the point set
into ¢ subsets in divide step and merging them in con-
quer step. The algorithm computes a t-spanner of S
with O(nlogn) edges in O(nlog®n) time.

Note that this result improve the time complexity com-
pared to the serial merging (see Corollary 1).

3.2 Constructing the region-fault tolerant spanners
Let £ > 2 be a real number and 0 = %’r, and let H
be the family of half-planes such that their boundary is
parallel to any ray of any cone in C.

In this section, we consider the problem of construct-

ing an Hjy-fault tolerant ¢-spanner for a given point set
in the plane. We first show the following theorem.

Theorem 5 Let Gl = (Pl,El) and G2 = (P27E2)
be two Hy-fault tolerant t-spanners, then the output G
of the algorithm MERGESPANNERS(G1, Ga,t) is an Hy-
fault tolerant t-spanner for Py U Ps.

Proof. Let h be an arbitrary half-plane in H;. We
show that for each pair of points p,q € P; U P, outside
h, there is a t-path) connecting them in G © h.

If pg € P, or p,q € P, then the theorem holds
by considering that G; and G2 are Hjy-fault tolerant ¢-
spanner. Now, suppose without loss of generality that
p € P, and q € P,, and suppose that L is a ray of a
cone C' € Ci such that L is parallel to boundary of h.
Now, consider L, and L, (L, := L+p and L, := L+q).
Since the boundary of h is parallel to L, and L,, we can
suppose without loss of generality that the point ¢ is in
above line L, (see Figure 4(a)) implies that there is a
cone C' € C, such that ¢ € C,, and the boundary of h
dose not intersect C’. Now, suppose that point 7 is the
point that algorithm MERGESPANNERS adds it to the
graph, when it processes the point p and cone CZQ. If
r = q, then clearly the theorem holds. Now, suppose
that r # ¢. Since G5 is an Hy-fault tolerant t-spanner,
there is a ¢-path @’ between r and ¢ in G2 © h (see
Figure 4(b)). Now, consider the path @ := {p,7} U Q’
in G © h connecting p and ¢ in G. Then, using Lemma
1, we have

Figure 4: Tllustrating of proof of Theorem 5.

1Q'| = |pr| + |L| < |pr| + t|rq]
< |pr| + t(|pg| — (cos & — sin 6)[pr])
= t|pq| — (t(cos @ — sinh) — 1)|pr|
< t|pql.

Hence, @ is a t-path between p and ¢ in G & h. O

Note that according to Theorem 5 and since every com-
plete graph is an H-fault tolerant ¢-spanner, the output
of the divide and conquer algorithm mentioned in pre-
vious section is an Hp-fault tolerant ¢-spanner. Hence,
as a corollary, we have:

Corollary 3 There exist two divide and conquer algo-
rithm to construct an Hy-fault tolerant t-spanner for
a given set of n points in the plane that ones takes
O(n?logn) time and its output has O(n) edges, and
the other takes O(nlog*n) time and its output has
O(nlogn) edges

4 Conclusion

In this paper, we introduced the problem of merge of two
geometric spanners, denoted by spanners merging prob-
lem, and then we proposed an algorithm that solves this
problem in O(njlogny + (n1 + na)logng) time. Fur-
thermore, using the proposed algorithm, we proposed
two divide and conquer algorithms to construct a t-
spanner for a given point set in the plane. Moreover,
we proposed two divide and conquer algorithms to con-
struct an Hy-fault tolerant ¢-spanner for a given set of
n points in the plane that ones takes O(n?logn) time

138

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

and its output has O(n) edges, and the other takes
O(nlog®n) time and its output has O(nlogn) edges.

References

1]

(2]

(3]

4]

[5]

[6]

[7]
18]

19]
[10]

[11]

M. A. Abam, P. Carmi, M. Farshi, and M. Smid. On the
power of the semi-separated pair decomposition. Com-
putational Geometry, 46(6):631 — 639, 2013.

M. A. Abam, M. de Berg, M. Farshi, and J. Gudmunds-
son. Region-fault tolerant geometric spanners. Discrete
and Computational Geometry, 41(4):556-582, 2009.

M. A. Abam and S. Har-Peled. New constructions of
SSPDs and their applications. Computational Geome-
try, 45(506):200 — 214, 2012. Special issue: 26th An-
nual Symposium on Computation Geometry at Snow-
bird, Utah, USA.

P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. Journal
of the ACM (JACM), 42(1):67-90, 1995.

B. Chandra, G. Das, G. Narasimhan, and J. Soares.
New sparseness results on graph spanners. In Proceed-
ings of the eighth Annual ACM Symposium on Compu-
tational Geometry, pages 192-201. ACM, 1992.

P. Chew. There is a planar graph almost as good as the
complete graph. In Proceedings of the second Annual
ACM Symposium on Computational Geometry, pages
169-177. ACM, 1986.

D. Eppstein. Spanning trees and spanners. Handbook
of computational geometry, pages 425-461, 1999.

T. Lukovszki. New results on geometric spanners and
their applications. Ph.D. thesis, Heinz Nixdorf Insti-
tute and Department of Mathematics and Computer
Science, Paderborn University, Paderborn, Germany,
1999.

G. Narasimhan and M. Smid. Geometric spanner net-
works. Cambridge University Press, 2007.

D. Peleg and A. A. Schiffer. Graph spanners. Journal
of graph theory, 13(1):99-116, 1989.

M. Smid. Closest point problems in computational ge-
ometry. Handbook on Computational Geometry, 1997.

139

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

A Faster Algorithm for the Minimum Red-Blue-Purple Spanning Graph
Problem for Points on a Circle

Ahmad Biniaz* Prosenjit Bose*

Abstract

Consider a set of n points in the plane, each one of
which is colored either red, blue, or purple. A red-blue-
purple spanning graph (RBP spanning graph) is a graph
whose vertices are the points and whose edges connect
the points such that the subgraph induced by the red
and purple points is connected, and the subgraph in-
duced by the blue and purple points is connected. The
minimum RBP spanning graph problem is to find an
RBP spanning graph with minimum total edge length.
We consider this problem for the case when the points
are located on a circle. We present an algorithm that
solves this problem in O(n?) time, improving upon the
previous algorithm by a factor of O(n).

1 Introduction

Let S be a set of n points in the plane that is parti-
tioned into {R, B, P}. The points of R are colored red,
the points of B are colored blue, and the points of P
are colored purple. A red-blue-purple spanning graph
(RBP spanning graph) on S is a graph whose vertices
are the points of S and whose edges connect the points
such that each of the subgraphs induced by RU P and
by B U P are connected. In other words, if we remove
the red points then the resulting subgraph is connected,
and if we remove the blue points then the resulting sub-
graph is connected. One may think of the purple points
belonging to both the red set and the blue set. The
minimum RBP spanning graph problem is to compute
an RBP spanning graph that has minimum weight (to-
tal edge length). See [3, 4] for applications of this prob-
lem. In this paper we consider the special case of this
problem when the points of S are located on a circle.
In [3] it is claimed that the general case of the prob-
lem is NP-hard; this claim is based on a reduction from
planar 3-SAT. However, in [4] it is claimed that the NP-
hardness reduction of [3] is incorrect, and an O(nS)-time
exact algorithm for this problem is presented. The al-
gorithm is based on the weighted matroid intersection.

*School of Computer Science, Carleton University, Ot-
tawa, Canada, ahmad.biniaz@gmail.com, {jit, anil, michiel}
@scs.carleton.ca. Supported by NSERC.

TMADALGO, department of Computer Science, Aarhus Uni-
versity, Denmark, ivd@cs.au.dk. MADALGO is supported in
part by DNRF&84.

Ingo van Duijn |

Anil Maheshwari* Michiel Smid*

When the points of S are located on a line and given in
sorted order, this problem can be solved in O(n) time
(see [3, 4]). If the points of S are located on a circle
and given in circularly sorted order this problem can be
solved in O(n3) time; specifically, it can be solved in
O(k3 +n) time, where k is the number of purple points
(see [3, 4]). For points on a circle, we present an algo-
rithm that improves the running time to O(k? + n).

2 Properties of Minimum RBP Spanning Graphs

In this section we review some properties of minimum
RBP spanning graphs. Given a graph G with vertex set
S, and a set S” C S, we denote by G[S’] the subgraph
of G that is induced by S’.

For three sets R, B, and P of red, blue, and purple
points, respectively, we denote by G*(R, B, P) a mini-
mum RBP spanning graph on RUBU P; this is denoted
by G* when the triple (R, B, P) is clear from the con-
text. As in [3, 4] we classify the edges of G* into red,
blue, and purple. An edge is red if it connects two red
points, or a red point and a purple point. An edge is
blue if it connects two blue points, or a blue point and
a purple point. An edge is purple if it connects two
purple points. Note that G* does not contain any edge
between a red point and a blue point. The subgraph
G*[P] that is induced by the purple points is acyclic,
because otherwise we could remove a purple edge from
a cycle and reduce the weight of G* without destroying
the connectivity of G*[RU P] and G*[B U P]. The sub-
graph G*[R U P] (resp. G*[B U P]) is a spanning tree
because otherwise we could remove a red edge (resp.
blue edge) from a cycle without affecting the connectiv-
ity of G*[BUP] (resp. G*[RUP]). We refer to G*[RUP]
as the red tree and to G*[B U P] as the blue tree.

Every red edge in G* is also an edge of a minimum
spanning tree of R U P, because otherwise we could re-
place it by another red or purple edge of smaller weight.
The corresponding statement holds for the blue edges.
Thus, the red edges of G* do not cross each other, and
the blue edges of G* do not cross each other. The
corresponding statements do not hold for purple edges.
There can be purple edges in G* that are not present in
any minimum spanning tree of the purple points. More-
over, a purple edge in G* can cross O(|P|) other purple
edges [3, 4]. In [3, 4] it is shown that the maximum

140

28" Canadian Conference on Computational Geometry, 2016

degree of a purple point in G* is at most 18 and the
maximum degree of a red point or a blue point is at
most 6. Moreover, there exists an optimal graph in
which the maximum degree of every purple point is at
most 15 and the maximum degree of every red point
or blue point is at most 5. The proofs for these degree
constraints are inherited from the proofs of maximum
degree constraints of minimum spanning trees of a point
set in the plane.

3 The Algorithm

Let S be a set of n points on a circle C' that are col-
ored red, blue, or purple. Let R, B, and P denote
the set of red, blue, and purple points of S, respec-
tively. Let k denote the number of purple points, i.e.,
k = |P|. The problem is to compute a minimum RBP
spanning graph for S. Although for points in the plane,
and even for points in convex position, a purple edge
can be crossed by other purple edges, for points on a
circle, purple edges cannot be crossed by other purple
edges. Based on this, Hurtado et al. [3, 4] presented a
dynamic programming algorithm that solves this prob-
lem in O(k3 4 n) time. We use a similar dynamic pro-
gramming approach and improve the running time to
O(k? + n). First we review a lemma from [3, 4].

Lemma 1 (see [3, 4]) Let S be a set of points on a
circle, each one of which is colored either red, blue, or
purple. Let G* be a minimum RBP spanning graph for
S. Then the following statements holds.

1. No purple edge of G* can cross any other edge of
G*.

2. No red or blue edge of G* can cross any segment be-
tween two purple points (which are not necessarily
connected by an edge in G*).

3. For any purple point p in S, let p’ be the point on
the circle diametrically opposite to p, and let SC' be
any of the two closed semicircles containing both p
andp’. Then in G*, p has at most one purple neigh-
bor in SC, and thus at most two purple neighbors
in total.

3.1 The Dynamic Programming Algorithm

In this section we give an overview of the dynamic pro-
gramming algorithm presented in [3, 4]. Assume that
the points of S are circularly sorted. Let pq,...,pr be
the purple points in clockwise order. For any 1 <1 < k,
let S; be the set of red and blue points between p; and
Di+1. Assume that all indices are taken modulo k.

Let G* be a minimum RBP spanning graph for S. By
Lemma 1 no edge of G* that is incident to a point in
S; can cross segment p;p;11 (pipi+1 is not necessarily

an edge of G*). Thus, a solution for each set S; can be
computed independently. Moreover, this is analogous
to the case when the points are on a line, and thus, it
can be solved in linear time for all sets S;.

For any two purple points p; and p;, Lemma 1 guar-
antees that if p;p; is an edge in G* then it cannot be
crossed by any other edge of G*. This introduces two
independent subproblems, one to the left of the oriented
segment p;p;, and one to the right. Each subproblem
has four different types PC, RC, BC, and NC. In the
PC-type, p; and p; are connected in both red and blue
subgraphs. In the RC-type, p; and p; are connected
in the red subgraph but disconnected in the blue sub-
graph; any solution for this type must connect p; and
p; in its blue subgraph. In the BC-type, p; and p; are
disconnected in the red subgraph but connected in the
blue subgraph. In the NC-type, p; and p; are neither
connected in the red subgraph nor in the blue subgraph.
The algorithm maintains four tables, PC, RC, BC, and
NC, each of size O(k?), that are indexed by pairs of
purple points. Each entry [i, j] of each table, stores the
length of a minimum RBP spanning graph of the corre-
sponding type for the point set {p;, pi+1,...,p;}. Based
on this, the length of an optimal solution can be found
as

min {PC[1,j]+ NC[j, 1], NC[L, j] + PC[j,1],
2<j<k

RCI1, j] + BCJj, 1], BC[1,4] + RC[j,1]}.

Let A € {P,R,B,N}. The entries of each table are
filled in order, so that when it is time to compute the
value of an entry Ali, j], all the entries corresponding to
smaller problems, i.e., subproblems introduced by pur-
ple pairs to the left of the oriented segment p;p;, have
already been computed. In order to fill entry AC[i, 5],
where 1 < i < j < k, the following two cases are con-
sidered, and the one with minimum cost will be stored
in ACYi, j]. See [3, 4] for more details.

1. p; is connected to some purple point(s) in an op-
timal solution of the subproblem (4, j); recall that
by Lemma 1, p; can be connected to at most two
purple points. Let pp be the one in the sequence
Dit1,---,p; that is closer to p;, see Figure 1(a).
Note that p; and p; are connected in both red
and blue subgraphs. Therefore, p;, and p; must
be connected in the same way as p; and p;. Since
we do not know pp, we try all possible candi-
dates and keep the one minimizing the cost, i.e.,
AC[i, 5] = i+¥2£§j{PC[Z7h] + AC[h, j] + |pipnl}-

This case takes O(j — 7) time.

2. p; is not connected to other purple points in any op-
timal solution of the subproblem (i,5). Now Con-
sider p;+1. By Lemma 1, in an optimal solution no
edge can cross the segment p;p; 1. Since no purple

141

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

edge is incident to p;, the segment p;;1p; cannot
be crossed either; see Figure 1(b). Therefore, an
optimal solution for the subproblem (i,j) can be
computed by combining the solutions associated to
the subproblems (4,7 + 1) and (i + 1, j). See [3, 4]
for more details. This case takes O(1) time.

Figure 1: Solving subproblem (4, 5): (a) p; is connected
to a purple point pp, and (b) p; is not connected to any
purple point.

Based on the description above, the total running
time of the algorithm is O(k3 + n).

3.2 Improving the Running Time

In this section we show how to improve the running time
of the algorithm presented in Section 3.1 to O(k? + n).
First we prove Lemma 2 which plays an important role
in this regard.

A chord of a circle is a straight line segment whose
endpoints lie on the circle. For any two points p and
q on C let SC(p,q) denote the smaller arc of C that is
determined by the chord pq.

Lemma 2 Let S be a set of red, blue, and purple points
located on a circle. Let P be the set of purple points. Let
a and b be any two points of P such that SC(a,b) con-
tains at least two points of P\ {a,b}. Let a*,b* € P be
the purple neighbors of a and b on SC(a,b), respectively.

1. If laa™|+|bb*|< |ab|, then ab does not belong to any
minimum RBP spanning graph for S.

2. If |aa*|+|bb*|= |abl|, then there exists a minimum
RBP spanning graph of S that does not contain ab.

Proof. First we prove statement 1 of the lemma. The
proof is by contradiction. Assume there exists a mini-
mum RBP spanning graph G* for S that contains ab.
Recall that G* consists of a red tree and a blue tree;
moreover, the purple edges of G* belong to both trees.
Let R, and Ry be the two red trees obtained by remov-
ing ab from G*, such that a € R, and b € Ry. Let B,
and By be the two blue trees obtained in a similar way.

Claim 1: [t is not possible to have a* € Ry, and b* €
R, ora* € By and b* € B,.

We prove this claim for the case where a* € Ry, and
b* € Rg; the proof for the other case is similar. By
Lemma 1 (item 2) no red edge or blue edge can “jump”
over a* or b*. Thus, in order to have a* € R, and
b* € R, there must be two purple edges in G* that
cross; this contradicts Lemma 1 (item 1). This proves
the claim.

By Claim 1, a* € R, or b* € R,. Without loss of
generality assume that a* € R,. If a* € B,, then by
replacing the edge ab in G* with the purple edge a*b we
obtain a valid RBP spanning graph that is smaller than
G* (note that a*b is shorter than ab); see Figure 2(a).
This contradicts the minimality of G*. Assume that
a* € By; see Figure 2(b). Then by Claim 1, we have
b* € By. If b* € Ry, then by replacing the edge ab with
the purple edge ab* we obtain a valid RBP spanning
graph that is smaller than G*; see Figure 2(b). This
contradicts the minimality of G*. Assume that b* € Ry;
see Figure 2(c). Then, by replacing ab with aa* and bb*
we obtain a valid RBP spanning graph that is smaller
than G*. This contradicts the minimality of G*.

Ry, By b Ry, By b Ry, By b

a R,, Bya
(b) (c)

Figure 2: Proof of Lemma 2: (a) a* € R, and a* € B,.
(b) a* € R, and a* € By. (¢) a* € By and b* € R,,.

Now we prove statement 2 of the lemma. As we have
seen in the proof of statement 1, if |aa*|+|bb*|= |ab],
in all cases we obtain an RBP spanning graph that
is smaller than G*, except for the case when we re-
place ab with aa* and bb*. Let G’ be the graph that
is obtained after replacing all such kind of edges. Since
|aa*|+|bb*|= |ab|, G’ has a weight equal to the weight
of G*. Moreover, G’ does not contain ab. Thus, G’
is a spanning graph that satisfies statement 2 of the
lemma. O

We prove the following theorem in Section 4.

Theorem 3 Let P be a set of points on a circle C. Let
FEy be the set of edges that contains an edge ab if and
only if a,b € P and |aa*|+|bb*|> |ab|, where a* and b*
are two points of P that are neighbors of a and b on
the smaller arc of C that is determined by the chord ab,
respectively. Then, no three edges of Eo can pairwise
CTOSS.

142

28" Canadian Conference on Computational Geometry, 2016

Theorem 4 Let S be a set of n red, blue, and pur-
ple points located on a circle, and angularly sorted. A
minimum RBP spanning graph of S can be computed in
O(k? +n) time, where k is the number of purple points.

Proof. We define three sets of edges, Ey, F1, and Fs,
on the purple points as follows. Let a and b be any pair
of purple points. If SC(a,b) has no point of P\ {a,b}
then add ab to Ey. If SC(a,b) contains exactly one
point of P\ {a,b} then add ab to F;. Let E3 be the
set of purple edges that is defined in the statement of
Theorem 3. Let Ep = Eqg U E1 U E5. As a consequence
of Lemma 2 there exists an optimal solution in which all
the purple edges belong to EFp. Thus, in case 1 of the
dynamic programming algorithm, instead of looking at
all pairs (p;, pn) it is enough to only consider the pairs
(pi, pr) that are connected by an edge in Ep. Each pair
(pi, pn) is considered only for the subproblems that have
p; or pp as an endpoint; the number of such subprob-
lems is O(k). Thus, the total time we spend for case
1is O(k|Ep|). Therefore the total running time of the
algorithm is O(k|Ep|+n).

Note that Ep can be computed in O(k?) time in the
preprocessing phase. We are going to show that |Ep|=
O(k); this will complete the proof of the theorem. Each
of Ey and E; contains k = |P| edges. By Theorem 3 no
three edges of Fy pairwise cross. Agarwal et al. [1] have
shown that any graph with n vertices that can be drawn
in the plane such that no three edges pairwise cross,
has O(n) edges. Thus, E2 has O(k) edges. Therefore,
|Ep|= O(k). O

4 Proof of Theorem 3

In this section we prove Theorem 3. First we prove some
lemmas that will be used in the proof of the theorem.

4.1 Preliminary Results

Lemma 5 Let aa’ and bb' be two intersecting chords
of a circle C such that the center of C is to the left of
the oriented segment aa’ and to the right of the oriented
segment bb'. Then, |ab|< |a'V'|.

Proof. Let o be the center of C. Let a = Zaob and o' =
/a'ol’. The triangles Aabo and Aa'l'o are isosceles.
Based on this and assuming that the radius of C'is 1, we
have |ab|= 2sin () and |a'b'|= 2sin (%) See Figure 3.
Let @ be the convex quadrilateral with vertices a, b, @/,
and b'. If o does not lie in @ (see Figure 3(a)), then we
have a@ < «'. This implies that |ab|< |a'b’|. Assume o
lies in Q; see Figure 3(b). Let a” and 0" be two points
on C such that aa” and bb” are two diameters of C.
Let 8 = Za"ob”. Note that 8 = . Moreover, we have
B < o/. This implies that that o < o/, and consequently
lab|< |a'V'|. O

Figure 3: Proof of Lemma 5: (a) o does not lie in convex
quadrilateral a,b,a’, V', and (b) o lies in convex quadri-
lateral a,b,a’,b’.

Lemma 6 Let b, a, and p be three points on a circle
C, in clockwise order, such that the center of C is to
the right side of the oriented segment bp. Let b be the
point such that bb"' is a diameter of C. Let p’ be a point
on SC(p,b"). Then |ap'|—|ap|> |bp’|—|bp.

Proof. Refer to Figure 4. Let C(a, |ap|) be the circle
of radius |ap| that is centered at a, and let C(b, |bp|)
be the circle of radius |bp| that is centered at b. Since
a, p, and p’ are on the same side of the line through
bb"”, we have |ap’|> |ap| and |bp'|> |bp|. Let o’ be the
intersection point of ap’ with C(a, |ap|), and let b’ be the
intersection point of bp’ with C(b, |bp|). Then |aa’|= |ap|
and [bb'|= |bp|. Thus, |ap'|—|ap|= |a'p’| and [bp'|—[bp|=
['p'|. In order to prove the statement of the lemma
it suffices to show that |a'p’'|> |V'p’|. Let ¢ be the line
that is tangent to C(b, |bp|) at b’. Observe that o' and
p’ are on different sides of £. Thus, in triangle Aa’b’p’,
the angle Za'b'p’ is at least 7. This implies that a'p’
is the longest side of Aa’t’p’. Therefore, |a'p'|> |V'p'[;
this completes the proof of the lemma. O

C(a, |ap|)

C(b, [bp)

Figure 4: Proof of Lemma 6.

Lemma 6 can be restated as follows. If we fix the
position of a and b, then by moving p towards b”, the
length of ap increases more than the length of bp.

143

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

(a) (b)

Figure 5: (a) Proof of Lemma 7 and Lemma 9. (b)
Proof of Lemma 9.

Lemma 7 Let 0 < a < 7 be fizxed, and let C be a circle
that is centered at o. Let a, b, and c be three points
on C, in clockwise order, such that /aoc = «. Then,
lab|+|bc| is mazimum when /aob = Lboc = 5.

Proof. Let f = |ab|+]bc|, and let § = Zaob. See Fig-
ure 5(a). Since the triangles Aaob and Aaoc are isosce-
les, we have f = 2sin (g) + 2sin (“T_’B) By taking the
derivative of f with respect to 5, we can see that f is
maximum when 8 = 5, and thus, Zaob = Zboc = 5. 0O

The following is a corollary of Lemma 7.

Corollary 1 Let C be a circle that is centered at o. Let
a, b, and c be three points on C, in clockwise order, such
that Laoc < 3F. Then |ab|+|bc|< |aol+|col.

Proof. By Lemma 7, |ab|+|bc| is maximum when
/aob = /boc, and thus, both these angles are at most
s

%- This implies that |ab|< |ao| and |bc|< |co|, which

proves the claim. (I

The following theorem is a restatement of Theo-
rem 7.11 in [2].

Theorem 8 (See [2]) If Cy and Cy are convex polyg-
onal regions with C; C Csy, then the length of the bound-
ary of Cy is at most the length of the boundary of Cs.

Lemma 9 Let a, b, ¢, and d be four points on a circle
C, in clockwise order, such that the center of C' is on
or to the right side of the oriented segment ad. Then
|ab|+|be|+|cd|< 3 - |ad).

Proof. Without loss of generality assume C' is centered
at o and has radius 1. We consider two cases: (i)
0 is on ad, and (ii) o is not on ad. First, we prove
case (i). Then, we show how to reduce case (ii) to
case (i). Assume o is on ad, that is, ad is a diame-
ter of C, and thus, |ad|= 2. See Figure 5(a). If we
fix the position of ¢ on C, then by Lemma 7, |ab|+|bc|

is maximum when Zaob = /boc. If we fix the posi-
tion of b on C, then by Lemma 7, |bc|+|cd| is maxi-
mum when Zboc = /cod. Therefore, |ab|+|bc|4|cd] is
maximum when Zaob = /boc = /cod = %, and thus,
|ab|= |bc|= |ed|= |ao|= |od|. This implies the statement
of the lemma for case (i).

Now we show how to handle case (ii). Assume o is
not on ad, and thus, ad is not a diameter of C. We
show how to reduce this case to case (i). Follow Fig-
ure 5(b). Let C’ be the circle with diameter ad. Since
C and C’ intersect only at the two points a and d, we
argue that b and ¢ are in the interior of C’. Extend ab
and dc to intersect C’ at b’ and ¢/, respectively. Now
we consider two cases depending on whether bb’ and cc’
intersect or not. In the former case, let o’ be the in-
tersection point of b’ and c¢’. By Theorem 8 we have
|ab|+|bc|+|cd|< |ao’|+]o'd|. Since o’ is in the interior
of C" then |ao’|+|0'd|< V2 - |ad|; and we are done with
this case. In the latter case, by Theorem 8 we have
|ab|+|be|+|cd|< |ab'|+|b'c'|+|c'd]. As we have seen in
case (i), |ab’|+|b''|+|¢'d|< 3 - |ad|; which completes the
proof of the lemma. O

4.2 Proof of Theorem

Recall that P is a set of points on a circle C. The edge
set Fy contains an edge ab if and only if a,b € P and
|aa*|+|bb*|> |ab|, where a* and b* are the two points
of P that are neighbors of a and b on the smaller arc
of C that is determined by the chord ab, respectively.
Without loss of generality assume C' is centered at o
and has radius 1. Based on the definition of E5, the
following observation is valid.

Observation 1 For any edge ab € E5, we have |aa*|>
- |ab| or [bb*|> 3 - |ab].

Corollary 2 For any edge ab € Es, we have |a*b*|<
1 |ab|
5 .

Proof. Since ab € E,, we have |aa*|+|bb*|> |ab|. By
Lemma 9 we have |aa*|+|a*b*|+|b*b|< 2 - |ab| where a,
a*, b*, and b play the role of a, b, ¢, and d, respectively.
This implies that [a*b*|< 5 - [ab|. O

Now we have all the tools that we need to prove
Theorem 3. For the sake of contradiction assume that
three edges aa’, bb’, and cc’ of Ey are pairwise cross-
ing. Observe that if we remove all points of P except
a,b,c,a’,b’,c, and then recompute Eo, the edges ad’,
bt', and ¢c’ will remain in F5. Thus, without loss of
generality we assume that P = {a,b,c,d’, b, ¢'}. More-
over, assume a,b,c,a’,b’, ¢ appear in clockwise order
on C. Let A be the triangle whose vertices are the in-
tersection points of aa’, bb', and cc/. We differentiate
between the following two cases: (i) o is in the interior

144

28" Canadian Conference on Computational Geometry, 2016

Figure 6: Proof of case (i) in Theorem 3.

of A, and (ii) o is not in the interior of A. We will get
contradictions in both cases.

First we handle case (i). Refer to Figure 6. Since aa’,
b, and cc’ are edges of Eo, we have |ab|+|a’c|> |ad/|,
lab|+[b'c'|> bV, and |/ |+]a’c|> |ec’|. By adding up
these three inequalities, we get

/ bbl /
labl-Ha'el+pre'| > 19 e : Hee] (1)

By Lemma 5 we have |ab|< |a'V|, |a'c|< |ac/|, and
|b'd'|< |be|]. Adding up these three inequalities implies

(2)

- ad’|, lad|<

lab|+|a’c|+[b'|< |a'b|+|ac |+|be].

In view of Corollary 2, we have |bc|<

1-|bb'|, and |a'b'|< § - |ec|. This implies

/ bb/ /
el +lac' o't < 12V

This and Inequality (2) imply

|aa’|+[bb'|+|cc/|

lab|+a’c|+[b'c|< 5 ,

which contradicts Inequality (1); this is a contradiction
for case (i).

Figure 7: Proof of case (ii) in Theorem 3.

Now we are going to handle case (ii) where o is not in
the interior of the triangle formed by the intersection of

aa’, b, and cc’. Without loss of generality assume that
o0 is on or to the right side of all the oriented segments
aa’, bb', and cc’; see Figure 7(a). Since aa’, bb’, and cc/
are edges of Ey, we have |ab|+|a’c|> |ad'|, |be|+]a’t'|>
|bt'], and |a’c|+|b'¢'|> |ecd/|. By adding up these three
inequalities, we get

|ab|+|be|+]a’b'|+V ¢ |[+2]a’c|> |aa’|[+]bY | +]cc!]. (3)
Let a’ and ¢” be the two points on C such that a’a”
and cc” are diameters of C. By Lemma 6, |a”b|—|ab|>
la"a’|—|ad’| and |V'¢’|—|b'c|> |ed”’|—|ec’|. By adding
these two inequalities to Inequality (3) we get

|a”b|+|bc|+|a’t | +|b'c” |[+2|a’c|> |a” a’ |+]bb |+]|cc”|.

(1)
Thus, if 0 is on or to the right side of all the oriented seg-
ments aa’, bb', and c¢c/, then Inequality (4) is valid. In
fact, Inequality (4) is the same as Inequality (3) where
a’ and ¢” play the role of a and ¢, respectively. There-
fore, without loss of generality, from now on we assume
that a is on @’ and ¢ is on ¢”, that is, aa’ and cc¢’ are
two diameters of C.

Let o = Zaoc’ = Zcoa’. We claim that a < §. As-
sume o > % This implies that Zaoc < %ﬂ and Za'ocd <
27 By Corollary 1 we have |ab|+|bc|< |ao|+|oc| and
|’ |+ |< |a’o|+|oc/|. As a consequence of Corol-
lary 2, for edge bb' we have 2|d’c|< |bb|. By adding
these three inequalities we get

|ab|+|be|+]a’b'|+]V ¢ |+2]a’ ¢
< |ao|+|oc|+|a’o|+|oc |[+|bV |= |aa’|+|bb|+|cc|,

which contradicts Inequality (3). Therefore, a < 3.

Figure 8: Proof of case (ii) in Theorem 3.

Recall that C' has radius 1, and thus, |ad’|= |ed|=
2. Consider two circles C; = C(d/,|d'¢|) and Cy =

145

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

C(c,|d’c|). Let C] be the circle that is centered at a
and touches C1, i.e., Cf has radius 2 — |a’c|. Similarly,
let C% be the circle that is centered at ¢’ and touches
(5. See Figure 8. Let ac (resp. a/’?) be the smaller arc
of C that has endpoints a to ¢ (resp. a’ and ¢’). Let p
be the intersection point of C] and ac. Let ap and pc
be the two sub-arcs of ac. Similarly, let ¢ be the inter-
section point of C% and a/’?, and let @ and q? be the
two sub-arcs of a/c’.

If b is in the interior of ap then |ab|+|a’c|< 2 = |ad/|,
which contradicts the existence of aa’ in E5. Thus b €
pe, and similarly, b’ € a’q. We are going to show that
|bc|+|a’t’|< |bb'|; this will contradict the existence of by’
in EQ.

a (;/

Figure 9: Proof of case (ii) in Theorem 3.

Since bb' € Ey we have |be|+|a’b'|> |bb/|. By Lemma 6
if we move b towards p, then |bc| increases more than
|bb'|. Similarly, if we move b’ towards g, then |a'D’|
increases more than |bb’|. Therefore, |bc|4|a’d’|> |bY|
holds after moving b to p, and b to ¢q. Thus, from
now we assume b = p and ¥ = ¢q. See Figure 9.
Note that all the triangles Aaob, Aboc, Acoa’, Na'ol,
Ab'oc’, and Abol’ are isosceles. Let x = |a’c|, and thus,
lab|= [b'¢/|= 2 — |a’c|= 2 — z. Note that = 2sin (§).
Let 8 = Zaob = /b ocd’. Then, 8 = 2arcsin (2%1) =
2arcsin (1 —sin (§)). Note that Zbob’ = 2r — a — 203.

Thus,
|bb'|= 2 sin (71' - % —/3’) = 2sin (% —l—ﬁ) .

Moreover, Zboc = Za'ob' = 1 — « — 3. Thus,

|be|= |a'b'|= 2sin (#) = 2cos (#) :

Now we show that |bc|+|a’d’|< [bb/|, which contradicts
the existence of bV’ in Ey. In order to show this, it
suffices to prove that

4 cos (L—;ﬂ) < 2sin (%—l—ﬁ), (5)

where 8 = 2arcsin (1 — sin (%)), forall 0 < o < 3.
Inequality (5) simplifies to

TG -y
+2(1—sm(%))?+ﬁn(%)

<3, (6)

where 0 < o <
simplifies to

. Let u = sin (%) Then, Inequality (6)

wly

4u? —4u+12>0, (7)

where 0 < u < %; it is easy to verify that Inequality (7)
is valid in this range of u. This contradicts the fact that
|be|+]a’b'|> |bb'], and hence the existence of bb’ in E;
this is a contradiction for case (ii). This completes the
proof of Theorem 3.

References

[1] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and
M. Sharir. Quasi-planar graphs have a linear number
of edges. Combinatorica, 17(1):1-9, 1997.

[2] R. V. Benson.
McGraw-Hill, 1966.

[3] F. Hurtado, M. Korman, M. J. van Kreveld, M. Loffler,
V. S. Adinolfi, R. I. Silveira, and B. Speckmann. Colored
spanning graphs for set visualization. In 21st Int. Symp.
on Graph Drawing, pages 280-291, 2013.

[4] F. Hurtado, M. Korman, M. J. van Kreveld, M. Lofler,
V. Sacristdn, A. Shioura, R. I. Silveira, B. Speckmann,
and T. Tokuyama. Colored spanning graphs for set visu-
alization. Comput. Geom., special issue in Memoriam:
Ferran Hurtado, page to appear.

Euclidean geometry and convexity.

146

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Partitions of planar point sets into polygons

Ajit Arvind Diwan *

Abstract

In this paper, we characterize planar point sets that
can be partitioned into disjoint polygons of arbi-
trarily specified sizes. We provide an algorithm to
construct such a partition, if it exists, in polyno-
mial time. We show that this problem is equivalent
to finding a specified 2-factor in the visibility graph
of the point set. The characterization for the case
where all cycles have length 3 also translates to find-
ing a K3-factor of the visibility graph of the point
set. We show that the generalized problem of find-
ing a Kj-factor of the visibility graph of a given
point set for k > 5 is NP-hard.

1 Introduction

Partitioning of point sets is a well studied topic in
Computational Geometry. Let P be a finite set of
points in the plane. A partition of P is called a
convex partition if P is partitioned into j subsets
S1,82,...,95; such that all the points of S; form the
vertices of a convex polygon [8]. Problems concern-
ing such partitions have been studied, and bounds
on the number of sets required for such a disjoint
partition have been established [8, 14, 1]. In this
paper, we study the following two related partitions
of P, and the equivalent problem on the visibility
graph of P.

A partition of P into subsets S1, 55, ...,S; is said
to be a cycle partition of P, when the points of
each S; can be joined by straight line segments to
form a simple polygon, i.e. no S; has all points
collinear. We say that two points p; and p; of P are
visible to each other if the line segment p;p; does
not contain any other point of P. If a point p, € P
lies on the segment p;p; connecting two points p;
and p; in P, we say that p; blocks the visibility
between p; and p;, and py, is called a blocker in P.
A partition of P into subsets 51,5, ...,95; is said
to be a clique partition of P, when all the points
of each S; are mutually visible, i.e. no S; has three

*Department of Computer Science and Engineering, In-
dian Institute of Technology Bombay, aad@cse.iitb.ac.in
TDepartment of Computer Science and Engineering, In-
dian Institute of Technology Bombay, broy@cse.iitb.ac.in

Bodhayan Roy |

collinear points, and no two points of .S; are blocked
by points from any other S;.

The wvisibility graph (also called the point visibility
graph denoted as PVG) of P is defined by associat-
ing a vertex v; with each point p; of P and such that
(vs,v5) is an undirected edge of the PVG if p; and
p; are visible to each other. Point visibility graphs
have been studied in the contexts of construction
[3, 4], recognition [6, 7, 2, 12], connectivity [10],
chromatic number and clique number [9, 11].

Let H be a connected graph. For a given graph
G, an H-factor of G is a spanning subgraph of G
whose components are isomorphic to H. Thus, a
C-factor of G is a spanning subgraph of G whose
components are isomorphic to the cycle on k ver-
tices. Similarly, a Kg-factor of G is a spanning
subgraph of G whose components are isomorphic
to the clique on k vertices. To decide whether or
not a graph G on kn vertices has a Kj-factor or a
Cy-factor is NP-hard for k > 3 [5].

We say that a cycle partition of a point set is
disjoint when no two of the polygons enclosed by
the cycles intersect with respect to vertices, edges
or area. In this paper, in Section 2, we study dis-
joint cycle partitions of point sets. In Section 2.1 we
study the special case where all cycles are of length
3. We provide a necessary and sufficient condition
for this case. The condition also shows that all point
sets that admit any partition into cliques of size 3,
also admit such a disjoint cycle partition. In Sec-
tion 2.2 we study the generalized disjoint cycle par-
titions except the case mentioned above. We pro-
vide a different necessary and sufficient condition
for it, thereby completely characterizing all point
sets that admit a disjoint cycle partition. In Sec-
tion 2.3 we show that a point set admits a disjoint
cycle partition if and only if its visibility graph ad-
mits a corresponding 2-factor. In Section 3 we study
the problem of clique partitions of point sets. If all
cliques are of size 3, then this problem is the same
as the special case in cycle partition. We prove that
for all cliques of size k, k > 5, the problem becomes
NP-hard. Finally, in Section 4, we conclude with
some remarks and open questions.

147

28" Canadian Conference on Computational Geometry, 2016

2 Disjoint cycle partitions

Let P be a given set of finitely many points in the
plane. Denote the convex hull of a point set P by
CH(P). It is well-known that every point set with
an even number of points has a non-crossing match-
ing. In this section, we consider the existence of
disjoint polygons of specified sizes in a given point
set. 1

2.1 Disjoint triangle partition

A cycle partition of P is said to be a triangle parti-
tion if all cycles have length 3. A subset I of P such
that no two points of I are visible from each other is
called an independent set of P. Observe that I also
induces an independent set in the visibility graph of
P. Here we provide a characterization of all point
sets that admit a disjoint triangle partition. We
first characterize sets of 3n points that contain an
independent set of size n + 1.

Lemma 1 Let P be a set of 3n points that contains
an independent set I of size n+ 1. Then one of the
following must hold:

1. The points in I are collinear.

2. The points in I occur on the boundary of
CH(P) and CH(I) = CH(P). CH(P) has
at most 4 vertices and the boundary of CH(P)
contains exactly 2n + 2 points of P, with every
alternate point in I. Further, every subset of 5
points in I must contain 3 collinear points.

Proof. Consider a maximal plane graph G with
vertex set the points in I. Suppose there are h
points of I on the boundary of CH(I). Then the
number of edges in G is 3n — h. Since [is an inde-
pendent set in P, every such edge in G must con-
tain a blocker in P which is not in I. Since there
are at most 2n — 1 such blockers, we must have
3n—h <2n—1,or h > n+ 1. Thus all points of
I are on the boundary of CH(I), and every edge in
G must contain exactly one blocker. This implies
that CH(P) = CH(I), and there are exactly 2n+2
points of P on the boundary of CH(P), with every
alternate point in I.

Suppose there are 5 points in I such that no 3 are
collinear. Since all points in I are on the bound-
ary of CH(I), we can choose 5 such points such
that their convex hull does not contain any other
point of I (Figure 1 (a)). Now choose edges in the
graph G such that these 5 points form a strictly
convex polygon in G. There will be exactly two
edges of G and two blockers contained inside this

polygon. However, two blockers cannot block the
visibility between all pairs of non-adjacent vertices
of a strictly convex pentagon, contradicting the fact
that I is an independent set (Figure 1 (b)).

This also implies that C' H(P) must have at most
4 vertices, otherwise we can find a subset of 5 points
in I such that no 3 are collinear. O

Theorem 2 A set P of 3n points in the plane ad-
mits a disjoint triangle partition iff P does not con-
tain an independent set of size n + 1.

Proof. Suppose P admits a disjoint triangle parti-
tion and contains an independent set of size n + 1.
Then some two points in the independent set must
be in the same triangle in the triangle partition.
Since the triangles are disjoint, these two points
must be visible to each other, contradicting the fact
that they are in an independent set.

Suppose P does not contain an independent set
of size n+1. We show that P has a disjoint triangle
partition. The proof is by induction on n. For n =
1, this is trivial. Suppose n > 2.

Let p; be any vertex of CH(P), p; the point in
P that follows p; on the boundary of CH(P) in
clockwise order, and py the point that precedes p;
on the boundary of CH(P \ {p;}). Note that all
points in P\ {p;} cannot be collinear, otherwise
there are 2n + 1 collinear points in P. Denote the
triangle p;p;px, by A(p;) and let P' = P\{p;, p;, pr}-

Clearly the triangle A(p;) is disjoint from
CH(P'). If P’ does not contain an independent set
of size n, then by induction, P’ has a disjoint trian-
gle partition, which, along with the triangle A(p;),
gives a disjoint triangle partition of P. Suppose P’
contains an independent set of size n. Then P’ must
satisfy one of the conditions given by Lemma 1.

First suppose P’ contains 2n — 1 collinear points
on some line L. Since P has no independent set
of size n + 1, L can contain at most 2n points of
P. Suppose P has 2n collinear points and let these
be p1,p2, ..., P2, in left to right order along L. We
now form a disjoint triangle partition of P directly.
For i = 1 to n, we choose the triangle ps;_1, p2i, ¢,
where ¢; is a point in P not in L, that has not been
included in any earlier triangle, such that the angle
P2i—1,P2i, ¢ is as small as possible, and subject to
this condition, ¢; is as close to py; as possible. This
choice of ¢; ensures that the triangles chosen are
disjoint.

If P has 2n — 1 collinear points, we use the same
procedure for i = 1 to n — 1. Now we are left with
Pan—1 and two points p, ¢ that are not in L. If both
p,q are on the same side of L and p,q,ps,—1 are
not collinear, they form a triangle to complete the

148

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

disjoint triangle partition. If they are on different
sides of L, say p is above L, we consider the triangle
P2n—3,Pon—2,qn_1 formed earlier. If g,_; is above
L, we replace this triangle by po,_3,pon—2,q and
add the triangle p, ¢,—1,p2n—1. A similar argument
holds if ¢,_1 is below L.

Finally, suppose p,q are on the same side of L,
say above, and ¢ lies on the segment ppo,_1. If
qn—1 lies below L, we use the triangles po,_3,p,q
and pop_2,Pon—1,qn—1- If g,_1 is above L but
does not lie in the segment po,_3p, we use the
triangles pan—3,qn—1,p and pan_2,p2n-1,9. The
only remaining possibility is that g¢,_1 blocks
Pan—s from p. Now consider the previous triangle
P2n_5,P2n—4a,qn_2. By a similar argument, if ¢,_o
does not block p from po,_5, we can modify the
triangles to find a disjoint triangle partition. Con-
tinuing this way, we either get a disjoint triangle
partition, or p must be blocked from po;_1 by g;
for 1 < i < n —1. But this implies P contains an
independent set of size n + 1, a contradiction.

Now suppose C'H (P’) satisfies the second condi-
tion in Lemma 1. Suppose CH(P') has 3 vertices
p, q,r in clockwise order. We consider different cases
based on the possible vertices of CH(P).

Suppose p, q,r are also vertices of CH(P) and
p; occurs between ¢ and r, in clockwise order, on
the boundary of CH(P). Let P” be the point set
obtained after deleting the triangle A(p). Suppose
P” has an independent set of size n, otherwise we
can apply induction. Then the edge qp; of CH(P")
must contain the point p, and the edge p;r must
contain p;. The independent set of size n in P”
must contain all points from the independent set of
size n in P’, except p. This implies p must be visible
to p;, otherwise we get an independent set of size
n+11in P. Now let P"”" be the point set obtained
after deleting the triangle A(r). Since CH(P"") has
2 vertices p and p; that are visible to each other, it
cannot contain an independent set of size n. Again,
we can apply induction.

Suppose p and ¢ are vertices of CH(P) but r is
not. If r does not lie on the boundary of CH(P),
then P” has two convex hull vertices p; and p; that
are visible to each other, and hence cannot contain
an independent set of size n. On the other hand, if
r is on the boundary of CH(P), and if P” contains
an independent set of size n, then since p and p; are
not visible to each other, P contains an independent
set of size n + 1, a contradiction.

Finally, suppose p is a vertex of CH(P) but nei-
ther ¢ nor r is a vertex of CH(P). If A(p) does not
contain p;, then CH(P") has two vertices p; and
p; that are visible to each other. A symmetrical

argument can be used if p; does not precede p on
the boundary of CH(P). The only other possibility
is that the boundary of CH(P) contains only the
points p.p;,p;. Now if p; does not lie in the seg-
ment p;q, we delete the triangle p;qpi. Again, the
remaining point set has two vertices p, p;, visible to
each other. If py lies in p;q, we delete the triangle
pjqpr- Thus in all cases, the remaining point set
cannot have an independent set of size n, and we
can apply induction.

The arguments in the case when CH(P’) has 4
vertices are very similar to the case when CH(P')
has 3 vertices. We omit them here. |

(a)

(b)

Figure 1: (a) A point set P where there are five
points of I with no three collinear. The points in
the interior of C'H(P) are not shown. The points of
I are coloured red. (b) A pentagon with five vertices
from I.

2.2 Generalized cycle partitions

Let S be a given set of cycles {C1,Cs,...,C}, not
all C; of length 3. Let L; be the length of C; € S. In
this section, we show that it is possible to partition
a point set P into disjoint cycles of S if and only if
P does not have 22:1 L; — 1+ 1 collinear points.

Lemma 3 If P has Zézl L; points, mnot all
collinear, then it is possible to separate out C; from
P so that CH(C;) and CH(P\ C;) are disjoint.

Proof. Let p be any vertex of CH (P), po the point
of P that precedes p on the boundary of CH(P),
and ¢ the point that follows p. Then py and ¢ are
vertices of CH(P\{p}) and let pg,p1,p2,- .-, Pk = ¢
be the points of P that occur between py and ¢
on the boundary of CH(P \ {p}. If k > L; — 2,
we choose C; to be the cycle p, po,p1,p2,...,PL;—2
(Figure 2 (a)). If k < L;—2, then L; > 3. We delete
the points p,p1,...,pr—1, and in the remaining set

149

28" Canadian Conference on Computational Geometry, 2016

(a)

Figure 2: (a) A C4 separated out from P. (b) A Cg
is separated out from P

of P’ of points, find a cycle C] of length L; — k,
using the same procedure, starting with the vertex
g. Then C/U{p,p1,...,pr—1 give the required cycle
C; (Figure 2 (b)). O

Pr—1 Q_y Qb1 Pk—1 Qj_q Qk—1

Figure 3: (a) There is only one remaining point of
P on the line. (b) One point of C is freed to be
used for C.

Theorem 4 Let C1,Cs,...,Cy be a collection of
cycles of lengths Ly, Lo, ..., Ly such that Ly > 4.
A set P of L = Zle L; points admits a disjoint
cycle partition into cycles of lengths Ly, La, ..., L
iff it does not contain L — k + 1 collinear points.

Proof. If P contains L — k + 1 collinear points on
some line, then there are at most k — 1 points of P
not in the line. Thus in any partition of P into k
parts, some part must contain all points in the line.
Thus P cannot have a cycle partition into k cycles
of lengths Ly, ..., L.

We prove the converse by induction on k. If k =
1, the result is trivial. Suppose k > 2. By Lemma
3, we can find a cycle C; of length L; in P, such
that C; and CH(P\ C4) are disjoint. If P\ C; does

not contain L — Ly — (k — 1) + 1 collinear points,
then by induction, it has a disjoint cycle partition
into k — 1 cycles of lengths Lo,..., L;. This gives
the required disjoint cycle partition of P.

Suppose P\ C1, and hence P itself contains L —
L1 —k—+2 collinear points. Note that by assumption
P contains at most L — k collinear points. Order
these collinear points in left to right order along the
line containing them, and group them into k groups
in left to right order, with the i*" group containing
Li+1 — 1 points, for 1 < i < k. All the remaining
points are placed in the k** group. Note that there
is at least one, and at most L; — 1 points in the k"
group. There are at least k points not in the line.
Let p; denote the leftmost point of the i*" group
and ¢; the rightmost.

We now form a disjoint cycle partition of P di-
rectly, using the same method as in Theorem 2. For
i =1%o k—1, let r; be a point not in the line, that
has not be included in any earlier cycle, such that
the angle p;g;r; is minimum, and subject to this
condition r; is nearest to g;. Let C;11 be the cycle
formed by r; and all points in the line that lie be-
tween p; and ¢; (inclusive). Thus length of C;14 is
Li+1.

Now there are L; points remaining, at least one
of which is on the line, and at least one is not in
the line. If there are two or more points remaining
on the line, we can connect the remaining points by
line-segments to form a cycle of length L; that is
disjoint from the earlier cycles.

Suppose there is only one point on the line (Fig-
ure 3 (a)). Now consider the cycle Cj, formed ear-
lier. By assumption, it has length at least 4, so there
is a point ¢}, _; immediately to the left of ¢;_1 on the
line, such that gj,_; # pr—1. Let r,_; be a remain-
ing point such that the angle py_1q}_,7}_; is min-
imum, and subject to this r},_, is nearest to g;,_;.
Modify Cy by replacing gi—1 by r,_;. Now there
are two points remaining on the line and we can
complete the cycle C; using the remaining points
(Figure 3 (b)). O

2.3 2-factors of point visibility graphs

Here we study the relationship between cycle par-
tition of point sets and 2-factors of their visibility
graphs.

Lemma 5 Given a set of cycles S
{C1,Cs,...,C1}, not all C; of length 3, a point
visibility graph G admits the 2-factor with cycles of
length specified by S if and only if G does not have
any induced path on (22:1 L;) — 1 + 1 wvertices,
where L; is the length of the cycle C;.

150

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Proof. If such a path exists, then one of the cyles
must have all its vertices from the induced path,
a contradiction. If such a path does not exist,
then no point set P corresponding to G can have
(22:1 L;) — 1+ 1 collinear points. Thus, P must
have a disjoint cycle partition corresponding to .S,
which corresponds to a 2-factor of G. O

Corollary 6 If a point set P has [points on a line
and at most k points outside of it, where | > 2k+2,
then every point set with the same visibility graph
as P, has at least | collinear points.

3 Clique partition

A characterization analogous to that in 2 does not
work for clique partitions where k > 4. Consider
the graph drawn on a point set in Figure 4. Due to
its structure, it is called a slanted grid graph [12].
A slanted grid graph on z points has a maximum
independent size only of O(y/z). The slanted grid
graph in the figure has forty-four points with k& = 4
and n = 11, and a maximum independent set of size
five. However, it cannot be partitioned into copies
of Ky, because p; and p, are not contained in any
K,. adjacent to triangles. In this section, we

Figure 4: A slanted grid graph on forty-four points.
A maximum independent set is coloured in red.

show that the problem of partitioning a given point
set in the plane, into k-cliques for & > 5, is NP-
hard. To show this, we reduce 3-occurrence SAT
to the problem. A 3-occurrence SAT formula is a

Figure 5: A partial grid graph.

SAT formula where each variable occurs at most 3
times. The 3-occurrence SAT problem is known to
be NP-hard [13].

3.1 Construction of the reduction

We provide a reduction of 3-occurrence SAT to par-
titioning a point set into copies of K5. We start
with any given 3-occurrence SAT formula 6, with
variables x1, xs, ..., x, and clauses C1,Cs,...,Cp,.
Wlog we assume that there is no variable in § whose
positive or negative literals solely constitute all of
its occurrences. We also assume that each clause Cj,
2 < i < m—1, has all variables different from those
in C;_1 and C;41. This assumption is valid because
any given 3-occurrence SAT formula can be trans-
formed to such a formula by adding a linear number
of variables and clauses, with every variable and its
negation occuring at least once each. Let n; and
ng be the number of variables that occur twice and
thrice in 6, respectively, so that ny + no = n.

We now construct a point set P from 6 so that a
partition of P into 5-cliques is possible if and only
if 6 is satisfiable. We do the following;:

(a) Let v =3n1 +4no+n—1, b, =2(m—1)ny +
(m—2)n1+2(m—1na+2(m—2)na+m(n—1) =
dmn — 5n + nom — 2ns. Let e =b, —2v+3m — 1,
b=e+m—1and ¢c=2(v—2m)+ 2e.

(b) Call the x-axis the clause line. Starting from
the origin, from left to right, place m points on the
clause-line, unit distance apart. Each such point is
called a clause-point, the k' point representing Cj,
and denoted as cpy.

(¢) Consider the horizontal line with y-coordinate
—2 and call it the extra-line. Starting from the y-
axis from left to right, we place e points on the
extra-line, each a unit distance apart.

(d) Consider the horizontal line with y-
coordinate —1 and call it the blocking-line. Starting
from the y-axis from left to right, we place b points
on the blocking-line, each half a unit distance apart.

(e) Now consider the horizontal line with y-
coordinate —1.5 and call it the variable-line. Let

151

28" Canadian Conference on Computational Geometry, 2016

2’ be the x-coordinate of the point of intersection
of the variable-line and the line passing through the
leftmost clause-point and the rightmost point on the
blocking-line. Starting from the point (z’+1,—1.5)
from left to right we place points on the variable-
line, representing the variables of 8 as follows.

(e.i) If z; and &; occur in C; and C}, respectively,
then we place three points, x}, 22 = ;! and #;° to
the right of all points placed so far on the variable-
line, in the same consecutive order. We block the
points ! and #;? from all points on the clause-line
other than cp; and cpy, respectively. We block the
point 27 from all points on the clause-line other than
cpj and cpy.

(e.ii) Wlog if there are two occurrences of z; and
one occurrrence of #;, then we place four points, x},
2?2 = ;% 23 = 7;% and 2} to the right of all points
placeed so far on the variable-line, in the same con-
secutive order. Suppose that z; occurs in C; and
C, and z; occurs in C;. We block the points aczl and
x} from all points on the clause-line other than cp;j
and cpy, respectively. We block the point 27 from all
points on the clause-line other than c¢p; and cp;. We
block the point 3 from all points on the clause-line
other than cp, and cp;.

(f) On the variable-line, introduce a new
variable-blocker point after all the points corre-
sponding to a particular variable have been placed,
except for the rightmost set of points correspond-
ing to a variable (i.e. points corresponding to ;).
Thus, there are n — 1 variable-blocker points in to-
tal. Thus, now there are a total of v points on the
variable-line. Introduce blockers on the blocking-
line so that no clause-point sees any of the variable-
blocker points.

(g) Perturb the points on the variable-line
slightly so that for each such point, the correspond-
ing blocking vertex blocking it from a point on the
clause-line, blocks only a single pair of vertices.
Thus there are b,, blockers in total used for the last
two steps.

(h) Add ¢ more points to the clause-line, all to
the right of the clause-points, such that they see all
points not on the clause-line.

3.2 Properties of the constructed point set

We have the following lemmas based on the con-
struction.

Lemma 7 The construction of the point set can be
completed in polynomial time.

Proof. The points placed on lattice points have in-
teger coordinates. The length of these coordinates

are only O(log mn). The blockers are placed be-
tween the intersection of the blocking-line and the
line passing through two such points. So, the coor-
dinates of the blockers are also of length O(log n).
After a blocker is placed on the blocking-line, it can
coincide with some already placed blocker or block
one or more pairs of points which are required to
be visible. There are O(mn) blockers in total. So
there are only O(mn) such undesirable positions.
We first divide the variable-line into 4n intervals.
Each of these intervals we further divide into mn
intervals. Clearly, the coordinates of the endpoints
of the intervals are of length O(log mn). Each
of the perturbations can be achieved by assigning
these coordinates to the variable-points. Hence the
whole construction can be achived in O(mn log mn)
time. g

Now we study a related structure related to our con-
struction. Consider a partial grid P, on the lines
y=1,y=0and y = —1. We call these three lines
the top, middle and bottom horizontal lines of P;.
The partial grid starts from the y-axis and lies on
the right side of it. The points of the top and bot-
tom horizontal lines of P, are only allowed to have
nonnegative integer coordinates. For every point
with coordinates (z,y) in the top and bottom hori-
zontal lines of Py, where = # 0, there must also be a
point with coordinates (z — 1,y) in Py. The points
on the middle line of P, are only allowed to have
coordinates of the form (z,%), where 2 and y are
nonnegative integers. For every point on the mid-
dle line of P, with coordinates (§,0), where x # 0,
there must also be a point with coordinates (251, 0).
Suppose P, has p points on y = 1 and ¢ points on
y = —1. Then we have the following lemma.

Lemma 8 A total of p+q—1 points of Py ony =0
are necessary and sufficient to block all points of P,
ony =1 from all points of Py ony = —1.

Proof. Consider points on the top and bottom
lines on P, having coordinates (z1,1) and (22, —1)
respectively. The point of intersection of the middle
line and the line segment joining these two points
is (&2“,0). Since 1 + x2 < p + ¢, this point is
already in P, (Figure 5). Now let (z3,0) be the co-
ordinates of a point of P; on the middle line and
wlog let p > ¢. This point blocks the points of P,
with coordinates (2z3,1) and (0, —1). O

Lemma 9 In our construction for the reduction,
no clause-point can see any extra-point.

Proof. The clause-points, extra-points, and the
blockers on lattice points of the blocking-line in-

152

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

duce a partial grid. By Lemma 8, no clause-point
can see any extra-point. O

Lemma 10 P, can be Ks-partitioned if and only if
0 has a satisfying assignment.

Proof. Suppose £ is a Kj; partition of P.. By
Lemma 9, no clause-point can see any extra-point.
So, a clause-point can see only its adjacent clause-
points, all the blocking-points, and two variable-
points for each of the variables that occur in its
clause. Suppose that a clause-point is a part of a
K. In the formula 8, no consecutive clauses have
the same variables. So, its two adjacent clause-
points see neither each other, nor any of the variable
points corresponding to the clause-point. Hence,
the K5 can contain only (a) the clause-point, (b)
only two of the variable-points corresponding to
the same literal, since all the variable points are
collinear and the points corresponding to each vari-
able are separated by a variable-blocker point, and
(c) only two blocking-points, since all the blocking-
points are collinear.

Given such a Kjs-partition of P,, the correspond-
ing satisfying assignment of € can be constructed
as follows. If some clause-point for C; takes the
variable-points for x; in its K5, then assign 1 to x;.
If z; does not occur in # then we are done for C;.
Otherwise, since 6 is an instance of 3-occurrence
SAT, z; can occur in at most two clauses. But by
construction of P., a variable-point from each of the
pairs of variable-points representing the occurrences
of &, will coincide with the one of the variable-
points representing x; that the clause-point of C;
took. So, no clause-point can include variable-
points representing #; in their K5. An analogus
reasoning holds if the clause-point for some C; takes
the variable-point for z;. Hence there is no con-
flict in assigning truth values to variables using the
method described above.

Now we prove the other direction of the lemma.
Consider a satisfying assignment of 6. In P,., start
with the clause-point of Cy. The corresponding
K5 will contain the clause-point, the two leftmost
points on the blocking-line, and the variable-points
corresponding to a literal that is assigned 1 in
Cy € 6. Similarly, for C;, use the (2i — 1) and
2i*" leftmost points on the blocking-line, and the
variable-points corresponding to a literal that is as-
signed 1 in C; € 0. Now each clause-point is in its
respective K.

Now there are v — 2m and b+ b,, — 2m remaining
points on the variable-line and blocking-line respec-
tively. Form a Kj for each of the remaining points
on the variable-line with two consecutive points on

the blocking-line and clause-line, always choosing
the leftmost points available. After this is done,
b+b, —2m—2(v—2m) and c—2m—2(v—2m) points
remain available on the blocking-line and clause-
line respectively. Form a K5 each for the points on
the extra-line, with two consecutive available points
each from the blocking-line and clause-line. Due to
the values of ¢, e, b, and b,, all the points of P, are
exhausted. |

Theorem 11 For all k > 5, the Ky -partition prob-
lem for point sets on the plane is NP-hard.

Proof. For k¥ = 5 we have Lemma 10. Suppose
that K is a greater odd number 5 + 2z, then for
a given instance of 3-occurrence SAT, first produce
P, for K5-partition. Let P. have 5y points. Parallel
to the clause-line and above it, draw « lines of 2y
points each, such that each new point is visible from
every other new point and all points of P..

Now consider the other case where K is any
greater even number 5+2x —1. First we discuss the
case where k = 6. We assign new values to b, ¢ and
e. Let b=10,, c =2b, — v and e = 2b, — m. Mod-
ify the construction for k = 5 by intially placing
b points on the blocking-line, each a unit distance
apart. Observe that, due to the above placement,
a clause-point is visible from an extra-point if and
only if the parity of their x-coordinates is different.
So, since no clause-point sees to consecutive points
on the extra-line, a clause-point can be placed into
the same Kg with only one extra-point. Also, this
makes b = [™F¢]. We ensure that the parity of
e and m are the same, so the above relation be-
comes b = mT“ As before, whenever possible, we
choose the leftmost free points. Also, as before,
this Kg can contain only two blocking-points and
variable-points each. After all the clause-points are
exhausted thus, the number of available points on
the variable-line, blocking-line and extra-line, are
v —2m, b+ b, —2m and e — m respectively. Af-
ter this, we place the remaining variable-points into
copies of Kg, using two blocking-points, two extra-
points and one new point from the clause-line. So,
now the number of available points on the clause-
line, blocking-line and extra-line, are ¢ — (v — 2m),
b+ b, —2m —2(v —2m) and e — m — 2(v — 2m)
respectively. We take two points each from these
three lines and form copies of Kg. This is possible
due to the new values of b, ¢ and e.

If k is any greater even number 5+2x —1 =6+
2z —2, add x — 1 new lines as in the case before. [

153

28" Canadian Conference on Computational Geometry, 2016

4 Concluding Remarks

We have solved the problem of partitioning point
sets into a set of polygons whose sizes are given, and
proved analogous results for their visibility graphs.
For clique partitions, when the sizes of given cliques
are at least 5, we have shown the problem to be NP-
hard. Our triangle-partition method indeed gives
the solution a clique partition into triangles, but
the result for £ > 4 remains unknown. The related
problem of partitioning a point set into convex poly-
gons also remains unsolved.

References

[1] O. Aichholzer, C. Huemer, S. Kappes,
B. Speckmann, and C. D. Téth. Decompo-
sitions, partitions, and coverings with convex
polygons and pseudo-triangles. Graphs and
Combinatorics, 23(5):481-507, 2007.

J. Cardinal and U. Hoffmann. Recognition and
complexity of point visibility graphs. Sympo-
sium of Computational Geometry, pages 171—
185, 2015.

B. Chazelle, L. J. Guibas, and D.T. Lee. The
power of geometric duality. BIT, 25:76-90,
1985.

H. Edelsbrunner, J. O’'Rourke, and R. Seidel.
Constructing arrangements of lines and hyper-
planes with applications. SIAM Journal on
Computing, 15:341-363, 1986.

M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Com-
pany, 1979.

S. K. Ghosh and P. P. Goswami. Unsolved
problems in visibility graphs of points, seg-
ments and polygons. ACM Computing Surveys,
46(2):22:1-22:29, December, 2013.

S. K. Ghosh and B. Roy. Some results on
point visibility graphs. In Proceedings of
the FEighth International Workshop on Algo-
rithms and Computation, volume 8344 of Lec-
ture Notes in Computer Science, pages 163—
175. Springer-Verlag, 2014.

K. Hosono. On convex decompositions of
a planar point set. Discrete Mathematics,
309(6):1714-1717, 2009.

[9] J. Kdra, A. Pér, and D. R. Wood. On the
Chromatic Number of the Visibility Graph of
a Set of Points in the Plane. Discrete & Com-
putational Geometry, 34(3):497-506, 2005.

[10] M. S. Payne, A. Pér, P. Valtr, and D. R. Wood.
On the connectivity of visibility graphs. Dis-
crete & Computational Geometry, 48(3):669—

681, 2012.

F. Pfender. Visibility graphs of point sets in the
plane. Discrete €& Computational Geometry,
39(1):455-459, 2008.

B. Roy. Point visibility graph recognition is
NP-hard. International Journal of Computa-
tional Geometry and Applications, 26(1):1-32,
2016.

C. A. Tovey. A simplified NP-complete satisfia-
bility problem. Discrete Applied Mathematics,
2:85-89, 1984.

M. Urabe. On a partition into convex polygons.
Discrete Applied Mathematics, 64(2):179-191,
1996.

154

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Counting Convex k-gons in an Arrangement of Line Segments

Martin Fink*

Abstract

Let A(S) be the arrangement formed by a set of n
line segments S in the plane. A subset of arrangement
vertices p1,pa,...,px is called a convex k-gon of A(S)
if (p1,ps2,...,pr) forms a convex polygon and each of
its sides, namely, (p;, pi+1) is part of an input segment.
We want to count the number of distinct convex k-gons
in the arrangement A(S), of which there can be ©(n*)
in the worst-case. We present an O(nlogn + mn) time
algorithm, for any fixed constant k, where m is the
number of pairwise segment intersections. We can also
report all the convex k-gons in time O(n log n+mn+|K|),
where K is the output set. We also prove that the k-gon
counting problem is 3SUM-hard for k£ = 3 and k = 4.

1 Introduction

We consider the problem of counting, and enumerating,
all convex k-gons formed by the arrangement A(S) of a
set S of n line segments in the plane. A set of vertices
D1,D2, .- ., Dk of the arrangement A(S) is called a convex
k-gon if (p1,p2,...,pr) forms a convex polygon and
each of its sides (p1,p2), (P2,03), -, (Pk—1,Dk), (Pr,P1)
is part of an input segment. We note that such a k-gon is
not necessarily a face of the arrangement, and in general
there can be ©(n*) convex k-gons, for any fixed k. We
are interested in the problem of counting these k-gons.
That is, given a set of n line segments in the plane, how
many convex k-gons exist in their arrangement?

Surprisingly, this natural-sounding problem appears
not to have been explored in computational geometry.
We are motivated by an application in computer vision
where the case of counting, and enumerating, convez
quadrilaterals arises. Specifically, the arrangement is the
camera image representing linear boundaries of objects
in the scene, and the goal is to estimate (the counting
problem) the number of “rectangular” objects in the
input scene, which may represent important features
such as desks, door frames, walls etc. Due to the per-
spective transformation, the rectangles in the scene map
to convex quadrilaterals in the image.

The computational problem then becomes the fol-
lowing: can we find all convex quadrilaterals in the
n-segment arrangement in better than the naive O(n?)

*Department of Computer Science, University of California,
Santa Barbara, {fink|neeraj|suri}@cs.ucsb.edu

Neeraj Kumar*

Subhash Suri*

time? Counting convex k-gons is a natural generaliza-
tion of this problem. We call this the k-gon reporting
problem, which leads to a natural counting version of
the problem, where we are just interested in counting
the number of k-gons formed by the segments. Un-
like the segment intersection problem [2, 3], in which
the maximum number of intersecting line segments is
O(n?), the number of combinatorially distinct k-gons
in an n-segment arrangement can be Q(n*). See Fig. 1.
Therefore, it is desirable to be able to count the k-gons
in time much faster than the number of combinatorially
distinct k-gons.

Figure 1: An arrangement of n segments with Q(n")
convex k-gons. Each of the k = 5 groups contains |} |

segments.

Our Contribution. We present a sweep-line algorithm
for counting the number of k-gons in worst-case time
O(nlogn + mn), using O(n?) space, for any constant k,
where m is the number of pairwise segment intersections.
The algorithm works for non-constant values of k as well,
but in that case takes O(nlogn +mn?) time and O(n?)
space. In either case, the running time is independent
of k.

By maintaining additional information during the
counting algorithm, we can also recover all the k-gons,
in worst-case time O(nlogn + mn + |K|) time, using
O(mn + n?) space, where K is the output.

Finally, we show that counting the number of triangles
and the number of quadrilaterals are both 3SUM-hard,
suggesting that a running time significantly better than
O(n?) is unlikely.

155

28" Canadian Conference on Computational Geometry, 2016

Related Work. The problem of counting convex k-gons
in a set of n points has been considered by several re-
searchers [9, 8, 7]. The algorithm in [9] achieves a running
time of O(n*~2), which was then improved to O(n!*/21)
in [8]. This bound was improved significantly to O(n?)
by Mitchell et al. [7] using dynamic programming. In
[4], Eppstein et al. study the related problem of finding
minimum area k-gons for point sets.

Some results are also known for the restricted problem
of counting faces in line arrangements. For instance,
every arrangement of lines (or pseudolines) in the plane
results in Q(n) triangular faces [5].

Another related problem is one of counting and report-
ing simple cycles of given length in a graph. In general,
the time bound for counting the cycles is exponential in
k [1], however for k < 7 the problem can be solved in
O(n?376) time. These cycle counting results in graphs,
however, do not solve our k-gon problem because of the
convezity constraint. Indeed, an arrangement A(S) of
segments can be easily viewed as a graph, whose vertices
are the segments and whose edges correspond to pairs
of intersecting segments. However, cycles in this graph
are not necessarily convex polygons. An exception is the
case of triangles which are always convex: every 3-cycle
correspond to a triangle in the segment arrangement,
but only for non-degenerate input, namely, no three
segments intersecting in a common point.

2 Counting Convex k-gons

Let P be a convex k-gon in the arrangement A(S) formed
by the n line segments of S.! Let L be a vertical line
intersecting P. Since P is convex, L can only intersect
two sides of P. The span of P with respect to L is
the (ordered) pair of segments of P that intersect L.
Although the number of k-gons can be exponential in k,
the number of distinct spans is only quadratic.

Observation 1 There are O(n?) distinct spans among
all k-gons of A(S) with respect to a vertical line L.

In other words, Observation 1 tells us that although
there could be Q(n*) k-gons, at a given vertical line
L, all k-gons intersecting L can be assigned to one of
the O(n?) distinct segment pairs. This suggests the
existence of a natural sweep line based approach for
the counting problem. The key idea is to keep track of
convex open polygons with up to k sides as we sweep a
vertical line L across the arrangement. When sweeping
over an intersection, some open polygons may become
closed k-gons, which we must count, while other open
polygons can be extended using the intersection vertex,
and new open polygons start growing at the intersection.
We start by fixing some notation.

IFor the rest of the paper, we drop the qualifier “convex” and
simply refer to P as a k-gon.

Figure 2: Open 5-gons: X(a,b,5) at a given sweep line
L; two members of the set are shown by dotted lines.

Notation. Observe that when we are sweeping a verti-
cal line L across the arrangement, at a given z-coordinate
ry, we may have come across two types of potential k-
gons:

e (Closed k-gons: these are the k-gons all of whose
sides are to the left of the line L.

e Open j-gons: these are j-gons, for j < k, whose j
sides lie (partially or fully) to the left of L. More
precisely, L intersects the two open sides of these
convex polygons and their remaining j — 2 sides are
to the left of L. See Fig. 2.

Observe that open j-gons are only potential candidates
for closed k-gons; not all of them necessarily become
k-gons.

At an z-coordinate ', we can now represent an open
j-gon P by the triplet (a,b,j), where a and b are the
segments forming the top and bottom sides of P at zp,
and j is the number of sides we have seen so far. Note
that 2 < j < k and this includes the sides of P formed
by the segments a and b. The triplet (a, b, j) succinctly
combines all open j-gons for which a and b are the open
sides intersecting the line L; we let X(a,b,j) denote
the set of these open j-gons, and we let o(a,b,j) =
[2(a,b,).

2.1 Algorithm

Our algorithm moves a sweep line L across the arrange-
ment A(S) with the segment intersections as key event
points. For the sake of simplicity, we assume no degenera-
cies for now, that is, every intersection involves exactly
two line segments of S. (We will show how to handle
degenerate cases later in this section.) We maintain an
array of counters o(a, b, j) which keep track of all open
j-gons whose span is (a,b) on line L, for all 2 < j < k.
A global counter keeps track of all the closed k-gons
that have been encountered already. In the following,
we explain these steps in detail.

156

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 3: After the intersection of a and b, the sweep
line L gets new open polygons for X(b, a, 2), X(c, b, j+1),
and X(a, d, j + 1) shown in dash dotted; parent polygons
in X(c,a,j) and X(b,d, j) are still active.

1. Set count = 0 and o(a,b,j) = 0 for all segments
a,band 2 < j <k.

2. Compute all m intersections of the n line segments
using [2] and order them from left to right.

3. Process the intersections one by one from left to
right, moving the sweep line L accordingly.

When L contains the intersection of segments a and
b (where to the left of L, a is above b), we perform
the following updates. See Fig. 3.

(a) Open k-gons of X(a, b, k) become closed k-gons.
We update the count:

count += o(a,b, k)

(b) An open 2-gon of b and a begins at this inter-
section. We initialize the count:

o(ba,2) = 1

(¢) For all 2 < j < k, each open j-gon with a
as the lower side can be extended to an open
j + 1l-gon with b as the lower side. Let S} be
the set of segments intersecting sweep line L
above the intersection point (a,b). We update
the count:

Vee S, ole,b,j+1) += o(ca,j)

Similarly, for each 2 < j < k, each open j-gon
with b as the upper side can be extended to an
open j 4+ 1-gon with a as the upper side. Let
S Dbe the set of segments that intersect sweep
line L below the intersection point (a,b).

vde S} o(a,d,j+1) += o(b,d,j)

4. Return count.

Correctness. Let Sy be the set of all segments that
intersect the sweep line L. Let Ay be the set of all
possible spans for the k-gons intersecting L. That is,
A ={(a,b) | a,b € S, a above b on L}. As the sweep
line moves from left to right we maintain the following
invariant:

count is the total number of closed k-gons
to the left of L; and o(a,b,j) is the number
of open j-gons with span (a,b) on L, for all
(a,b) € A and 2 < j < k.

The invariant is trivially satisfied before processing
the first intersection. For the general case, after moving
the sweep line L over the intersection (a, b), the segments
a and b switch their vertical order. Therefore,

1. Ay no longer includes the span (a,b).

2. count now includes the new k-gons that complete
at the intersection (Step 3a); these correspond to
the open k-gons counted by o(a, b, k).

3. Ay includes the new span (b,a). Right after the
crossing, the open 2-gon formed by b and «a is the
only polygon with that span, covered by o (b, a,2) =
1.

4. Open polygons with span (¢,b) € A can now also
use the vertex (a,b). Any such open j-gon (j < k)
must consist of the new intersection and an open j—
1-gon with span (¢, a) right before the intersection
(compare Step 3c).

5. Analogously, open polygons with span (a,d) € A,
can now use vertex (a,b). Such a new open j-gon
(j < k) consists of the new intersection and an open
j — l-gon with span (b, d).

It is easy to see that the algorithm maintains the
invariant after processing each intersection. Hence, when
eventually the sweep line L is right of all intersections,
count is the total number of k-gons.

Analysis. Computing and storing all m intersections
takes O((n+m)logn) time and O(m+n) space [2]. Since
we perform O(n) updates for each of the m events, the
total running time for our algorithm is O(nlogn + mn).
The total space requirement is O(n?) since we store
information for all pairs of segments that may intersect
the sweep line.

Handling Degenerate Cases. We now show how to
extend our algorithm so that it can also handle segment
arrangement with degeneracies, that is, with three or
more segments intersecting in a single point. (For parallel
segments, we do not need to do anything special). For
an intersection point p; of a set S; of more than two

157

28" Canadian Conference on Computational Geometry, 2016

segments, we first update the number of closed k-gons
for every pair of segments in S;. For extending open
j-gons (2 < j < k), we need to be a bit more careful.
Since we do not want degenerate k-gons, we should only
extend the j-gons which we have seen before the current
intersection. More precisely, we compute the updates for
every pair of segments in S;, and apply them collectively.
One way to achieve this is to process the updates in Step
3(b) and 3(c) in decreasing order of j as follows:

e For j in k — 1 down to 3 perform updates in Step
3(c) for every segment pair in S;.

e Perform updates in Step 3(b) for every segment pair

in Sl

Observe that these modifications do not affect the over-
all runtime since m € O(n?) is the number of pairwise
intersections.

3 Reporting Convex k-gons

We now turn to the problem of reporting all the k-gons
in an arrangement of n line segments. We solve this
problem by extending our algorithm for counting k-gons.
The key idea is to keep track of how the values o(a, b, j)
are updated as we move the sweep line across the ar-
rangement, and to remember the values that contributed
to the total number. Recall that the total number of
k-gons formed by n segments can be Q(n*). Therefore,
we would like the total running time to be linear in size
of the output. We start by describing a reporting graph
that will help us reconstruct all k-gons.

Reporting Graph. Our reporting graph is a labeled di-
rected acyclic graph G = (V| E, L). Its vertices represent
the sets of polygons ¥(a, b, j) and its edges keep track of
how these sets grow. The function £: E — N assigns a
label L(e) to each edge e € E. The label is a timestamp
and represents the intersection at which the edge was
created.

To construct the digraph G, we extend the counting
algorithm from Section 2.1 as follows:

1. For every pair (a,b) of segments and 2 < j < k add
a vertex (a, b, j) to G.

2. Define Q =) to be the set that keeps track of closed
k-gons grouped by their rightmost vertex.

3. Refer to step 3 of the counting algorithm. Suppose
the sweep line L is currently at the i intersection
event (a,b). Recall that S7 and S} are respectively
the sets of segments that intersect L above and
below the intersection point (a,b). We modify the
reporting graph as follows; see Fig. 4 for an example.

(a) If o(a,b, k) > 0, insert (a,b, k) to Q.

(b) For all values 2 < j < k and each segment
¢ € S; with o(c,a,j) > 0, create an edge
((e,b,5 +1),(c,a,j)).

(c) Similarly, for all 2 < j < k and a segment
d € S} with o(b,d,j) > 0, create an edge
((aadaj + 1)7 (b7 dv]))

Label each edge e created for this intersection event
with the timestamp L(e) = ¢.

The reporting graph G has the following properties.

e G has O(n?) vertices and O(mn) edges. The vertices
of the form (a,b, k) have in-degree zero (sources)
and vertices of the form (a,b,2) have out-degree
zero (sinks).

e An edge of G represent the extension of an open
j-gon into a j + l-gon (2 < j < k), with the inter-
section point (a,b) being the newly added corner.
As a result, we get two new sets of j + 1-gons: one
with b as the lower side and another with a as the
upper side.

e There is exactly one label on every edge since two
segments can only intersect once.

e Each complete k-gon corresponds to a path that
starts at a vertex in @ (a source in G) and ends
at a sink of G. Since G is acyclic, every such path
has exactly k — 2 edges. The intersection points
corresponding to these k — 2 edges along with the
two intersection points for the source and sink will
be the k vertices of the output k-gon.

Enumerating all k-gons. With the reporting graph G,
enumerating all k-gons seems pretty straightforward. We
can simply start at vertices in () one by one and recur-
sively explore all distinct paths to sinks. However, there
is one small caveat. Since the segments may continue to
grow further after we close a k-gon, it is possible that
a vertex v of G gets an additional successor w’ after it
got a predecessor u; see Fig. 4. Observe that in such a
case, the path (u — v — w’ — --+) does not correspond
to a valid k-gon since the corresponding vertices are not
ordered chronologically.

In order to fix this we can use the timestamps of the
edges: we only recurse using the edges whose timestamp
is smaller than that of the parent edge. Because of our
construction, we are guaranteed to find at least one such
edge. Moreover, since the edges are added in the order
of their timestamps, we can stop at the first edge for
which the timestamp is higher than the parent value.
This way we spend no extra time on objects that are
not a member of our output set. Consequently, we get a
running time of O(nlogn 4+ mn) for constructing the G,
and O(|K|) time for reporting the k-gons that form our

158

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

p . N
(C, a, 2) (d: a, 2)

(a) Arrangement of five line segments. Numbers 1 (b) Reporting graph. The edge shown as dash-dotted was added after
through 7 indicate intersections from left to right its predecessors and therefore does not contribute to a valid 4-gon. The
events. The two valid 4-gons formed by the segments other two valid dotted paths to the sink (¢, a,2) represent the closed

are shown by red and blue dotted lines.

4-gons with vertices (1,2,4,6) and (1,2,3,7).

Figure 4: An arrangement and the corresponding reporting graph.

output set K. Since G has O(n?) vertices and O(mn)
edges, the total space requirement is O(n? + mn).

4 3SUM-Hardness

In this section, we show that counting the number of
triangles in an arrangement of straight-line segments is
at least as hard as the 3SUM problem. Since it is widely
believed that 3SUM cannot be solved in o(n?) time, this
also holds for the problem of counting triangles.

Theorem 1 Counting the number of triangles in an
arrangement of straight-line segments is 3SUM-hard.

Proof. We reduce the problem POINT-ON-3-LINES to
counting triangles. Gajentaan and Overmars showed
that POINT-ON-3-LINES is as hard as 3SUM [6]. In
POINT-ON-3-LINES one has to decide whether a given
arrangement of straight-lines contains a point in which
at least three lines intersect. It is easy to see that the
problem remains 3SUM-hard even if no pair of lines is
parallel. We transform such an arrangement of lines
(with no parallel pairs) to an arrangement of straight-
line segments by shortening all lines to segments. We
must ensure that all crossings of lines are preserved as
crossings of the corresponding segments. To this end,
we determine the bounding box of the line arrangement,
which is not hard to achieve in O(nlogn) time.
Consider the resulting arrangement. Since it contains
all crossings, each triple of segments forms a triangle
unless either the three segments intersect in a single
point, or (ii) two of the segments are parallel—which
cannot happen since the input lines did not contain
parallel pairs. Therefore, the arrangement of segments
contains (") triangles if and only if there is no point in

3
which three or more lines intersect.

We have seen that we can check the existence of a point
lying on at least three lines by counting the triangles in
the arrangement of segments. Furthermore, transform-
ing the instance and determining the number o needed
only constant time. Hence, an o(n?)-time algorithm for
counting triangles in segment arrangements implies an
o(n?)-time algorithm for POINT-ON-3-LINES. O

We can use almost the same 3SUM-hardness proof for
convex quadrilaterals rather than triangles. Observe that
any arrangement of four straight-lines (without parallel
pairs) forms exactly one quadrilateral face unless three
of the lines meet in a point. Hence, the number of
quadrilaterals is (2) if and only if there is no triple of
lines meeting in a point.

Theorem 2 Counting the number of convex quadrilater-
als in an arrangement of straight-line segments is 3SUM-
hard.

Unfortunately, for larger values of k, e.g., k = 5 the
hardness reduction does not seem easy to adjust. The
problem is that not every set of five straight lines forms
a b-gon, even if they are in general position.

5 Conclusion

We introduced the problem of counting and reporting k-
gons in an arrangement of line segments, and presented
an O(nlogn+mn) time algorithm for counting all the k-
gons, for any fixed constant k, where m is the number of
intersecting segment pairs. Our algorithm for reporting
all the k-gons runs in time O(nlogn+ mn+ |K|), where
K is the output set. We also prove that the k-gon
counting problem is 3SUM-hard for k£ = 3 and k = 4.

159

28" Canadian Conference on Computational Geometry, 2016

References

(1]

2]

3]

(4]

(5]

(6]

[7]

(8]

(9]

N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cycles. Algorithmica, 17:209-223, 1997.

J. L. Bentley and T. A. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Transac-
tions on Computers, 100(9):643-647, 1979.

B. Chazelle. Reporting and counting segment inter-
sections. Journal of Computer and System Sciences,
32(2):156-182, 1936.

D. Eppstein, M. Overmars, G. Rote, and G. Woeginger.
Finding minimum area k-gons. Discrete & Computational
Geometry, 7(1):45-58, 1992.

S. Felsner and K. Krieger. Triangles in euclidean ar-
rangements. In Graph-Theoretic Concepts in Computer
Science, pages 137—148. Springer, 1998.

A. Gajentaan and M. H. Overmars. On a class of o(n?)
problems in computational geometry. Computational
Geometry, 5(3):165 — 185, 1995.

J. S. Mitchell, G. Rote, G. Sundaram, and G. Woeg-
inger. Counting convex polygons in planar point sets.
Information Processing Letters, 56(1):45-49, 1995.

G. Rote and G. Woeginger. Counting convex k-gons
in planar point sets. Information Processing Letters,
41(4):191-194, 1992.

G. Rote, G. Woeginger, Z. Binhai, and W. Zhengyan.
Counting k-subsets and convex k-gons in the plane. In-
formation Processing Letters, 38(3):149-151, 1991.

160

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

A Fast 2-Approximation Algorithm for Guarding Orthogonal Terrains

Yangdi Lyu*

Abstract

Terrain Guarding Problem(TGP), which is known to
be NP-complete, asks to find a smallest set of guard
locations on a terrain T' such that every point on T
is visible by a guard. Here, we study this problem on
1.5D orthogonal terrains where the edges are bound to
be horizontal or vertical. We propose a 2-approximation
algorithm that runs in O(nlogm) time, where n and m
are the sizes of input and output, respectively. This is
an improvement over the previous best algorithm, which
is a 2-approximation with O(n?) running time.

1 Introduction

Optimal placement of antennas, cameras, and light
sources on terrains is important for communication net-
work, security, and architectural design applications.
Even a consideration of the problem on 1.5D terrains
is useful whenever the domain is a highway, street, or
a hallway. Moreover, this simpler version plays a role
on the complexity analysis and algorithm design for the
guarding problem on higher dimensional terrains.

A 1.5D terrain T is an z-monotone polygonal chain
consists of n vertices v; € R2, for ¢ = 1,2,...,n and
n—1edges e, = Tv;41 fore =1,2,...,n—1. T is
called an orthogonal terrain if all its edges are either
horizontal or vertical, and there are no two consecutive
horizontal /vertical edges. For two vertices p,q € T, we
say p is left of ¢, denoted as p < ¢, if p.x < g.x. The
vertices of T are indexed from left to right, so v; 11 £ v;.
For p,q € T, p can see q if the line segment pq is never
strictly below the terrain T'.

Given a terrain T, a guarding candidate set G C T
and a witness set W C T, terrain guarding prob-
lem TGP(G,W) is to find the minimum guarding set
G* C @G such that each point in W is seen by at
least one point in G*. For orthogonal terrains, we re-
fer to this problem as OTGP. Here, we focus on solving
OTGP(V(T),V(T)) where both the guarding candidate
set and the witness set are the vertices of the terrain,
ie, G=W =V(T).

*Dept. of Computer & Info. Sci. & Eng., University of Florida,
{yangdi, ungor}@cise.ufl.edu

Alper Ungor*

1.1 Related Work

The terrain guarding problem is closely related to the
well known Art Gallery Problem [12] of finding the min-
imum set of positions to guard a polygon. The first re-
sult was obtained by Chvétal: |%]| guards are always
sufficient and sometimes necessary to guard a polygon
of n vertices. Art Gallery Problem was shown to be
NP-hard: on simple polygons [10], on simple orthogonal
polygons [13], and on monotone polygons [9]. Moreover,
it was shown to be APX-hard on simple polygons [3].

Terrain Guarding Problem for general 1.5D terrains
is shown to be NP-hard by a reduction from PLANAR
3sAT [8]. Ben-Moshe et al. [1] gave the first O(1)-
approximation algorithm. Elbassioni et al. [4] gave an
improvement by showing that LP rounding results in
a 4-approximation for TGP(G,W) if GNW = (a 5-
approximation otherwise). A local search based PTAS
is also proposed for TGP [5, 6].

For orthogonal terrains, Katz and Roisman [7] gave a
2-approximation algorithm that runs in O(n?) time, by
computing a minimum clique cover in chordal graphs.
Recently, Durocher et al. [2] and Mehrabi [14] stud-
ied the orthogonal terrain guarding problem under di-
rected wvisibility where two vertices u,v are considered
to see each other only if the interior of the segment uw
is strictly above the terrain. Under this restricted def-
inition, no reflex vertex of the input terrain T' can see
convex vertices both on its left and right side. This
property simplifies the problem, and leads to a linear
time greedy exact algorithm. Under standard visibility,
Durocher et al. [2] also observed that the hardness result
for TGP in [8] does not apply for orthogonal terrains,
leaving the complexity of OTGP open.

1.2 Our Contribution

The local search based PTAS can be used for approxi-
mation of orthogonal terrain guarding problem, but the
running time makes it cumbersome for practical use.
It takes n@@/<) time to achieve O(1 + €) approxima-
tion, where « is a suitably large constant [6]. Katz and
Roisman [7] subdivided the orthogonal terrain guarding
problem into two sub-problems and reduce each problem
to the problem of computing a minimum clique cover
in chordal graphs, where computing the chordal graph
takes O(n?) time. Our algorithm borrows the idea of
subdividing the problem into two problems, but avoids

161

28" Canadian Conference on Computational Geometry, 2016

computing the chordal graph to reduce the running time
and achieve the same approximation factor.

2 Preliminaries

An input terrain is standard if it begins and ends with
vertical edges.

2.1 Standardization

In this section, we will show how to transform an input
terrain which begins and ends with horizontal edges to
a standard terrain. For other terrains, it is similar.

First we extend the terrain by adding two edges. Let
the leftmost vertex be u, and the rightmost vertex be v.
We add two vertical edges uw’ and vv’ with infinitesimal
length to both of them. Each newly added vertex is the
upper endpoint of its new edge. Let the extended terrain
be T'. We have V(T") = V(T) U {u/,v'}.

(a) (b)

Figure 1: (a) the vertex next to v is a convex vertex (p).
(b) the vertex next to v is a reflex vertex (w). If v’ is a
guard, we can replace v/ with w.

Lemma 1 The cardinality of the optimal solution for
OTGP(V(T),V(T)) is the same as the cardinality of
the optimal solution for OTGP(V(T"),V(T")), and we
can easily transform from the solution of the latter to
the solution of the former.

Proof. Let G be an optimal solution for
OTGP(V(T),V(T)), G’ be an optimal solution
for OTGP(V(T"),V(T")). Suppose g € G can see u, ¢
can also see u/, so v’ is seen by G. Similarly, v is also
seen by G. G C V(T) Cc V(T"), we have G is a solution
for OTGP(V(T"),V(T")). |G'| < |G].

If neither of 4 and ¢ is in G’, then G’ C
V(T) and G’ can see V(T), so G’ is a solution for
OTGP(V(T),V(T)). |G| < |G']. If v" € G’, there are
two cases depending on the vertex next to v. If the ver-
tex next to v is a left convex vertex as in Figure la. v’
can only see p, w and v, so we can replace v’ with w.
It is easy to see that w is not in G’, otherwise we get a
better solution than G’ for OTGP(V(T”),V(T")), it is a
contradiction. Similarly we can find a replacement for
v’ when the vertex next to v is a reflex vertex, see Fig-
ure 1b. We can also find a replacement for v’ if v’ € G’
symmetrically . Suppose we get an optimal solution G”

for OTGP(V(T"),V(T")) after replacements. It is easy
to see that G” C V(T) and G” can see V(T), so G" is
an solution for OTGP(V(T),V(T)). |G| < |G"| = |G'|.

Thus we have |G| = |G’|, and we have also shown how

to transform from G’ to G.
O

From now on, we will assume that the input terrain
is standard.

2.2 Definitions

V(T) is split into two disjoint subsets as reflex vertices
V.(T) and convex vertices V.(T). Walking along the
orthogonal terrain T from left to right, a vertex v is
convez(reflex) if we turn left(right) at v. Each subset is
further split into two subsets depending on whether a
vertex is on the left or on the right side of its incident
horizontal edge. Specifically, walking along T from left
to right, a vertex v is left(right) if we walk from a verti-
cal(horizontal) edge to a horizontal(vertical) edge at v.
So, V(T) is split into four disjoint subsets: left reflex
vertices V;,.(T), right reflex vertices V;..(T'), left convex
vertices Vi.(T), and right convex vertices V,..(T'), see
Figure 2. The first and the last vertices of T" can also be
labelled simply by considering dummy horizontal edges
incident to them.

For each v € V,(T), upper vertex of v, U(v) € V,.(T)
is the reflex vertex that shares a common vertical edge
with v, see Figure 2. As T begins and ends with vertical
edges, U(v) for each convex vertex v is well defined.

For each v € Vi.(T), right horizon of v, R(v) € V;.(T)
is the rightmost reflex vertex that can see v, see Figure 2.
This definition is similar to that of R(v) by Durocher et
al. [2] except that a left convex vertex cannot be seen
by right reflex vertices under directed visibility but it
can be seen by them under standard visibility.

Figure 2: Vio(T) = {va, v4, v10,v12}, Vie(T) = {vs,v7},
Vir(T) = {ve, vs}, Vir(T) = {v1,v3,v9,v11}

The following definition adopted from Hurtado et al.
[11] will be key part of the sweepline algorithm pre-
sented in the next section that sweeps the terrain from
right to left.

Definition 1 [11] Given a reflex vertez p; and a vertex
v € T, the ray with origin p; and vectorm 1s called
a shadow ray if: (i) p; sees vk; (ii) p; does not see the
points of T immediately to the left of vy.

162

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

For each shadow ray m , U is called the obstacle of
Di, 0bs(p;). By definition, there may be multiple shadow
rays for each vertex p, corresponding to different obsta-
cles. Our sweepline algorithm relies on the following
definition to identify a unique shadow ray (and its ob-
stacle). The shadow ray of p with respect to the sweep
line at event w, sry,(p), is defined as the highest shadow
ray of p whose obstacle is to the right of the sweep line
at event w, see Figure 3. In the following sections, a
shadow ray of p refers to the shadow ray of p with re-
spect to the current sweep line. If two shadow rays,
p_ﬁ and (ﬁ, intersect and the intersection is not p or g,
we define this intersection as an interior intersection of
these two shadow rays. In our algorithm, lower envelope
of shadow rays is maintained to extract some essential
visibility information efficiently.

Figure 3: The shadow rays of a, b and ¢ with respect to
sweep line w. Obstacles are denoted by empty circles.

2.3 Properties of Orthogonal Terrains

The following claim called the order claim was proved by
Ben-Moshe et al. [1], and holds in 1.5D general terrains.

Lemma 2 [1] Let p < ¢ < r < s be four points on
terrain T. If p sees T, and q sees s, then p sees s.

The following claims were proved by Katz and Roisman
[7] for orthogonal terrains.

Lemma 3 [7] Let T be an orthogonal terrain and v €
Vie(T). If a point p in T can see v, then p £ v.

Lemma 4 [7] If a set G of points on orthogonal terrain
T guards a subset V' C V.(T), then there exists a subset
G' CV.(T), such that G’ guards V' and |G'| < |G|.

Lemma 5 [7] If G C V(T) guards all the conver ver-
tices of an orthogonal terrain T (i.e., G guards the set
Ve(T)), then G guards all the vertices of T.

3 Approximation Algorithm

Given an orthogonal terrain T, our algorithm computes
a subset of V(T) that can guard all vertices of T', and we
prove that the output of our algorithm is at most twice
the size of the optimal solution for OTGP(V(T), V(T)).

By Lemmas 4 and 5, our problem can be reduced to
OTGP(V,(T),V,(T)) [7]. Let G* C V,.(T) be an op-
timal solution for OTGP(V,.(T), V.(T)), G* can guard
all convex vertices. So, of course, G* can guard all left
convex vertices, i.e., G* has at least the same size as the
optimal solution for OTGP(V,.(T"), Vic(T)). The same is
true for V,..(T), the right convex vertices.

Our algorithm first computes the optimal solutions
for OTGP(V,(T),Vie(T)) and OTGP(V,(T), Vy.(T)),
then take the union of these two sets. Our solution
can guard all convex vertices, and has the size at most
twice as G*, which means it is a 2-approximation.

In the following sections, we will present a sweep
line algorithm that computes the optimal solution for
OTGP(V,(T),Vi(T)). The right convex vertices part
is symmetric.

3.1 Data Structures

Our algorithm sweeps the terrain from right to left and
puts each left convex vertex u into an associated list of a
unique reflex vertex v, called L(v). When the algorithm
terminates, the set of all vertices with non-empty asso-
ciated lists forms the solution, with each reflex vertex
responsible to guard all left convex vertices in its asso-
ciated list. In addition to the associated lists, following
data structures are used:

(1) A modified stack MS to store a set of all reflex
vertices each with a non-empty associated list that can
potentially guard more left convex vertices beyond the
sweep line. In addition to the standard stack opera-
tions (Top, Pop, Push), this modified data structure
also supports deletion from any place in the stack given
a pointer to that element. Along with each vertex in
MS, we also dynamically maintain its obstacle which
defines the unique shadow ray with respect to the cur-
rent sweep line.

(2) A heap, H, to maintain the interior intersections
of shadow rays of vertices adjacent in MS.

(3) An event queue £Q that consists of two com-
ponents, a list £Qr to keep all vertices of T, and a
pointer £Q; for H. Next event is the rightmost ver-
tex/intersection from £Qr and £Q;. After handling an
event, we delete it from the corresponding component
of the queue.

(4) A standard stack, UHS, to store the upper chain
of the convex hull (upper hull for short) used for com-
puting right horizons R(v).

For each vertex v in MS, we keep two pointers for the
shadow ray intersections with its two neighbors. Point-
ers corresponding to missing neighbors/intersections are
set to null. Symmetrically, for each intersection in H,
we use two pointers to reach the origins of the corre-
sponding shadow rays in MS.

163

28" Canadian Conference on Computational Geometry, 2016

3.2 Computing Right Horizons

To compute R(v), the rightmost vertex visible from a
left convex vertex v, we use the sweep line algorithm for
computing the upper hull of a point set.

Lemma 6 Let v be a left convexr vertex. If v is the
rightmost vertex on terrain T, R(v) = U(v). Otherwise,
R(v) is the vertex right next to v on the upper hull of
all vertices to the right of v together with v.

Proof. If v is the rightmost vertex, it is easy to see
that U(v) is the rightmost reflex vertex that can see v,
i.e., R(v) = U(v). Otherwise, v is always on the upper
hull of the considered vertices since it is the leftmost
one. There must be some vertex to the right of v on
the upper hull, because the rightmost vertex is always
on the upper hull. Let p be the vertex next to v on the
upper hull, so vp is nowhere below the terrain, i.e., p can
see v. For any vertex ¢ to the right of p, as a property
of upper hull, we have p higher than gu, which means ¢
cannot see v. So R(v) = p. O

With the upper hull of the swept vertices maintained
in UHS, R(v) of a vertex v on the sweep line can be
found in constant time. Since T is x-monotone, UHS
can be maintained in linear time in total over all events.

3.3 Sweep Line Algorithm

Our algorithm which sweeps the terrain from right to
left is depicted below. Handling of each event consists
of updates on the relevant data structures, described
below after Observation 1 which motivates the first step
in handling a right reflex vertex event.

Algorithm 1 TERRAIN-SWEEPING

Initialize H, MS and all L(v) to be empty
Initialize £Q using T and H
while £Qr # () do
Let v be next event in £
if v € V(T) then
Update UHS
Handle the vertex v
else
Handle the intersection v
end if
: end while

Return {g | L(g) # 0}

_ =
Mo

Observation 1 A right reflex vertex can see at least
one left convex vertex which is right below it, and at
most two left convex vertices.

1. Left convex vertex v (Line 7):

(i) Repeatedly Pop(MS), until Top(MS) can see
v or Top(MS) is to the right of R(v).

(ii) If Top(MS) sees v, add v to L(Top(MS)).
Otherwise, Push R(v) to MS, add v to L(R(v)),
and set obs(R(v)) be v, see Figure 4a. R(v)v is
called a dummy shadow ray.

2. Right convex vertex v (Line 7): the only update
is to UHS (in Line 6), so nothing to be done in
Line 7.

3. Left reflex vertex v (Line 7):

(i) Repeatedly Pop(MS) until Top(MS) cannot
see v. Push back the last popped vertex that can
see v, and update its obstacle to be v, see Figure 4b.

(ii) Whenever deleting a vertex from MS, remove
its corresponding intersections from H. For the ver-
tex that is pushed to MS, insert the shadow ray
intersection with its neighbor to H and set the cor-
responding pointers.

4. Right reflex vertex v (Line 7):

(i) Let u=Top(MS). Iteratively Pop(MS) if
Top(MS) is lower than v. If u is lower than v and
there is only one vertex p in L(u), delete p from
L(u), add p to L(v), and push v to MS, see Fig-
ure 4c. To correctly compute the intersections in-
troduced by the new vertex v in MS, we set 0bs(v)
one step ahead to be the vertex who shares the
same horizontal edge with v.

(ii) Delete all vertices in MS that can see v except
for the rightmost one.

(iii) Update intersections in H as in 3(ii).

5. Intersection v (Line 9):

(i) If intersection v is above terrain T, delete all
vertices from MS, whose shadow rays are incident
in v, except for the rightmost one, see Figure 4d.

(i) Update the intersections and pointers as in 3(ii)

3.4 Correctness

We say a stack satisfies left to right order if the vertices
in the stack from top to bottom are ordered from left
to right on the terrain. We say a stack satisfies lower
to higher order if the vertices in the stack from top to
bottom are ordered from lower to higher on the terrain.
If the stack satisfies both left to right order and lower
to higher order, we say the stack is in order.

Lemma 7 MS is always in order throughout Algo-
rithm 1. The slope of each shadow ray is mever neg-
ative, i.e., for each vertexr u in MS, obs(u) is never
higher than u.

164

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

obxa) a

(a)

(d)

Figure 4: (a) v € Vj.(T): remove reflex vertices from
MS that are to the left of R(v) and cannot see v, and
add dummy shadow ray. (b) v € V,.(T): remove all
vertices from MS that can see v except the rightmost
one. (c) v € V,..(T): delete all vertices that are lower
than v. If L(d) contains only one vertex, push v. (d)
Intersection v: delete all vertices whose shadow rays are
incident in v except the rightmost one.

Proof. (By induction.) Initially, MS is empty. So the
base case is trivial. Suppose before sweeping to event v,
MS is in order and obs(u) is no higher than u for each
u in MS.

(1) If v is a left convex vertex, there are two cases.
(i) If there exists any vertex in MS that can see v, we
only pop vertices from MS, so it is still in order. (ii) If
no vertex can see v, all vertices to the left of R(v) are
deleted, and R(v) is pushed into MS. So, the left to
right order is maintained. Next, we need to prove that
all remaining vertices in MS are no lower than R(v).
Suppose there exists such vertex u in MS that is lower
than R(v). Then a walk from R(v) to u on the terrain
must go down a right reflex vertex w that is higher than
u. It is easy to see that uw cannot see any left convex
vertex between R(v) and w, so it must have been pushed
to MS before the sweep line reached w. However, when
the sweep line arrives at w, u is deleted from MS as it
is lower than w as case (4) shows. It is a contradiction.
So all the other vertices are higher than R(v). Also it is

easy to see that the slope of dummy shadow ray R(v)v
is positive.

(2) If v is a right convex vertex, the only operation is
updating the upper hull, MS remains the same.

(3) If v is a left reflex vertex, we delete some vertices
from MS and update the obstacle of a vertex p to be
v. As p can see v and v is a left reflex vertex, v is no
lower than p.

(4) If v is a right reflex vertex, as MS is in order
by induction, step 4(i) ensures all the vertices that are

lower than v are deleted. Then if we push v back to
MS, it is in order. Our newly introduced shadow ray is
horizontal and the remaining operations are deletions.

(5) If v is an intersection, we only delete some vertices
from MS.

Other than these events, MS will not change. So we
can conclude that MS is always in order and the slope
of each shadow ray is never negative. O

As a result of this lemma along with the definition of
shadow ray, we can see that the obstacles can only be
left reflex vertices except for the dummy shadow rays.

Lemma 8 For each vertezx v in MS, v and obs(v)
correctly define sr.,(v) where w is the current event.
Shadow rays of vertices in MS have no pairwise inte-
rior intersections to the right of w, and are ordered from
lower to higher corresponding to the order of their ori-
gins in MS, with the lowest shadow ray corresponding

to Top(MS).

Proof. (By induction.) Initially, MS is empty, hence
the base case is trivial. Suppose before dealing with
event w the claim holds.

(1) w is a left convex vertex: The shadow rays remain
the same if the lowest shadow ray can see w. Otherwise,
the vertices lower than R(w) are deleted, and R(w) is
pushed into MS with obs(R(w)) = w. Let u be the
vertex next to Top(MS). By definition, sr,(u) should
be no lower than R(w). u cannot see w as it is to the
right of R(w), i.e., sry,(u) is higher than w. So, sry,(u)

is higher than R(w)w and no interior intersection is in-
troduced to the right of w. The lemma holds.

(2) w is a right convex vertex: The shadow rays re-
main the same.

(3) w is a left reflex vertex: It is the only place we
may need to update obstacles to keep the shadow rays
correct. As the shadow rays are in order from lower
to higher, all the vertices that can see w are near the
top of MS and are consecutive. So, our algorithm cor-
rectly finds all shadow rays that need to be updated.
We delete all of them except the highest shadow ray
which correspond to the rightmost vertex v in MS that
is visible from w, then update sr,,(v). Similar to the
arguments in case (1), sr,(v) is lower than the shadow
rays of all vertices in MS.

(4) w is a right reflex vertex: The only place to push
a vertex to MS is the first step and it can only push w.
Suppose w is pushed into MS. In the second step, if w
is higher than the shadow ray of p to its right in MS,
we will delete w from MS. Otherwise the shadow ray
of w is also lower than the shadow rays of all the other
vertices in MS.

(5) w is an intersection: Under the induction assump-
tion, the rightmost intersection appears between shadow
rays of adjacent vertices in MS. The way we maintain

165

28" Canadian Conference on Computational Geometry, 2016

‘H ensures w as the rightmost intersection. All shadow
rays incident in w are deleted except one, so w disap-
pears. U

We say a point p € V,.(T) dominates point g € V,.(T),
if p can see every point v € Vj.(T) to the left of the
sweep line that is visible by g.

Lemma 9 All vertices deleted from MS are either
dominated by some verter in MS at the end of cur-
rent iteration, or cannot see any left convexr vertex to
the left of current sweep line.

Proof. Consider five types of event v:

(1) v is a left convex vertex: We prove that all deleted
vertices are dominated by the vertex whose associated
list contains v at the end of current iteration. Let this
vertex be p. As MS is in order, any deleted vertex w is
to the left of p and to the right of v. Suppose u can see g
to the left of the sweep line. So we have ¢ < v < u < p,
q can see u, and v can see p. According to Lemma 2, ¢
can see p; hence, p dominates u.

(2) v is a right convex vertex: No vertex is deleted.

(3) v is a left reflex vertex: Let p be the rightmost
vertex in MS that can see v. We prove that all deleted
vertices are dominated by p. Any deleted vertex u must
see v. Hence, v < u < p. Using a proof similar to case
(1) and Lemma 2, we conclude that p dominates u.

(4) v is a right reflex vertex: All vertices deleted in
the first step are lower than v, so they cannot see any
left convex vertex to the left of the sweep line. Similar
to case (3), all vertices deleted in the second step are
dominated by the rightmost one in MS that can see v.

(5) v is an intersection: We prove that all deleted ver-
tices are dominated by the rightmost vertex p in MS
whose shadow ray crosses v. As MS is in order, any
deleted vertex u is lower than and to the left of p. Sup-
pose u can see g to the left of the sweep line, i.e., ¢ < v.
Segment gu is nowhere below the terrain T and inter-
sects segment Up in its interior. So gp is nowhere below
the terrain 7', which means p can see ¢, see Figure 5. [

obs a)

Figure 5: intersection v: u is dominated by p.

Applying Lemma 9, we can get the following corollary.

Corollary 10 For any v € Vi.(T'), if v is seen by some
vertex in MS before the sweep line reaches v, then v is

seen by some vertex in MS when the sweep line arrives
at v.

Let our solution be set G, so we have for each g € G,
L(g) is not empty.

Lemma 11 For each left convex vertex v, there is a
unique g € G such that v € L(g).

Proof. Before the sweep reaches v, v is not added to the
list of any vertex. When the sweep line arrives at v, v is
added to some list L(u). After that, the only operation
that may change the list containing v is the first step
in handling a right reflex vertex. If L(u) contains some
vertex other than v, v will be in L(w) till the end of the
algorithm. If L(u) contains only v, when w is popped in
the first step of handling right reflex vertex w, v will be
deleted from L(u) and added to L(w), then it will never
change. In either case, when the algorithm terminates,
there is a unique g € G such that v € L(g). O

Optimality of G will be based on the following set
definition also appearing in [2]. Let F' = {v|v is the first
left convex vertex in L(g), for each g € G}. Observe
that the sizes of the sets of F' and G are the same, i.e.,
|F| = |G|. Moreover, for any vertex v € F, we know
that when the sweep line arrives at v, there is no vertex
in MS that can see v. A lemma similar to the following
is given in [2] except that their definition of visibility
allows only left reflex vertices to see left convex vertices,
stated as case 1 here.

Lemma 12 For any two vertices u,v € F', there are no
reflex vertices that can see both of them.

Proof. To prove by contradiction, suppose w is a reflex
vertex that can see both uw,v € F. Without loss of
generality, let u < v, so we visit v first. Then we prove
that there exists some vertex in MS that can see u
before the sweep line reaches u.

Case 1: w is a left reflex vertex: We have u < v < w.
By definition of R(v), w < R(v). Using Lemma 2, R(v)
can see u. When we visit v, we add R(v) to MS.

Case 2: w is a right reflex vertex: w should be U(v).
It is easy to see that R(v) is Top(MS) when the sweep
line arrives at w. If R(v) is higher than U(v), R(v)u is
nowhere below the terrain T', R(v) can see u. Otherwise,
R(v) is popped in the first step as it is lower than w,
and w is pushed into MS as L(R(v)) contains only v.

In either case there exists some vertex in MS that can
see u before the sweep line reaches u. By Corollary 10,
there exists some vertex in MS when the sweep line
arrives at u, which contradicts that u € F. U

Lemma 11 implies that the optimal solution of
OTGP(V,(T),Vi.(T)) has at least |F| reflex vertices.
Our solution can see all left convex vertices and has
size |G| = |F|. So we have the following result.

166

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Lemma 13 Algorithm 1 computes the optimal solution

for OTGP(V,(T), Vi, (T)).

Symmetrically we can compute the optimal solution for
OTGP(V.(T), V,(T)), leading to a 2-approximation al-
gorithm for the OTGP(V(T'), V(T)).

3.5 Running Time

Let k be the size of MS, and t be the number of vertices
with non-empty lists outside MS. It is easy to see that
the summation of k and ¢ never decreases and eventually
it will be m, where m is the output size. As the number
of intersections of shadow rays of adjacent vertices in
MS is less than k, the size of H is O(m). Note that ¢
is increased by at least 1 when handling each intersec-
tion. Thus there are O(m) intersection events. Then
we analyse the running time associated with each data
structure.

(1) UHS. Maintenance of upper hull takes O(n) total
time.

(2) MS. The running time is proportional to the cost
of stack insertions and deletions. Each deleted vertex
when handling right reflex vertex v is lower than v and
all the other deleted vertices are dominated by some
vertex in MS by Lemma 9. So, the deleted vertices
cannot be inserted again in future iterations, i.e., there
are at most n insertions and n deletions. The total
running time is O(n).

(3) H and £Q. There are four cases. (i) Get the
next event. If the next event is from £Qr, it takes
constant time and there are n such events, so it takes
O(n) time in total; if next event is from £Qy, it takes
O(logm) time and there are O(m) intersections, so it
takes O(mlogm) in total. (ii) Insert vertices into MS.
There are O(n) insertions and constant number of new
intersections with each insertion, so the time complexity
is O(nlogm) in total. (iii) Delete vertices from MS.
Similar to case (ii). (iv) Update obstacles. We need to
update at most one obstacle at any left reflex vertex,
along with two deletions and one insertion with H. As
there are O(n) left reflex vertices, the total running time
is O(nlogm).

Overall, the running time is O(nlogm).

References

[1] B. Ben-Moshe, M.J. Katz, and J.S.B. Mitchell. A
constant—factor approximation algorithm for optimal
1.5D terrain guarding. SIAM Journal on Computing,
36(6):1631-1647, 2007.

[2] S. Durocher, P.C. Li, and S. Mehrabi. Guarding or-
thogonal terrains. In Proc. of 27th Canadian Conf. on
Comp. Geometry, 220227, 2015.

[3] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapprox-

imability results for guarding polygons and terrains. Al-
gorithmica, 31:79-113, 2001.

[4] K. Elbassioni, E. Krohn, D. Matijevié, J. Mestre, and
D. Severdija. Improved approximations for guarding
1.5-D terrains. Algorithmica, 60:451-463, 2011.

[5] S. Friedrichs, M. Hemmer, and C. Schmidt. A PTAS
for the continuous 1.5D terrain guarding problem. In
Proc. of 26th CCCG, 367-373, 2014.

[6] M. Gibson, G. Kanade, E. Krohn, and K.Varadarajan.
An Approximation Scheme for Terrain Guarding.
Proc. APPROX, Springer-LNCS:5687, 140-148, 2009.

[7] M. J. Katz and G. S. Roisman. On guarding the ver-
tices of rectilinear domains. Computational Geometry,
39(3):219 — 228, 2008.

[8] J. King and E. Krohn. Terrain guarding is NP-hard.
SIAM Journal on Computing, 40(5):1316-1339, 2011.

[9] E. A. Krohn and B. J. Nilsson. Approximate guarding
of monotone and rectilinear polygons. Algorithmica,
66(3):564-594, 2013.

[10] D. Lee and A. Lin. Computational complexity of art
gallery problems. IEEE Transactions on Information
Theory, 32(2):276-282, 1986.

[11] F. Hurtado, M. Loffler, I. Matos, V. Sacristén,
M. Saumell, R. I. Silveira, and F. Staals. Terrain vis-
ibility with multiple viewpoints. International Journal
of Computational Geometry & Applications, 24(4):275—
306, 2014.

[12] J. O’'Rourke. Art Gallery Theorems and Algorithms.
Oxford Univ. Press, New York, NY, USA, 1987.

[13] D. Schuchardt and H.-D. Hecker. Two NP-hard art-
gallery problems for ortho-polygons. Mathematical
Logic Quarterly, 41(2):261-267, 1995.

[14] S. Mehrabi. Guarding the Vertices of an

Orthogonal Terrain using Vertex Guards.
http://arxiv.org/abs/1512.08292, 2015.

167

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

An lterative Refinement Scheme of Dominating Guards and Witnesses for
Art Gallery Problems

Eyiip Serdar Ayaz!

Abstract

The art gallery problem asks to find a smallest set of
guards in a polygon such that every point in the polygon
is visible by a guard. This problem can be formulated
as an instance of the well-known set cover problem and
also its dual the hitting set problem. We present an iter-
ative refinement scheme based on this dual formulation.
Two of the main ingredients of this scheme are the wit-
ness sets and the dominating guard sets. Here, we ex-
tend some recent results and algorithms for computing
minimal witness sets to those for computing dominat-
ing guard sets. In particular, an O(n®) time algorithm
is presented for computing dominating guard sets.

1 Introduction

The Art Gallery Problem (AGP) is one of the best
known geometric algorithms problem with many appli-
cations, e.g., security, surveillance, sensor networks, and
architectural design. It was originally proposed by Klee
to Chvétal in 1973 as a challenge to find the point lo-
cations of a minimum number of guards such that each
point in the wall of an art gallery is seen by at least
one guard [13]. In general, however, the gallery in-
terior needs to be guarded too. Chvatal has proven
that [n/3| guards are always sufficient and occasionally
necessary on simple polygons with n vertices for the
generic version which also holds for the original prob-
lem [6]. Later Fisk has simplified the proof with an ele-
gant triangulation and 3-coloring scheme [10]. Both the
original [17] and the generic [18] versions of art gallery
problem are proven to be NP-hard. Note that it is not
known whether these problems are in NP or not, since
the guard positions are not known to be represented
polynomial length over the input size. It is clear that a
set of points that guards the interior of a polygon can
also guard its boundary, but the reverse proposition is
not true. In fact, the number of guards in the opti-
mum solution for these two version can differ. Over the
years, many different versions of the art gallery problem
have been studied, such as the terrain guarding, guard-
ing with mobile guards, and gallery domains with holes
or in high dimensions [19,21].

*CISE Department, University of Florida, Gainesville

[ayaz,ungor]@cise.ufl.edu

Alper Ungor*

There is strong similarity between the set cover prob-
lem (SCP), its dual the hitting set problem (HSP) and
AGP. We can reduce the art gallery problem to either of
them by defining the points in a polygon as the universal
set and the visibility polygons of those points as the col-
lection of sets in a set system. For discrete set systems,
while both the set cover and the hitting set problems are
NP-complete [15], they admit a greedy approximation
algorithm [7]. The discretization of the set system for
AGP is a viable method that can take advantage of the
approximation algorithms designed for SCP and HSP.
In fact, to the best of our knowledge, all known approx-
imation algorithms for the generic art gallery problem
are based on its formulation as SCP or HSP [12].

In the set cover problem formulation, instead of all
the sets given in a set system, we can consider only the
sets that are not proper subsets of other sets. Similarly,
in the hitting set problem formulation, considering to
hit only the sets that have no proper subset in the set
system is sufficient to hit all the sets. However, the
number of possible guards is uncountably many and so
is the number of their visibility polygons. Moreover,
checking the inclusion relation between two sets takes
O(min(n,m)) time where n and m are the number ele-
ments in the sets. Here, we exploit the geometric prop-
erties of visibility polygons of points in a simple polygon
to find the inclusion minimal and maximal of sets.

A witness set W of a polygon P is defined as a set
such that any set G that guards W also guards P [8].
The minimal witness sets correspond to inclusion min-
imal visibility sets for polygons. Chwa et al. [8] have
presented an algorithm that calculates a minimal wit-
ness set when a polygon admits witness sets with finitely
many points. Unfortunately, very few polygons have
witness sets consisting of finitely many points. Later, an
O(n*) algorithm is presented to find a (near)-minimal
witness set (of points, line segments and interior re-
gions) for a simple polygon [1].

In this paper, we formulate a dual version of the
witnessability concept based on the inclusion relations
of visibility sets called dominating guards. Previously
domination concept for visibility polygons have been
studied on discrete art gallery problems [2,20] (as dom-
inant regions and light atomic visibility polygons re-
spectively) and watchman tours [3,5]. However, we are
not aware of any previous study on dominating guards

168

28" Canadian Conference on Computational Geometry, 2016

where the possible guard positions are not limited to
be finite. Here we define the same concept on infinitely
many points and their corresponding visibility polygons.
We propose an algorithm to find a dominating guards
set in O(n®) time. Then, we use both witness sets and
dominating guard sets to define an iterative refinement
scheme for the art gallery problem.

The organization of the paper is as follows. In section
2, we review the witnessing concept and model the art
gallery problem. In section 3, we propose an algorithm
to find the dominating guards. In section 4, we extend
the dominating guard concepts with specified input. In
section 5, we outline our refinement scheme.

2 Preliminaries

The input for the art gallery problem is a simple polygon
P C R? with n vertices. We assume that no three ver-
tices are co-linear for the sake of simplicity. Let int(P),
and 0P denote the interior and the boundary of P, re-
spectively. P = int(P) U 9, so when we say a point
p is in P, that means p is either in int(P) or on JOP.
It is straight-forward to come up with an O(n)-time
algorithm to find an optimal solution for AGP on star-
shaped polygons, so we assume P is not star-shaped for
the rest of the paper. Two points p,q € P see each
other if the whole line segment pq is in P. If a point p
in P sees a reflex vertex v of P and the ray pt continues
in P after hitting v then p sees past v. For an edge e
of P, the closure of the half-plane defined by ¢’ on the
same side as P at the immediate neighborhood of e is
denoted as [°(e). For two points p,v € P such that p
sees past v, the closure of the half-plane defined by bt
on the same side as P at the immediate neighborhood
of v is denoted as [°(p,v).

The set of points in P that can be seen from a point
p € P is called the wisibility polygon of p, denoted as
V(p). The set of points that sees all the points in a
polygon is called the kernel of P. The set of points that
can see every point in V(p) is called the wvisibility kernel
of p denoted as VK(p) (See Figure 1). In fact VK(p)
is the kernel of V(p). Any point that sees p also sees
VK(p) [8].

Let p be a point on P. E(p) denotes the set of edges
of P of which p sees at least one interior point. R(p)
denotes the set of reflex vertices of P that are seen past
from p. Then, as proven by Chwa et al. [8] VK(p) can
be computed as the intersection of O(n) half-planes:

VK(p) = m (p,v) N ﬂ 1°(e) (1)
veR(p) e€E(p)
2.1 Witness sets

A finite set of objects W C P is defined as a witness set
if, for any set of guards G in P, W C {J . V(g) implies

Figure 1: V(p) is the dark and light shaded areas. VK (p)
is the dark shaded area. p sees past all the reflex vertices
in this case.

UgeG V(g) = P, i.e., if G guards W then G also guards
P.

Theorem 1 (Chwa et. al. [8]) A point set W is a
witness set for a polygon P if and only if Upew VK(p) =
P. Also the following statements are equivalent for
p,q € P:

(i) p witnesses q; (i) ¢ € VK(p); (iii) VK(q) € VK(p).

A witness set W for P is said to be minimal if there
exist no proper subset of W that witnesses P. If there
exists a minimal witness set for P, then P is a minimal-
izable polygon. Recently, a characterization of witness
sets for simple polygons is given in [1]. Their algorithm
finds a minimal witness sets for minimalizable poly-
gons. For polygons that are not minimalizable, their
algorithm finds a witness set called near-minimal wit-
ness set, that has a minimal component of points, line
segments and regions and non-minimal component of
infinitesimially small line segment incident to reflex ver-
tices, called e-witnesses (See Figure 2).

Lemma 2 Let p,q be in P. Then we have:
(i) VK(p) = VK(q) iff V(p) = V(q)
(ii) VK(p) € VK(q) iff V(q) C V(p)

Proof. (i) <: The kernels of V(p) and V(q) are equal
when V(p) and V(q) are equal.

=: p,q € VK(p) = VK(q). Therefore any point that
sees p also sees ¢ and any point that sees ¢ also sees p.

(ii) <= Since V(q) C V(p), any point that sees ¢
also sees p. Therefore p € VK (gq) which means VK (p) C
VK(q). There exists a point in V(p)\V(q), so ¢ ¢ VK(p),
but it has to be in VK(g).

=: p € VK(p), so p € VK(q), which means V(q) C
V(p). If ¢ € VK(p), then VK(p) = VK(q), which is a
contradiction. So ¢ ¢ VIC(p). Then there exist a point
that sees p but not q. [l

169

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 2: Red points lines and regions indicate the wit-
nesses. (Left) polygon is not a minimalizable polygon.
It is necessary to include an infinitesimally small line
segment (e-witness) next to the reflex vertex v. (Right)
polygon is a minimalizable polygon

Minimal witness sets are defined in terms of visibil-
ity kernels of witnesses or visibility polygons of guards
in [1,8]. Using Lemma 2, we can formulate the (near)-
minimal witness sets using visibility polygons of wit-
nesses:

Lemma 3 W is a (near)-minimal witness set for P iff
we have the following properties:

(i) Let p, q be two distinct points in W. Then V(p) can-
not be a subset of V(q) unless p and q are on the same
e-witness.

(ii) Let p be a point in P\ W. Then 3¢ € W such that
V(g) S V(p).

Proof. =: (i) Suppose V(p) € V(q). From Lemma
2, VK(¢) € VK(p), which is a contradiction for the
minimality condition. (ii) Suppose g € W such that
V(q) € V(p). Then, from Lemma 2, we there fig € W
such that p € VK(q) which is a contradiction with The-
orem 1.

<: We need to prove that the witnessing condi-
tion, U,y VK(W) = P and the minimality condition,
Vp,q € W such that p,q are distinct points not on a
same e-witness, we have p ¢ VIK(g). The witnessing
condition is satisfied by (ii) and the minimality condi-
tion is satisfied by (i) using Lemma 2. O

2.2 AGP formulation as SCP and HSP

The art gallery problem can be defined with two pa-
rameters: AGP(X,Y), where X, Y C P, X is the set
of possible guard locations and Y is the set of points
to be guarded [9]. AGP(P,P) is the interior guarding
problem whereas AGP (P, 9P) is the wall guarding.

A pair (U, R) consisting of a universal set U, and a
collection of subsets R such that each element of R is
a subset of U is called a set system. Given a set system
(U,R) and a subset S C U, we define the operation
RMSas{SNX|X e€R}.

Given a set system (U,R), a set cover is a subset C
of R where J .o = U. Set cover problem, denoted

as SCP(U,R), is the quest for finding the cover with
minimum elements.

Given a set system (U, R), a hitting set is a subset H
of U such that for all S € R, SN H # 0. Hitting set
problem, denoted as HSP(U, R), is the quest for finding
the hitting set with minimum elements.

Given a point set S C P, VS(S) represents the col-
lection of the visibility polygons of the points in S, i.e.,
VS(S) ={V(p)lp € S}

Then, AGP(X,Y) can be formulated as instances of
SCP [9] or HSP [16]:

AGP(X,Y) = SCP(Y, VS(X) 1Y) 2)

AGP(X,Y) = HSP(X,VS(Y) M X) (3)

Here, we have a nice symmetry of SCP and HSP, since
every point p in a polygon P has a correspoinding set,
V(p), consisting of fellow points in P. Moreover, visi-
bility is a reflexive relation, i.e., V(p) = V~1(p) where
V~1(p) denotes the set of points in P that sees p. There-
fore we can use the same function, VS(S), to find the
collection of sets corresponding to a subset of points
S C P for both SCP and HSP. For the generic version
of art gallery problem, AGP(P, P), the universal set is
the same for both SCP and HSP and the cardinality
of the universal set is equal to the cardinality of the
number of subsets in the set system. Here, the dual for-
mulation with infinitely many points and sets enables
an iterative refinement for both X and Y.

V(p1)
N

V(p2) V(ps) V(pa)

/1

V(ps) V(ps) V(p7)

Nt

V(ps)

Figure 3: A simple example for the partially ordered set
of visibility polygons where p; € P and V(p;) = V(p;)
means V(p;) C V(p;) for 1 < 4,5 < 8. Inclusion minimal
sets are V(p2), V(p4), V(pr) and V(ps), corresponding to
the witness set {p2,p4,p7,ps}- Inclusion maximal sets
are V(p1) and V(p7), corresponding to the dominating
guard set {p1,p7}.

We exploit the geometric properties of piecewise lin-
ear models to calculate the inclusion minimal and in-
clusion maximal of the poset (VS(P), C). The inclusion
maximal set of (VS(P), C) corresponds to the dominat-
ing guard set and inclusion minimal set of (VS(Y), Q)
corresponds to the witness set. The Visibility polygon
of a point p in a witness set has no proper subset in
VS (P) unless p is on an e-witness. This is an important

170

28" Canadian Conference on Computational Geometry, 2016

property while solving the HSP formulation of AGP,
since hitting the sets that are corresponding to witness
points is sufficient to hit all the sets.

3 Dominating guard sets

A dominating point is a point p € P, where g € P
such that V(p) C V(q) and p # q. The dominating
guard set for P is the all dominating points in P, de-
noted as DG(P). The poset (VS(P),C) is defined on
the set of visibility polygons, hence there is a unique
inclusion maximal set for visibility polygons. But we
define DG(P) using the points in P instead of their visi-
bility polygons which creates redundant elements when
two dominating points have identical visibility polygons.
To get rid of the redundant points in DG(P), we de-
fine minimal dominating guard set (denoted as DG*(P))
as a set of points DG*(P) C DG(P), such that for
all distinct elements p,q € DG*(P), V(p) # V(q) and
VS(DG*(P)) = VS(DG(P)).
Then we have the following property:

Lemma 4 Let p be a point in P\ DG*(P). Then 3q €
DG*(P) such that V(p) C V(q).

Proof. If p € DG(P), then V(p) € VS(DG(P)) =
VS(DG*(P)).

If p ¢ DG(P), then there exists an element p’ € P
such that V(p) C V(p'). If p’ ¢ DG(P), then there exists
an element p” € P such that V(p') C V(p”). We can
iterate this until we reach an element in DG(P), which
can be replaced with another element with an identical
visibility polygon in DG*(P). O

Using DG*(P) we can reduce the number of the sets
in SCP formulation, since any element p of a guard set
is either in DG*(P) or we can replace p with an element
of DG*(P) by Lemma 4.

Figure 4: Subdivision of a polygon P, A(P). v1p3 is of
Type 1, v1p1 and Taps are of Type 2, 1103 and v1p3 are
of Type 3.

We subdivide P into regions in order to calculate
DG*(P). The subdivision is created through an arrange-
ment consisting of three types of line segments:

1. Extensions of the edges at reflex vertices.

2. Extensions of line segments between two reflex ver-
tices that see each other.

3. The line segments between two reflex vertices that
see past each other.

We denote this subdivision as A(P). We call the maxi-
mal contiguous regions that do not include line segments
of the subdivision and 9P as cells of A(P). The inter-
section points of the line segments among themselves
and with P are called the vertices of A(P) and the
open line segments between two vertices of A(P) are
called the edges of A(P). Note that there are at most
O(n*) vertices, edges and cells of A(P). (See Figure 4).

Lemma 5 Let p and q be two points in the same cell
of A(P). Then R(p) = R(q). Similarly, if p and q are
points on the same edge of A(P) we have R(p) = R(q).

Proof. Let p and ¢ are in the same cell. Suppose
R(p) # R(q). Without loss of generality, let r € R(p)
and 7 ¢ R(q). Then either g does not see r or ¢ does
not see past r: If ¢ does not see r, then there exists a
reflex vertex that is seen past by r in the region between
the rays r_ﬁ and @ This puts p and ¢ in different cells,
because there is a Type 2 line segment between them.
If ¢ sees but does not see past r, then there is a Type 1
line segment between them. Contradiction. Same anal-
ysis can be made when p and g are on the same edge of

A(P). O

A
v

Figure 5: Green indicates DG(P) which is equal to
DG*(P) in both left and right polygons.

Lemma 6 A point p is a dominating point iff Yq €
VK(p) we have V(p) = V(q).

Proof. =: Suppose ¢ € VK(p) such that V(p) # V(q).
From Theorem 1, we have VK(¢q) C VK(p) which makes
V(p) C V(q) by Lemma 2. This is a contradiction from
the definition of a dominating point.

171

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

<: Suppose p is not a dominating point. Then there
is a point ¢ such that V(p) C V(¢). It follows that
VK(¢) € VK(p) from Lemma 2 and ¢ € VK(p) from
Theorem 1. This is a contradiction of the statement. O

Lemma 7 Let p be a dominating point in a non-star-
shaped polygon. Then one of the following statements is
correct:

(i) VK() = {p}.

(ii) Let ¢ € VK(p) and q # p. Then p and q are on a
type 3 line segment in A(P). Moreover the endpoints
of that type 3 line segment are the only reflex vertices
either of them see past.

Proof. Let us assume that neither of the cases correct.
Then we have ¢ € VK(p) that is not on a line seg-
ment between two reflex vertices they see past. From
Lemma 6, we have V(p) = V(q), hence R(p) = R(q)
and VK(p) = VK(q). If R(p) = 0, then p is in the ker-
nel of P which is not star-shaped, contradiction. Let
r € R(p) that is not co-linear with p and ¢g. Then either
p & 1°(p,7) or g ¢ I°(p,r) which causes a contradiction
from VK(p) = VK(¢) and (1). O

Lemma 8 If a point in a cell of A(P) is a dominating
point, all points in that cell are also dominating points.

Proof. Let p,q be two points in a cell. Let p be a dom-
inating point. From Lemma 7, VK(p) = {p}. Suppose
that ¢ is not a dominating point. Then VK(q) # {q}.
From (1) and Lemma 5, we have {q} C (,¢p(p) 1°(q,v)

and {p} = N,eprq) (°(p,v). Let r1,m2 € R(p) be the
vertices such that (¢ g, 1°(4,v) = 1°(q,71) N1°(q, 72).
Then {p} C I°(p,m1) NI°(p,r2), since otherwise p and
q will be in different sides of the Type 2 line seg-
ment induced by 7175. Then there exists r3 € R(p)
such that {p} = (p,m1) N I°(p,m2) N I°(p,73). Then
{¢} =1°(¢q,m1)NI(g,m2)NI(g, 73), since otherwise p and
q will be in different sides of the Type 2 line segment
induced by 7173 or Tor3 which is a contradiction. O

Lemma 9 If a point on an edge of A(P) is a dominat-
ing point, all points on that edge are also dominating
points.

Proof. Let p,q be two points on an edge of A(P). Let
p be a dominating point. If VK(p) = {p} we can make
a similar analysis as the proof of Lemma 8.

Assume that VK(p) # {p}. Then from Lemma 7, p, ¢
on a Type 3 line segment and |R(p)| = 2. Let R(p) =
R(q) = {r1,m2}. From (1), we have VK(p) C 7173.
Since p and ¢ are on the same edge of A(P), they see
the same edges of P of which extension can intersect
7173. Therefore VK(p) = VK(q) from (1). O

We first calculate A(P) in O(n*) time using the algo-
rithm described in [4]. We can calculate the visibil-
ity polygon of a point in O(n) time using the algo-
rithm in [14]. Then, for each cell, we check whether

VK(p) = {p} for an arbitrary point in that cell. If so,
the whole cell is in DG*(P) by Lemma 8. The same test
can be made for type 1 and 2 line segments and dP. For
type 3 line segments, check whether a point p in the edge
VK(p) = {p} or VK(p) = 7173 where R(p) = {r1,r2}. If
VK(p) = {p}, all points on the edge are in DG*(P). If
VK (p) = 7173, then all points on the edge are in DG(P),
but only an arbitrary point is in DG*(P). Since there
are O(n*) for each of them, the total time complexity of
calculating a minimal dominating guard set takes O(n®)
time.

4 Dominating guard sets for parametrized AGP

In the previous section, we find the minimal dominat-
ing guard set for AGP(P, P). We can use the algorithm
given in [1] to find the (near-)minimal witness set W
which can further refine the dominating guard set (See
Figure 5 (left) and 6). Also we may be given another
problem AGP(X,Y) where X or Y are subsets of P,
such as AGP(P,dP). Therefore, we have given a set of
possible guard and witness positions X, Y respectively
and we have another poset (VS(X)MY, C) to find the in-
clusion maximal. Let X and Y be a collection of points,
line segments and convex regions. Let us assume the
complexity of X and Y as m and k respectively.

For a set of points S, the set of points that are visible
from all points in S is called strong wvisibility set [11],
denoted as SV(S), i.e., SV(S) = ,c5 V(p). For a point
p € P and sets X,Y C P, we denote SV(V(p)NY)NX
as SVV(p, X,Y).

Corollary 10 Let us have two sets S1,52 C P. If S1 C
Sa, then SV(SQ) - SV(Sl)

In Section 3, we check the hierarchy of the visibility
polygons in the poset (VS(P),C) using the visibility
kernels. For a potential guard p, every point in V(p) is
necessarily to be guarded. So we get the kernel of V(p)
to find other points that sees every point p see. Here, we
need to cover only the points in V(p)NY. Therefore the
points that see all points in V(p)NY’, which is the strong
visibility set of V(p) N Y. So instead of the visibility
kernel of p we use SVV(p, X,Y) which is equal to VK(p)
if X =Y = P. Now, we need to extend the subdivision
and the lemmas we have presented before.

Lemma 11 Let us have two sets X,Y1,Ys C P such
that Y1 C Y. For any point p € X we have
SWV(p, X,Y2) C SVV(p, X, Y2).

Corollary 12 For any point p € P and any set X C P
we have VK (p) C SVV(p, P, X).

A dominating point for AGP(X,Y) is a point p € P,
where g € X such that V(p) N Y C V(¢) NY and
p # q. The dominating guard set for AGP(X,Y) for

172

28" Canadian Conference on Computational Geometry, 2016

Figure 6: Red indicates the near-minimal witness set
W. Green indicates DG(P,P,W) on the left and
DG*(P, P,W) on the right.

P is a set of points D C X, such that each element
of D is a dominating point and D has all the domi-
nating points in X, denoted as DG(P, X,Y). We de-
fine minimal dominating guard set for AGP(X,Y) as a
set of points S C DG(P,X,Y), such that for all dis-
tinct elements p,qg € S, V(p) NY # V(g) NY and
VS(S) =VS(DG(P, X,Y)). We denote a minimal dom-
inating guard set as DG* (P, X,Y).

Then we describe another subdivision of P into cells
that are atomic in terms of SVV(p, X,Y). The subdi-
vision is created through an arrangement consisting of
two types of line segments:

1. For each vertex v of X and each reflex vertex r in
R(v), shoot a ray vf if of hits Y after passing r
until it hits OP.

2. For each vertex v of Y and each reflex vertex r in
R(v), shoot a ray of if of hits X after passing r
until it hits OP.

3. For each pair of reflex vertices 71,72 that see past
each other, shoot rays VTT% and 777'1) if 7?7"5 hits X
after passing 7o and rorq hits Y after passing
until they hit OP.

We denote the subdivision as A(P,X,Y). The cells,
vertices and edges of A(P,X,Y) are defined similar to
those of A(P) in Section 3. This time there are at most
O(n?(m + k)?) vertices, edges and cells of A(P, X,Y)
where m is the number of connected components in Y.

Lemma 13 A point p € X is a dominating point
for AGP(X,Y) iff V¢ € SWW(p,X,Y) we have
SVV(p, X, Y)=8VV(q,X,Y).

Lemma 14 If a point on an edge of A(P,X,Y) is a
dominating point for AGP(X,Y), all the points on that
edge are also dominating points for AGP(X,Y). If a
point in a cell of A(P,X,Y) is a dominating point, all
the points on that cell are also dominating points, i.e.,
cells and line segments are atomic in terms of dominat-
ing property.

We use a similar algorithm as the previous sec-
tion here where we analyze the inclusion relations of
SVV(p, X,Y) instead of VK(p). We use the strong vis-
ibility algorithms described in [11].

5 The iterative refinement scheme

Here we present an iterative heuristic scheme for
AGP(P, P). In the pseudocode depicted below, Lines 2
and 3 serves as an initial minimal witness set and mini-
mal dominating guard set so that an equivalent simpler
problem, AGP(G, W), is considered. Then we try iter-
atively reducing the witness set W with respect to the
current dominating guard set G and reducing the dom-
inating guard set G with respect to the current witness
set W. At each iteration, we make a note of the witness
points that can be seen by only one point ep in the domi-
nating guard set. Those points in the dominating guard
set are essential to the solution, (i.e., any optimum so-
lution that does not include ep can be replaced by a
solution that has ep with the same number of points)
and hence they can be added to the guard set and the
visible points in W from ep can be removed from W.
An algorithm for computing Line 2 is presented in [1].
Section 3 and 4 present algorithms for computing Lines
3 and 7 respectively. An extension akin to the exten-
sion from Section 3 to 4 of the algorithm can be used
for Line 6.

AGP refinement

1: function REFINEMENT(P)
W <+ MinWitness(P, P)
3 G <+ DominatingGuards(P, P)
4 EG < 0 // Essential guards
5: while G or W changing do
6: W« MinWitness(P, G)
7
8
9

[\

G + DominatingGuards(P, W)
Z —{peW|V(p)nG| =1}
: EG <+ EGUZ
10: W WA\U,cz V)
11: end while
12: end function

As it stands the above refinement strategy is a heuris-
tic, it would be good to establish a strong upper bound
on the number of iterations. An analysis of the com-
plexity of evolving arrangements computed in Lines 6
and 7 will be crucial on establishing a time bound for
the iterative refinement scheme.

References

[1] E.S. Ayaz and A. Ungér. Minimal witness sets for art
gallery problems. In Furopean Workshop on Compu-
tational Geometry (EuroCG), Book of Abstracts, pages
195-198, 2016.

173

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

[2]

(3]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

A. Bottino and A. Laurentini. A nearly optimal sensor
placement algorithm for boundary coverage. Pattern
Recognition, 41(11):3343-3355, 2008.

S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the
shortest watchman route in a simple polygon. In ISAAC
"93 Proceedings, pages b8—67, Berlin, Heidelberg, 1993.
Springer.

B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. J. ACM,
39(1):1-54, Jan. 1992.

W.-P. Chin and S. Ntafos. Shortest watchman routes in
simple polygons. Discrete & Computational Geometry,
6(1):9-31, 1991.

V. Chvétal. A combinatorial theorem in plane ge-

ometry. Journal of Combinatorial Theory, Series B,
18(1):39 — 41, 1975.
V. Chvatal. A greedy heuristic for the set-

covering problem. Mathematics of Operations Research,
4(3):233-235, 1979.

K. Chwa, B. Jo, C. Knauer, E. Moet, R. van Oostrum,
and C. Shin. Guarding art galleries by guarding wit-
nesses. Int. J. Comput. Geometry Appl., 16(2-3):205—
226, 2006.

P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hem-
mer, A. Kroller, and D. C. Tozoni. Engineering art
galleries. CoRR, abs/1410.8720, 2014.

S. Fisk. A short proof of chvétal’s watchman theorem.
Journal of Combinatorial Theory, Series B, 24(3):374,
1978.

S. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, New York, NY, USA, 2007.

S. K. Ghosh. Approximation algorithms for art gallery
problems in polygons. Discrete Applied Mathematics,
158(6):718 — 722, 2010.

R. Honsberger. Mathematical Gems II. Mathematical
Association of America, 1976.

B. Joe and R. B. Simpson. Corrections to lee’s visi-
bility polygon algorithm. BIT Numerical Mathematics,
27(4):458-473, 1987.

R. M. Karp. Reducibility among combinatorial prob-
lems. In Complezity of Computer Computations: Pro-
ceedings of a symposium on the Complexity of Com-
puter Computations, pages 85-103, Boston, MA, 1972.
Springer US.

J. King. Fast vertex guarding for polygons with and
without holes. Computational Geometry, 46(3):219 —
231, 2013.

A. Laurentini. Guarding the walls of an art gallery. The
Visual Computer, 15(6):265278, 1999.

D. Lee and A. Lin. Computational complexity of art
gallery problems. Information Theory, IEEE Transac-
tions on, 32(2):276-282, Mar 1986.

J. O’'Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, Inc., New York, NY, USA,
1987.

20]

(21]

D. C. Tozoni, P. de Rezende, and C. de Souza. The
quest for optimal solutions for the art gallery problem:
A practical iterative algorithm. In Ezperimental Algo-
rithms, LNCS v. 7933, pages 320-336. Springer, 2013.

J. Urrutia. Art gallery and illumination problems. In
Handbook of Computational Geometry, pages 973-1027.
North-Holland, 2000.

174

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Minimizing the Solid Angle Sum of Orthogonal Polyhedra and Guarding
them with 7-Edge Guards

I. Aldana-Galvan* J.L. Alvarez-Rebollart

E. Solis-Villarreal*

Abstract

We give a characterization for the orthogonal polyhe-
dron in R? that minimizes the sum of its internal solid
angles, and prove that its minimum angle sum is (n—4)
and their maximum angle sum is (3n —24)r. We gener-
alize to R3 the well-known result that in an orthogonal
polygon with n vertices, (n + 4)/2 of them are convex
and (n — 4)/2 of them are reflex. We define a vertex
of a polyhedron to be convex on the faces if it is con-
vex or straight in all the faces where it participates,
and to be reflex on the faces otherwise. If a polyhedron
with n vertices and genus g has k vertices of degree
greater than 3 (in its 1-skeleton), we prove that it has
(n+8—8g+ 3k)/2 vertices that are convex on the faces
and (n — 8 4+ 8g — 3k)/2 vertices that are reflex on the
faces. Finally, we prove that if the orthogonal polyhe-
dron has k4 vertices of degree 4, kg vertices of degree 6,
genus g and h,,, holes on its faces, then we can guard it
using at most (1le — ky — 3kg — 129 — 24h,, + 12)/72
5-edge guards (i.e., having a visibility angle of /2 to-
wards the interior of the polyhedron), improving the
bound given by Viglietta et al in [14] for open edge
guards.

1 Introduction

In the plane, to measure the interior angle of a polygon
at a vertex v, we usually consider a small enough circle
centered at v and not containing any other vertices of
the polygon, measure the length of the portion of the
circle that lies inside the polygon, and then divide it by
the radius. In this way, we can have angles that vary
between 0 and 27. It has been well-known since antiq-
uity that the sum of the angles of a triangle is . Since
a simple polygon of n vertices can be partitioned into

*Posgrado en Ciencia e Ingenieria de la Computaciéon, Uni-
versidad Nacional Auténoma de México, Ciudad de México,
México, ialdana@ciencias.unam.mx, {j.catanas, m.jimenez,
solis_e}@uxmcc2.iimas.unam.mx

TPosgrado en Ciencias Mateméticas, Universidad Na-
cional Autonoma de Meéxico, Ciudad de México, México,
chepomich1306@gmail.com

fInstituto de Mateméticas, Universidad Nacional Auténoma
de México, Ciudad de México, México, urrutia@matem.unam.mx

J.C. Catana-Salazar* M. Jiménez-Salinas*

J. Urrutia¥

n — 2 triangles using diagonals, the sum of the internal
angles of a polygon is (n — 2)w. We extend these ideas
to polyhedra in R3.

We measure the interior solid angles of a polyhedron
in a vertex v in an analogous way to the plane. We
consider a small enough sphere centered at v, measure
the area of the portion of the sphere that lies within the
polyhedron, and then divide it by the square of the ra-
dius. In this way, we have solid angles that vary between
0 and 47 since the area of a unit sphere is 4.

For summing interior angles in polyhedra we cannot
use the same approach that was used for polygons. This
approach would consist in tetrahedralizing a polyhedron
and summing the solid angles of all the resulting tetra-
hedra. However, there exist examples of polyhedra that
cannot be tetrahedralized; for example, the Schénhardt
polyhedron [12]. Tt is also known that the sum of the
solid angles of a tetrahedron can take any value between
0 and 27 [7].

These examples show that in general polyhedra, the
sum of their solid angles is not constant and their ver-
tices can have interior angles that are arbitrarily small.
However, it is an interesting question to find the mini-
mum and the maximum sums of the internal solid angles
of an orthogonal polyhedron. This sum cannot be ar-
bitrarily small because the internal solid angle of each
vertex is at least m/2. We show in this paper that the
lower and upper bounds for the sum of angles of an or-
thogonal polyhedron with n vertices are (n — 4)7 and
(3n — 24)7 respectively. We also give the classification
of the families of orthogonal polyhedra achieving these
bounds.

We consider that a vertex of a polyhedron is convex
on the faces if it is a convex or a straight vertex in all the
faces where it participates, and it is reflex on the faces
otherwise. If a polyhedron with n vertices has k vertices
of degree greater than 3 in its I-skeleton (i.e., the set of
edges and vertices of the polyhedron), we prove that it
has (n + 84 3k)/2 vertices that are convex on the faces
and (n — 8 — 3k)/2 vertices that are reflex on the faces.

We apply this result to address a variant of the
Art Gallery Problem in orthogonal polyhedra. Most
of the research on art gallery problems has been fo-
cused on polygons on the plane. For example, it is well

175

28" Canadian Conference on Computational Geometry, 2016

known that every simple polygon with n vertices can
be guarded with at most |n/3| vertex guards [4], and
for orthogonal polygons [n/4| vertex guards are always
sufficient to guard the polygon [§]. Estivill-Castro and
Urrutia [6] showed that every orthogonal polygon can be
guarded with at most 3(n — 1)/8 orthogonal floodlights;
that is, vertex guards that have an angle of vision of
7/2. Later in [1] it was proved that (3n + 4(h — 1))/8
orthogonal floodlights are always sufficient to guard an
orthogonal polygon with n vertices and h holes.

For orthogonal polyhedra with e edges in R®, it was
conjectured that e/12 edge guards are always sufficient
to guard any polyhedron [13|. Benbernou et al. [14]
showed that every polyhedron can always be guarded
by (11/72)e — g/6 — 1 open edge guards (i.e., excluding
their endpoints).

For general polyhedra, Cano et al. [3] showed that
any polyhedron can always be guarded by (27/32)e edge
guards, and if the faces are all triangles the bound im-
proves to (29/36)e. For general polyhedra it is conjec-
tured that every simply connected polyhedron can be
guarded with e/6 edge guards [13].

We say that a §-edge guard is a guard located on an
edge of the polyhedron, occupying all the edge with an
angle of vision of 7. An interior point p of the polyhe-
dron is guarded by an edge e if the segment s, described
by the shortest distance between p and e, is perpendicu-
lar to e, s is contained in the visibility angle of e, and s is
completely contained in the interior of the polyhedron.

The variant of the art gallery problem we address is
the following: Given an orthogonal polyhedron P in R3,
choose a minimum set of F-edge guards located on the
edges of P such that any interior point of P is guarded.
We prove that if P has k4 vertices of degree 4, kg vertices
of degree 6, genus g and h,,, holes on its faces, then we
can guard it using at most (1le—ky—3ks —129—24h,, +

12)/72 F-edge guards.

2 Orthogonal Polyhedra

A polyhedron in R3 is a compact set bounded by a piece-
wise linear manifold. A face of a polyhedron is a maxi-
mal planar subset of its boundary whose interior is con-
nected and non-empty. A polyhedron is orthogonal if all
of its faces are parallel to the xy, xz or yz planes. Faces
of a polyhedron can be polygons with holes, and if the
polyhedron is orthogonal, then its faces and its holes are
also orthogonal. A wertex of a polyhedron is a vertex of
any of its faces. An edge is a minimal positive-length
straight line segment shared by two faces and joining
two vertices of the polyhedron.

2.1 Vertex Characterization in Orthogonal Polyhe-
dra

Let P be an orthogonal polyhedron in R3. We classify
the vertices of P by its interior solid angles. A vertex
x of P is classified as I-octant if its interior solid angle
is /2 (see Figure la), and 3-octant if its interior solid
angle is 37/2 (see Figure 1b). The j-octant, 5-octant
and 7-octant vertices are defined in a similar way, as
illustrated in Figures 1c, 1d, le and 1f respectively.

In an orthogonal polygon we have three kinds of ver-
tices; convex, reflex and straight. A vertex is convex if
it has an interior angle of 7/2, reflex if it has an interior
angle of 37/2 and straight if it has an angle of 7.

We say that a vertex is convex on the faces if it par-
ticipates on each of its incident faces as a convex or
a straight vertex. Thus the 1-octant, 4-octant, and 7-
octant vertices are convex on the faces. We say that a
vertex is reflex on the faces if it participates as a reflex
vertex on exactly one of its incident faces. Thus the 3-
octant and 5-octant vertices are reflex on the faces. We
will refer to a convex vertex on the faces (resp. reflex
vertex on the faces) as a convex vertex (resp. reflex ver-
tex) unless stated otherwise. Since we can have straight
vertices on the faces of a polyhedron, we extend our
concept of orthogonal polygon in order to allow them
to have straight vertices, too.

The genus g of a connected orientable surface is the
integer representing the maximum number of cuttings
along non-intersecting closed simple curves without ren-
dering the resultant manifold disconnected [9].

In our main result we use the Euler-Poincaire’s for-
mula, which states that for any polyhedron of genus g
with f faces, e edges, v vertices and a total of h holes
on its faces, the identity v — e — h + f = 2 — 2¢g holds.
A proof of this theorem can be found in [11].

Next, we prove the following theorem:

Theorem 1 Let P be an orthogonal polyhedron in R3
homeomorphic to the sphere with n = 2k vertices and a
connected and 3-regular I-skeleton. Then P has (n +
8)/2 convex vertices and (n — 8)/2 reflex vertices.

Proof. Since each vertex has degree 3, the number of
edges e is 3k. By Euler’s formula, the number of faces f
is k + 2. The number of reflex vertices in an orthogonal
polygon is (n —4)/2, so the number of reflex vertices on
each face of P is (V; —4)/2, where V; is the number of
it face of P. Then the number of reflex

vertices on the 7
r=>) 5 (1)

vertices of P is
Solving equation (1), we have

k+2 k+2

2 = Zm - 24.
=1 =1

176

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

(a) 1-octant vertex (b) 3-octant vertex

(c) 4-octant vertex (d) 4-octant vertex

(f) 7-octant vertex

(e) 5-octant vertex

Figure 1: Vertex classification for orthogonal polyhedra

As each vertex belongs to three faces, it is counted three
times when adding up the first sum;

2 = 6k — 4(k + 2)
r==k—4.

Since n = 2k, r = (n — 8)/2, and since n = ¢+ r,
c=(n+38)/2. O

This result tells us exactly the number of convex and
reflex vertices of the family of orthogonal polyhedra that
are connected and 3-regular in its 1-skeleton. Next, we
eliminate the restriction of a connected 1-skeleton by
considering the number of holes on the faces of P and
including the genus of the polyhedron. We will also
include the 4-octant vertices. Note that these vertices
do not have degree 3, but degree 4 or 6. Some of the
4-octant vertices look like straight angles on some faces
of the polyhedron.

We introduce two lemmas that will help us to incor-
porate the 4-octant vertices in the count of convex and
reflex vertices of an orthogonal polyhedron.

Lemma 2 In an orthogonal polygon with n vertices of
which s are straight, the number of reflex vertices is r =

(n—s—4)/2 and the number of convex vertices is ¢ =
(n—s+4)/2.

Proof. Since the sum of the internal angles of a simple
polygon is 7(n — 2); and the angle of each convex vertex
is /2, of each reflex vertex 37/2, and of each straight
angle T,

m(n—2) = (g) c+ (32”) r+ (m)s.

Solving for ¢ and replacing in n = c+ r + s yields n =
2r + s + 4. Therefore, r = (n —s —4)/2 and ¢ = (n —
s+4)/2. O

If the polygon has holes, we have the next lemma.

Lemma 3 In an orthogonal polygon P with n vertices,
h holes, and a total of s straight vertices, the number of
reflex vertices is (n — s + 4h — 4)/2 and the number of
convex vertices is (n — s — 4h +4)/2.

Proof. Note that a hole is an orthogonal polygon such
that its convex vertices are reflex in P, its reflex vertices
are convex in P, and its straight vertices are straight in
P. Thus, using Lemma 2, we have that if m is the
number of vertices in P without the holes, s,, of which
are straight, and each hole has n; vertices, s; of which
are straight, then the number of reflex vertices of P is

h
n; —s; +4 m—8,—4 n—s+4h—4
r—(i 5 >+ 5 = 2 .

i=1

Then it follows automatically that the number of convex
vertices in P is (n —s —4h +4)/2. O

Let k3 be the vertices of degree 3, k4 the vertices of
degree 4, and kg the vertices of degree 6 in the 1-skeleton
of a polyhedron.

We are ready to give one of our main results.

Theorem 4 Let P be an orthogonal polyhedron in R3
with n = ks + kg + kg vertices and arbitrary genus g.
Then P has (n — 3(ks + k¢) + 8g — 8)/2 reflex vertices
and (n + 3(ks + k) — 89 + 8)/2 convex vertices.

Proof. The number of edges e is 3ks3/2 + 2k4 + 3ks.
Using the Euler-Poincaré formula, the number of faces
fis k3/2 + ks + 2ks + 2+ h — 2g. By Lemma 3, the
number of reflex vertices in P is

f

‘/;—51—0—4}11—4
= B i B 2
r ; 5 , (2)

where V; is the number of vertices and s; is the number
of straight vertices and h; is the number of holes on the
ith face of P.

177

28" Canadian Conference on Computational Geometry, 2016

Solving Equation (2), we have

f f f f
2r =) Vi= > s+ 4hi+ > 4
=1 =1 =1 1=1

In the first sum we count the total number of vertices:
the kg vertices are counted three times, the k4 vertices
are counted four times and the kg vertices are counted
six times. The second sum counts the total number of
straight vertices but there are only k4 vertices and they Figure 2: Family of Polyhedra that minimise the solid
are counted two times. The third sum gives the total angle sum.

number of holes in P. Then we have

9 =ks — 2ky — 2k — 8 + 8g. (3) The left side of (8) corresponds to the angle sum:

Since n = k3 + k4 + kg, we obtain S=m(n—4+4g+ V5 +3V7))

e _ Thus (9) is minimized when V5 and V7 are both equal
r=(n=3(ks + ko) + 89— 8)/2. to zero. The next result follows.

i = = — 2. 0O
Since n = c+r, ¢= (n+3(ks + ko) +8 — 89)/ Theorem 5 The minimum solid angle sum of orthog-

This generalizes the well known result that the num- ona; polyhedra is (n — 4)m and is achieved by po.lyhedr @
ber of convex and reflex vertices of an orthogonal poly- having only 1-octant, 5-octant and 4-octant vertices.
gon with n vertices are respectively (n + 4)/2 and

(n — 4)/2, see R2 [10)]. Figure 2 shows an example that achieves the bound

of Theorem 5.
The maximum solid angle sum is reached when we

2.2 Minimizing the Solid Angle Sum of Orthogonal maximize the number of Vi and Vs vertices in (9). In

Polyhedra order to do this, we observe that any orthogonal poly-
Let V; be the number of i-octant vertices, ¢ = 1,3,4,5,7. hedra P always has at least eight 1-vertices, and if it
The angle sum of an orthogonal polyhedron is is not a box, it has at least eight 1-vertices and four 3-

vertices, or it has ten 1-vertices and two 3-vertices. The
S = Evl + 311/3 +27Vy + 5—7TV5 + E‘/? (4) best case arises when P has exactly eight 1-vertices and
2 2 2 2 four 3-vertices. This can be achieved by carving out of a

Since an orthogonal polyhedron has n vertices, boz a polyhedra with m = n —8 vertices that minimizes
the sum of its angles, as shown in Figure 3.

Vi+Va+Vi+Vs+Ve=n. (5)

We use the polyhedral version of Gauss-Bonnet’s the-
orem to calculate the curvature of the polyhedron [5].
Observe that the angle deficit for 1-octant and 7-octant
vertices is /2, the angle deficit for 3-octant and 5-
octant vertices is —m/2 and the angle deficit for 4-
octant vertices is —m. Applying Gauss-Bonnet’s the-
orem, where g is the genus of the polyhedron, we get

S+ V) = (V4 2Vit V) =dm—dmg (6)

Multiplying (5) by 7 and subtracting (6) we obtain:

3 3
ng—i-ng—l—Zﬁw—l—g%—FgW =nm—4n+4rg (7)

Figure 3: An Orthogonal Polyhedron that maximize its
Adding 7V5 + 37V7 to both sides of (7) yields: solid angle sum.

3 5 7
Vit TVt 2nV 4 Vs —Vy = ‘ ‘
2 2 2 2 Theorem 6 The maximum solid angle sum of orthog-
mn —4r +4ng + Vs + 37V (8) onal polyhedra is (3n — 24)m.

178

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

3 Guarding Polyhedra

We say that an «-edge guard is a guard located on an
edge of a polyhedron, occupying the entire edge with an
angle of vision towards the interior of the polyhedron of
size a. In this section we will deal with o = 7.

An interior point p of a polyhedron is guarded by an
a-edge guard e if the segment pr, where r is the closest
point to p in e, is perpendicular to e, pr is contained
in the a-visibility angle of e, and the interior of pr is
contained in the interior of the polyhedron.

We apply the results obtained in the previous section
to address the following variation of the Art Gallery
Problem: Given an orthogonal polyhedron P in R?, se-
lect a set of F-edge guards located on the edges of P
that guards P.

Note that P has two kinds of edges: convex edges that
cover an internal solid angle of two octants, see Figure
4a, and reflex edges that cover an internal solid angle of

six octants, see Figure 4b.

(a) 2-octant edge (b) 6-octant edge

Figure 4: Types of edges in orthogonal polyhedra

It is easy to see that to guard P it is sufficient to
place one F-edge guard on each convex edge, and two -
edge guards, in opposite directions, on every reflex edge.
In fact, we can also guard P by applying the previous
rule only to edges parallel to the X-axis, the V-axis, or
the Z-axis. This follows from the results proved in [2].
For the sake of completeness we describe briefly how to
prove this.

Consider all the faces of P parallel to XZ and YZ
planes. We call a face of P incident to e, a top face f, if
for any interior point ¢ of f there is an € > 0 such that
any point at distance less than or equal to € from ¢, and
below f belongs to the interior of P. Right, bottom, and
left faces are defined in a similar way, see Figure 5.

Let e be an edge parallel to the Z axis. Given a top
(bottom) face f, we call an edge of f a right edge if
there is an € > 0 such that any point at distance less
than or equal to e from the mid-point of e, and the left
of e belongs to the interior of f. A left edge is defined
in a similar way. Given a right (left) face f, the top and
bottom edges are defined similarly to the left and right
edges, see Figure 5.

We define the placement rules for S-edge guards at
the edges of P parallel to the Z axis, as follows: In the
top-right rule at each right edge of each top face of P,
and at each top edge of each right face of P we place
a 5-edge guard whose angle of illumination covers the
interval of directions 37” to 2w. We define three extra
rules, the top-left rule, bottom-right rule, and bottom-
left rule in a similar way by rotating our polyhedra 90,
180 and 270 degrees with respect to the Z-axis, and
applying the top-left rule to the polyhedron obtained
from P after applying these rotations.

(d)

Figure 5: Figures (a) and (b) show top faces in blue
and bottom faces in green. Figures (c¢) and (d) show
left faces in blue and right faces in green. Figures (a),
(b), (c) and (d) show right, left, top and bottom edges
respectively.

Now we prove the following Lemma:

Lemma 7 Let P be an orthogonal polyhedron with
genus g and h holes on its faces. Then P can be guarded
by the 5 -edge guards placed by any of the following rules:
top-right, top-left, bottom-right and bottom-left.

Proof. We prove our result for the top-right rule, the
other rules can be proved in a similar fashion. Let p be
a point in P and let 8 be the plane parallel to the XY
plane containing p. Let @@ be the intersection of P with
B. Q consists of a set of orthogonal polygons contained
in B. It is straightforward to see that the top right rule
places F-vertex guards as in the top-right illumination
rule in [2] which illuminates, and thus guards p. Our
result follows. O

Some faces of an orthogonal polyhedron P may have
holes in them. When these holes appear, the 1-skeleton
of P may become disconnected, for an example see Fig-
ure 3. In that example we "carved out" an orthogonal
polyhedron H from a box in the middle of one of its

179

28" Canadian Conference on Computational Geometry, 2016

faces, call it f. Observe that the k-vertices of H be-
came 8 — k-vertices in P, except for those lying in f, in
that case l-octant vertices of H became 3-octant ver-
tices of P, and 3-octant vertices of H become l-octant
vertices of P, (i.e. the convex vertices become reflex
and the reflex vertices become convex), see also Figure
6b. Observe that at least four of the vertices of H in f
are reflex, and that two of the edges incident to them,
are convex, and one is reflex. Thus our guarding rules
place only four edge guards on these edges. This will be
used in the proof of our next Theorem, as this will allow
us to save four edges per each hole in which we carved
an orthogonal polyhedron (in that proof we place five
edges in the edges of a reflex vertex of degree three).

There is a second case in which the 1-skeleton of P
becomes disconnected, and this happens when instead
of carving out an orthogonal polyhedron H, we kind of
"glue" it in the middle of a face f of P, see Figure 6a.
In this case it is easy to see that when we apply the
guarding rules to P described above, the points of P
in H will be guarded by edges in H, and the edges in
P — H can be guarded with edges in the 1-skeleton of
P — H. This implies that the edges of H in f can be
considered as convex edges when applying the guarding
rules described above. Thus we save at least four edge
guards, one for each reflex edge of H in f.

In both cases we save at least four guards per hole.

(a) (b)

Figure 6: (a) Two "glued" orthogonal polyhedron. (b)
An orthogonal polyhedron carved out of another one.

Theorem 8 Let P be an orthogonal polyhedron with n
vertices, ky of them are of degree 4, k¢ of degree 6, e
edges, genus g and h,, holes in the faces of P. Then
(11e — ky — 3ke — 129 — 24h,, + 12)/72 T -edge guards
are always sufficient to guard the interior of P.

Proof. First we look at the type of vertices of the poly-
hedron P, and describe the number of convex and reflex
edges that each kind of vertex is incident to.

Each 1-octant vertex is incident to three convex edges.
Each 3-octant vertex is incident to two convex edges and
one reflex edge. Each 4-octant vertex with degree four,
is incident to two convex edges and two reflex edges.

Each 4-octant vertex with degree six, is incident to three
convex edges and three reflex edges. Each 5-octant ver-
tex is incident to one convex edge and two reflex edges.
Finally, each 7-octant vertex is incident to three reflex
edges.

By the Theorem 4, P has ¢ = (n+3(k4+ks)—8g+8)/2
convex vertices and r = (n — 3(ks + kg) + 89 — 8)/2
reflex vertices. Note that according to our definition, 4-
octant vertices, whether they have degree four or six are
convex. Then, P has ¢ = (n+ks+ ke —8g+8)/2 convex
vertices, k4 4-octant vertices of degree four, kg 4-octant
vertices of degree six, and r = (n—3(ks+k¢)+8g—8)/2
reflex vertices.

In the worst case every convex vertex is adjacent to
three reflex edges, every 4-octant vertex of degree four is
adjacent to two reflex edges and two convex edges, every
4-octant vertex of degree six is adjacent to three reflex
edges and three convex edges, and every reflex vertex is
incident to two reflex edges and one convex edge.

If we place guards on every edge of P then, we have
(6c + 6ky4 4 9ke + 57)/2 T-edge guards in total. We
can divide the number of F-edge guards by three and
four, since it is sufficient to choose one of the three axis
directions, and we only need to choose the smallest of
the four guarding rules used in this direction, then we
obtain (6¢ + 6kg + 9ke + 57)/24. Substituting ¢ and r
in the above equation, we have a total of (11n + 3k4 +
9ke + 8)/48 F-edge guards.

As P has h,, holes on its faces, and for each of them
we save four edge guards we conclude that the total
number of §-edge guards in P is (11n+ 3ks +9ks —8g —
16h,, + 8)/48. If we substitute n = (2e — k4 — 3ks)/3

in the number of F-edge guards, then we finally obtain

that (11e—ky—3ke — 129 —24h,, +12) /72 T-edge guards
are always sufficient to guard the interior of P.
d

References

[1] J. Abello, V. Estivill-Castro, T. Shermer, and J. Ur-
rutia. [llumination with orthogonal floodlights, pages
362-371. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1995.

[2] J. Abello, V. Estivill-Castro, T. Shermer, and J. Urru-
tia. Illumination of orthogonal polygons with orthogo-
nal floodlights. International Journal of Computational
Geometry & Applications, 8(01):25-38, 1998.

[3] J. Cano, C. D. Toth, and J. Urrutia. Edge guards for
polyhedra in 3-space. In CCCG, pages 155-160, 2012.

[4] V. Chvatal. A combinatorial theorem in plane ge-
ometry. Journal of Combinatorial Theory, Series B,
18(1):39-41, 1975,

[5] S. L. Devadoss and J. O’Rourke. Discrete and compu-
tational geometry. Princeton University Press, 2011.

180

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

[6]

7]

K

(9]
[10]

[11]

[12]

[13]

[14]

V. Estivill-Castro and J. Urrutia. Optimal floodlight
illumination of orthogonal art galleries. In CCCG, pages
81-86, 1994.

J. Gaddum. The sums of the dihedral and trihedral
angles in a tetrahedron. The American Mathematical
Monthly, 59(6):370-371, 1952.

J. Kahn, M. Klawe, and D. Kleitman. Traditional gal-
leries require fewer watchmen. SIAM Journal on Alge-
braic Discrete Methods, 4(2):194-206, 1983.

J. Munkres. Topology. Featured Titles for Topology
Series. Prentice Hall, Incorporated, 2000.

J. O’'Rourke. Art gallery theorems and algorithms, vol-
ume 57. Oxford University Press Oxford, 1987.

H. Poincaré. Sur la généralisation d’un théoreme d’euler
relatif aux polyedres. Comptes Rendus de Séances de
l’Academie des Sciences, 117:144, 1893.

E. Schénhardt. Uber die zerlegung von dreieckspolyed-
ern in tetraeder. Mathematische Annalen, 98(1):309—
312, 1928.

J. Urrutia. Art gallery and illumination problems. In J.-
R. S. Urrutia, editor, Handbook of Computational Ge-
ometry, pages 973 — 1027. North-Holland, Amsterdam,
2000.

G. Viglietta, N. Benbernou, E. D. Demaine, M. L. De-
maine, A. Kurdia, J. O’'Rourke, G. T. Toussaint, and

J. Urrutia. Edge-guarding orthogonal polyhedra. In
CCCaG, 2011.

181

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

The Planar Slope Number

Udo Hoffmann*

Abstract

The planar slope number of a planar graph G is defined
as the minimum number of slopes that is required for a
crossing-free straight-line drawing of G. We show that
determining the planar slope number is hard in the ex-
istential theory of the reals. We point out consequences
for drawings that minimize the planar slope number.

1 Introduction

The slope number of a non-degenerate straight-line
drawing D of a graph G is defined to be the number
of distinct slopes that is used to draw the edges of G
in D. The minimum slope number of all straight-line
drawings of G is the slope number of G. Similarly, the
planar slope number of a planar graph G is the mini-
mum slope number over all planar straight-line drawings
of G.

In this paper, we consider the computational com-
plexity of computing the planar slope number. In Sec-
tion 2, we show that determining the planar slope num-
ber of a graph is hard in the existential theory of the
reals, i.e., as hard as deciding the solvability of a poly-
nomial inequality system over the reals. Furthermore, it
is complete in the existential theory of the rationals (and
thus possibly undecidable) to decide whether a planar
graph has a drawing on the grid that minimizes the pla-
nar slope number. However, for each fixed k, deciding
whether the (planar) slope number is at most k is in NP.
A consequence of this result is that deciding if the pla-
nar slope number of a bounded degree graph is at most
k is in NP. Afterwards, in Section 3, we point out conse-
quences for drawings that minimize the slope number:
There are planar graphs such that each drawing that
minimizes the planar slope number requires irrational
coordinates for the vertices and slopes of the edges. In
Section 4 we point out open problems in connection to
the slope number.

1.1 Background

The slope number of a graph has mainly been studied
for the relation between the maximum degree of a graph

*Université libre de Bruxelles (ULB)
hoffmann.odu@googlemail.com The results in this paper are
part of the authors dissertation at TU Berlin, supported by the
Deutsche Forschungsgemeinschaft within the research training
group 'Methods for Discrete Structure’ (GRK 1408)

and the slope number: A simple lower bound for the
slope number of a graph G is [A(G)/2], where A(G) de-
notes the maximum degree of G, since at most two edges
of the same slope are incident to one vertex. The main
work in this area deals with the question, whether the
slope number of a graph is also bounded from above by
a function in the maximum degree. This was answered
negatively [BMWO06, PP06, DSW07] by examples of
families of graphs of maximum degree 5 with arbitrarily
large slope number. In contrast, Keszegh, Pach, and
Palvolgyi have shown that the planar slope number is
bounded by an exponential function in the maximum
degree [KPP13]. For partial planar 3-trees [JJKT13]
this bound has been improved to a polynomial upper
bound of O(A®) and for outerplanar graphs [KMW14]
to a linear upper bound of A — 1 (for A > 4) for outer-
planar drawings.

From the computational point of view, it is known to
be NP-complete to decide whether a graph has slope
number 2 [FHH'93], and it is NP-complete to de-
cide whether a planar graph has planar slope num-
ber 2 [GT01]. Thus both problems, computing the slope
number and the planar slope number, are NP-hard. We
characterize the planar slope number problem as hard
in the ezistential theory of the reals.

The existential theory of the reals (3R) is a com-
plexity class defined by the following complete prob-
lem: Given a quantifier-free formula F(x1,...,z,) that
contains logic connections of polynomial equalities and
inequalities in the variables x1,...,x, with integer co-
efficients, is there an assignment of real values to the
variables such that the formula is satisfied? This prob-
lem can be reduced to deciding the solvability of a poly-
nomial inequality system over the reals. Starting with
Mnév’s universality theorem [Mné88] many geometric
problems have been shown to be hard in dR. Mnév’s
universality theorem states that for each semialgebraic
set V there exists an order type (or by duality, a line ar-
rangement) whose realization space is stably equivalent
to V. From a computational point of view it is impor-
tant that the realization space is empty if and only if V'
is empty.

Some dR-complete problems include pseudoline
stretchability [Mné88, Sho91], recognition of segment
intersection graphs [KM94], realizability of planar
graphs and linkages [Schl2], realizing abstract 4-
polytopes [RGZ95], point visibility graph recogni-
tion [CH15], and many more, see [Carl5] for an

182

28" Canadian Conference on Computational Geometry, 2016

overview.

The existential theory of the rationals (3Q) is defined
similarly to dR, but restricted to rational solutions.
When asking for geometric representations on the in-
teger grid for dR-hard problems it turns out that JQ is
the right complexity class because of scaling arguments.
It is an open problem if 3Q is decidable. The class dR is
decidable in PSPACE [Can88|, while the existential the-
ory of the integers is undecidable by the negative answer
to Hilbert’s tenth problem due to Matiyasevich [Mat70].

We want to point out that the problem of deciding if
the (planar) slope number is at most k is contained in
dR. This can be easily shown by encoding the coordi-
nates as well as the k£ allowed slopes in variables. The
same holds for drawings on the grid and 3Q. In the
following we only mention hardness results because we
consider optimization problems and not decision prob-
lems.

Our hardness proofs are based on the problem of pseu-
doline stretchability: Given a collection of x-monotone
curves that extend infinitely in positive and negative
z-direction such that any two curves intersect pairwise
exactly once, is there a homeomorphism of the plane
that maps the curves onto lines? Or in other words,
is there a collection of lines with the same intersec-
tion pattern as in the collection of curves. We call
the collection of curves a pseudoline arrangement; it
is stretchable if the described homeomorphism exists.
We call the stretched collection of curves a line ar-
rangement. A (pseudo)line arrangement is simple if no
three lines/curves intersect in a common point. The
stretchability of simple pseudoline arrangements is also
hard in JR. For a good overview on the JR-reduction
for the stretchability problem we refer to [Mat14]. We
point out that stretchability of non-simple pseudoline
arrangements with rational coordinates is complete in
3Q [Stul7], while simple line arrangements can always
be perturbed onto rational coordinates.

2 Computational complexity

In this section we consider the computational complex-
ity of the planar slope number.

2.1 3JR-hardness

In this subsection, we show that computing the planar
slope number is dJR-hard. The general idea is to con-
struct an (almost) 3-connected planar graph G that
contains the edges and vertices of a pseudoline arrange-
ment L. Consequently, the pseudoline arrangement L
can be found in each planar drawing of G, by drawing
the pseudolines on the corresponding edges. The degree
of each vertex of the arrangement in Gy, is equal to the
even maximum degree A. Any two consecutive edges
of one pseudoline are opposite edges at some vertex of

the arrangement. By the following proposition, the ex-
istence a drawing of G, with slope number A /2 implies
that L is stretchable.

Proposition 1 Let G be a planar graph with even max-
imum degree A, and let D be a planar straight-line draw-
ing of G with slope number A/2. Each pair of opposite
edges of a verter of degree A in D has the same slope.

Figure 1: Opposite edges of a degree 8 vertex in drawing
of slope number 4 have the same slope.

Proof. Let v be a vertex of degree A. Each slope of
the drawing D appears exactly twice among the edges
that are incident to v. The edges with the same slope
are opposite in D. O

For the proof of the following theorem we proceed to
construct such a graph G, from a pseudoline arrange-
ment L that has a drawing D with A/2 slopes if and
only if L is stretchable.

Theorem 2 Deciding if the planar slope number of a
planar graph with even mazimum degree A is A/2 is
complete in JR.

Proof. We prove the theorem by reducing the stretch-
ability of a pseudoline arrangement to the problem of
deciding whether the planar slope number of a graph is

Figure 2: Adding a star (brown) on each vertex of the
black arrangement.

183

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 3: Constructing the graph G from the stars,
including the grey intermediate slopes and the red sub-
division vertices.

A/2. Therefore, let L be an arrangement of n pseudo-
lines.

We note that we can determine the order of slopes of
the lines in a stretched realization of L from the pseu-
doline arrangement, namely as the order in which the
lines appear while traversing the adjacent unbounded
faces. We use this observation to speak about the slope
of a pseudoline and apply it in the following construc-
tion (see Figure 2): In the pseudoline arrangement L we
draw a star of pseudolines on each vertex of the arrange-
ment, i.e., for each pseudoline ¢ that is not incident to a
vertex v of the arrangement we draw a pseudosegment
that indicates which faces around v a pseudoline of the
slope of ¢ through v intersects.

Now, we cut the pseudolines in the unbounded faces
and define a planar graph by placing a vertex on each
endpoint of a pseudosegment. We can already ob-
serve that the embedding we constructed can be drawn
straight-linn with n slopes if and only if the arrangement
is stretchable. We modify this construction to obtain a
3-connected graph as shown in Figure 3: In addition to
the pseudosegment of each slope of a pseudoline of L
we add a star of intermediate slopes, one slope between
each two consecutive slopes of pseudolines. We connect
the leaf vertices of the stars in each face (including the
one unbounded face) such that they form a cycle. We
pick one edge per face cycle that connects two leaves of
different stars and subdivide these edges. We call this
planar graph Gp. After contracting the subdivision ver-
tices the graph G, is 3-connected. Thus Proposition 1
implies that the opposite edges, which originate from
one pseudoline lie on one line, and thus a drawing with
n slopes gives a realization of the line arrangement by
drawing the lines along the edges.

So it remains to show that there exists a drawing D

with slope number n if L is stretchable. Therefore, we
consider a realization R of L as a line arrangement. We
draw the vertices and edges of G, on the corresponding
edges and vertices of R. We choose the intermediate
slopes and place a star containing all the 2n slopes on
each vertex of the arrangement. The cycle in an inner
face f is realized by drawing a polygon with sides par-
allel to the boundary of f such that on each corner of
a polygon lies a vertex of the cycle. This can be done
in the following way. We draw the polygon in the face
clockwise, starting from one point close to the boundary
on the counterclockwise first ray of one vertex v;. We
draw the first edges of the cycle following parallel to the
boundary of the face in clockwise order and place a ver-
tex of the cycle on the intersection point of the segments
of the star and the polygon. When we reach the coun-
terclockwise last ray of the vertex v we continue with
a line parallel to the second boundary edge. We follow
this procedure until we reach the counterclockwise last
ray of the last vertex. To close the last edge of the poly-
gon we have drawn in the face we use the subdivision
vertex as shown in Figure 5. The cycle surrounding the
outer face can be drawn with the same method as indi-
cated in Figure 4. This concludes the proof that there
exists a drawing of G, with n slopes if and only if L is
stretchable. O

2.2 Drawings on the grid.

Lemma 3 The graph G constructed in the proof of
Theorem 2 has a drawing with slope number A/2 with
rational coordinates if and only if L has a realization
with rational coordinates.

Proof. In the proof of Theorem 2 we have shown that
we can realize L on a subset of vertices and edges of
a slope minimizing drawing. Thus L has a rational re-
alization if and only if there is a drawing of G with

Figure 4: A drawing with slope number 8 of G, of the
arrangement L in Figure 2.

184

28" Canadian Conference on Computational Geometry, 2016

Figure 5: Using the subdivision vertex (red) to close the
face cycle with few slopes.

slope number A/2, where the vertices and edges of the
arrangement graph lie on rational coordinates. Thus,
to conclude this proof, we only have to show that we
can draw the cycles in the inner faces on rational co-
ordinates. This is simply done by choosing rational in-
termediate slopes and a rational coordinate for the first
vertex we draw in the polygon. Then all vertices of the
cycle lie on the intersection points of rational lines, and
thus have rational coordinate. [

From the lemma above and the fact that deciding the
realizability of a non-simple line arrangement is com-
plete in 3Q [Stu87] we obtain the following theorem.

Theorem 4 Deciding whether a planar graph G has a
drawing on the grid with slope number A/2 is complete

in 3Q.

2.3 Bounded slope number and bounded degree.

In contrast to the previous results, we show that we
can decide for a fixed k£ in non-deterministic polynomial
time whether a planar graph can be drawn with at most
k slopes.

Theorem 5 For each fized k the decision problem
whether a graph G has planar slope number or slope
number at most k is in NP.

Proof. We give a proof based on the NP membership
of the recognition of segment intersection graphs that
can be represented by at most k slopes for the seg-
ments [KM94][Theorem 1.1.ii.c] by Kratochvil and Ma-
tousek. They show that deciding the realizability of an
arrangement of segments using at most k slopes can be
decided in polynomial time.

To show that deciding whether the planar slope num-
ber is at most k is in NP we guess the embedding of the
graph and which of the edges use the same slope. With
this information we can use the result of Kratochvil and
Matousek to decide in polynomial time whether the ar-
rangement of edges can be realized using at most k
slopes.

For the non-planar slope number we guess the com-
plete arrangement of edges and the partition of the
edges into common slopes. O

Let G be the set of planar graphs with maximum de-
gree at most A. We use the theorem above and the fact
that deciding if a graph in G has slope number at most
k is in NP.

Theorem 6 Deciding whether a planar graph G € Ga
has planar slope number at most k is in NP.

Proof. By [KPP13] there exists a function f(A), such
that each graph in Ga has planar slope number at most
f(A). To decide whether the graph G has planar slope
number k we return true if k& > f(A). Otherwise, if
k < f(A), we can decide if the planar slope number
is at most k by Theorem 5, since k is bounded by the
constant f(A). O

3 Consequences of the hardness

In this section we point out consequences of IR-hardness
of computing the planar slope number and 3Q-hardness
of deciding whether there is a drawing on the grid that
achieves this slope number.

The fact that there are non-simple line arrangements
that are known to have irrational coordinates in each
representation [Grii03] directly translates into the fol-
lowing result.

Corollary 7 There are planar graphs such that each
planar drawing that minimizes the slope number has at
least one vertex with an irrational coordinate.

Even if a line arrangement is stretchable with ratio-
nal coordinates, there are arrangements that require an
doubly exponential representation size [GPS90]. By the
observation that the graph G, has |L|? vertices, we ob-
tain the following corollary.

Corollary 8 For each n € N, there is a planar
graph Gy, on n vertices such that each planar drawing of

G, on a grid that minimizes the slope number requires
229(\3/\V(G)D

a grid of size
We want to point out that giving a reasonable (a.k.a.
computable) upper bound on the grid size in the corol-
lary above, is strongly connected with the decidability
of Q.

Theorem 9 Assume JQ is undecidable. Then there
is mo computable function f such that every graph G,
that has a slope number minimizing drawing on the grid,
can be drawn with this slope number on a grid of size

FIV@)N) x F(IV(G))).-

Proof. Assume the function f exists. Then compute
f(V(G)]) and try each combination of coordinates of
vertices of G on a grid of size f(|V(G)]) x f(|V(G)])
and check whether a straight-line drawing with those
vertex coordinates gives a drawing of the given slope

185

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

number. This procedure finds a drawing on the grid that
minimizes the planar slope number by the assumption
that f gives an upper bound on the grid size of such
a drawing. Thus we have just given an algorithm that
finds such a drawing of minimum planar slope number
on the grid if it exists, which is contradiction to the
assumed undecidability of 3Q by Theorem 4. O

4 Conclusion and open problems.

We have settled the computational complexity of deter-
mining the planar slope number. It is an open problem
whether the (non-planar) slope number is also IR-hard.
A further open problem is to give a better bound on the
function f(A) that bounds the planar slope number of
graphs of degree A. The bound on f(A) in [KPP13] is
exponential in A and uses the non-constructive proof for
a touching disc representation, where the radii of touch-
ing discs are bounded by a constant factor by [MP94].
They give the idea of a non-deterministic algorithm to
obtain a planar drawing using f(A) slopes. It is open
whether the bound can be improved and can be turned
in a polynomial algorithm.

References

[BMWO06] Jénos Barét, Jirt Matousek, and David R. Wood.
Bounded-degree graphs have arbitrarily large ge-
ometric thickness. FEuropean Journal of Combi-
natorics, 13:R3, 2006.

[Can88] John Canny. Some algebraic and geometric com-
putations in PSPACE. In STOC, pages 460—467.

ACM, 1988.

Jean Cardinal. Computational geometry column
62. ACM SIGACT News, 46:69-78, 2015.

Jean Cardinal and Udo Hoffmann. Recogni-
tion and complexity of point visibility graphs.
In SoCG@G, volume 34 of LIPIcs, pages 171-
185. Schloss Dagstuhl-Leibniz-Zentrum fiir In-
formatik, 2015.

[Carlb]

[CH15]

[DSWO07] Vida Dujmovié, Matthew Suderman, and
David R. Wood. Graph drawings with few slopes.

Computational Geometry, 38:181-193, 2007.

[FHH"93] Michael Formann, Torben Hagerup, James
Haralambides, Michael Kaufmann, Frank T.
Leighton, Antonios Symvonis, Emo Welzl, and
Gerhard J. Woeginger. Drawing graphs in the
plane with high resolution. SIAM Journal on

Computing, 22:1035-1052, 1993.

Jacob E. Goodman, Richard Pollack, and Bernd
Sturmfels. The intrinsic spread of a configuration
in RY. Journal of the American Mathematical
Society, 3:639-651, 1990.

Branko Grinbaum. Convexr Polytopes, volume
221 of Graduate Texts in Mathematics. Springer-
Verlag, 2003.

[GPS90]

[Grii03]

[GTo1]

[JJKT13]

[KM94]

[KMW14]

[KPP13]

[Mat70]

[Mat14]

[Mnéss]

[MP94]

[PPO6]

[RGZ95]

[Sch12]

[Sho91]

[Stu87]

Ashim Garg and Roberto Tamassia. On the com-
putational complexity of upward and rectilinear
planarity testing. SIAM Journal on Computing,
31:601-625, 2001.

Vit Jelinek, Eva Jelinkov4,
Bernard Lidicky, Marek Tesaf, and Tomas
Vyskocil. The planar slope number of planar
partial 3-trees of bounded degree. Graphs and
Combinatorics, 29:981-1005, 2013.

Jan Kratochvil,

Jan Kratochvil and Jiri Matousek. Intersection
graphs of segments. Journal of Combinatorial
Theory, Series B, 62:289-315, 1994.

Kolja Knauer, Piotr Micek, and Bartosz Wal-

czak. Outerplanar graph drawings with few
slopes. Computational Geometry, 47:614-624,
2014.

Baldzs Keszegh, Janos Pach, and Domotor
Palvolgyi. Drawing planar graphs of bounded de-
gree with few slopes. SIAM Journal on Discrete
Mathematics, 27:1171-1183, 2013.

Yuri V. Matiyasevich. Enumerable sets are
diophantine. Doklady Akademii Nauk SSSR,
191:279-282, 1970.

Jifi Matousek. Intersection graphs of segments
and JR. arXiw:1406.2636, 2014.

Nicolai E. Mnév. The universality theorems on
the classification problem of configuration vari-
eties and convex polytopes varieties. In Topology
and Geometry — Rohlin Seminar, LNM, pages
527-543. Springer, 1988.

Seth Malitz and Achilleas Papakostas. On the
angular resolution of planar graphs. SIAM Jour-
nal on Discrete Mathematics, 7:172—-183, 1994.

Janos Pach and Démotor Palvolgyi. Bounded-
degree graphs can have arbitrarily large slope
numbers. Furopean Journal of Combinatorics,
13:N1, 2006.

Jiirgen Richter-Gebert and Giinter M. Ziegler.
Realization spaces of 4-polytopes are universal.
Bulletin of the American Mathematical Society,
32:403-412, 1995.

Marcus Schaefer. Realizability of graphs and
linkages. In Janos Pach, editor, Thirty Essays
on Geometric Graph Theory. Springer, 2012.

Peter W. Shor. Stretchability of pseudolines is
NP-hard. Applied Geometry and Discrete Math-
ematics: The Victor Klee Festschrift, 4:531-554,
1991.

Bernd Sturmfels. On the decidability of dio-
phantine problems in combinatorial geometry.
Bulletin of the American Mathematical Society,
17:121-124, 1987.

186

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Epsilon-covering: a greedy optimal algorithm for simple shapes

Tuong-Bach Nguyen *

Abstract

Unions of balls are widely used shape representations.
Given a shape, computing a union of balls that is both
accurate in some sense and of small cardinality is thus a
challenging problem. In this work, accuracy is ensured
by imposing that the union of balls, called covering, is
included in the shape and covers a parameterized core
set (namely the erosion) of the shape. For a family
of simple shapes, we propose a polynomial-time greedy
algorithm that computes a covering of minimum cardi-
nality for a given shape.

1 Introduction

Unions of balls are common shape representations, use-
ful for instance to describe molecules in biochemistry [4],
to quickly detect collisions [3] between shapes or to de-
rive higher-level representations. The ubiquity of unions
of balls is largely due to the existence of provably good
conversion algorithms that allow us to derive them from
various representations such as point clouds and polyg-
onal meshes [6]. However, the union of balls output by
the conversion process provides only an approximation
of the original shape.

In a previous work [2], we introduced a novel way,
called e-covering, of controlling the geometric error be-
tween a given input shape and a selected union of balls.
The idea is to impose that the union of balls covers a
core set of the shape and does not cross over an outer set.
This problem falls in the family of geometric set cover
problems, where the goal is to minimize the number of
balls. We proved that, in the general case, computing
an e-covering of minimum cardinality is an NP-complete
problem. Other approaches, related to the maximum k-
cover problem, aim at maximising the coverage for a
fixed number of balls [4], but the problem is also NP-
complete.

In this work, we consider the family of input shapes
that are themselves 2D unions of balls with a tree-like
structure. An e-covering of such a shape is a simplified
union of balls. We present a polynomial-time algorithm
that computes an e-covering of minimum cardinality for
this specific family. To do so, we rely on the medial axis

*Univ. Grenoble Alpes, GIPSA-Lab, F-38000 Greno-
ble, France CNRS, GIPSA-Lab, F-38000 Grenoble, France
tuong-bach.nguyen@gipsa-lab.grenoble-inp.fr
isabelle.sivignon@gipsa-lab.grenoble-inp.fr

Isabelle Sivignon *

structure of unions of balls, and show how to contin-
uously sweep its pencils in order to get a correct and
optimal result.

2 Statement of the result

In this paper, R? is endowed with the Euclidean dis-
tance. For any point ¢ and real r > 0, we denote by
b(c,r) the closed ball of center ¢ and radius r. For any
subset S C R?, we respectively denote its closure, inte-
rior, complement, boundary, and medial axis by S, S ,
5S¢, 85, and MA (S). Let € > 0 be a real number. The
erosion of S (by ¢€) is S°¢ = {y | b(y,e) C S}. For any
collection of balls #, we write | J % = Upesb.

Definition 1 An (inner) e-covering of S is a collec-
tion of balls % such that S© C |J# C S.

For given S and ¢, there exist many e-coverings of S,
with different cardinalities. We say that an e-covering
is optimal if it achieves minimum cardinality. In gen-
eral, finding such an optimal e-covering for S is an
NP-complete problem [2], but we focus here on simple
shapes S and prove the following result:

Theorem 1 There is a polynomial-time algorithm to
compute optimal e-coverings for finite unions of balls
whose medial axis is cycle-free.

In Section 3, we present some results on the struc-
ture of unions of balls, before describing the principle of
our algorithm in Section 4. Section 5 expands on some
practical considerations required for the algorithm, and
Section 6 is dedicated to proving that it indeed achieves
the claimed result.

3 Union of balls

3.1 Medial axis and pencils

In order to specify our algorithm, we must elaborate
on the structure of unions of balls, in particular that of
their medial axis. Recall that a ball b C S is a medial
ball if its boundary 0b intersects 0.S at least twice. The
medial axis MA (S) is the collection of the centers of
these medial balls. Owing to the structure theorem of
the medial axis of a union of balls [1], we know that for a
finite union of balls S, MA () is a finite collection of line
segments. We also know that each of these line segments
coincides with a pencil of balls [4] in the following sense.

187

28" Canadian Conference on Computational Geometry, 2016

Borrowing the terminology used in [7], an elliptic pen-
cil can be characterized by two points u, v € R?: it is the
family of all balls whose boundary goes through » and
v. The collection of their centers forms a line. In this
paper, we only manipulate elliptic pencil segments, that
are subsets of elliptic pencils whose collection of centers
forms a segment instead of a line. From here on, we will
not consider any proper line pencil, and thus we refer to
these elliptic pencil segments simply as pencils. As such,
the pencils we consider always have two endpoint balls
by and by. We denote the pencil they generate by [b1bs].
A basic property of a pencil is that the domain it covers,
that is the collection of all points covered by some ball
of the pencil, is the union of by and be, | [b1b2] = by Uba.

Linking back to the previous remark, MA (.9) is a col-
lection of pencils. Indeed, for each segment of the me-
dial axis, there are two points u,v € 95, such that any
medial ball centered at a point of that segment contains
both u and v in its boundary. Thus, each segment of
MA (S) coincides with a pencil. Hence a union of balls
can always be interpreted as a union of pencil domains
(see Figure 1 for an illustration).

The medial axis of a closed shape and its erosion al-
ways satisfy the below inclusion.

Proposition 2 MA (5°¢) C MA (S)

Proof. Consider ¢ € MA (5°¢) and b = b(c,r) C S°°
medial in S®¢. Let by = b(c,r + €). We prove that by
is medial in S which implies that ¢ € MA (5).

First, note that by = Uyepb(y,e) € S, hence if 0b,
intersects 0.S at least twice, it is medial in .S. By defini-
tion of b, there are at least two points u # v in the in-
tersection of &b and 0 (S©¢). Since u,v € 9 (5°¢), there
are u4,vy € 05 such that |lu —uy| = ¢ = |lv—vy].
By triangular inequality we have ||¢ — uy|| < |lc —ul|| +
lu — ui]| = r+e, hence uy € by. Since uy € 0S5, nec-
essarily uy ¢ band we have ||¢ — uy|| > r+e. Therefore
llc = uq|| = r + ¢, thus uy € 9by NIS. Also, we have
equality in a triangular equality, hence ¢, u and uy are
aligned. Likewise, vy € 0by N OS, and ¢, v and vy are
also aligned. Thus, if uy # v, then by is medial in S.
By contradiction, assume that we have u, = vy. Then,
¢, u, v and u4 must be aligned. Because u # v, we have
the below situation.

r r 3
voocouoouy

Hence ||v — v4| = ||v — u4|| = 2r + & = . This implies

r =0 and u = v, which is impossible. Therefore, uy #*

vy and by is medial in S. O

Thus for unions of balls, MA (8°¢) splits MA (S) into
two finite collections of line segments: segments that are
part of both MA (S) and MA (S°¢), and segments that
are exclusively part of MA (5). We respectively refer to
them as eroded and non-eroded pencils.

3.2 Partial ordering on medial balls

MA (S) being a collection of segments, it can be viewed
as the embedding of a graph in R?. By assumption
on the class of shapes considered, MA (5) is cycle-free,
hence it is a forest. Since we can process each tree of
the forest independently, we assume without loss of gen-
erality that MA (9) is a tree. By picking any point x of
MA (S) as a root, we obtain an orientation of MA (5)
which induces a partial order on MA (S). Indeed, we
simply have to orient all the edges of MA (S) from the
leaves to the root x. We denote by T the resulting
oriented tree. The structure represented by T is at
times called anti-arborescence or in-tree, and can also
be viewed as a directed acyclic graph with a unique
sink. For any y, z € MA (5), we say that y is T-smaller
than or equal to z, and note y <r z, if z belongs to the
unique path from y to the root x of T. We also use the
usual order symbols and notions such as being T-larger
or equal to, >, or also being strictly T-smaller, <p.

Note that this T-order is valid for all points of
MA (S), and not simply vertices of T. Because points
of MA (S) are centers of medial balls of S and S©¢, this
T-order extends to medial balls. Specifically, we can T-
compare two medial balls of either S or S©¢, but also a
medial ball of S with a medial ball of S©¢.

Since T only induces a partial order, we say that two
balls that cannot be ordered by T are T-unrelated.
An additional useful notion is that of T-maximal ball
for a collection: given a collection of balls %, b € &
is T-maximal in £ if for all b/ € B, either b <7 b
or b and V' are T-unrelated. Likewise, b is T-minimal
in 4 if for all b/ € A, either b¥ >7 b or b and b’ are
T-unrelated. Finally, we extend the notion of degree
for any point ¢ € MA (S). By convention, if ¢ is not a
vertex of T' but an inner edge point, we say that ¢ has
degree 2. We denote the degree by deg (c).

4 Algorithm

4.1 Principle

For our proposed algorithm, the partial ordering we in-
troduced allows the definition of clear start and end
points, as well as a measure of progress. Indeed, let
bo = b(co,70) be a medial ball of S. Its center cgy
splits MA (S) into deg (cg) connected components. We
denote these components by branch (¢g,7), 1 < ¢ <
deg (cg). For our purpose, we want to express the do-
main covered by balls centered at points of these com-
ponents of MA (S), but not covered by bg. First we
define the collection of related medial balls, € (bo,7) =
{b(c,r) medial in S | ¢ € branch (¢g,i)}. Then the do-
main of each €(by,7) is C(bo,i) = |J€(bo,%) \ bo.
With these notations, by also splits S into the different
C(bo,1)’s, and S\ by = USE) C(by, 7). Unless ¢y is the

188

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 1: T-large and T-small components of a medial ball. z is
the root of T. Red segments are points T-smaller than cg, blue
ones are points T-larger, black ones are T-unrelated.

root of T, one of these domains corresponds to balls T-
larger than or T-unrelated to by. The other deg (¢p) — 1
domains corresponds to balls T-smaller than by. To pro-
mote clarity, we refer to the former domain simply as
the T-large component, and denote it by C(bg,+)
(see Figure 1). As for the later domains, we refer to their
union as the T-small component and note C(bg, —).
Hence, we have S\ by = C(bg,+) U C(by, —). From the
definition, we also deduce the following:

Proposition 3 If by <t bo, then C(b1,—) C C(be,—)
and C(b1,+) 2 C<b2,+).

Now assume we want to traverse and sweep S with
a medial ball, starting from a leaf of T, toward its
root. When we reach a medial ball by, then at that
moment, C(byg,—) U by corresponds to the domain of
S that was swept by our medial ball, and C(bg,+) to
the domain of S that was not swept by it. Our ap-
proach is based on this particular decomposition of S.
We want to use a greedy approach to iteratively com-
pute an e-covering of the T-small component C(bg, —).
Because T' may have several leaves, it is necessary to ex-
tend the above definitions of T-small and T-large com-
ponents to collections # of medial balls, while preserv-
ing the interpretation that C'(#,—) U (| %) is the do-
main of S already processed, and C(%,+) is the do-
main of S that has not been processed yet. The do-
main already processed for a collection of balls should
thus be the union of the domains already processed by
some b € ZA. Hence the T-small component of & is
C(A,—) = UpezC(b,—). Likewise, the domain that
still needs to be processed for & should be the inter-
section, over all b € %, of the domains to be pro-
cessed for b. Hence the T-large component of £ is
C(AB,4+) = NpesC(b,+). Owing to Proposition 3, these
definitions emphasize the importance of the T-maximal
balls of #. Let T -max (9) be the collection of these
T-maximal balls. Then C(#,+) = C(T -max (%),+)
and likewise C(%, —) = C(T -max (%) ,—).

To formalize the procedure presented above, we re-
quire two more definitions.

Definition 2 Let £ be a collection of medial balls in
S. We say that & is a T-small e-covering of S if it
covers S©¢ in its T-small component C(%, —), that is if
C(#,-)NS°s CUA.

Note that every e-covering is also a T-small e-covering
of S. As such, we employ the term partial T-small
e-covering if we need to distinguish from complete e-
coverings.

Definition 3 Let % be a partial T-small e-covering of
S, and by be medial in S. We say that by is a candidate
ball with respect to %, if By = BU{by} is also a T-small
e-covering of S, and S°°\ |J %A, € S°°\ U Z.

The strict inclusion S\ |J%y C S\ |JZ ensures
that %y is closer to being a complete e-covering than
A. Hence, for any partial T-small e-covering, iteratively
adding a candidate to the collection ensure that at some
point we will obtain a complete e-covering. Because
any partial T-small e-covering always have an infinity of
candidates, we elect to add only T-maximal candidates,
that is T-maximal among the collection of candidates.

4.2 Specification

Our algorithm is based on a loop over the collection
of all eroded and non-eroded pencils of MA (S) in a
topological order. Since MA (S©°) C MA (S), we can
simultaneously sweep S and S9°. With our partial
ordering on MA (S), a topological order of its ver-
tices (v1,...,Vnp+1) is such that for ¢ < j, then either
v; <t vj, or v; and v; are T-unrelated. Besides the
root, each vertex is incident to exactly one pencil com-
posed of T-larger points of MA (5), hence any topolog-
ical ordering of vertices induces an ordering of pencils
([v101], - .., [UnDy]), where U; € {v1,...,v,}. This order-
ing of pencils thus satisfies that for i < j, then either
v; <7 U; <7 vj <7 Uj, or v; and v; are T-unrelated.

As we loop over the pencils, we maintain a collec-
tion of medial balls % which is a T-small e-covering,
while looking for T-maximal candidates to add to said
collection. When we process a pencil, we compute a
collection of constraints to pass on to the next incident
pencil. A constraint is a point or circular arc that any
ball T-larger than the pencil (that is T-larger than any
ball of that pencil) must contain in order to be a candi-
date for Z4. Hence, if no T-maximal candidate is found
in the currently processed pencil, the set of constraints
it will pass on to its incident T-larger pencil is the col-
lection of all constraints it itself inherited from incident
T-smaller pencils, plus new constraints specific to the
current pencil. Then, we can compute the T-maximal
ball that contains all these constraints. If it is not the
T-large endpoint of the pencil, we call it critical. We
claim that for well chosen constraints, critical balls are
T-maximal candidates. The overall approach is summed
up in Algorithm 1.

189

28" Canadian Conference on Computational Geometry, 2016

Algorithm 1 Greedy e-covering

Input: A finite union of balls .S
Output: An e-covering £ of S
1: Compute a topological ordering of MA (.5)
2 B+ O
3: Loop over all pencils in topological order
4 Retrieve incident constraints
5: Search for a critical ball in the pencil
6 If a critical ball b is found then
7 B «— B {b}
8 end If
9: Compute the constraints to pass on
10: end Loop
11: Return #

Figure 2: A is the dark shaded area, with & = {b1,b2} and
X =bgUbi Ubs. In (a) bp is a candidate to %, but in (b) vertex
v does not satisfy condition (ii) and A\ X (in red) is non empty.

All that remains is to explicit constraints which guar-
antee that critical balls are indeed 7T-maximal candi-
dates. Consider a candidate by to the collection . We
can ignore balls which are T-unrelated to by, thus let
B ={be B, b<r by}. By definition, B = B' U {by}
is a T-small e-covering. The domain of S¢ covered by
C(%y,—)U(J %) but not by C(#’, —) is contained in
(U%p) \ C(#',—). Let that former domain be

A= (e, - u(J2))\C(#.-))nse
= ((C(bo, =) Ubo) \ C(#',—)) N 5°*
and the latter be
x=(J%)\C(#,-)=bhuU (| JT-max(#)).

See Figure 2a. A and X both vary depending on % and
bo, and in light of the previous remark, bq is a candidate

to & if and only if A C X. Explicitly ensuring and
verifying that we indeed have the inclusion A C X is
non trivial. Instead, we claim that it is sufficient to
ensure the two conditions:

(i) 9A C X,

(ii) V vertex v € 8X, 3N, an open neighbourhood of
v, such that N, N A C X.

Note that both A and 90X are finite collections of cir-
cular arcs, whose intersections we call vertices of the
boundary. Since these boundaries have a finite combi-
natorial structure, (i) and (ii) are more readily verifiable
and can be enforced. Also, as illustrated in Figure 2b,
condition (i) by itself is insufficient to ensure that by
is a valid candidate. We take as constraints for Algo-
rithm 1 any arc of A not in | #’, as well as any vertex
of 0 (T -max (#')) whose neighbourhood in A is not
fully contained in | J#’. This ensures that critical balls
can be computed as per Section 5 and fulfill conditions
(i) and (ii). Both conditions are necessary to have the
inclusion A C X. We prove in Section 6 that they are
also sufficient.

5 Computation of critical balls

As stated previously, each pencil inherits a collection of
constraints that are either a singleton point or a circu-
lar arc. Because of Proposition 4, which will be stated
and explained in detail later, when we sweep a pencil
from an endpoint to the other, a point that exited the
sweep ball will never re-enter it, and a point that entered
the sweep ball will never exit it. Thus, to each con-
straint corresponds a single-constraint critical ball
berig: any ball strictly T-larger than b.; cannot fully
contain the constraint, hence cannot be a candidate,
while any ball T-smaller than or equal to be; will al-
ways contain the constraint and may be a candidate.
Therefore, the critical ball for the overall collection of
constraints is the T-maximal ball that is T-smaller than
all single-constraint critical balls, that is the unique 7-
minimal ball amongst all single-constraint critical balls.
From here on, we omit the qualifier “single-constraint”.
Also, because we parameterize balls of a pencil by an
interpolation value A\, we call critical A an interpolation
value which corresponds to a critical ball.

The next sections present how to compute a critical
ball given a single constraint. Section 5.1 presents a
very useful property of pencils and how to handle point
constraints, while Section 5.2 deals with arc constraints.

5.1 Point inclusion

Given a ball b = b(c,r) and a point y, there are many
ways to test whether y belongs to b or not. By definition,
we can compare the distance from y to ¢, to the radius

190

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

of b. Here, we rely on the power of y with respect to
ball b, which by definition is pow(y,b) = ||y — ¢/|* —r2.
Hence, y belongs to ball b if and only if pow (y,b) < 0.

Consider now a pencil of balls [bybs], with b; =
b(ci,r;). For A € [0,1], we denote by by = b(cx, 7))
the ball of pencil [b1bs] that is centered at ¢y = Ay +
(I = XN)cg. We argue that then, for any point y, the
power of y with respect to by is the linear interpolation
of its power with respect to b; and bs.

Proposition 4

(1 —X) pow (y, b2)

The power of a point with respect to balls of the pencil
is thus linear in A and may only change sign once. This
justifies our earlier claim that when sweeping a pencil,
a point can exit or enter the sweep ball only once.

pow (y,bx) = Apow (y, b1) +

Proof. By definition, all the balls of a pencil [b1bs]
share exactly two points {u,v} = 9by N Oby on their
boundary. We have r2 = |lu — ¢, ||>. Hence:

pow (y,63) = lly — exl” = lu — eall?
=[lyl* = 2 (ex, ») + lleal’®
= (Ilull* = 2(ex, u) + fleall?)
=2(cx, u—y)+ yl* = flul®

Note that this identity also holds for b; and by since
they coincide with by, for A € {0, 1}.

pow (y,bx) =2 (At + (1=) ea, u—y) + [ly|* — [Jul|”
=X (2(cr, u—y) + [yl — Ilu]?)
+ (1= N (2(e2, u—y) + [yl = Ilu]?)
=Apow (y,b1) + (1 — A) pow (y, b2)
O

This proof actually extends to all balls of the complete
line pencil. From there, given two endpoint balls of a
segment pencil and a single constraint point, we can
easily compute the value Aq¢ for which by, will be
critical. From the design of Algorithm 1, and assuming
that by <7 by, we will always have Aqqy > 0. If we
happen to have Aqi¢ > 1, then the segment pencil does
not contain any critical ball for that constraint point,
since all balls of the pencil contain that constraint point.

5.2 Arc inclusion

For arc constraints, we use the same approach of com-
puting a critical value for A. If all of these critical \’s
are strictly larger than 1, then the pencil does not con-
tain any T-maximal candidate. If any are less than or

equal to 1, then the minimum value yields a T-maximal
candidate. All that remains is thus being able to com-
pute such a critical A\ for arc constraints. To do so, we
first need to compute this critical value for a ball.

5.2.1 Critical X for balls

Consider a constraint ball b = b(c,r). We want to com-
pute the critical values of A for which b is fully contained
in by. Hence:
bCby < ry>|c—cal +r
= i >le—al?+r?+2r)c—cl
— (||C —al? - ri) — 12> 2r|c— ey
< —pow (c,by) — 12 > 2r[lc — el
< (—pow (c,by) — T2)2 > 472 ||c — ey |]?
& —pow(c,by) —1r2>0
Since pow (cg, by) is linear in A as per Proposition 4, we
introduce two constants A and B such that AA + B =
pow (¢, by) + 72 to simplify notations. We have
A = pow (¢,b1) — pow (¢, ba)
B = pow (c, by) + 2.
We focus on the first inequality, (AA+ B)2 >

4r2||c — exl|>. For the right hand side, the factor
¢ — ex|* can be developed as follows

llex = elf®
= 1A (e1 = e2) + 2 = ¢|®
= 22ler — o] ? + 2X (e1 — ¢, c2 =€) + [lea — ¢]?
and thus, it is quadratic in A\. Therefore
bCby = CN+DA+E>0 & AN+B<0
where
C =A% — 4%||c; — ¢ ?
D =2AB — 8% {(c; — g, c3 —)
E=B>—4r?|cy — c|]?
A, B, C, D and F are constant with respect to A\ and
thus the inclusion test can be reduced to a sign analysis

of polynomials of degree 2 and 1. From the roots of these
polynomials, we can thus derive the critical values of \.

5.2.2 Critical X for arcs

In order to compute the critical A value for an arc con-
straint e, we first require the critical value for the ball
b supporting that arc, that is the ball such that e C 0b.
Let X be the critical value for that supporting ball.

191

28" Canadian Conference on Computational Geometry, 2016

With X, we can then compute the tangency point y be-
tween b and by/. This particular point, in addition with
the endpoints of arc e, are sufficient to compute the crit-
ical value of e. Indeed, for A <), the whole ball b is
contained in by, hence we also have e C by. For A > X,
two cases arise. Either y € e or y ¢ e. In the former, we
have y € e\ by hence the critical value for the arc e is In
the former, we have y € e and y ¢ by hence the critical
value for the arc e is)\ itself. In the latter, note that by
splits 0b into two connected components, one which is
inside by, and the other outside. By Proposition 4, the
outside component will always contain y. For A > A.it,
any point of e not in by must be path-connected in 9b
to y. Therefore, some endpoint of e also belongs to the
outside connected component. It immediately follows
that if both endpoints of e actually belong to by, then
the whole arc e is also contained in b). Therefore, the
critical value for e is in this case equal to the smallest
critical value of its endpoints.

6 Correctness of the algorithm

6.1 Convergence to an e-covering

Lemma 5 Let by and & such that by fulfills both con-
ditions (i) and (ii). Then by is a candidate for AB.

Proof. Let A and X be defined from by and %. Con-
sider H = A\ X = AN X°. By contradiction assume
that H # @. First, notice that 0H C 0X. Indeed,
OH =9(ANX°) C (0ANX)U(8(X)NA). By con-
dition (i), 04 C X and we have A N X¢ C 9X. Also,
0(X°¢) = 0X. Hence OH C 0X. Let H; be a connected
component of H. Since H; C OH, hence dH; C 0X.
We have H; C X°© connected, with 0H; C 0X. Thus,
H; is actually a connected component of X¢. H; being
bounded, it is commonly called a hole of X. As a hole
of X, any vertex of OH; is also a vertex of 0X. Let v
be a vertex of 0H;. For all open neighbourhood N, of
v, we have N, N H # @. Since H = AN X°¢, we deduce
@ # N,NA ¢ X. This contradicts (ii) and is impos-
sible. Therefore, H = @, A C X, and by is indeed a
candidate for 4. O

From the above lemma, Algorithm 1 indeed finds can-
didates and eventually converges to an e-covering. We
now show that it converges in polynomial time.

Lemma 6 Algorithm 1 converges to an e-covering in

O (IMA (9)).

Proof. Let n = |MA (S)|. First, we show that Algo-
rithm 1 outputs a collection %,,, With size at most 2n,
and then that the complexity is at most quadratic.

For any partial T-small e-covering £, let b €
T -max (#). There is a unique pencil incident to b that

contains balls T-larger than b. Let by >7 b be the T-
large endpoint of that pencil. We show that b is always
a candidate to #. Though by may not be a T-maximal
candidate, this still implies that there can be at most
two medial balls from the same pencil in H,jg0-

Let o = BU{by}. Because b and by belong to the same
pencil, C'(%y, —) and C(%, —) only differ in the domain
of S covered by the pencil [bbg]. This implies the equal-
ities C'(%Bo, —) \ C(#,—) = C(by,—) \ C(b,—) = b\ bp.

Hence, we obtain
A= ((b\bo) Ubg) NS C bUby,

thus by is a candidate for %. Therefore, |Haigo| < 2n.
We now analyse the complexity. Computing a topo-
logical ordering [5] is linear in n. Enforcing a single
constraint takes constant time (see Section 5), hence
the time expanded to search for a critical ball depends
on the number of constraints. This number cannot ex-
ceed the combinatorial complexity of the boundaries of
S°¢ and \J Pualgo- The former is linear in n. As for the
latter, it is linear in the size of aigo, which is itself
linear in n. Thus, Algorithm 1 is quadratic in n. t

6.2 Convergence to an optimal solution

In order to prove that our algorithm reaches an optimal,
we rely on several intermediate results. We introduce a
sequence of three lemmas, the last of which we reformu-
late, through two corollaries, in terms of candidate ball
to a partial T-small e-covering. Then, we finally prove
Proposition 12.

Lemma 7 Consider a finite union of balls S, and a ball
b such that b ¢ S. Let S’ = SUb. Then, S"=SUb.

Lemma 8 Consider a finite union of balls S such that
MA (S) is a tree. Then S¢ is path-connected.

Proof. Let . be the collection of medial balls in S
which are centered at a vertex of MA (S). . has fi-
nite cardinality and we have | . = S. We proceed by
induction on n = |.¥|, and henceforth use the notation
Sp = |J S for collection of balls with cardinality n. For
n =1, S7 is only a ball, the property is verified. Now
consider a collection ., 11, and let b € %, 1 such that b
is centered on a leaf of MA (S,,4+1). Let ., = 7,11\ {b}
and S, = J -

Using Lemma 7, we deduce that S5, , = S¢ N be.
Consider y,z € WH By induction assumption, we
know that S¢ is path-connected, hence there is a path
v C S¢ connecting y and z. We build from v another
path 7/ C S5, that connects y and z. If v C b° we
already have v C ﬂ Otherwise let m,,m, € yNOb
such that v does not meet b between y and m,, and
likewise between z and m,. Because my,m, € ST%, they

cannot be in Sn Let e = 9b\ Sn e is a path-connected

192

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

circular arc, and is the contribution of 9b to 95,,+1. We
have 7, 7, € e. Since e is path-connected and contained
in S, we can complete 7" by following e to go from
my to 7, showing that S, is path-connected. g

Lemma 9 Consider by a medial ball of S. C(bg,+) and
C(bo, —) are interior disjoint.

Proof. By contradiction, assume that C(by,+) and
C(bo, —) are not disjoint. From there, we exhibit two
paths v € S and § C S with non empty intersection,
which is impossible.

Let y € C(bo, +) N C(by, —). Without loss of general-
ity, we assume that y ¢ MA (S). Necessarily, there are

two medial balls of S, b4 and b_, such that:

by C C(bo,+)Ubg
b_ C C(bo, —) U bo

y € (bynb_)\ bo.

Let ¢4 and c_ be the respective centers of b; and
b_. We have segment [c1y] C S and likewise segment
[c_y] € S. There is also a path in MA (S) C S con-
necting ¢4 and c_. Hence there exists a Jordan curve
v € MA (S)U[csy]U[c—y] C S. By the Jordan-Brouwer
separation theorem, + has a well defined interior and
exterior. Consider now e = 9bg N C'(bg, +). It is a path-
connected circular arc. Its two endpoints are vertices
of 0S5, hence we have e C S¢. Moreover, one of those
endpoints lies in the interior of «, while the other lies
in the exterior of 7. See Figure 3 for a schematic repre-
sentation. However by Lemma 8, S¢ is path-connected.
Therefore, let § C S¢ be a path connecting the end-
points of e. Since the interior and exterior of v are
separated, necessarily @ # yNé§ C SN S° = @, hence
the contradiction. (]

Figure 3: Schematic representation for Lemma 9.

Though Lemmas 7 and 8 are quite remote from the re-
sult we want to prove, in essence Lemma 9 implies that
whatever medial ball we chose in C(bg,+), it cannot
contribute to cover S°¢ in C(by,—). That is why we
can process each of these components separately in a
greedy way and still achieve a global optimal solution.
Formally, we rely on the following corollaries.

Corollary 10 Let by be a medial ball in S. Then we
have the three identities:

(C(by, —) Ubg) N 89 = C(by, +) N §°
(C(bo, +) Uby) NS = C(by, —) NS
(C(bo,+) UC(bg, —)) NSO = by NS

Corollary 10 simply states that when restricted to S©¢,
the complement of C(bg,+), C(bo,—), and by, is the
union of the other two subsets.

Proof. We only prove the first equality. We have
Soe C S, Additionally by Lemma 9, S is the disjoint
union of C(bg, —) NS, bp NS, and C(by,+) N S. Hence,

5950 (C(bo, —) Ubo)S = S9N SN (Clby, —) Ubg)©
=59°18NC(bo, +)
= SGEQCU}Q,+).

O

Corollary 11 Consider an e-covering B. Let B_ C B
be a partial T-small e-covering, and let by be any T-
mazimal candidate to B_. Then B\ B_ contains a
candidate to %B_ that is T-smaller than or equal to by.

Proof. Let B, = #\ #B_. First we prove that B,
always contains candidates to #_, and then that one of
these candidates is T-smaller than or equal to bg.

By contradiction, assume that %, is void of candi-
date to _. Consider b’ € %, T-minimal in B,. By
T-minimality of ¥, for all b € B, b C b UC(H,+).
Thus |y #B+ C Y UC(Y,+). By Corollary 10, we deduce
that ST N CM',—) C SN (JB+)" = 5%\ U B+
By assumption, ¥’ cannot be a candidate to %_, hence
by Definitions 2 and 3 (S©=NC(¥,—)) \ (v U (J%A-))
is non empty. With the previous inclusion, we get the
following development.

(se=nc@,)N\ (pu(Jz-))

= (s ncw,)N\ (v (Jz-)u(J=2))
= (5% ncw,-)\|Jz

cse\U#

Hence, 5S¢\ |JZ% # @ which is impossible since 2 is
an e-covering. Thus, &, contains a candidate to ZB_.
Because #Z_ may have several distinct T-maximal
candidates, %, may only contain candidates T-
unrelated to by. By contradiction assume % is void of
candidate to #_ T-smaller than or equal to by. Since
A contains at least one candidate to #_, by cannot be
centered at the root of T'. By Proposition 3, any ball T-
smaller than or equal to by is a candidate to Z_. Hence

193

28" Canadian Conference on Computational Geometry, 2016

A, only contains balls that are either strictly T-larger
than by, or T-unrelated to by. Therefore, there exists a
medial ball ¥ >7 by, with b’ also strictly T-smaller or
T-unrelated to balls in .. By T-maximality of by, b’
cannot be a candidate to Z_. Once again, we have a
ball ', T-minimal in %', = %, U {b'} which is not a
candidate. The same development as above using Corol-
lary 10 yields 5S¢\ | J % # @, which is still impossible.
Therefore, . must contain a candidate to %_ that is
T-smaller than or equal to bg. [

Proposition 12 Algorithm 1 converges to an optimal
€-covering.

Proof. We denote by P, the e-covering found by
Algorithm 1. We number the balls of &4, by b1, . .., bi,
such that for i < j, b; was found before b;. Consider
any optimal e-covering %,p¢. We assume without loss of
generality that %, only contains medial balls. Indeed,
S is a finite union of balls, hence any ball b € B is
wholly contained in a medial ball. Using consecutive
substitutions, we want to build a finite sequence of e-
coverings Ay, . . . , By, that satisfies the properties:

(a‘) ‘%0 = ‘%Oph
(b) |‘%i+1‘ = "@1|7V26 H()?k_l]]v
(c) {b1,-.

If such a sequence exists, we immediately deduce that
| Batgo| = |PBopt|, and Baigo is also optimal.

We proceed by induction. Assume that for 0 < i < k,
we have built Ay, ..., %A; with the above properties.
Consider b;y1. Let - = {b1,...,b;}. By construc-
tion, B_ C B;. Let B+ = H; \ #_. Algorithm 1
guarantees that %_ is a partial T-small e-covering and
that b;y; is a T-maximal candidate for %_. Hence
we can apply Corollary 11 and there is a candidate
b to B_, such that b € £, and b <p b;y;. Then,
let ‘@FH = (%z U {bl+1}) \ {b} ‘%i+l satisfies both
properties (b) and (c), we must prove that it is also
an e-covering. To do so, it suffices to prove that both
C(bi+1,—) N S and C(b;y1,+) N S©° are contained
in |J%i+1. Because bj;q is a candidate to #_, we
have C(bi+1,—) n S@E g bi+1 @] (U%_) Q U’%i-‘rl‘
Also, b <p b;+1, hence by Proposition 3 we have
C(bi+1,+) C C(b,+). This implies C'(b;y1,+) NS¢ C
C(b7+) n S@E Q (U %7,) \ b Q U%H_l. ThUS, 1%714_1 is

an e-covering, and Halgo is an optimal e-covering. [

,b,} - :@i, Vi e Hl,k]L

7 Discussion

Consider the following more general covering definition,
where S%¢ = U,egb(y, ') is the dilation of S (by &’):

Definition 4 An &’e-covering of S is a collection of

balls % such that S C | J & C §©<'.

The algorithm presented computes in polynomial time
an optimal €’e-covering of any union of balls S such that
MA (S) is a forest and MA (S9¢) C MA(S©¢").

An interesting perspective is to build on this work to
design a heuristic algorithm where both conditions on
the medial axis are relaxed.

References

[1] N. Amenta and R. K. Kolluri. The medial axis of a union
of balls. Computational Geometry, 20(1):25-37, 2001.

[2] D. Attali, T.-B. Nguyen, and I. Sivignon. Epsilon-
covering is NP-complete. In FuroCG, Lugano, Switzer-
land, Mar. 2016.

[3] G. Bradshaw and C. O’Sullivan. Adaptive medial-axis
approximation for sphere-tree construction. ACM Trans-
actions on Graphics (TOG), 23(1):1-26, 2004.

[4] F. Cazals, T. Dreyfus, S. Sachdeva, and N. Shah. Greedy
geometric algorithms for collection of balls, with applica-
tions to geometric approximation and molecular coarse-
graining. In Computer Graphics Forum, volume 33,
pages 1-17. Wiley Online Lib., 2014.

[5] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiser-
son. Introduction to Algorithms. 2001.

[6] B. Miklos, J. Giesen, and M. Pauly. Discrete scale axis
representations for 3d geometry. In ACM Transactions
on Graphics (TOG), volume 29, page 101. ACM, 2010.

. Schwerdtfeger. Geometry of complex numbers: circle

7] H. Schwerdtf G t l b ircl
geometry, Moebius transformation, non-euclidean geom-
etry. Courier Corporation, 1979.

194

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Geometric Unique Set Cover on Unit Disks and Unit Squares

Saeed Mehrabi*

Abstract

We study the UNIQUE SET COVER problem on unit
disks and unit squares. For a given set P of n points
and a set D of m geometric objects both in the plane,
the objective of the UNIQUE SET COVER problem is
to select a subset D' C D of objects such that every
point in P is covered by at least one object in D’ and
the number of points covered uniquely is maximized,
where a point is covered uniquely if the point is covered
by exactly one object in D’. In this paper, (i) we
show that the UNIQUE SET COVER is NP-hard on both
unit disks and unit squares, and (ii) we give a PTAS
for this problem on unit squares by applying the mod-
one approach of Chan and Hu (Comput. Geom. 48(5),
2015).

1 Introduction

Consider a set P of n points and a set D of m geomet-
ric objects both in the plane. For a subset S C D of
objects, we say that a point p C P is covered uniquely
by S if there is exactly one object in S that covers p.
In the UNIQUE SET COVER problem, the objective is
to compute a subset S C D of objects so as to cover
all points in P and to maximize the number of points
covered uniquely by S.

There is a slightly different problem, called UNIQUE
COVER, where the input is the same as the UNIQUE SET
COVER problem and the objective is to compute a sub-
set S C D that maximizes the number of points covered
uniquely; note that not all the points in P are required
to be covered in an instance of the UNIQUE COVER
problem. Both UNIQUE SET COVER and UNIQUE
COVER belong to the larger class of the UNIT COVER
problem in which we are given the same input and the
objective is to compute a minimum-cardinality subset
S C D so as to cover all points in P. Indeed, UNIQUE
SET COVER combines the objectives of the UNIQUE
CovER and UNIT COVER problems.

In this paper, we are interested in the UNIQUE SET
COVER problem on unit disks and unit squares. For-
mally, given a set P of n points and a set D of m unit
disks (resp., unit squares) both in the plane, the objec-
tive of the UNIQUE Disk (resp., SQUARE) SET COVER

*Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada. smehrabi@uwaterloo.ca

Figure 1: An instance of the UNIQUE Disk SET COVER
problem with n = 15 and m = 7, and an optimal solution,
where 11 points are covered uniquely by the 4 dashed disks.

problem is to find a subset S C D that covers all points
in P and that maximizes the number of points cov-
ered uniquely. Figure 1 shows an instance of, e.g., the
UNIQUE Disk SET COVER problem and an optimal so-
lution for this instance.

The UNIQUE COVER problem was first studied by Er-
lebach and van Leeuwen [5] on unit disks and is moti-
vated by its applications in wireless communication net-
works, where the broadcasting range of equivalent base
stations have been frequently modelled as unit disks.
Providers of wireless networks often consider having
a number of base stations to service their customers.
However, if a customer receives signals from too many
base stations, then the customer may receive no service
at all due to the resulting interference. As such, each
customer is ideally serviced by exactly one base station
and we want such a service to be provided to as many
customers as possible. Our motivation for studying the
UNIQUE SET COVER problem is that what if in addition
to providing service to as many customers as possible
by exactly one base station, we still want to do service
all the customers as well.

Related Work. The UNIT COVER problem is a well-
known NP-hard problem on unit disks and unit squares.
Mustafa and Ray [11] gave the first PTAS for the UNIT
COVER problem on both unit disks and unit squares us-
ing a local search technique. This technique was also dis-
covered independently by Chan and Har-Peled [1] who
gave the first PTAS for the maximum independent set
problem on pseudo-disks in the plane. Demaine et al. [3]
introduced the non-geometric variant of the UNIQUE
COVER problem and gave a polynomial-time O(logn)-

195

28" Canadian Conference on Computational Geometry, 2016

Problem Unit Squares

Unit Disks

UniT COVER
UNIQUE COVER
UNIQUE SET COVER

ND-hard, PTAS [11]
NP-hard [5], PTAS [9]
NP-hard [Theorem 2]
PTAS [Theorem 6]

NP-hard, PTAS [11]
NP-hard [5], 4.31-approximation [§]
NP-hard [Theorem 3]

Table 1: A summary of previous and new results; the new results are shown in bold.

approximation algorithm for the problem, where n is the
number of elements of the universe in the correspond-
ing set system. Erlebach and van Leeuwen [5], who
were first to study the geometric version of the UNIQUE
COVER problem, showed that UNIQUE COVER problem
is NP-hard on both unit disks and unit squares (see
also [12]).

By combining dynamic programming and the shifting
strategy of Hochbaum and Maass [7], Erlebach and van
Leeuwen [6] gave the first PTAS for the weighted ver-
sion of the UNIT COVER problem on unit squares, where
each unit square in D is associated with a positive value
as weight and the objective is to cover the points in P
so as to minimize the total weight of the unit squares
selected.! This approach was also used by Ito et al. [9]
who gave a PTAS for the UNIQUE COVER problem on
unit squares. However, this technique does not seem
to work for unit disks. In fact, Ito et al. [8] used this
approach to give a polynomial-time approximation al-
gorithm for the UNIQUE COVER problem on unit disks
with approximation factor o < 4.3095 + ¢, where € > 0
is any fixed constant. Moreover, this approach involves
sophisticated dynamic programming. Finally, by intro-
ducing a mod-one transformation, Chan and Hu [2] gave
a PTAS for the RED-BLUE UNIT-SQUARE COVER prob-
lem, which is defined as follows: given a red point set R,
a blue point set B and a set of unit squares in the plane,
the objective is to select a subset of the unit squares
so as to cover all the blue points while minimizing the
number of red points covered.

Our Results. In this paper, we first show that both
UNIQUE Disk SET COVER and UNIQUE SQUARE SET
CoOVER are NP-hard. We note that the UNIQUE COVER
problem is shown to be NP-hard on unit disks and unit
squares [5]. However, their hardness, which is based
on a reduction from the Independent Set problem on
planar graphs of maximum degree 3, does not apply
to proving the hardness of the UNIQUE SET COVER
problem mainly because all points in P are required to
be covered in an instance of the UNIQUE SET COVER
problem. We instead show a reduction from a variant
of the planar 3SAT problem to prove the NP-hardness
of UNIQUE SET COVER on both unit disks and unit
squares.

IThe local search technique of Mustafa and Ray [11] does not
apply to the weighted version of these problems.

As our second result, we show that the mod-one ap-
proach of Chan and Hu [2] provides a PTAS for the
UNIQUE SQUARE SET COVER problem. The only dif-
ference is that instead of storing 4-tuples of unit squares
when solving the dynamic programming, we store 6-
tuples of unit squares and show that they suffice to cap-
ture the necessary information (we will discuss this ap-
proach in more details in Section 3). See Table 1 for a
summary of previous and new results.

We first prove the NP-hardness of the problems in
Section 2 and will then give a PTAS for the problem
on unit squares in Section 3. Finally, we conclude the
paper with a discussion on open problems in Section 4.

2 NP-Hardness

In this section, we first show that the UNIQUE DIisK
SET COVER is NP-hard; the NP-hardness of the
UNIQUE SQUARE SET COVER is proved analogously
and we will discuss it at the end of this section.

UNIQUE Disk SET COVER

Input. A set P of n points, a set D of m unit disks,
and an integer k > 0.

Output. Does there exist a set S C D that covers all
points in P and that covers at least k points uniquely?

To prove the hardness of the UNIQUE Disk SET
COVER, we show a reduction from the PLANAR VARI-
ABLE RESTRICTED 3SAT (PLANAR VR3SAT, for
short) problem. PLANAR VR3SAT is a constrained
version of 3SAT in which each variable can appear in
at most three clauses and the corresponding variable-
clause graph is planar. Efrat et al. [4] showed that PLA-
NAR VR3SAT is NP-hard.

Let Igyr be an instance of PLANAR VR3SAT with K
clauses Cy,Cs, ..., Ck and N variables X1, Xo, ..., Xn;
we denote the two literals of a variable X; by z; and ;.
We construct an instance Iygc of the UNIQUE DISK SET
COVER problem such that Iysc has a solution with at
least ¢- (K 4 1) points covered ungiuely, for some c that
we will determine its value later, if and only if Igyr is
satisfiable. Given Igyr, we first construct the variable-
clause graph G of Igyr in the non-crossing comb-shape
form of Knuth and Raghunathan [10]. Without loss of
generality, we assume that the variable vertices lie on a
vertical line and the clause vertices are connected from

196

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Figure 2: An instance of the PLANAR VR3SAT problem
in the comb-shape form of Knuth and Raghunathan [10].
Crosses on the edges indicate negations; for example, C1 =
(T1 V 22 V T3).

left or right of that line; see Figure 2 for an illustration.
Note that each variable appears in at most three clauses.

Gadgets. For each variable X; € Isyr, we replace the
corresponding variable vertex in G with a single unit
disk containing three groups of points each of which con-
sists of K + 1 points (where K is the number of clauses
in Igpr). We call each such groups of points a cloud.
If a literal of X; appears in a clause, then the variable
gadget of X; is connected to the corresponding clause
gadget by a chain of unit disks such that (i) the first
unit disk in the chain covers exactly one of the clouds
in the variable unit disk, and (ii) every two consecutive
unit disks in the chain share a cloud. We call such a
chain of unit disks a wire; see Figure 3(Right) for an
illustration. A cloud shared between two unit disks in
a wire has also K + 1 points. We call the unit disk of
a wire that shares a cloud with the variable unit disk
a start disk. For the clause gadget, where three wires
meet, we make the last three unit disks (each of which
arriving from one of the wires) to have a non-empty in-
tersection region in which we insert one single point; see
Figure 3(Left). We call this point a clause point.
Consider the cloud shared between a variable unit
disk and a start disk. If all the clouds in the corre-
sponding wire are covered uniquely, then exactly one of
the variable unit disk and the start disk must be selected
to cover the cloud shared between them. Consequently,
depending on whether the variable unit disk is selected,
we can decide whether the clause point of the clause
gadget on the other end of the wire is covered by the
last unit disk of this wire. That is, we can create two
ways of covering the clouds of the wire uniquely, one of
which will not be able to cover the corresponding clause
point. It is clear from the variable unit disk shown in
Figure 3 that if the variable unit disk is selected (resp.,
is not selected), then the clause point is covered (resp.,

Figure 3: An illustration of the gadgets used in our reduc-
tion. Right. The filled (pink) unit disk indicates a variable
unit disk and each small (rising) shaded circle indicates a
cloud consisting of K + 1 points. Each variable unit disk
shares three clouds with the start disks of the three wires
that connect the variable unit disk to the clauses in which
it appears. Left. A clause gadget determined by the non-
empty intersection of the last three unit disks of the three
wires arriving from the literals of this clause, and the corre-
sponding clause point.

is not covered) by the last unit disk of the correspond-
ing wire. We remark that this is always doable, even for
the wires that require one bend, by adjusting the num-
ber of unit disks in the wire. See the top wire shown in
Figure 4 for an example. We set a variable to true or
false depending on whether its corresponding variable
unit disk is selected or not to cover the clouds that it
contains.

Finally, we need a gadget for negation literals. Sup-
pose that the literal Z; appears in a clause, for some
variable X; in Igyr. To indicate the negation literal, we
add two additional unit disks besides the wire connect-
ing the variable unit disk to the corresponding clause
gadget; see the two (falling and green) shaded unit disks
in the middle wire (i.e., the wire corresponding to X})
shown in Figure 4. We call these two newly-added unit
disks the negation pair. Observe that the negation pair
share a cloud and each of them covers one of the previ-
ously existed clouds in the current wire. The construc-
tion of the negation pair ensures that if the variable unit
disk is selected (resp., is not selected), i.e., it is set to
true (resp., false), then the clause point is not covered
(vesp., is covered). The same gadget can be used for
the negation literals whose corresponding wires have a
bend; see for instance the lowest wire shown in Figure 4.

Construction Details. Clearly, our construction allows
the wires to be connected to a variable unit disk from
both left and right of the variable unit disk; we just

197

28" Canadian Conference on Computational Geometry, 2016

X 1
Y
1
1
1
1
y
Z X s
, Y
’ .

2 & e X
2 N 2]

A

*@

Figure 4: A complete illustration of a clause gadget C' =
(z: VT3 V Tg) and its corresponding variable gadgets. The
existence of a negation pair indicates that literal z; (or literal
Ty) appears in C.

need to move the corresponding clouds inside the vari-
able unit disk accordingly. By scaling and making the
drawing of the wires consistent with the edges of G,
we can ensure that the unit disks of different wires will
never intersect. Note that we can have the scaling so as
to increase the number of unit disks in any wire by only
a constant factor. Hence, by this and from the construc-
tion, we have that the number of disks in the instance
Iysc is polynomial in terms of K and N. To see the value
of n, the number of points in Iysc, we set ¢ to the num-
ber of clouds used in our construction. Since each cloud
contains K + 1 points, the total number of points in Iygc
isn=c-(K+1)+ K as we also have K clause points.
Therefore, the total complexity of the constructed in-
stance Iysc is polynomial in K and N. Moreover, it is
not hard to see that Iysc can be constructed in polyno-
mial time. We now show the following result.

Lemma 1 There exists a feasible solution S for Iysc
that covers at least ¢ - (K + 1) points uniquely if and
only if Isyr is satisfiable.

Proof. (=) Let S be a feasible solution for Iysc that
covers at least ¢ - (K + 1) points. First, by the choice
of ¢ and the fact that we have exactly K clause points
and any other point belongs to some cloud, we conclude
that all the clouds in Iysc must be covered uniquely by
S. For each variable X;, where 1 < ¢ < N, we set the
variable X; to true if its corresponding unit disk is in

S'; otherwise, we set X; to false. To show that this re-
sults in a truth assignment, suppose for a contradiction
that there exists a clause C' that is not satisfied by this
assignment. Take any variable X € C. If z € C (resp.,
T € C), then the variable X is set to false (resp., true)
by the assignment and so the variable unit disk corre-
sponding to X is not in S (resp., is in S). Consequently,
it follows from the construction that the point clause of
C' is not covered by the wire arriving from X. This
means that none of the wires arriving at C' will cover its
point clause — this is a contradiction to the feasibility
of S.

(<) Given a truth assignment for Isyr, we construct
a feasible solution S for Iysc covering at least ¢+ (K + 1)
points uniquely as follows. For each variable X; in IgT,
where 1 < ¢ < N: if X, is set to true, then we add
the corresponding variable unit disk into S; otherwise,
we add the start disks intersecting this variable unit
disk into S. Consequently, every other unit disks of the
corresponding wires are added into S in such a way that
each cloud is covered uniquely by one of the unit disks
along the wire. Clearly, all clouds are covered by S.
Moreover, S also covers all the clause points because
the only way to have a clause C satisfied is to have at
least one of the wires arriving at C' covering the clause
point of C. Finally, by adding every other unit disk
of each wire into S, we ensure that all the clouds are
covered uniquely by S. Since we have ¢ clouds each of
which consists of K + 1 points, we conclude that S is a
feasible solution that covers at least ¢ - (K + 1) points
in Iysc uniquely. O

By Lemma 1, we have the following theorem.

Theorem 2 The UNIQUE Disk SET COVER is NP-
hard.

NP-Hardness for Unit Squares. The proof for the
NP-hardness of the UNIQUE SQUARE SET COVER prob-
lem is almost identical to the one shown above for unit
disks. In what follows, we mainly describe the gadgets
for unit squares so as then one can verify that the hard-
ness follows.

Starting by the comb-shape form of Knuth and
Raghunathan [10] for an instance of the Planar VR3SAT
problem, we replace each variable vertex with a unit
square and will then have three (unit-square type) wires
connecting the variable unit square to the correspond-
ing clause gadgets. This is again doable even if we have
one bend along the wire; see Figure 5 for an illustra-
tion. Moreover, we can make the three wires arriving
at a clause to have a non-empty intersection region in
which we insert our single clause point. Finally, the
negation pair is constructed in an analogous way. See
Figure 5. Note that more unit squares are used (than
unit disks) in a wire connecting a variable unit square to

198

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

@
@ 5
,,,,, _—
e
,,,,,,,,,,,, 2
@ -
] el ie] e e e
o | B N
2
________ =

Figure 5: An illustration of the gadgets for unit squares.
Solid and dashed unit squares alternate for better visibility.

its corresponding clauses. However, we can still ensure
to have the scaling step to have a polynomial number
of unit squares in each wire.

One can verify that the construction is again polyno-
mial in K and N, and we can prove a lemma similar
to Lemma 1 for this new construction. So, we have the
following result.

Theorem 3 The UNIQUE SQUARE SET COVER is NP-
hard.

3 PTAS

In this section, we give a PTAS for the UNIQUE SQUARE
SET COVER problem by applying the mod-one approach
of Chan and Hu [2]; we first describe this approach.

Recall the dynamic programming involed in the
PTASes developed by Ito et al. [9], and Erlebach and
van Leeuwen [6]. The dynamic program is essen-
tially based on the line-sweep paradigm by considering
points and squares from left to right, and extending the
uniquely covered region sequentially. However, adding
one square can influence squares that were already cho-
sen and so we need to keep track of the squares that are
possibly influenced by a newly-added square. The com-
plication stems mainly from the fact that a new square
may influence too many squares. This requires keeping
track of the changes on the two separate chains induced
by the boundary of the current squares. The mod-one
approach avoids this complication by transforming these
chains into two chains that are connected at the corner
points.

For a set S = {s1,...,s:} of t unit squares contain-
ing a common point, where s1,...,s; are arranged in

Figure 6: A monotone set consisting of three unit squares
(left), and the resulting set after applying the mod-one trans-
formation (right).

increasing z-order of their centres, the set S is called a
monotone set if the centres of s1, ..., s; are in increasing
or decreasing y-order. The boundary of the union of the
squares in a monotone set S consists of two monotone
chains, called complementary chains. In the mod-one
transformation, a point (x,y) in the plane is mapped
to the point (z mod 1,y mod 1), where x mod 1 de-
notes the fractional part of the real number x. Applying
the mod-one to a monotone set transforms the squares
in such a way that the two complementary chains are
mapped to two monotone chains that are connected at
the corner points. See Figure 6 for an illustration.

We now show that the mod-one approach provides a
PTAS for the UNIQUE SQUARE SET COVER problem.
The plan is to first give an exact dynamic programming
algorithm for a special variant of the problem, where
the points in P are all inside a k x k square for some
constant k, and then to apply the shifting strategy of
Hochbaum and Maass [7] to obtain our PTAS. Note that
this follows the framework of [2] with the only difference
that we store 6-tuples of unit squares, instead of storing
4-tuples, when solving the dynamic programming.

Lemma 4 Let OPT denote an optimal solution for an
instance of the UNIQUE SQUARE SET COVER problem
in which the set P is inside a k X k square, for some
constant k. Then, OPT can be decomposed into O(k?)
monotone sets.

Proof. This lemma is essentially proved in [2], but for
a different problem. The idea is to draw a unit side-
length grid over the k& x k square and then show that
each unit square appears in the boundary of the union of
unit square containing a fixed grid point p. By dividing
the plane into four quadrants at p and grouping the
unit squares containing p based on their contribution to
the part of the union boundary in quadrants, OPT is
decomposed into 4(k + 1)? monotone sets. O

We now give an exact dynamic programming algo-
rithm for the variant of the UNIQUE SQUARE SET

199

28" Canadian Conference on Computational Geometry, 2016

COVER problem, where all points of P are inside a k x k
square for some constant k.

Theorem 5 For any instance of UNIQUE SQUARE SET
COVER problem in which the set P is inside a k X k
square for a constant k, the optimal solution can be com-
puted in O(n - mP*") time.

Proof. We describe the dynamic programming algo-
rithm by a state-transition diagram. We store 6-tuples
of unit squares in each state. More specifically, a state
is defined to consist of (i) a vertical sweep line ¢ that
passes through a corner of an input square, after tak-
ing mod 1, and (ii) O(k?) 6-tuples of unit squares of
the form (Sstart7 Sprev’ s Sprev; Scurr; Scurr’, Send) given that
Sstart, Sprev’; Sprevs Scurr; Scurr’, and Sendq are in the in-
creasing order of z-coordinate, they form a monotone
set, and / lies between the corners of syrey and Scurr
mod 1.

Observe that each 6-tuple corresponds to a monotone
set S: Sgrart and Sepg represent the start and end squares
of S and sprey and scyrr represent the squares of the two
complementary chains of S, after taking mod 1, that
are intersected by the sweep line £. Moreover, we define
Sprev and Scurys as the predecessor of sprev and the suc-
cessor of Scyrr, respectively. We now define a transition
between two states and its cost function. Given a state
A, we create a transition from A to a new state B as
follows. Let (Sstarta Sprev’7 Spre\h Scurry Scurr’; Send) be the
6-tuple such that the corner point of s.u has the small-
est z-coordinate mod 1. First, the new sweep line £ is
located at the corner of s¢u.r. Next, we replace this 6-
tuple by a new 6'tup1e (sstarta Spreva Scurr, Scurr’, 8/» Send)a
where s’ is a unit square that satisfies the conditions of
a state. B is now set to this new state with having all
other 6-tuples left unchanged. To see the cost of this
transition, let x (resp., y) be the number of points in P
that lie between £ and ¢, after taking mod 1, and are
not covered (resp., are covered uniquely) by the squares
from the O(k?) 6-tuples of unit squares, before taking
mod 1. If z > 0, then we remove this transition from the
diagram (since all points must be covered). Otherwise,
we set the cost of this transition to .

The problem is then reduced to finding the longest
path in this state-transition diagram for which we can
appropriately add the start and end states. Since the
diagram is a directed acyclic graph, we can construct
the diagram and find the longest path in O(n - mO**)
time. [

We can now apply the shifting strategy of Hochbaum
and Maass [7] to obtain our PTAS. The proof of the
following theorem is much similar to the one given in [2]
and so we omit it here.

Theorem 6 For any fized constant € > 0, there exists
a polynomial time (1 + €)-approzimation algorithm for
the UNIQUE SQUARE SET COVER problem.

4 Conclusion

In this paper, we showed that the UNIQUE DISK SET
CovER and UNIQUE SQUARE SET COVER problems
are both NP-hard and gave a PTAS for the UNIQUE
SQUARE SET COVER problem. Our PTAS is based on
the mod-one transformation of Chan and Hu [2], which
does not apply to unit disks. Giving a PTAS for the
UNIQUE Disk SET COVER remains open.

References

[1] T. M. Chan and S. Har-Peled. Approximation algo-
rithms for maximum independent set of pseudo-disks.
Discrete € Computational Geometry, 48(2):373-392,
2012.

[2] T. M. Chan and N. Hu. Geometric red-blue set cover
for unit squares and related problems. Comput. Geom.,
48(5):380-385, 2015.

[3] E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R.
Salavatipour. Combination can be hard: Approximabil-
ity of the unique coverage problem. SIAM J. Comput.,
38(4):1464-1483, 2008.

[4] A. Efrat, C. Erten, and S. G. Kobourov. Fixed-location
circular arc drawing of planar graphs. J. Graph Algo-
rithms Appl., 11(1):145-164, 2007.

[5] T. Erlebach and E. J. van Leeuwen. Approximat-
ing geometric coverage problems. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms
(SODA 2008), pages 1267-1276, 2008.

[6] T. Erlebach and E. J. van Leeuwen. PTAS for
weighted set cover on unit squares. In proceedings
of Approz., Random., and Comb. Opt. (APPROX-
RANDOM 2010), pages 166-177, 2010.

[7] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. J. ACM, 32(1):130-136, 1985.

[8] T. Ito, S. Nakano, Y. Okamoto, Y. Otachi, R. Uehara,
T. Uno, and Y. Uno. A 4.31-approximation for the ge-
ometric unique coverage problem on unit disks. Theor.
Comput. Sci., 544:14-31, 2014.

[9] T. Ito, S. Nakano, Y. Okamoto, Y. Otachi, R. Uehara,
T. Uno, and Y. Uno. A polynomial-time approximation
scheme for the geometric unique coverage problem on
unit squares. Comput. Geom., 51:25-39, 2016.

[10] D. E. Knuth and A. Raghunathan. The problem of
compatible representatives. SIAM J. Discrete Math.,
5(3):422-427, 1992.

[11] N. H. Mustafa and S. Ray. Improved results on geo-
metric hitting set problems. Discrete €& Computational
Geometry, 44(4):883-895, 2010.

[12] E. J. van Leeuwen. Optimization and Approzimation on
Systems on Geometric Objects. PhD thesis, University
of Amsterdam, Amsterdam, Netherlands, 2009.

200

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Stabbing Line Segments with Disks and Related Problems

Raghunath Reddy M*

Abstract

We show that the problem of stabbing a set of line seg-
ments with minimum number of unit disks is APX-hard.
However, we give a PTAS when no two line segments
intersect. The approximation hardness of the problem
remains the same, even when the objective is to stab
unit disks with line segments. In addition to this, we
show that stabbing circles with circles is also APX-hard.
On the other hand, we show that there exists a PTAS
for stabbing disks with disks.

1 Introduction

We are given two sets of objects X and). One has to
find a minimum cardinality subset)’ of) such that for
each X € X, there is an object Y €)’ and X NY # 0.
We call this problem as stabbing objects with objects. We
consider sets X,) of objects like disks, line segments,
circles. We say an object Y stabs (hits) another object
X iff XNY # 0. An example is shown in Figure 1.

(a) (b) (c)

Figure 1: (a) All the line segments except the bottom
one are hit by the disk. (b) Disk H; hits both the disks
Dy and Ds. (c) Circle Hy hits circle C; but not circle
C5 since the boundaries of H; and C5 do not intersect.

Following problems are considered in this paper.
Problem 1: Stabbing Line Segments with Disks

(Stab-LS-Disks). Let X be a set of line segments
and)Y be a set of disks.

*Department of Computer Science & Engineering, Indian
Intitute of Technology Ropar, Rupnagar, India - 140001,
raghunath.reddy@iitrpr.ac.in

TDepartment of Computer Science & Engineering, Indian
Intitute of Technology Ropar, Rupnagar, India - 140001,
apurva@iitrpr.ac.in

tPartially supported by grant No. SB/FTP/ETA-434/2012
under DST-SERB Fast Track Scheme for Young Scientist

Apurva Mudgalft

Problem 2: Stabbing Disks with Line Segments
(Stab-Disks-LS). Let X be a set of disks and) be a
set of line segments.

Problem 3: Stabbing Circles with Circles (Stab-
Cir-Cir). Let both X and) be the sets of circles.

Problem 4: Stabbing Disks with Disks (Stab-
Disk-Disk). Let both X and Y be the sets of disks.

We can note that both the geometric set cover and
hitting set problems which are known to be NP-hard
[7] with unit disks and points respectively, are special
cases of Stab-LS-Disks and Stab-Disks-LS respectively.
Further, these problems are also a special case of Stab-
Disk-Disk. Therefore, the problems Stab-LS-Disks,
Stab-Disks-LS, and Stab-Disk-Disk are also NP-hard.
Further, in discrete case, Stab-Cir-Cir is known to be
APX-hard [9].

Results.

1. Stab-LS-Disks is APX-hard, even if the disks in)
are unit disks and we are allowed to choose their
positions. However, we give a PTAS for a special
case of Stab-LS-Disks, when no two line segments
in X intersect.

2. Stab-Disks-LS is APX-hard, even for unit disks.
There exists a PTAS for a special case where no
two line segments intersect.

3. Stab-Cir-Cir is APX-hard, even if we are allowed
to choose the position of the (unit) circles in Y.

4. There exists a PTAS for Stab-Disk-Disk.

Previous Work. For geometric set cover with disks, a
PTAS is given by Mustafa and Ray [11]. Later Aschner
et al. [2], Wan et al. [12] also gave a PTAS for the
same problem and the results hold true for geometric
set cover with squares also. For weighted geometric set
cover with unit squares, Erlebach et al. gave a PTAS
[6].

On the other hand, Chaplick et al. [5] proved that
stabbing polygonal chains with rays is APX-hard. Katz
et al. [10] proved that stabbing horizontal line segments
with vertical line segments is NP-complete, whereas the
problem lies in P when the hitting objects are vertical
lines.

201

28" Canadian Conference on Computational Geometry, 2016

2 Approximation Hardness

2.1 Stabbing Axis-Parallel Line Segments with Unit
Disks

In this section, we show that Stab-LS-Disks is APX-
hard by giving a polynomial-time reduction from
MAX —3SAT(5) (optimization version of 3S AT where
every variable can occur in at most 5 clauses) which is
known to be APX-hard [1]. In fact, we show that a spe-
cial case of Stab-LS-Disks is APX-hard, where each line
segment in A is axis-parallel, and all the disks in Y are
unit disks. Further, we assume that we can choose the
positions of the disks in).

Let ¢ be an instance of M AX —3SAT(5) with n vari-
ables and m clauses. Let x1,zo,...,z, be the variables
in the instance ¢. Since every variable x; can occur in at
most 5 clauses and every clause contains exactly three
literals, bn < 3m.

Consider C1, Csy, ...,), to be an ordering of clauses.
We say two clauses C; and Cy (1 <1 < k < m) to be
consecutive occurring clauses with respect to variable
x; (i =1,2,...,n) if z; occurs in both C; and Cj, but
not in any one of Cjiq,...,Ck_1.

We now create the instance Iy of Stab — LS — Disks
for the instance ¢ as follows:

Clause gadget: For every clause C; (j =1,2,...,m),
consider a long horizontal line segment H7. Place all the

horizontal line segments Hf, Hs,..., H:, in the same
order (top to down) with vertical gap greater than 4
between HY and Hy,, for every j =1,2,...,m—1. We
call the hne segments HY{, Hs,...,HS as clause line

segments.

Variable gadget: For each variable z; (i = 1,2,...,n),
we form a cycle £; of horizontal and vertical line seg-
ments as follows:

e Consider two (small) horizontal line segments, say
H! and H?. We place the line segment H} above
the line segment H{ with vertical distance greater
than 4. Similarly, we place the line segment H?
below the line segment Hf, with vertical distance
greater than 4.

e Consider two long vertical line segments, Vilef ¢

right
yright,

and
We place them at a horizontal distance
greater than 2 and a unit disk can hit (i) both V;*/*
and H!, (ii) both V""" and H!, (iii) both V;'*/*
and H?, and (iv) both V""" and H?. Hence the
vertical line segments V;'“/* and V""" intersect all
the clause line segments Hf, HS,..., HS,.

Place all the cycles L1, Lo, ..., L, such that no unit
disk can hit two line segments from different cycles. For
the outline of the cycles £; and £;41, see Figure 2.

Seav

=
o
T
N
g
H
\/$
.] l

HS o °

m hd +

Figure 2: Outline of cycles £; and L£;41.

We now break the line segments Vilef "and V9" for
i=1,2,...,n, into small pieces as follows:

Step 1 Suppose the variable x; occurs in clause C;. We

break both line segments V;'*/* and V""" at the
intersection point with clause line segment H7. In
total, Vileft and V;Tight breaks into at most 6 pieces
each. Moreover, only two consecutive pieces can be
hit by a unit disk. Further, if C; and C} are two
consecutive occurring clauses with respect to x;,
then there is a unique piece (say Vlljlf)z)) of V;left

and a unique piece (say VT(?ZD of V9" between

both clause line segments H; and H}.

Step 2 If the variable z; occurs as the same literal in two

consecutive occurrmg clauses C; and Cj, then we
break each V (l k) and VZT(Zlg) into two pieces such

that only the new two pieces can be hit by a unit
disk. See Figure 3.

Step 3 Further, we break the top most piece of V[ight into

two pieces before HY and place them such that
a unit disk can hit only these two pieces. Simi-
larly, we break bottom most piece of V;"9"" into
two pieces below HE, and place them such that a
disk can hit only these two pieces.

An example is given in Figure 4.
Let I; = |£;| for ¢ = 1,2,...,n. Then the number of
line segments, say L, in the instance Iy is X7_,l; + m.

202

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Hf *—% s Hf ® °
ch+l..-" TTTRTTTT r---® ch+1.' --------------- L4
Hy_ @ ---femmmmmnndees o Hi_(@---peccecccaccdann °

HS o . H o ! 1 .

Figure 3: Variable z; occurs in clauses C; and C} with
same sign and does not occur in clauses Cj41,...,Ck_1.
El £2 L3 [,4
s % ¢ % s
Hf e J
H; o °
] | B
Hs o °
t]
Hi e : .
] t s
> L [> b
*——=e *—=e *—=0 *——o

Figure 4: An instance of I, corresponding to 3SAT(5)
instance ¢ with clauses C1 = x1 V —xo V x4, Co = 21 V
) \/Ig, 03 =9V I3 \/.T4, and 04 = —x Vxg V xs.

From the construction, we can note that |£;| < 24 for
i =1,2,...,n. Moreover, |£;| is even (i = 1,2,...,n).
Then L =32 ,1; + m < 24n + m. Hence the reduction
completes in O(n + m) time.

In the instance Iy, if the variable x; occurs in clause
C; then the number of pieces of Vimght and Vilef t above
Hf (alternatively, below Hy) differ by one. Further,
in cycle £; (i = 1,2,...,n), only two consecutive line
segments can be hit by a unit disk. Hence we have the
following lemma.

Lemma 1 There exist two minimum size sets of unit
disks of size 1;/2 each, which hits all line segments in
L; (i=1,2,...,n).

Let D; be a set of [;/2 unit disks which can hit all the
line segments in £; (i = 1,2,...,n). Then every unit
disk in D; hits exactly two line segments from £; and
every line segment in £; hit by exactly one disk in D;.
Moreover, a disk D € D; can hit a clause line segment
HE only if the variable x; occurs in clause C;.

Lemma 2 Let the variable x; occur in a clause Cj.
Then exactly zero or two disks in D; hit the clause line
segment Hf .

We partition the set of disks D; into Dﬁ‘;‘f t and D:ight
which hit the pieces of V'*/* and V""" respectively.

Lemma 3 The disks in D" (and DI'9") hit either
only all the clause line segments in which x; occurs as
positive literal or only all the clause line segments in
which x; occurs as negative literal.

Proof. Without loss of generality, we assume that the
variable x; occurs in the clauses Cy,,Cp,,...,Ci, (1 <
Iy <ly <---<l5 <m). Assume that x; occurs in the
clause C, as a positive literal. Other case is similar.

Let the variable x; occur in the clause Cj, as a positive
literal. Then there exist four consecutive line segments
V1, Va, V3,V pieces of Vileft such that (i) only the line
segments Vi, Vs, and Hf can be hit by a disk Dy, (ii)
only both line segments V5 and V3 can be hit by a disk
Dy, and (iii) only the line segments V3, Vy and Hj, can
be hit by a unit disk D3. See Figure 5(a). But the
contains either both D1 and D3 or only Ds.
Hence either both clause line segments H; and Hf, or
none is hit by disks in D!/,

Let the variable x; occur in clause Cj, as a negative
literal. Then there exist three consecutive line segments
V1, Va, V3 pieces of Vileft such that (i) only the line seg-
ments V1, V3, and Hj® can be hit by a unit disk D; and
(ii) only the line segments V3, V3, and Hj can be hit
by a unit disk Dy. See Figure 5(b). But the set DI*/*
contains either Dy or Ds. Hence only one of the clause
line segment among Hy and Hj, can be hit by disks in

Dl‘eft

P

By repeating the above argument for -clauses
C1,,Cl,, Cp, we can prove the lemma. O

From Lemma 2 and Lemma 3, disks in D; hit either
only clause line segments in which the variable x; occurs
as a positive literal or only clause line segments in which
the variable x; occurs as a negative literal. In the first
case, we assign truth value True to x; and in other case,
we assign truth value False to x;.

Lemma 4 ¢ will have a satisfying assignment if and
only if Iy has an optimum solution of size X7_,1;/2.

Proof. Suppose ¢ has a satisfying assignment
(s1,82,...,8,) where s; € {True,False} for
t=1,2,...,n. For every variable z; (i = 1,2,...,n),
we pick the set of disks D; corresponding to the
truth assignment s;. The disks in D; hit all the line
segments in £; and |D;| = [;/2 for i = 1,2,...,n.
Since (s1,$2,...,8n,) is a satisfying assignment, there
exists a literal in every clause C; (j = 1,2,...,m)

203

28" Canadian Conference on Computational Geometry, 2016

c]’-l-‘“/l chl'i-“Vl
Hy, \?—‘.—o Hll'"‘,_f,"_°
& --f-mn- ° LS R °
Va Vs
S ° L °
L . e .
Doy 4.,‘,
1vs D).
chz .D_;:,_"_.‘ chzo—i—"—o_‘
v v

Figure 5: Variable gadget segments between clause
segments corresponding to two consecutive occurring
clauses C;, and C), for variable z;: (a) z; is positive
in both clauses and (b) z; is positive in Cj, and nega-
tive in Cj,.

which is true and disks corresponding to that lit-
eral will hit the clause line segment Hf. Hence
Dy UDyU...D, is an optimum solution to an instance
I¢ and |D1 UDQ U.. Dn| = E;nzllz/Q

Let D be an optimal solution to an instance Iy of size
Y7 ,1;/2. Partition the set D into D1, Dy, ..., D, and
R, where D; C D is the set of disks which hit the line
segments in the cycle £; (i = 1,2,...,n) and R is the
set of remaining disks.

Therefore, |D| =X ,|D;| + |R]

= X [li/2l+ |R|

Hence |R| = 0, which implies |D;| = X2 ,1;/2, and
the disks in D; must be a set of disks corresponding to
some truth value of the variable x;. Since D hits all the
line segments in the instance Iy, then every clause line
segment Hf (j = 1,2,...,m) is also hit by some disk
D € D; such that x; is in C;. Then we assign the truth
value to x; such that the value of literal of xz; is true.
Hence the clause C} is also true. Therefore, by consid-

ering all such assignments, every clause Cy,Cs,...,Cy,
will be satisfied. O
Theorem 5 If OPT(¢) = m then OPT(Il,) =

¥ 1/2 and If OPT(¢) < (1 — €)m then OPT(1y) >
(14 €)X, 1;/2, where € = €/36.

Proof. First case follows from Lemma 4. We now prove
the latter case. Let D be a feasible solution to the in-
stance I5. Without loss of generality, we assume that (i)
any disk in D which intersects clause line segment Hf
also intersects line segments in the cycle £; for some
variable x; which occurs in C) and (ii) no disk in D can
hit only one line segment from £; for some variable z;.

Partition the set D into Di,Ds,...,D, such that
D; C D is the set of disks hitting the line segments in L;.
Then all the disks in D;, for x; € Vi, are correspond-
ing to one of the truth assignment True or False. Let

! =D;, UD;, U...UD;, where z;,,i,,...,T; €WV
and Dy = D\ Dj.

For z; € Vi, we assign the truth value according to
the disks in D;. Then only less than (1 — €)m clauses
will be satisfied, since no assignment satisfies more than
this number. Hence less than (1 — €)m clause line seg-
ments can be hit by disks in D}. Therefore, greater than
em clause line segments have to be hit by disks in Dj.
Further, [D}| = Zipev, 4 + B3, where 8 > |Va).

We know that every variable is in at most 5 clauses.
Even if we pick all the disks in D; corresponding to
a variable x; € V5 then the disks can hit at most 5
clause line segments. Hence if we even pick all disks
in the set D5, these will hit at most 5|V3| clause line
segments, which must be greater than em. Thus 5|Va| >
em. Therefore 8 > V5| > 2.

Therefore, |D| |D1| + | D5

> % + 3 where L' = X1 ,1;/2
> L em
g/ 525m
Er
=5 (14 55i), (L7 < 24n)
- %(1 + §(><;L4/n)) , (bn < 3m)
5 (145
= %(1 +€'), where ¢ = 5
) < (1 — €)m then the optimal

Therefore, if OPT(¢
solution for instance I
disks, where ¢ =

will have more than %’(1 +€)
35 d
2.2 Stabbing Circles with Unit Circles

Theorem 6 In continuous case, Stab-Cir-Clir is APX-
hard.

Proof. In the above reduction, MAX — 3SAT(5) to
Stab-LS-Disk, we replace every clause line segment with
a big circle and place these circles in a nested fashion
with sufficient gaps. Formally, let C1,Ca,...,C,, be the
circles corresponding to the clauses Cy,Co, ..., C,,. All
clause circles Cq1,Cs,...,C,, have a common center, ra-
dius of C; is very large, and radius of C;11 is o more
than that of C; where « is a fixed constant greater than
4. Since the radius of C; is very large, we can find a
rectangular region where every clause circle looks like a
line segment and we can place all the variable cycles in
that region. To place a variable cycle, we replace every
vertical line segment in the cycle with a circle. The left
and right portions of the cycle are placed far apart so
that no unit circle can hit both portions. Finally, two
circles corresponding to the horizontal line segments at
the top and bottom are added. Consecutive variable

204

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

cycles are placed far apart and the rest of the analysis
is similar to the reduction from MAX — 3SAT(5) to
Stab-LS-Disk. |

2.3 Stabbing Unit Disks with Axis-Parallel Line Seg-
ments

We now show that Stab-Disks-LS is APX-hard, even if
the disks in X are unit disks and line segments in)
are axis-parallel. Our reduction uses a special case of
set cover, called SPECIAL — 3SC. Chan and Grant
[4] introduced this problem and proved that it is APX-
hard. We give the definition of SPECTAL—3SC below
(we use the same terminology of [4]).

Definition 2.1 (SPECIAL-35C) [4] Let U =
{a17a‘2a"'7anawlaw27"'?wm7x17x27'"7xm7y13y23"'
Yms 21, 225 - -+, Zm } b€ a universe with 2n = 3m. Let S

be a collection of 5m subsets of U such that for each
1 < p <m we can find three integers 1 <i<j<k<n
with the sets {a;, wp}, {wp,zp}, {a;,2p, yp}, {Yp,2p}
and {a, zp} in S. Further, exactly two sets contain the
element a; (1 <t<n).

Set cover with range space (U,S) is called SPECIAL-
35C.

Theorem 7 Stab-Disks-LS with unit disks and axis-
parallel line segments is APX-hard.

Proof. We will find an instance I’ of Stab-Disks-LS for
every instance I of SPECIAL-85C and will have a one-
to-one correspondence between solutions of I and I’.
Consider a unit disk for every element in the universe
U and a horizontal or vertical line segment for every
set in S. We place all the unit disks corresponding to
ai,as,...,a, such that their centers are on the same
horizontal line with sufficiently large gap. There are n
consecutive horizontal strips where the p-th strip con-
tains the disks corresponding to wp, zp, yp, 2. Within
the p-th strip, centers of the disks corresponding to w,
and x, are on the same horizontal line, the centers of the
disks corresponding to x, and y, are on the same ver-
tical line, and the centers of the disks corresponding to
yp and z, are on the same horizontal line (see Figure 6).
We know that each of the elements a;, a;, a; appear in
exactly two sets of S. For element a;, if p is the smallest
index such that the set {a;, wp} is in S then place the
center of disk corresponding to the element w,, to the left
of the center of the disk corresponding to the element
a;. Otherwise place the center of the disk corresponding
to wy to the right of the center of the disk corresponding
to a;. Do the same for the other two elements a; and
ag. Finally, add horizontal and vertical line segments
as shown in Figure 6 for the five sets {a;, wp}, {wp, zp},

{xpvyp’aj}v {ypvzp}v and {akvzp}'

)

horizontal strip for p

| . l

| . |

Figure 6: Embedding an instance of SPECIAL-35C into
Stab-Disks-LS.

3 Polynomial-Time Approximation Schemes

In this section, we apply local search method given
in Algorithm 1 which is similar to [11]. As noted by
Mustafa and Ray [11], Steps 2 — 5 will be repeated at
most |Y| times and finding S; and S, in each such rep-
|

1) possibilities.

etition requires us to go over (D;/‘) (llj_}

Algorithm 1
1: Let)’ C Y be a set of objects which stabs all objects

in X.
2: Consider §; C)’ and So C Y such that |S1| =1
and |So| < 1.

if (V'\ 81) U S, stabs all the objects in X' then
yl < (y/ \81) USQ

. end if

: Repeat steps 2- 5 till no such S; and Ss exist.

o o s oW

Let R be an optimum solution and B be a solution
returned by Algorithm 1. Without loss of generality,
assume that R N B = 0.

Definition 3.1 (Locality Condition [11]) Let G =
(RUB, &) be a planar bipartite graph with edges between
R and B such that for every object X in X there exists
an edge (R, B) in &€ such that both R € R and B €
B stab the object X. We say that G satisfies locality
condition.

Lemma 8 [11] Let R U B satisfy the locality condition.
Then |B| < (1 + €)|R| where e = O(1/V/1).

205

28" Canadian Conference on Computational Geometry, 2016

3.1 A Special Case of Stab-LS-Disks

In this section, we consider X as a set of non-intersecting
line segments and) as a set of disks. Apply Algorithm
1. Let R be an optimum solution and B be the solution
return by Algorithm 1. Further, assume R N B = 0.
In the following, we call the disks in R and B as red
and blue disks respectively. Our main contribution is
showing that R U B satisfies locality condition.

3.1.1 Existence of G = (RUB,E)

In the following, we use cen(D) and rad(D) for center
and radius of disk D respectively. We define weighted
Voronoi diagram similar to [8]. For a disk D, we define
cell(D) as the set of points on the plane which are closest
to the boundary of D than any other disk boundary.
In the following, we use the following properties given
by Gibson et al. [8]: (i) Cells are star-shaped and (ii)
cen(D) is in only cell(D).

Let £ = X'. Partition the set of line segments £ into
L, and L; as follows: for L € L, if there exist two disks
R € R and B € B such that LNRNB # () then L € L,,
otherwise L € L;.

In the following, we construct a planar bipartite graph
G = (RUB, £1U&,) which satisfies the locality condition
for every L € L. Our construction of & is on the same
lines as Wan et al. [12]. Find the weighted Voronoi
diagram of disks in R U B. Let & be the set of edges
between red and blue cells in the dual graph of this
weighted Voronoi diagram. Hence we have the following
lemma.

Lemma 9 [12] The graph Gi = (R U B, &) is planar
and bipartite. For each L € L, there exists an edge
(R, B) € & where both R € R and B € B stab the line
segment L at a common point.

In the following, we use ab to represent the line seg-
ment with end points a and b.

We now add a set of edges & to the graph G such that
the locality condition for the line segments in £; is also
satisfied. For every L € L;, we find a minimal portion
L' = rb of line segment L such that r € RN L,r €
cell(R) and b € BN L,b € cell(B) for some R € R and
B € B. We can note that such R and B exist since both
R and B stab line segment L. Further, the points r and
b are on the boundaries of disks R and B respectively.
We will add the edge cen(R) rUrbUb cen(B) to graph
G. We call the set of all such edges &. Then we have
the following lemma.

Lemma 10 In the graph G = (RUB,&E1UE,), for every
L € L there exists an edge between some R € R and
B € B such that both R and B hit the line segment L.

Lemma 11 The graph G = (RUB, & U&E,) is planar.

Proof. From Lemma 9, it is clear that no two edges
in &7 intersect. We now prove that no two edges in &
intersect. Let e; and ey be two edges in & which inter-
sect. Assume e; = cen(Ry) r1 Ur1by U by cen(B;) and
ex = cen(Ry) 1o Uraby U by cen(Bs) for some Ry, Ry €
R and By,Bs € B. Hence cen(Ry) r1 € cell(Ry),
by cen(By) € cell(By), cen(Rg) r2 € cell(Ry), and
by cen(B3) € cell(Bs).

1. r1b1 and reby do not intersect since no two line
segments in L intersect.

2. Let r1b; intersect cen(Ry) 72 (or by cen(Bs)) at a
point p. Then p lies in cell(Ry) (or cell(Bsg) respec-
tively). Hence disk Ry (or By respectively) must
stab r1b, which is not true. Therefore, r1b; does
not intersect cen(Rgy) 2 (or be cen(Bs)). Similarly,
roby does not intersect cen(R1) 1 or by cen(By).

3. Further, let cen(R1) r1 intersect cen(Rz) ro at a
point p. Then cell(R;) and cell(R2) must have p as
a common point which cannot be an interior point
of both cells. Further, if p was a boundary point
of both cell(Ry) and cell(Rs) then p = r; = rq.
This is not possible since segments in £ are disjoint.
Hence, cen(R1) r1 and cen(Rz) ro do not intersect.
Other cases are symmetric.

Therefore, no two edges in &, intersect.

Finally, we will complete the proof by showing that no
edge in &) intersects an edge in &5. Let e1 = cen(R;) zU
x cen(By) € & where x € cell(Ry) N cell(By). Let
ez = cen(Ry) 12 Uraby U by cen(Bs) € &. Other than
the above cases, only following two cases are possible
which we rule out.

1. =ry or x = by. If x = ry, the disks R; and B,
would have stabbed the line segment L, for which
we added es in £, at a common point z. But then
L & L,, a contradiction. Similarly, x = by can be
ruled out.

2. x = cen(Rz) or = cen(Bs). If x = cen(Rz), then
x is in only cell(R2) and cannot be a common point
for cell(Ry) and cell(By). Hence z # cen(Ry).
Similarly, = # cen(Ba2).

Hence the edges e; and es cannot intersect. O

3.2 PTAS for Stab-Disk-Disk

Theorem 12 Let X and)Y be two sets of disks. There
exists a PTAS for finding a minimum size subset)’ C Y
which stabs all disks in X .

Proof. Proof is similar to Wan et al. [12]. The dual
of weighted Voronoi diagram of disks in R U B gives a

planar bipartite graph which satisfies the locality con-
dition. O

206

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

3.3 A Special case of Stab-Disks-LS

Theorem 13 Let X be a set of disks and Y be a set
of non-intersecting line segments. Then there exists a
PTAS to find a minimum cardinality subset)’ of YV
which stabs all the disks in X.

Proof. On the same lines of Wan et al. [12], we can
prove that the dual of Voronoi diagram of line segments
[3] in R U B is a planar bipartite graph which satisfies
the locality condition. O

Acknowledgement

We thank anonymous reviewers for their valuable sug-
gestions which helped to improve the quality of the pa-

per.

References

[1] S. Arora and C. Lund. Hardness of Approximations.
In Approximation Algorithms for NP-hard Problems,
Dorit Hochbaum, Ed. PWS Publishing , 1996.

[2] R. Aschner, M. J. Katz, G. Morgenstern, and Y. Yudit-
sky. Approximation Schemes for Covering and Packing.
WALCOM, pages 89-100, 2013.

[3] F. Aurenhammer. Voronoi diagrams —a Survey of a
Fundamental Geometric Data Structure. ACM Com-
puting Surveys (CSUR), 23(3):345-405, 1991.

[4] T. M. Chan and E. Grant. Exact Algorithms and
APX-hardness Results for Geometric Packing and Cov-
ering Problems. Computational Geometry, 47(2):112—
124, Feb. 2014.

[5] S. Chaplick, E. Cohen, and G. Morgenstern. Stabbing
Polygonal Chains with Rays is Hard to Approximate.
CCCG 2013.

[6] T.Erlebach and E. J. Van Leeuwen. PTAS for Weighted
Set Cover on Unit Squares. APPROX/RANDOM’10,
pages 166-177, Berlin, Heidelberg, 2010. Springer-
Verlag.

[7] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto.
Optimal Packing and Covering in the Plane are NP-
complete. Information processing letters, 12(3):133—
137, 1981.

[8] M. Gibson and I. A. Pirwani. Algorithms for Domi-
nating Set in Disk Graphs: Breaking the log n Barrier.
ESA 2010: 18th Annual European Symposium, Liver-
pool, UK, September 6-8, 2010., pages 243-254, 2010.

[9] S. Har-Peled. Being Fat and Friendly is Not Enough.
CoRR, abs/0908.2369, 2009.
[10] M. J. Katz, J. S. Mitchell, and Y. Nir. Orthogonal

Segment Stabbing. Computational Geometry, 30(2):197
— 205, 2005.

[11] N. H. Mustafa and S. Ray. Improved Results on Geo-
metric Hitting Set Problems. Discrete & Computational
Geometry, 44(4):883-895, Sept. 2010.

[12] P. Wan, X. Xu, and Z. Wang. Wireless Coverage with
Disparate Ranges. In Proceedings of the 12th ACM
Interational Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc 2011, Paris, France, May 16-
20, 2011, page 11, 2011.

207

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

Critical Placements of a Square or Circle amidst Trajectories for Junction
Detection

Ingo van Duijn* Irina Kostitsynal

Abstract

Motivated by automated junction recognition in tracking
data, we study a problem of placing a square or disc of
fixed size in an arrangement of lines or line segments
in the plane. We let distances among the intersection
points of the lines and line segments with the square
or circle define a clustering, and study the complexity
of critical placements for this clustering. Here critical
means that arbitrarily small movements of the placement
change the clustering.

A parameter € defines the granularity of the clustering.
Without any assumptions on ¢, the critical placements
have a trivial O(n*) upper bound. When the square or
circle has unit size and 0 < € < 1 is given, we show a
refined O(n?/e?) bound, which is tight in the worst case.

We use our combinatorial bounds to design efficient
algorithms to compute junctions. As a proof of concept
for our algorithms we have a prototype implementation
that showcases their application in a basic visualization
of a set of n trajectories and their £ most important
junctions.

1 Introduction

Many analysis problems in geography have an inherent
scale component: the “granularity” or “coarseness” at
which the data is studied. The most direct way to model
spatial scale in geographic problems is by using a fixed-
size neighborhood of locations, such as a fixed-size square
or circle. For example, population density can be studied
at the scale of a city or at the scale of a country, where
one may consider the population in units with an area of
10* m? or 25 km?, respectively. There are many other
cases where local geographic phenomena are studied
at different spatial scales. The Geographical Analysis
Machine is an example of a system that supports such
analyses on point data sets [10].

In computational geometry, the problem of computing
the placement of a square or circle to optimize some
measure has received considerable attention. For a set
of n points in the plane, one can compute the (fixed-size,

*MADALGO, Aarhus University, ivd@cs.au.dk

TUniversité libre de Bruxelles, irina.kostitsyna@ulb.ac.be
tUtrecht University m. j.vankreveld@uu.nl

§Utrecht University m.loffler@uu.nl

Marc van Kreveld? Maarten Loffler®

fixed-orientation) square that maximizes the number of
points inside in O(nlogn) time (expand every point to
a square, and the problem becomes finding a point in
the maximum number of squares which is solved by a
sweep). Mount et al. [9] study the overlap function of
two simple polygons under translation and show, among
other things, that one can compute the placement of a
square that maximizes the area of overlap with a simple
polygon with n vertices in O(n?) time. For a weighted
subdivision, one can compute a placement that maxi-
mizes the weighted area inside in O(n?) time as well [2];
this problem is motivated by clustering in aggregated
data. In the context of diagram placement on maps,
various other measures to minimize or maximize when
placing squares were considered, like the total length of
border overlap [16].

Our interest lies in a problem concerning trajectory
data. A trajectory is represented by a sequence of points
with associated time stamps, and models the movement
of an entity through space; we will assume in this pa-
per that the movement space is two-dimensional. The
identification of “interesting regions” in the plane de-
fined by a collection of trajectories has been studied
in several papers recently. These regions can be char-
acterized as meeting places [4], popular or interesting
places [1, 5, 11, 12], and stop regions [8]. In several cases,
interesting regions are also defined as squares of fixed
size, placed suitably. The more algorithmic papers show
such regions of interest can typically be computed in
0O(n?) or O(n?) time; what is possible of course depends
on the precise definition of the problem. There are many
other types of problems that can be formulated with
trajectory data. For overviews, see [3, 7].

Besides exact algorithms for optimal square or circle
placement, approximation algorithms have been devel-
oped for several problems on trajectory and other data,
see e.g. [4, 6, 15].

Motivation and problem description. We consider
a problem on trajectories related to common movements
and changes of movement directions at certain places.
Imagine a large open space like a town square, a large
entrance hall, or a grass field. People tend to traverse
such areas in ways that are not random, and the places
where a decision is made and possibly a change of direc-
tion is initiated may be specific. Also for data like ant
tracks, the identification of places where tracks go differ-

208

28" Canadian Conference on Computational Geometry, 2016

I/
i

Figure 1: A set of trajectories and square placements at
junctions of varying significance.

—

% A\

ent ways is of interest. Without going into details, these
observations motivate us to study placements of a square
or circle of fixed size such that bundles of incoming and
outgoing entities arise.

Consider the tracks in Figure 1. We observe that to
define places where the tracks of entities cross and where
decisions are made, we can use the placement of a square
of a certain size and where the tracks enter and leave the
square. We are interested in placements that give rise to
bundles: large subsets of tracks that enter and leave the
square at a similar place on its boundary, and with a
gap to the next location along the boundary where this
happens. The left square in the figure has five bundles
where one bundle consists of only one trajectory, and the
middle and right square have only two bundles (albeit
with different “topology”). We see that the left and
right squares indicate regions that should be considered
more significant than the middle one for being a junction.
The main difference between the left and right junctions
is that on the left, decisions are made to go straight
or change direction, whereas on the right, all moving
entities went straight and no different decisions were
taken.

We study an abstracted version of this placement
problem and ignore many of the practical issues that
our simplified definition of a junction would have. Later
in the paper we briefly address such issues by giving
a slightly more involved definition of a junction. The
majority of the paper concentrates on an abstract com-
binatorial and computational problem that lies at the
core of junction detection.

Let 7 be a collection of trajectories, let O, be the
boundary of a unit square S centered at p placed axis-
aligned amidst the trajectories, and let € be a positive
real constant. Let Q = 7 N O, be the set of all inter-
sections of trajectories with the boundary of the square
(here we can ignore the time component of trajectories;
they are considered polygonal lines). Two points in Q
are e-close if their distance along O, is at most €. T
and O, give rise to a clustering of Q) on O, by the transi-
tive closure relation of e-closeness. Different clusters are
separated by a distance larger than ¢ along O,. A single
cluster of) corresponds to parts of trajectories that
enter or leave S in each other’s proximity (in Figure 1
from left to right the squares define four, three, and four

clusters respectively).

Now consider the two-dimensional space of all place-
ments of a square of fixed size by choosing its center as
its reference point. We say that a placement q is criti-
cal, if any arbitrarily small neighborhood of ¢ contains
points inducing different clusters. This can be due to
a change in size of a cluster on O, or to a change in
the clustering. The latter corresponds to placements
where the distance between two points of 7 N0, on O,
is exactly ¢, with no other points of 7 N O, in between.
Since noncritical points are part of a region that defines
the same clustering, one can think of the set of critical
points to be the boundary between these regions.

Results and organization. In Section 2 we analyze
the complexity of the space of critical placements for
fixed-size squares in an arrangement of n lines. We
show that the placement space has O(n?/e?) total com-
plexity in the worst case, and can be constructed in
O(n?logn + k) time where k is the true complexity (the
latter appearing in the full version [14] due to space
constraints). In Section 4, we show that these results
are tight by presenting an explicit construction that ex-
hibits the worst-case behavior. In Section 5 we discuss
our application to junction detection further and show
output from a prototype implementation. We conclude
in Section 6. In the full version of the paper [14] we fur-
ther show how to extend our approach to more realistic
settings, such as placing a square on an arrangement of
line segments or placing a circle rather than a square.

2 Square on lines

We begin by studying the simplest version of the problem:
placing a unit square over an arrangement of lines. The
lines “cut” the boundary of the square into several pieces.
We are interested in all placements of the square such
that one of these pieces has length exactly ¢, in which
case we call the piece an e-segment and the placement
critical. When a piece contains one of the corners of
the square, its length is the sum of its two incident line
segments. Note that this definition of a critical placement
is a simplification of the one defined earlier in terms of
clusters; it only considers merging and splitting clusters.
In the definition from the introduction, a placement is
also critical if a corner of the square coincides with a line.
However, these placements are simply four translates of
the input lines, so the rest of this section focuses on the
harder critical placements as defined here.

2.1 Placement space

Let £ be a set of lines and denote by A the arrangement
of L. For a placement of the square on A, consider all
cells that contain part of its boundary. To characterize
all critical placements, we look at how the square can

209

CCCG 2016, Vancouver, British Columbia, August 3-5, 2016

be “moved around” such that a given cell of A contains
an e-segment throughout the motion. For instance, in
Figure 2 on the left, we can move the square slightly left
and right such that there is always an e-segment in the
same cell. We use the intuition of moving the square to
argue that the critical placements can be characterized
as a set of line segments, and then prove an upper bound
on how many times these line segments can intersect.

Definition 1 Let £ be a set of lines and O, be the
boundary of an azis-aligned unit square whose center is
denoted by p, and let € > 0 be a constant. A placement
of O, (or p) is an e-placement if at least one connected
component in Oy \ L has length exactly . An e-segment
is a connected component of Oy, \ L with length ezactly
E.

Consider the example from the figure again. When
moving p to the right we maintain the indicated e-
segment; this reduces p’s movement to one degree of
freedom. It can happen that when moving p, another e-
segment is created in another cell. This means that this
e-placement gives rise to two e-segments. We assume £
to be in general position such that no two e-segments
give p the same allowed movement (a condition that is
met after perturbing the input). Therefore no more than
two e-segments will ever occur simultaneously.

Since e-segments are part of O, it is convenient to
fix a point p’ on O, and look at the movement of p’
instead of p. Thus, by moving the square such that an
e-segment is maintained inside a cell ¢ in A, the point
p’ traces a curve. If we consider only those parts of this
curve corresponding to placements where p’ lies on the e-
segment, we observe that this subcurve is contained in c.
For instance, in Figure 2 on the bottom right, the fixed
point p’ can be moved vertically (p and the square move
accordingly) exactly between the intersection points with
L. To facilitate our analysis, we will choose a set of
fixed points on O, such that any e-segment will contain
exactly one of these points. For ease of presentation we
assume that % is integer, so that we can place exactly
% fixed points with distance € apart along 0O,. If it
is not integer, we can pick fixed points such that an
e-segment contains one or two such points, in which case
our analysis overcounts by a constant factor.

Since these points are fixed with respect to p, we define
them in terms of translation vectors. We write 7(X) for
the translation by 7 of any object X. The inverse of 7
is denoted 7~!. Thus, in Figure 2, p’ = 7(p).

Definition 2 Let % be integer. T is the set ofg vectors
such that O, \ {7(p) | 7 € T.} is a set of open line
segments each of length e, and T includes all vectors o
such that o(p) is a corner of O,.

Let ¢ be a cell of A and 7 € T. a vector. We denote
by S(c,T) the set of all critical placements p such that

Figure 2: Top: placement of square with one e-segment
(Left) and two e-segments (Right). Bottom: the set of
vectors T (Left) and an e-placement p with the vector
in T}, indicated (Right).

7(p) lies on an e-segment in c¢. That is, 7(S(c, 7)) is
the set of curves traced out by 7(p) under our previous
interpretation of moving p’. We note that some cells are
“too small” to contain an e-segment, in which case S(c, 7)
is empty; other cells may contain up to two disconnected
curves (see Figure 3). As shorthand notation, let S(7)
denote the union of all S(c,7) over all cells in A.

If 7(p) is not a corner of O, then 7(S(c, 7)) coincides
with (one! or) two parallel axis-aligned e-segments con-
tained in ¢. Therefore, the number of such segments is
bounded by twice the number of cells in the arrangement
of lines. If 7(p) is a corner of O,, the shape of S(c,7)
is more complex. This means that a similar bound on
S(7) as before is not as easy to achieve. Figure 3 shows
the construction of S(c,7) when 7(p) is the upper right
corner of O,. The curve inside ¢ shows exactly how 7(p)
can be moved such that ¢ contains an e-segment con-
taining 7(p). Translated by the inverse of 7, we get the
actual e-placements of p corresponding to the particular
cell ¢ and vector 7. Note that the figure also shows the
only case when S(c, 7) can be disconnected, i.e. when
c contains an acute angle in the same “direction” as
7. We will show that for the four corner vectors 7, the
curves in S(7) have properties that allow us to bound
the complexity of the space of all e-placements.

Lemma 1 For7 € T and a cell ¢ in A, S(c,T) consists
of at most two connected subsets of a piecewise linear
and conver curve.

Proof. If 7(p) is not a corner point of O, then S(c,7)
is either empty or consists of two single line segments.
Without loss of generality let 7 translate p to the upper
right corner