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Tribute to Godfried Toussaint

Erik Demaine*

Over three decades ago, Godfried Toussaint (1944-2019) cofounded the Canadian Conference on Computational
Geometry. As a father to the conference and the field in general, his impact and influence was immense. In his
honor, T will talk about some of my favorite research that he and I did together, including several past CCCG
papers. Possible topics include:

Godfried’s only paper with a counterexample to his own work

Geometry of musical rhythm, with connections to Euclid’s GCD algorithm

Geometry of sand drawing (ethnomathematics), with some new updates presented here at CCCG 2020
Machine learning through Voronoi diagrams

Untangling linkages

Classic computational geometry, such as guarding polyhedra and polyhedronizing point sets

Godfried’s supercollaborative model of doing research

*Massachusetts Institute of Technology, USA, edemaine@mit.edu
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Minimum Ply Covering of Points with Convex Shapes

Ahmad Biniaz*

Abstract

Introduced by Biedl, Biniaz, and Lubiw (CCCG 2019),
the minimum ply covering of a point set P with a set
S of geometric objects in the plane asks for a subset
S’ of S that covers all points of P while minimizing
the maximum number of overlapping objects at any
point in the plane (not only at points of P). This prob-
lem is NP-hard and cannot be approximated by a fac-
tor better than 2. Biedl et al. studied this problem
for objects that are unit squares or unit disks. They
present 2-approximation algorithms that run in polyno-
mial time when the optimum objective value is bounded
by a constant. We generalize this result and obtain
a 2-approximation algorithm for any fixed-size convex
shape. The new algorithm also runs in polynomial time
if the optimum objective value is bounded.

1 Introduction

The problem of covering clients with antennas has been
well studied in wireless networks [1, 3, 4, 5, 7, 9, 11].
Covering clients by placing new antennas can cause in-
terference (this happens when more than one antenna
cover the same region). Covering clients and—at the
same time—reducing interference is a big challenge in
wireless networks. In this paper we study a geometric
problem that addresses this issue.

Figure 1: The ply of S” (shown in red) is 3.

Let P be a set of points and S be a set of geometric
objects, both in the plane; each element of P represents
a client and each object in S represents a coverage re-
gion of an antenna. We want to find a subset S’ of S

*School of Computer Science, University of Windsor,
ahmad.biniaz@gmail.com

tSchool of Computer Science, University of Windsor,
lin12v@uwinsdor.ca

Zhikai Lint

that covers all points in P and minimizes the maximum
number of overlapping objects at any point in the plane.
The ply of S’ is the maximum number of overlapping
objects of S’ over all points of the plane. In other words,

ply(S") = max |{O € S' : p € O}|.
pER2

See Figure 1 for an illustration. The term ply was used
earlier by Eppstein and Goodrich [6]. With this def-
inition, our goal is to find a subset of S, with mini-
mum ply, that covers P. This problem is introduced by
Biedl et al. [2], and it is known as the minimum ply
covering (MPC). We denote an instance of the MPC
problem by (P,S). The MPC problem has the same
flavor as the geometric minimum membership set cover
(MMSC) problem which asks for a subset S” of S that
covers all points of P and minimizes the maximum num-
ber of overlapping objects only at points of P. Notice
that the MPC problem minimizes the maximum number
of overlapping objects over all points of the plane.

Erlebach and van Leeuwen [7] showed that the geo-
metric MMSC problem is NP-hard for axis-aligned unit
squares and unit disks, and it cannot be approximated
by a factor better than 2 in polynomial time. According
to Biedl et al. [2] the MPC problem is also NP-hard for
axis-aligned unit squares and unit disk, and it cannot
be approximated by a ratio better than 2. They pre-
sented factor-2 approximation algorithms for the MPC
problem with unit squares and unit disks. Their algo-
rithms run in linear time if the optimal ply is bounded
by a constant.

In this paper we study the MPC problem for general
convex shapes. Let C be an arbitrary convex polygon
in the plane. The objects in S are translations of C. We
present an algorithm that finds a subset S’ of S, with ply
at most 2¢, that covers all points of P, where /£ is the op-
timal ply. In other word, we present a 2-approximation
algorithm for the problem instance (P, S). The follow-
ing theorem summarizes our result.

Theorem 1 There exists a 2-approximation algorithm
for the minimum ply covering of points with fixed-size
convez polygons that runs in polynomial-time when the
optimal objective value is bounded by a constant.

Our algorithm is a generalization of the algorithm
of Biedl et al. [2]. We first give an overview of their
algorithm, and then we show how to extend it to work
for any convex shape.
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2 Algorithm of Biedl, Biniaz, and Lubiw

We describe their 2-approximation algorithm for unit
squares. The main idea of their unit disks algorithm
is similar to that of unit squares. Let S be a set of
axis-aligned squares of side length 1. Recall that P is a
set of points in the plane. To solve the instance (P, S),
the algorithm partitions the plane into horizontal slabs
of height 2. Let Hj, Ho,... denote these slabs from
bottom to top. Let P; be the points of P in H; and let
S; be the squares of S that intersect H;, as in Figure 2.
Every square intersects at most two (neighboring) slabs
and thus it can appear in at most two sets S;. The
idea is to first solve the MPC problem for each slab H;
optimally, i.e., to solve (P}, S;) instances. Let S} be
an optimal solution for slab H;. Then take S’ as the
union of all solutions S7. The set S’ is a 2-approximate
solution for the original problem because every square
can appear in at most two S’;.

Hj+1 . 0 .
- ==
Aol =
i g 1
H]‘*l . . ) . %

Figure 2: Partitioning the plane into slabs. Red points
belong to P; and red squares belong to S;.

Assume that the optimal ply is at most £. To solve
the (P}, S;) instance, partition H; into vertical strips by
vertical lines through the leftmost and rightmost points
of all squares.! Let tq, ta, ..., t; denote these strips
from left to right. The following observation plays an
important role in the design of the algorithm: if S}
is a solution of (Pj,S;) with ply at most ¢, then each
strip t; is intersected by at most 3¢ squares of SJ’-*.2 This
observation is used to construct a directed acyclic graph
G such that any path from the source to the destination
in G corresponds to a solution of (P}, S;). The graph G
is constructed as follows.

For every strip t;, define a vertex set V; as follows.
Consider every subset ) C S; containing at most 3¢
squares that intersect ¢;. Add a vertex v;(Q) to V; if (i)
the ply of @ is at most ¢, and (ii) the squares in @) cover
all points of P; that lie in ¢;. Notice that no square
intersects the strips t; and tx. Thus the set V; has
exactly one vertex v1(()) which is called the “source”,
and the set Vi has exactly one vertex vy (@) which is
called the “sink”. The vertex set of GG is the union of
all vertex sets V.

Mn case of squares, the vertical line through the leftmost (resp.
rightmost) point is essentially the line through the left (resp.
right) side of square.

2This number is at most 8¢ for unit disks [2].

The edges of GG are defined base on the following ob-
servation. Imagine we scan an optimal solution 57 from
left to right. While moving from a strip ¢; to t;11 either
one square stops at their boundary, or one square starts
at their boundary, or the squares that intersect ¢;,1 are
the same as those intersect ¢;. Based on this, we add
a directed edge from every vertex v;(Q) in V; to every
vertex v;41(Q’) in Vi1 if one of the following conditions
hold

1. @ = Q as in Figure 3(a), or

2. Q' = Q\{q}, where q is the square whose right side
is on the left boundary of ¢;11 as in Figure 3(b), or

3. @' = QU{q}, where ¢ is the square whose left side
is on the left boundary of ¢;41 as in Figure 3(c).

53 Eq
1
1
L] 1 L]
IR =t --
. [
S92 le S92 1 |e 591 e [:
1
g |
S1 o o 51 o| o S1 ol o
ti tiy1 t; tiy1 i tiva

(a) (b) (©)

Figure 3: Constructing edges of G where (a) Q = Q' =
{s1,82,s3} (b) @ = {s1,52,¢} and Q" = {s1,s2} (c)
Q = {s1,82} and Q" = {s1, 52, q}.

Let ¢ be any path from the source v1((}) to the sink
vk (0). The union of all sets @ corresponding to the ver-
tices of 0 is a solution of (P}, S;). The running time of
this algorithm for one slab H; is O ((£ + |P;]) - [S;]3F1),
and for all slabs is O ((£ + n) - (2m)3**') where n = |P|
and m = |S|; see section 3.1 for more details. If ¢ is
bounded by a constant then the running time is poly-
nomial. The main ingredient to achieve this running
time is the fact that the number of squares of any op-
timal solution S that intersect any strip ¢; is bounded
by a constant multiple of {. We are going to obtain a
similar fact for all convex shapes, and then extend the
algorithm to work for any convex shape.

3 Minimum ply covering with convex shapes

Let P be a set of n points in the plane, and let .S be a
set of m objects that are translations of the same convex
polygon C, as in Figure 1. We show how to find a subset
S’ of S, with ply at most 2¢, that covers all points of P,
where ¢ is the optimal ply. In other words, we present
a 2-approximation algorithm for the problem instance
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(P, S). The algorithm takes polynomial time when ¢ is
a constant.

Before proceeding to the algorithm we introduce some
terminology. A pair of rectangles (r, R) is called homo-
thetic if they are parallel and have the same aspect ratio
(r and R need not be axis-parallel). A homothetic pair
(r,R) is an approximating pair for C if r C C C R,
that is, r is enclosed in C' and C' is enclosed in R; see
Figure 4. Let A(r, R) be the smallest ratio of the length
of R to the length of r, over all convex shapes. Pdlya
and Szegé [12] showed that for every convex shape there
exists an approximating pair (r, R) with A(r, R) < 3.
Schwarzkopf et al. [13] and Lassak [10] improved this
upper bound to 2.% For any convex polygon C, an ap-
proximating pair of ratio at most 2, can be computed
in O(log®|C|) time if the vertices of C' are given as a
sorted array [13]. The upper bound 2 for \(r, R) is the
best possible because for a triangle the length of small-
est enclosing rectangle is at least 2 times the length of
its largest enclosed homothetic rectangle.

Let (r,R) be an approximating pair for our convex
polygon C' such that A(r, R) < 2. For simplicity we as-
sume that A\(r, R) = 2 (this can be achieved by enlarging
R or by shrinking r). After a suitable rotation and scal-
ing assume that the longer side of R is vertical and its
length is 1. Let « denote the length of the smaller side
of R after scaling, as in Figure 4. In this setting the side
lengths of r are 1/2 and «/2.

As before, we partition the plane into horizontal slabs
of height 2, and then for every slab H; we solve the prob-
lem instance (Pj, S;) optimally. To solve this instance
we partition Hj into vertical strips ¢1,...,%; by verti-
cal lines through the leftmost and the rightmost points
of every object in §;. To construct the corresponding
directed acyclic graph G we use the following lemma.
This lemma, which is our main technical result, uses
the concept of approximating pair of rectangles.

Lemma 2 Let S; C S; be any solution with ply at most
¢ for the problem instance (P;,S;). Then any strip t; is
intersected by at most 12¢ objects in S7.

Proof. After a suitable translation assume that H; has
y-range [0,2], and that the y-axis lies in ¢;, as in Fig-
ure 4. Consider any object C' in S;, and let (7, R) be its
approximating pair. We refer to the bottom-left corner
of r as the representative point of C, and denote it by c.
Let A and w be the distances from ¢ to the bottom and
left sides of R, respectively. Then the distances from c
to the top and right sides of R are 1 — h and a — w, as
in Figure 4. Consider the rectangle F' with bottom-left
corner (w — a,h — 1) and top-right corner (w,2 + h).
The length of F' is 3 and its width is a. Cover F by 12
instances of r, say rq1,7s2,...,712. Denote the top-right

3A similar ratio is also obtained for pairs of ellipses that ap-
proximate convex shapes [8].

Pk

|y

Figure 4: Illustration of the proof of Lemma 2.

corner of each ry by pg; these corners are marked by
green points in Figure 4.

Assume that C intersects the strip ¢;. Then C inter-
sects the y-axis because vertical strips are defined by
vertical lines through leftmost and rightmost points of
objects in S;. In this setting, our definition of h, w, and
F imply that the representative ¢ of C' must lie in rect-
angle F'. Since F' is covered by instances of r, the point
c must lie in one of these instances, say r. In this case
the enclosed rectangle r of C' contains pg, and so does
C. Thus, each object in S; that intersects ¢; contains
at least one of the points pi,...,p12. Since S} has ply
at most £, each point py lies in at most £ objects of S7.
Therefore, at most 12¢ objects of ST intersect ;. O

We use Lemma 2 to construct a directed acyclic graph
G, analogous to that of [2]. The main difference between
the two constructions is in the definition for vertex set
V; of each strip ¢;: for every subset @) of at most 12¢
squares that intersect ¢; we introduce a vertex v;(Q) if
(i) the ply of @ is at most ¢, and (ii) its squares cover
all points in ;. The edges of G are defined as before.
Any path from the source to the sink in G corresponds
to a solution of (P}, S;)—this claim, which is proved in
[2] for squares and circles, holds for any convex shape
and in particular for C'. This is the end of the algorithm
and its correctness proof.

3.1 Time complexity

The running time analysis is analogous to that of [2] for
squares, and thus we keep it short. Set n; = |P;| and
m; = |S;|. Then the number of strips is k = 2m; +
1. The number of vertices in every set V; is O (m}*).
Therefore the total number of vertices of G is at most k-
(0] (m;%) =0 (mlﬂﬂ). Since every vertex has at most

j
three outgoing edges, the number of edges of G is also
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O (m}%H). By an initial sorting of the points of P; and
the objects of §; with respect to the y-axis, conditions
(i) and (ii) can be verified in O (|C|- (¢ + n;)) time for
each subset @, where |C| is the number of vertices of
C. Therefore, it takes O(|C| - (£ +n;) - m;%ﬂ) time to
construct G. A path from the source to the sink in G can
be found in time linear in the size of G. Thus, the total
running time to solve the problem instance (P;,S;) is
O(|C|- (t+n;) -m}”“). Since every point of P belongs
to one slab and every object of S belongs to at most two
slabs, the running time of the entire algorithm—for all
slabs—is O(|C|- (€4n)-(2m)'2**+1), which is polynomial
when £ is bounded by a constant.

4 Conclusion

We generalized the 2-approximation algorithm of Biedl
et al. [2] for the MPC problem to work for any con-
vex shape. A natural question is to verify if there are
polynomial-time O(1)-approximation algorithms for the
MPC problem when the objective value is not necessar-
ily a constant.
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Convex Hull Complexity of Uncertain Points

Hongyao Huang*

Abstract

An uncertain point set U is a collection of compact re-
gions in the plane, and a realization of U is any point
set determined by selecting one point from each set in
U. Here we consider the problem of determining the
realization whose convex hull has the minimum number
of vertices possible. We prove that when U is a set of
n parallel line segments then the problem can be solved
in O(n?) time, but when the line segments can have ar-
bitrary orientations then the problem is NP-Complete.

1 Introduction

Uncertainty in computational problems has received sig-
nificant attention in recent years, as many real world
inputs are inherently noisy. Such problems have been
particularly well studied within computational geome-
try, as uncertainty naturally arises when for example
collecting locational data from the physical world.

In this paper we consider the complexity of the convex
hull, one of the most fundamental geometric structures,
in the context of uncertainty. Specifically, given an un-
certain point set U = {uq,...,u,}, where each u; is a
compact region in the plane, a realization of U is any
point set P = {p1,...,pn} such that p, € wu; for all
i. Here we consider finding the realization of U whose
convex hull has the minimum number of vertices.

To the best of our knowledge, our paper is the first to
consider the minimum complexity of the convex hull in
such uncertain settings when measured by the number
of vertices. Previous papers have considered the prob-
lem when complexity is measured by perimeter or area.
Rappaport [20] computed the minimum perimeter con-
vex hull for line segments with a constant number of
orientations in near linear time. Mukhopadhyay et al.
[19] computed the minimum area convex hull for parallel
lines in near linear time. Subsequently, Loffler and van
Kreveld [18] did an extensive study on finding the real-
ization which either minimized or maximized the area
or perimeter of the convex hull, where different algo-
rithmic or hardness results were given depending on the
shape of the uncertain regions.

Various other geometric structures have also been
considered in uncertain settings, such as bounding boxes
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las, {hhuang, benjamin.raichel}@utdallas.edu. Partially sup-
ported by a NSF CAREER Award 1750780.

Benjamin Raichel*

[17], Delaunay triangulations [3, 16], Voronoi diagrams
[5, 7, 12, 15], terrains [6, 9], and more. When the uncer-
tain points have associated probabilities, the expected
complexity of the convex hull was previously studied
(see [11] and references therein). Related questions con-
cerning the convex hull have also been considered, such
as computing the probability a given query point is con-
tained in the convex hull [1], or computing the most
likely convex hull of probabilistic points [21]. More gen-
erally, Jorgensen et al. [13] considered the distributions
of various geometric quantities in probabilistic settings.

Our problem also relates to the traversal problem,
where given a set of convex regions in the plane, one
seeks a polygonal chain with some property which stabs
all the regions. When the regions are disjoint and or-
dered, Guibas et al. [10] gave efficient algorithms to
compute the minimum link polygonal chain stabbing
the objects in order. When the objects are parallel line
segments, Goodrich and Snoeyink [8] gave a near linear
time algorithm to compute a convex stabber if it exists,
that is a selection of a single point from each segment
such that the resulting set is in convex position. For
line segments with general orientations, Arkin et al. [2]
proved that determining the existence of such a convex
stabber is NP-hard. More recently, for the case when
the line segments have a constant number of orienta-
tions, Keikha et al. [14] gave a polynomial time algo-
rithm to determine if there is a convex stabber which
stabs at least k& segments.

Our Contribution. Our main result is an O(n?) time
algorithm to compute the realization whose convex hull
has the fewest vertices when the uncertain regions are
parallel line segments. Without loss of generality, for
this case we can assume the segments are all verti-
cal. The behavior of our minimization problem differs
from the previously studied minimization problems for
perimeter or area [19, 20], and instead behaves more
similarly to the problem of maximizing the area, for
which LéfHler and van Kreveld [18] gave an O(n?) time
algorithm. There the authors argued one can assume
each segment is realized either at its top or bottom end-
point. This is no longer true for our problem, however,
we can argue that other than the leftmost and rightmost
segment, one can assume all segments defining vertices
of the convex hull are realized either at their top or bot-
tom endpoint. The differences between these two state-
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ments, makes achieving the same O(n?®) running time
for our problem more challenging, particularly when it
comes to determining the leftmost and rightmost points.
Related challenges arise in the problem of maximizing
the number of stabbed segments in a convex traversal,
considered by Keikha et al. [14], for which the authors
give an O(n®) time algorithm. The O(n?) running time
of our algorithm thus compares favorably, though such
a comparison is limited as the problems differ.

We complement our algorithmic result for parallel line
segments, by proving that the problem is NP-Complete
when the line segments can have arbitrary orientations.
Our reduction is inspired by the NP-hardness proof
in [18]. However, as our problem is a minimization
problem and theirs a maximization problem, additional
points must be added to keep the gadgets from collaps-
ing inwards to a trivial solution.

1.1 Preliminaries

We follow the uncertain point model of previous pa-
pers such as [18], where an uncertain point is mod-
eled by an uncertain region u, which is any compact
subset of the plane. For a set of uncertain regions
U = {uy,us,...,un }, a realization of U is any point set
P ={p1,...,pn} such that p; € u; for all i. Let Real(U)
denote the set of all possible realizations of U.

Given a point set P, let CH(P) denote the convex
hull of P, and let |C'H(P)| denote the number of vertices
of the convex hull, where a vertex of CH(P) is any point
q € P such that ¢ ¢ CH(P \ {q}).

Problem 1 Given a set U = {uy,ug, ..., un} of uncer-
tain regions, compute arg minpe peqi(vy |CH(P)].

Throughout we will use the following basic polygonal
chain definitions.

Definition 2 A polygonal chain is an ordered sequence
of points in the plane P = {p1,...,pn}. P is monotone
(resp. reverse monotone) if for all 1 < i < n, pit1
has larger (resp. smaller) x-coordinate than p;. P is
convex if for all 1 < i <n, p;—1,pi, pi+1 defines a right
turn, that is p;y1 lies to the right of the line segment
Pi_1ip: when directed from p;_1 to p;. If P is convex
and monotone (resp. reverse monotone) then it is called
a top chain (resp. bottom chain). P is simple if for all
1 < J, PiDi+1 and p;pj+1 do not intersect, except at p;y1
when j =i+ 1. (Bottom and top chains are simple.)

Let Q be a point set, and let p; and p, respectively
be the leftmost and rightmost points in Q. CH(Q) is
described by a simple closed convex polygonal chain of
its vertices, which is composed of a top chain from p; to
pr followed by a bottom chain from p, to p;.

For a point p in the plane, let p.x and p.y denote its
x and y coordinate, respectively. Let P = {p1,...,pn}

be a monotone polygonal chain, and let ¢ be any point
in the plane such that p;.x < gq.x < p,.x. Let ¢ be the
index such that the vertical line through ¢ intersects the
segment P;p;11. Then we say ¢ lies below (resp. above)
the monotone chain P if it lies below (resp. above) or
on the segment p;p;y1.

2 Vertical Line Segments

In this section, we give a polynomial time algorithm for
Problem 1, when U is a set of vertical line segments S.
More generally, the algorithm works for any set of paral-
lel line segments, as rotation does not change |C'H(P)].
Throughout we let S = {s1,...,s,} denote a set of ver-
tical line segments, where for simplicity we assume no
two segments lie on the same vertical line, and the seg-
ments are ordered such that for ¢ < j segment s; lies to
the left of s;. For a segment s;, we use s;L to denote its
top endpoint, and s; to denote its bottom endpoint.

Definition 3 Call a monotone polygonal chain P =
{p1,...,pm} a positive chain with respect to S if, p1 €
S1, Pm € Sp, and for all 1 < i < m, p; = sj+ for some
j. Similarly, define negative chains.

Lemma 4 When U is a set of vertical line segments S,
there is an optimal solution to Problem 1, such that the
top chain of the convex hull is a positive chain and the
bottom chain is a negative chain.

Proof. Consider any set R € Real(S), and let T =
{t1,...,tm} be the top chain of CH(R). Let t; € T
be any vertex of the top chain other than t; and t,,,
and let tj be the upper endpoint of the segment which
generated t;. Let Hyq = CH(R) and Hyeo = CH((R\
t;)Ut]). We now argue that |H,ew| < [Hora|- This will
prove the lemma, as one can then iteratively move each
vertex remaining on the top chain to its upper segment
endpoint until all top chain vertices are at their upper
segment endpoints, without ever increasing the number
of top chain vertices. A symmetric argument applies to
the bottom chain.

Observe that H,q and Hy, are convex hulls of the
same set of points except where t; has been exchanged
for t:r. This implies that if we can argue that H, g C
H e then any vertex of H,,e,, (other than ) must be a
vertex of Hyjq and thus |Hpey| < |Hoq| as desired. Note
that CH(R\ t;) C Hpew, thus to argue Hyg C Hpew,
it suffices to argue t; € Hyep. To this end, note that
ti—1 and t;41 exist as 1 < ¢ < m. So let z be the point
on t;_1t; 11 lying directly below ¢;, i.e. with the same z
coordinate, and note that z is well defined as t;_1, t;,
and t; 41 are consecutive on the upper chain 7' (which
is convex monotone). Moreover, z € Hypew 88 Hypew
contains both ¢;_1 and ;1. As t;“ lies directly above

t; and z, we have that t; € z t;" C H,ew, proving the
lemma. O
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The above lemma suggests a natural dynamic pro-
gramming strategy. Process the segments in S from left
to right, where at each segment if we decide it corre-
sponds to a hull vertex then we take its top or bottom
endpoint. If it does not correspond to a hull vertex,
then by mainitaining appropriate information about the
previously selected hull vertices, we will enforce that the
segment intersects the final hull, implying its realization
can be inside the hull.

Intuitively the structure we wish to maintain is the
top and bottom chains of the optimal convex hull. First,
observe that these chains cannot be computed indepen-
dently as selecting a vertex for the top chain affects
whether it can or needs to be selected for the bottom
chain. Thus as we go from left to right we will remem-
ber the last vertex selected from both the top and the
bottom chains. Enforcing convexity, however, would re-
quire remembering the previous edge not the previous
vertex, which would be more expensive. Thus instead
we look for positive and negative chains with the fewest
vertices, which may not be convex but must satisfy cer-
tain properties implied by convexity, and then we use
the lemma below to argue these properties are sufficient.
(Ultimately one can argue minimal such chains are in
fact top and bottom chains, though it is not necessary.)

Definition 5 Call a pair PT, P~ of positive and neg-
ative chains, a valid chain pair if the first and last ver-
tices of Pt are the same as those of P, and for all
L<i<mn (i)if s; € P* thens; ¢ P~ and if s; € P~
then s ¢ Pt, (ii) s; lies below PT, and (iii) s lies
above P~ .

The proof of the following is in Appendix A.2.

Lemma 6 Let PY, P~ be a wvalid chain pair. Then
CH(PT U P7) intersects all segments in S.

By Lemma 4 we know that there is an optimal solu-
tion to Problem 1 such that the top chain of the convex
hull is a positive chain P+t and the bottom chain is a
negative chain P~. Note that all points in this optimal
realization of S lie below the top chain and above the
bottom chain of the convex hull. This implies that for all
1 <i<mn,s; liesbelow P* and s; lies above P~ and
therefore P+, P~ is a valid chain pair. So let P, P~ be
a valid chain pair minimizing |P*|+|P~|. By Lemma 6
CH(P™ U P7) intersects all segments in S, and thus
there is a realization of S whose convex hull vertices all
lie in PTUP~. As clearly |Pt| + |P~| < |Pt| 4 |P~|,
we have the following.

Corollary 7 Let P, P~ be a valid chain pair which
minimizes |PT| 4+ |P~| over all valid chain pairs. Then
PTUP™ are the vertices of an optimal solution to Prob-
lem 1 on S.

By the above it thus suffices to compute the min-
imum sized valid chain pair, which can easily be ac-
complished using a standard dynamic programming ap-
proach. Specifically, the recursive Algorithm 1 main-
tains the previous vertex selected on the positive chain,
sj, and the previous vertex selected on the negative
chain, s;°, and then tries all possible choices for the
next vertex to the right (of both s; and s;), which if
on segment si could be either SZ or s, . Specifically, in
order for s; to be considered as a possible next vertex
on the positive chain, by Definition 5, we must require

that for all 1 < 2 < k that s, lies below the segment

stst. Assume we have a function POSITIVE(i) that

computes all such indices. For k to be a valid next in-
dex we also require k > max{é,j}. Thus if P denotes
the set of all possible next positive chain vertex indices,
then P = PosSITIVE(i) N {max{i,j} < k < n}. Simi-
larly define the set of possible next negative chain ver-
tices N = NEGATIVE(j) N {max{%,j} < k < n}, where
NEGATIVE(j) is defined analogously to POSITIVE(:). Fi-
nally, define ENDRIGHT(i, j) as the function which re-
turns true if we can extend the current chains directly
to the rightmost segment s,,, namely does there exist a
point r € s, such that s; lies below the segment s;r

for i <z < n and s lies above the segment s;r for
j<z<n.

Algorithm 1 Recursive Algorithm for Problem 1

Output: Min number of remaining valid chain pair
vertices or oo if no solution, given the previous pos-
itive and negative chain vertices were sj' and s .

1: function MINCH(i, j)

2: P < PosiTive(i) N {max{i,j} < k < n}
3 N <+ NEGATIVE(j) N {max{i,j} < k <n}
4: value — 0o

5: for k € P do

6 value < min{value, 1 + MINCH(k, j)}

7 for k€ N do
8 value < min{value, 1 + MINCH (7, k) }
9: if ENDRIGHT(4, j) then
10: value =1
11: return value

First we argue that when the leftmost segment s is
a single point (or equivalently we know the point to
select on segment s1), then Algorithm 1 can be used to
to solve Problem 1 in cubic time. Afterwards, we argue
how to remove this assumption on s; while maintaining
the same running time.

Theorem 8 For a set S = {s1,...,8,} of vertical seg-
ments, where the leftmost segment sy is a single point,
Problem 1 can be solved in O(n?) time.

Proof. Assuming that POSITIVE(i), NEGATIVE(j),
and ENDRIGHT(4,j) all work as described
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above then Algorithm 1 sets MINCH(i,j) =
1 + min{mingep MINCH(k, j), mingey MINCH(4, k) }
or 1 if we can connect directly to the rightmost
segment, where P and N are respectively the sets of
all possible next positive and negative chain vertices.
Thus MINCH(1, 1) 4+ 1 computes the size of a minimum
cardinality valid chain pair, which by Corollary 7
corresponds to an optimal solution to Problem 1. Note
because s; is a single point, s; = sf = s;, thus all
subroutine calls are well defined, and MINCH(1,1)
will start the valid chain pairs on the same point as
required, where this point is counted by the +1.

As i and j both range over O(n) possible values,
this recursive algorithm can be turned into a dynamic
program with a table of total size O(n?). Assuming
PoOsSITIVE(3), NEGATIVE(j), and ENDRIGHT(3, §) all run
in O(n) time, then each table entry takes O(n) time to
compute as outside those subroutines the code consists
of constant time operations and two disjoint for loops
going over P and N. This then gives an O(n3) run-
ning time overall as claimed. Thus what remains is to
describe how to implement POSITIVE(i), NEGATIVE(j),
and ENDRICGHT(i, j) in linear time.

First, we describe how to compute P’ = POSITIVE(4)
in linear time, from which one can then easily compute
P = P'n{max{3,j} < k < n}. Fix an index k > i,
and let X = {z | ¢ < z < k}. Consider the ray from
sj‘ pointing vertically downwards. Each point s, for
x € X determines an angle with this ray, when rotat-
ing the ray counterclockwise. Let s_ .. be the point
with the largest such angle from the index set X. If

SZ lies above the line supporting the segment sjs;wm,

then s;,,, and hence all s; for z € X lie below s; s}

as required for k to be in P’. Conversely, if s}l‘ lies be-

low the line supporting the segment sj'sr_nam, then s,

would not lie below the line sjti and so k ¢ P’. Thusif
our algorithm maintains s, .. as we increment k then in
constant time we can check if k € P/, an moreover s .
can be updated in constant time per iteration by com-
paring the new bottom endpoint with the previous s,
Thus P’ = POSITIVE(?) can be computed in linear time,
as shown in Algorithm 2, in Appendix A.1. A similar
argument allows us to compute N’ = NEGATIVE(j) in

linear time as is also shown in Algorithm 2.

Now we describe how to compute ENDRIGHT(Z, ) in
linear time. Specifically, we seek to determine if there
exists a point r = (r.z,r.y) on s, such that for all

+

i < x <mn, s, lies below s r, and for all j < z < n,

st lies above s;r. Note that since s, is a vertical
segment, r.x is fixed, and thus all of these constraints
can be written as linear constraints in the one variable
r.y. In particular, restricting r to lie on s, means that
s,y < r.y <sb.y. All other constraints can be written
as satisfying a right or a left turn check, each of which

is expressible by checking the sign of the determinant
of a matrix whose three rows are of the form (1,s;),
(1,7), and (1,s,). (Note the cross terms in the deter-
minant are linear in the only variable r.y.) Thus we
are doing a feasibility check of a linear program with
O(n) constraints and one variable. This is easily solved
in O(n) time by checking whether the tightest lower
bound constraint on r.y lies to the left on the real line
of the tightest upper bound constraint on r.y. (I

Now we remove the assumption that s; is a single
point. In Appendix A.3 we remark how the optimal
starting point must lie in a set of O(n?) canonical points
on s, thus leading to an easy O(n®) time solution by
trying our above O(n?3) algorithm on all such points.

Instead of reducing to the single point case, we de-
scribe an alternative approach which still runs in O(n?)
time. First, for now assume that the top and bot-
tom chains both have at least one interior vertex (i.e.
a vertex not on s; or s,). While we cannot compute
MINCH(%, j) if either ¢ = 1 or j = 1, we can com-
pute MINCH(i, j) for all 1 < 4,5 < n in O(n?) time
by the approach of Theorem 8. Let STARTLEFT(4, )
be defined similarly to ENDRIGHT(%,j) above, except
that it checks in linear time if there is a point [ on s;

such that s lies below the segment Is; for 1 < z < i

and s lies above the segment ls; for 1 <z < j. Let
T = {1 < 4,j < n | STARTLEFT(¢,j) = True}, then
3+ min(; jyer MINCH(4, j) would find the minimum so-
lution over all 1 < 4,5 < n pairs that can connect di-
rectly to the leftmost edge s; (where the +3 counts s},
55 and the vertex on s1). Unfortunately, this does not
count all possible cases as initially there may be sev-
eral hull vertices on the top chain interior before the
first bottom chain interior vertex, and MINCH(, j) as-
sumes s and s; are consecutive in the left to right
order of vertices on the hull (i.e. we miss cases of the
form MINCH(1, j) and MINCH(é,1)). However, there
is a simple way to overcome this issue. Rather than try-
ing to directly connect to the left edge, just compute the
minimal chains to the left and then append them to the
minimal chains we computed on the right. Specifically,
let MINCHLEFT(4, ) be the same as MINCH(i, j) ex-
cept that it computes the minimal valid chain pairs to
the left (instead of the right) when the previous vertex
on the positive chain was s:r and the previous on the
negative chain was s;. Note MINCHLEFT(3, j) uses
STARTLEFT(4, j) instead of ENDRIGHT(4,j), and sim-
ilarly modifies POSITIVE(i) and NEGATIVE(j). There-
fore we return
2+ min {MINCHLEFT(3,j) + MINCH(3, )},
1<i,j<n

where the +2 counts the vertices sj‘ and s;. It is im-
portant to note here that MINCHLEFT(¢, j) only selects
vertices to the left of min{7,j} and MINCH(4, j) to the
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right of max{4,j}. That is, both assume there are no
hull vertices on segments with indices between min{i, j}
and max{i, j}, and thus the above approach only works
if there exists an index pair 4,j from the optimal so-
lution such that s and s; are consecutive in the left
to right order of vertices on the hull, i.e. there are no
hull vertices on segments with indices between min{i, j}
and max{i,j}. However, it is easy to see this holds by
our assumption that there is at least one interior ver-
tex on both the top and bottom chains. As for the
running time, observe we can independently precom-
pute all MINCHLEFT(4, j) values in O(n?) time and all
MINCH(7, ) values in O(n?®) time, and this dominates
the time to compute the above minimum over all index
pairs.

So what remains is to handle the case when the opti-
mal solution may not have an interior vertex on either
the top or bottom chain. We have the following lemma
for the case when the top chain has no interior vertex,
the bottom chain case is handled symmetrically. Due
to space the proof is in Appendix A.2.

Lemma 9 For a set S of n vertical segments, the op-
timal solution to Problem 1 where the top chain of the
convez hull is not allowed to have interior vertices can
be solved in O(n3) time.

By running all cases for whether the bottom or top
chain interiors are empty and taking the minimum we
thus have the following.

Theorem 10 For a set S of n vertical segments, Prob-
lem 1 can be solved in O(n?) time.

In Appendix A.3 we briefly remark how our approach
can be extended to ordered axis-aligned rectangles.

3 NP-Hardness for General Segments

We now argue that when the segments in S are not re-
quired to be vertical, then Problem 1 is NP-hard. The
proof is by reduction from the standard NP-hard prob-
lem CNF-SAT. Our reduction closely follows the ap-
proach of the NP-hardness proof in [18] for maximizing
the area of the convex hull for uncertain line segments.
However, our construction requires additional points in
the clause and variable gadgets, in large part since our
problem involves minimization and theirs maximization.

Let the given instance of CNF-SAT have n variables
and m clauses. Call an uncertain segment a certain
point if its two endpoints are the same. Consider a cir-
cle in the plane, and evenly place a set of certain points,
B = {b1,...,bntm}, along this circle. Call these our
base points. Observe that if we conceptually remove
CH(B) then we are left with a set of disjoint circular
caps, Ci,...,Cnt+m, €ach bounded some segment b;b;41

and corresponding circular arc from b; to b; 11, see Fig-
ure B.1 in Appendix B. We have one cap for each vari-
able and one for each clause. All remaining uncertain
segments we construct will have both their endpoints in
the same cap, or in two different caps when those caps
correspond to a variable and a clause that contains it.
Note that since all segment endpoints will lie in the cir-
cle, all base points are always vertices of the convex hull
in any realization. This conceptually separates the caps,
in the sense if you added a point in one of the caps, the
area it adds to the convex hull is confined to that cap.
The way we then connect a variable and clause cap is
by adding an uncertain segment between them.

First, consider the cap for a given clause L. We create
one uncertain segment for each literal in L. All these
segments share a common endpoint at the center of the
clause cap, the other endpoints are in the caps of the
respective variables. Let this common endpoint be de-
noted e and let b and b’ be the base points of the clause
cap for L. We add a convex chain of z certain points
from b to b’ such that all these points are contained in
CH({e,b,0'}). Here z an integer value, to be determined
shortly, but intuitively we require z be set large enough
so that one of the segments adjacent to e, must select e
as its realization to cover these z points. See Figure 3.1.

X
~~
¥

Figure 3.1: Clause cap with common endpoint e. Con-
vex chain of z certain points shown as squares.

Now consider the cap ¢ for some variable z, with cor-
responding base points b and b'. Within ¢ we add a seg-
ment tf above and parallel to the segment bb’, where
ultimately selecting ¢ or f will correspond to setting the
variable to True or False, respectively. Let [ be the max-
imum over all variables of the maximum of the number
of times that variable appears as a positive literal or ap-
pears as a negative literal. For the variable x we create
a convex chain of [ “positive” vertices, P, and a convex
chain of [ “negative” vertices, V. Specifically, we require
(i) every point of P is a vertex of CH(P U {b,V, f})
(ii) every point of N is a vertex of CH(N U {b,V’,t})
(iii) N C CH{b,V,f}), (iv) P C CH({b,V,t}), and
(v) for any point v € tf if CH({b,b’,v}) contains a point
of P (resp. N) it does not contain a point of N (resp. P).
See Figure 3.2. Recall that for each literal occurrence of
x we created an uncertain segment with one end fixed
at the corresponding clause. We now make the other
end of the uncertain segment a unique point in P or
N, depending on whether it appeared as a positive or
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negative literal in the clause. We place a certain point
at any unused points in P or N. Finally, for each point
u in either P or N, we create a small convex chain of z
certain points R, just below it, such that all the points
in R, are contained in CH({b,b’,u}) and none are con-
tained CH({b,b’,u'}) for any other point ' in either P
or N.

Figure 3.2: Variable cap. Convex chains of z certain
points below points in P and N, as well as uncertain
segments adjacent to P and N, are not shown.

To argue correctness of the reduction, first suppose
there is satisfying assignment to the given CNF-SAT
instance. In this case we argue there is a realization of
our uncertain segments with < 2m+ (14 2)n vertices on
the convex hull. Specifically, for each variable x, if x =
True then in the cap for « we select ¢ for the segment ¢ f,
for each segment adjacent to a point u € N we select u,
and for each segment adjacent to a point in P we select
the opposite (i.e. clause) endpoint of the segment. Note
that by construction CH(N U {b,V',¢}) contains both P
and all the convex chains R, that we added for each u in
P or N, and thus in this case only ¢ and the [ points in N
are vertices of the convex hull within this cap. Similarly,
if = False, we select f for the segment tf, for each
segment adjacent to a point u € P we select u, and
for each segment adjacent to a point in N we select the
opposite (i.e. clause) endpoint of the segment. Again, in
this case only f and the [ points in P are vertices of the
convex hull within this cap. On the other hand, for the
clause caps, observe that because this was a satisfying
assignment for the CNF-SAT instance, we must have
selected the common end point in each clause cap for at
least one of its adjacent segments. Since for each clause,
with common endpoint e and base points b and ¥, the
convex chain of certain points in its cap is contained in
CH({e,b,b'}), the number of vertices on the convex hull
from this cap is just 1. Thus the total contribution from
all clause and variable caps is m + (I + 1)n, and since
the n + m base points are always on the hull, we thus
have < 2m + (I + 2)n vertices as claimed.

Now suppose there is no satisfying assignment for the
given CNF-SAT instance. In this case we argue that
by setting the parameter z to be large enough,the con-
vex hull of any realization has > 2m + (I 4 2)n vertices.
Specifically, if 2 = 2m + (I 4+ 2)n + 1, then clearly if any
one of the chains with z certain points is entirely on the
hull then the realization has > 2m + (I + 2)n vertices.
Define F as the set of all uncertain segments adjacent
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to points in P or N from any variable cap, but realized
outside the corresponding variable cap. Consider one
of the chains with z certain points in some clause cap
with common end point e. In order for this chain to not
entirely appear on the hull, at least one of the uncertain
segments adjacent to e must be in E, and in particular
must have its realization somewhere on the e side of the
chain. In a minimal solution it can be assumed to be
at the point e itself, since as discussed above placing
it at e means this clause cap only contributes one ver-
tex, and clearly this cap must contribute at least one
vertex in any realization. Now consider a variable cap
with base points b and b’'. By condition (v) from above,
for any point v € tf if CH({b,V',v}) contains a point
of P (resp. N) it does not contain a point of N (resp.
P). Thus in a minimal solution we can assume tf is
realized at either ¢ or f. Suppose it is realized at t
(the f case is symmetric), and recall that N is not in
CH({t,b,0'}). Thus by the same argument as for the
clause caps, for every uncertain segment adjacent to a
point v € N, a minimal solution can be assumed to
select u as the realization, as the chain of z points R,
must be covered. (Recall if u has no adjacent segment
we already placed a certain point there.) More gener-
ally, in order for a solution to have < z vertices on the
convex hull, for any variable v, all uncertain segments
that it contributes to E are either all adjacent to points
in P (when ¢ is selected) or all adjacent to points in N
(when f is selected). So consider the collection of all ¢
and f endpoints chosen for all variable caps in a min-
imal solution, which thus determines which uncertain
segments can fall in . This collection can be viewed as
a variable assignment for the given CNF-SAT instance,
and as this instance is not satisfyable, some clause in
this assignment evaluates to false. However, this im-
plies that for some common endpoint e in some clause
cap, there are no segments adjacent to e that are in F,
and hence the number of vertices on the hull is at least
z=2m+({(+2)n+1.

Thus if we can decide whether there is a realization
with < 2m + (I 4 2)n convex hull vertices, then we can
decide the corresponding CNF-SAT instance. Also, it
is easy to see that the above uncertain segments can be
constructed such that all endpoints are rational points
of polynomial complexity (see [18]). Thus we have the
following theorem for the decision version of Problem 1.

Theorem 11 Given a set S of n uncertain segments
and an integer k, the problem of determining whether
there is a realization of S with < k vertices on the convex
hull is NP-Complete.



12

CCCG 2020, Saskatoon, Canada, August 5—7, 2020

References

[1]

[13]

P. K. Agarwal, S. Har-Peled, S. Suri, H. Yildiz,
and W. Zhang. Convex hulls under uncertainty.
Algorithmica, 79(2):340-367, 2017.

E. M. Arkin, C. Dieckmann, C. Knauer, J. S. B.
Mitchell, V. Polishchuk, L. Schlipf, and S. Yang.
Convex transversals. Comput. Geom., 47(2):224—
239, 2014.

K. Buchin, M. Lofler, P. Morin, and W. Mulzer.
Preprocessing imprecise points for delaunay trian-
gulation: Simplified and extended. Algorithmica,
61(3):674-693, 2011.

M. de Berg, O. Cheong, M. J. van Kreveld, and
M. H. Overmars. Computational geometry: al-
gorithms and applications, 3rd Edition. Springer,
2008.

A. Driemel, S. Har-Peled, and B. Raichel. On the
expected complexity of voronoi diagrams on ter-
rains. ACM Trans. Algorithms, 12(3):37:1-37:20,
2016.

A. Driemel, H. Haverkort, M. Loffler, and R. Sil-
veira. Flow computations on imprecise ter-
rains. Journal of Computation Geometry (JoCG),
4(1):38-78, 2013.

R. Dwyer. Higher-dimensional Voronoi diagrams
in linear expected time. pages 326-333, 1989.

M. T. Goodrich and J. Snoeyink. Stabbing parallel
segments with a convex polygon. Computer Vi-
sion, Graphics, and Image Processing, 49(2):152—
170, 1990.

C. Gray, F. Kammer, M. Loffler, and R. Silveira.
Removing local extrema from imprecise terrains.
Comput. Geom., 45(7):334-349, 2012.

L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and
J. Snoeyink. Approximating polygons and subdi-
visions with minimum link paths. Int. J. Comput.
Geometry Appl., 3(4):383-415, 1993.

S. Har-Peled. On the expected complexity of ran-
dom convex hulls. CoRR, abs/1111.5340, 2011.

S. Har-Peled and B. Raichel. On the complexity
of randomly weighted multiplicative voronoi dia-
grams. Discret. Comput. Geom., 53(3):547-568,
2015.

A. Jgrgensen, M. Loffler, and J. M. Phillips. Geo-
metric computations on indecisive points. In Work-
shop on Algorithms and Data Structures (WADS),
pages 536-547, 2011.

[14]

[16]

[17]

[18]

[19]

[20]

[21]

V. Keikha, M. van de Kerkhof, M. J. van Kreveld,
I. Kostitsyna, M. Loffler, F. Staals, J. Urhausen,
J. L. Vermeulen, and L. Wiratma. Convex par-
tial transversals of planar regions. In Interna-

tional Symposium on Algorithms and Computation
(ISAAC), pages 52:1-52:12, 2018.

N. Kumar, B. Raichel, S. Suri, and K. Verbeek.
Most likely voronoi diagrams in higher dimensions.
In Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), volume 65
of LIPIcs, pages 31:1-31:14. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2016.

M. Loffler and J. Snoeyink. Delaunay triangula-
tions of imprecise points in linear time after pre-
processing. In Proc. of 24th ACM Symp. on Comp.
Geom. (SoCG), pages 298-304, 2008.

M. Lofler and M. J. van Kreveld. Largest bounding
box, smallest diameter, and related problems on

imprecise points. In Workshop on Algorithms and
Data Structures (WADS), pages 446-457, 2007.

M. Loffler and M. J. van Kreveld. Largest and
smallest convex hulls for imprecise points. Algo-
rithmica, 56(2):235-269, 2010.

A. Mukhopadhyay, C. Kumar, E. Greene, and
B. K. Bhattacharya. On intersecting a set of paral-
lel line segments with a convex polygon of minimum

area. Inf. Process. Lett., 105(2):58-64, 2008.

D. Rappaport. Minimum polygon transversals of
line segments. Int. J. Comput. Geometry Appl.,
5(3):243-256, 1995.

S. Suri, K. Verbeek, and H. Yildiz. On the most
likely convex hull of uncertain points. In European
Symposium on Algorithms (ESA), pages 791-802,
2013.



32" Canadian Conference on Computational Geometry, 2020

A Vertical Line Segments

A.1 Missing Algorithm

The following algorithm is used as a subroutine in Al-
gorithm 1, and is described in detail in the proof of
Theorem 8.

Algorithm 2 Computes the set of valid positive or neg-
ative chain vertices
1: function POSITIVE(7)
P+ 0
S';Laac A Si_+1
fork+i+1 ton—1do
if s; above line through s; and s,

then P «+ P U {k}

6: if s, above line through si and s,
then s ..+ s,

7 return P
8: function NEGATIVE(j)
9: N+
+ +
10: Smin < Sj41
11: for k< j+1 ton—1do
12: if s, below line through s; and st
then N «+ N U {k}
13: if s/ below line through s; and st
+ +
then s . <« s}
14: return N

A.2 Missing Proofs

Lemma 6. Let PT, P~ be a valid chain pair. Then
CH(P*T U P™) intersects all segments in S.

Proof. Note that PT and P~ both start on the same
point on s; and end on the same point on s,,, and thus
clearly CH(PT U P™) intersects s; and s,. So fix some
segment s = s;, for 1 < ¢ < n. From the lemma state-
ment, there exists a point p from the chain PT which
lies directly above s~ (p may be a vertex or an interior
edge point). Similarly, define ¢ as the point from P~
which lies directly below s*. Thus we have ¢.y < sT.y
and s7.y < py. If sT.y < p.y then ¢y < sty < py
and hence st € pg = CH({p,q}) C CH(Pt U P").
So assume otherwise, that s*.y > p.y, which combined
with our known inequality we have s*™.y > p.y > s™.y.
That is, p lies on the segment s, and hence pNs=p €
CH(PTuP). O

Lemma 9. For a set S of n vertical segments, the
optimal solution to Problem 1 where the top chain of
the convex hull is not allowed to have interior vertices
can be solved in O(n3) time.
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Proof. First consider the case when the bottom chain
also has no interior vertices. Then we are looking for a
single segment Ir such that [ € s, r € s, and which
intersects all segments in S. Thus we are checking the
feasibility of a linear program with O(n) constraints in
two variables, [.y and r.y, which can be solved in O(n?)
time by standard techniques (see [4]).

So now suppose the bottom chain has at least one
interior vertex. First we precompute for every possi-
ble starting and ending index pair the minimal length
negative subchain which could be in a valid chain pair.
Specifically, for any pair of indices 1 < ¢ < j < n, let
MINNEG(Z, j) be the minimum number of vertices of a
negative chain from s;” to s; such that s; lies above the
chain for all i < x < j. Observe that we can easily com-
pute MINNEG(i, j) for all pairs 1 < i < j < n in O(n?)
time using a similar but simpler dynamic programming
approach as was done for MINCH(4, j) in Algorithm 1.
Namely, the algorithm follows by the recursive relation
MINNEG(4, j) = 1 + minge y MINNEG(k, j) where N is
the set of indices i < k < j, such that for all i < x < k,
st lies above the segment s; s, . (NN can be computed
in linear time, similar to NEGATIVE(j) in Algorithm 2.)

By Corollary 7, we know the optimal solution is
2 + ming; jyey MINNEG(4, j), where V' is the set of all
index pairs such that the minimal subchain computed
by MINNEG(%, j) can be extended into a valid chain pair
(such that the positive chain has no interior vertices).
Specifically, V is the set of index pairs 1 < i < j < n
where there exists points [ € s; and r € s, such that
1) s lies above ls; for all 1 < z < 4, 2) s} lies

above s; 1 for all j < 2 < n, and 3) s; lies below Ir
for all 1 < # < n. Consider the first condition. Let
top = minjc,<; Int(s},s; ).y, where Int(st,s;) de-

notes the point of intersection of the line supporting

s;@'si_ with the vertical line supporting s;. Then con-
dition 1) is equivalent to requiring that l.y < top, and
so this condition can be encoded by simply replacing
the upper endpoint of s; with the point (s} .x,top) (if
top < sy .y then (i,5) ¢ V). Similarly, we can update
the lower endpoint of s, to handle condition 2) from
above. Updating the endpoints in this manner takes
O(n) time for any given pair (i, 7).

Thus all that remains is to handle condition 3). Here
we require Ir lies above s; for all 1 < z < n, where
l € sy and r € s,. Let E denote the set of all relevant
endpoints, i.e. 57, s7, sF, s and all s for 1 <z < n.
If such a segment Ir exists, then we can translate it ver-
tically downwards until it hits a point in F, and then
rotate about that point until it hits a second endpoint in
E, and it will still be a valid solution. Thus it suffices
to limit our search to the set of all segments passing
through two points in F. Now there are a few cases.
First, suppose one of these two points is s;. Consider
the ray with base point s; and pointing vertically up-
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ward. Let s, be the first point hit in the set of all s, for
1 < & < n, when rotating this ray clockwise. Clearly Ir
must pass above s, and if it does then it passes above
all s; for 1 < 2 < n. Thus in this case a valid Ir ex-

ists if and only if the line supporting s; s, passes below
s}. Thus we can check all cases when one of the two
points is s; in O(n) time, as this is how long it takes
to compute s, . A similar argument works for the cases

when one of the two points is s, s}, or s,. So now
; and s, , such

— n?

suppose [r passes through two points s/
that 1 < g < h < n. Observe that for Ir to lie above
s, for all 1 < < n, this is equivalent to requiring

Ir to lie above the top chain of the convex hull of all

such s, . In other words, s; s, must define an edge of
the top chain of the convex hull. There are only O(n)
such edges, all of which can be computed globally once
in O(nlogn) time (i.e. they do not need to be recom-
puted for each MINNEG(i,j)). For each such edge in
constant time we can check whether the line supporting
it intersects 1 and s,,. Thus in O(n) time (ignoring the
global O(nlogn) top chain computation) we can check
all cases where Ir passes through two points s g and s, ,
such that 1 < g < h < n. So overall, for any pair (i, j)
we can check in O(n) time whether it lies in V, and
thus by checking all pairs we can compute V in O(n?)
time. O

A.3 Missing Remarks

Remark 12 The case when si is a vertical segment can
be directly reduced to the single point case in Theorem 8,
but the run time degrades. Imagine sliding a point p
down the segment s1. As we slide this point the behavior
of MINCH(1,1) from Algorithm 1 only changes when
either the set P or N change, and specifically as we slide
p downwards the set P gets smaller and N larger. So
fix an index k which initially is in P, and consider the
moment when k leaves the set P. At this moment, for
some 1 < x < k, p must be the intersection of s1 with

the line supporting sgsz, namely if p went any lower

on s1 then s; would lie above psi. A similar statement
holds for changes in the set N. Thus consider the set of
all O(n?) intersection points of the segment s1 with lines
supporting segments of the form sj'sj_ for all pairs i, 7.
As all possible values for P, N are realizable by starting
from some point in this canonical set of points, we can
obtain the optimal solution to Problem 1 by calling the
algorithm of Theorem 8 for each one of these points. As
the running time of each call is O(n?), this would give

an O(n®) time solution.

Remark 13 It is not hard to see that the approach in
Section 2 also gives a polynomial time algorithm for
Problem 1 when U 1is a set of azis-aligned rectangles that
can be appropriately ordered. Specifically, suppose you

are given the points l,r,t,b representing the leftmost,
rightmost, topmost, and bottommost vertices of the op-
timal convex hull. Similar to Lemma 4, one can argue
that there is an optimal solution where all the vertices
on the top chain between | and t are realized at the up-
per left corner of their rectangle, and similar statements
hold for the other corners. To use dynamic program-
ming, however, we need to be given an ordering, such
as the left to right order of the realizations of the rect-
angles. This would occur if, for example, the rectangles
are separated by vertical lines, i.e. rectangles Ry, ... Ry,
such that for any i < j, R; lies entirely to the left of
R;. Note there are only a polynomial number of pos-
sibilities for l,r,t,b as their rectangles can be guessed,
and there are only a polynomial number of canonical po-
sitions that to need be considered for their realization in
each rectangle (similar to Remark 12). Thus this gives a
polynomial time algorithm when we have such an order-
ing, though the constant would be high without similar
optimizations as in the vertical segment case.

B NP-Hardness for General Segments

b1
s b3
by
4
Figure B.1: Certain points by, ... bs, and caps c1, .. ., Cs.
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Sparse Convex Hull Coverage

Georgiy Klimenko*

Abstract

Given a set P of n data points and an integer k, a fun-
damental computational task is to find a smaller subset
Q@ C P of only k points which approximately preserves
the geometry of P. Here we consider the problem of
finding the subset @ of k points which best captures
the convex hull of P, where our error measure is the
sum of the distances of the points in P to the convex
hull of Q). We generalize the problem to allow the set R
that we must select @ from to differ from P, as well as
to allow more general functions of the distances of the
uncovered points of P, such as other norms or weighted
distance functions.

We prove that approximating the convex hull in this
manner in the plane can be solved by either a simple
graph based or dynamic programming based algorithm
in polynomial time. Complementing this result we show
that in dimensions 3 and higher the problem is NP-hard.
Moreover, we give an algorithm which in 3 dimensions
selects O(klog(n/e)) points to get a solution whose error
is at most 1 + € times the optimal £ point error. This
generalizes to O(kL%/2) log(n/e)) points for any constant
dimension d.

1 Introduction

Given a point set P C R?, the convex hull of P, de-
noted CH(P), is a fundamental geometric structure, in-
tuitively capturing the region covered by P. Here we
consider the problem of covering P as best as possible
by the convex hull of a subset of only k points from P,
in effect sparsely approximating CH(P). This natural
problem relates to the problem of approximating convex
sets by polytopes, for which countless papers have been
written (see the extensive survey [5]). Much of this pre-
vious work has focused on the objective of minimizing
the maximum distance of an uncovered point from the
hull of the selected points (i.e. Hausdorff distance), or
approximating the volume in the case of smooth con-
vex bodies. Here we instead study approximating the
convex hull of a discrete point set under the objective
of minimizing the sum of the distances of the uncovered
points, an objective which when compared to the max

*Department of Computer Science, University of Texas
at Dallas, {gik140030, benjamin.raichel, greg.vanbuskirk}
@utdallas.edu. Work on this paper was partially supported by a
NSF CAREER Award 1750780.

15

Benjamin Raichel*

Gregory Van Buskirk*

objective is more robust to outliers as the error is no
longer determined solely by the single furthest point.
Our framework also allows for much more general cost
functions of the distances, and in particular allows for
any £, norm or weighted distance functions. We further
generalize the problem such that the selected k£ points
defining our hull are required to come from a set R that
can differ from P, thus capturing scenarios where the
covering objects differ from the covered ones. This is
natural from a feature selection standpoint, where R
represents a set of known possible features which we
wish to represent a set of observed objects P. For such
problems the convex hull is a particularly relevant struc-
ture as it represents the set of all weighted averages of
the selected points. Moreover, the Carathéodory theo-
rem states that any point in the convex hull of the cho-
sen subset can be represented as a convex combination
of d + 1 of the chosen points, yielding a sparse repre-
sentation in low dimensions. (In higher dimensions one
can use the approximate Carathéodory theorem [2].)
More generally, given a set P C R? of n points, finding
a smaller set of only k points which approximately cap-
tures the geometry of P under some measure is a ubiqui-
tous computational task. Two standard such problems
of interest are k-clustering and subspace fitting. In k-
clustering the objective is to select a subset of k center
points so as to minimize some norm of the vector of dis-
tances from each point in P to its nearest center. For
example, k-means seeks to minimize the ¢ norm [1],
where it is known that even planar k-means is NP-hard
[11]. For subspace fitting the objective is to select the
k-dimensional subspace minimizing some norm of the
distances to the linear subspace, e.g. the solution under
the 5 norm is known to be the top k& singular vectors
when viewing P as a matrix. If one restricts the se-
lected k points to come from P, then the clustering and
subspace fitting problems become the standard discrete
k-clustering and CUR-decomposition [4] problems.
Our problem of approximating the convex hull can be
viewed as naturally lying between clustering and sub-
space fitting, when restricting the selected subset to
come from a set R. Specifically, viewing the selected
subset of k points Q C R as a basis, the problems are
defined by how we allow each point in P to be repre-
sented by ). In subspace fitting, any linear combination
is allowed, in convex hull coverage only convex combi-
nations are allowed (i.e. non-negative and summing to
1), and in clustering not only are the combinations con-
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vex but are all zero except for a single 1 (i.e. the nearest
center). That is, one can define an entire spectrum of
problems based on how one restricts reconstruction from
the basis, and convex hull coverage is a natural set point
on this spectrum. In this sense, other standard prob-
lems such as non-negative matrix factorization (NMF),
which is known to NP-hard [15], can be seen as another
set point on this spectrum. (NMF typically restricts
the basis to non-negative vectors, though restricting to
input points is also commonly studied [10].)

Another related topic is coresets, which are small sub-
sets of the input which can be used as a proxy for the full
set. There are numerous coresets results (see chapter 48
in [13]). Relevant to the current paper, it is known that
for any point set P contained in the unit ball,' there
is a subset S C P of O(1/¢(@=1/2) points such that
all of P is with distance e from CH(S). Worst case
point sets require such an exponential dependence on d,
and thus [3] considered coresets whose size is measured
relative to the given instance, showing that if some k
points achieves ¢ error, then a greedy algorithm select-
ing O(k/£2/3) points achieves O(g'/3) error. This result
was later extended by [14] to get analogous results for
approximating the conic hull, which consists of all non-
negative combinations, and thus relates to NMF.

Our Contribution. For point sets R, P C R? of m and
n points, respectively, we initiate the rigorous study of
the convex hull coverage problem, where the goal is to
find a subset @ C R of k points minimizing the sum
of distances from the points in P to their projection
onto the convex hull of @, that is - p|[p — CH(Q)]|.
Furthermore, we generalize the problem to allow any
cost function of the form > » g,(|lp—CH(Q)][), where
each g, can be any monotonically increasing real valued
function such that g,(a) = 0 if and only if & = 0. Thus
we can model for example weighted sums or other ¢,
norms of the distances of the points in P to the hull (by
taking the pth power of the norm).

We prove that convex hull coverage can be solved ex-
actly in the plane in O(m3k + m?n + mnlog(n)) time
via dynamic programming. Interestingly, for the spe-
cial case when P = R, we can show that by care-
fully assigning weights the problem nicely reduces to
the problem of finding a minimum cost k length cycle
in a directed graph. This yields a simpler graph based
algorithm with O(n3logk) running time. To comple-
ment our results in the plane, we argue that the con-
vex hull coverage problem is NP-hard for d > 3, even
when restricting our objective to the sum of distances
(i.e. the g, are all the identity function). Furthermore,

1 Any point set can be scaled to lie in the unit ball, effectively
meaning € is measured relative to the diameter before scaling,
which is in some sense necessary. Via an affine transformation,
one can ague such coresets exist for directional width where error
is relative to the diameter in each direction, see [9].
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we argue that even if one restricts to instances where
P = R, the problem remains NP-hard for d > 4. Fi-
nally, we argue that a geometric set cover based algo-
rithm yields an approximation in constant dimensions
for the sum of distances. Namely, for d = 3 greedily se-
lecting O(klog(n/e)) points in an appropriate way gives
a solution whose error is at most 1 + € times the opti-
mal k point error. This generalizes to O (k9% log(n /<))
points for any constant dimension d.

One of the main challenges of convex hull coverage for
d > 3 is that it lacks certain independence properties of
related problems. For example, in k-clustering, the clus-
ter centers partition the points based on their nearest
center, whereas the projection of a point onto the convex
hull is determined by several hull vertices. For subspace
approximation under the Frobenius norm there is inde-
pendence among the dimensions, in the sense that the
kth singular vector is determined by finding the opti-
mum vector in the orthogonal subspace of the first £k —1
singular vectors. Note also that previous coreset results
focused on the max measure, where a given error ¢ rep-
resents a precise constraint that all points must satisfy.
On the other hand, for our sum measure, an error &
represents a budget that the algorithm must now de-
cide how to allocate amongst the various points.

2 Preliminaries

Given a point set X in RY let CH(X) denote its con-
vex hull. For two points z,y € R? let zy denote
their line segment, that is zy = CH({z,y}). Through-
out, given points z,y € R%, ||z — y|| denotes their Eu-
clidean distance. Given two compact sets X,Y C R,
[|X —Y|| = minge x yey ||z — y|| denotes their distance.
For a single point = we write ||z — Y| = ||[{z} = Y]|.

Definition 1 Let P C RY be a set of n points, where for
each point x € P, there is an associated monotonically
increasing real valued function g, such that g, (o) =0 if
and only if « = 0. Then we call any function of the form
FQ,P) =3 cp 9a([[lt—CH(Q)||), where Q C R? and
P’ C P, a hull coverage function. We let Fp denote the
set of all such functions.

In the above definition we assume the g, functions
can be evaluated in constant time. The following is the
main problem studied in this paper.

Problem 2 Given a set P C R? of n points, a set R C
R? of m points, and a function f € Fp, select a subset
Q C R of at most k points which minimizes f(Q,P).
That is, Q = argmingc g, o<k f(Q, P).

3 Exact Computation in the Plane

In this section we give polynomial time algorithms for
Problem 2 when d = 2. First, we give a simple graph
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based algorithm for the special case when P = R, fol-
lowed by a slightly more involved dynamic programming
algorithm for the general case.

3.1 A graph algorithm for a simpler case

In this section we argue that by assuming P = R, one
can solve Problem 2 in the plane by converting it into
a corresponding graph problem. Specifically, construct
a weighted and fully connected directed graph Gp =
(V, E) where V = P. Given an order pair of points p, ¢,
let P, 4 denote the subset of P in the closed halfspace
whose boundary is the line through p and ¢ and lies to
the left of the ray from p to g. Then we define the weight
of the directed edge (p, ¢) to be w(p,q) = f({p, ¢}, Pp.q)-
For a cycle of vertices C = {p1, ..., px}, let w(C) denote
the sum of the weights of the directed edges around the
cycle. Throughout, we only consider non-trivial cycles,
that is cycles must have at least two vertices.

For a set of points Q, let CH 1, (Q) denote the clockwise
list of vertices on the boundary of CH(Q). Observe that
any subset @ C P corresponds to the cycle CHL(Q) in
Gp. Moreover, any cycle C' correspond to the convex
hull CH(C).

Lemma 3 Consider an instance P, R, f, k of Problem 2
in the plane where P = R. Let C be any cycle in Gp,
and let Q be an optimal solution. Then,

Proof. First, observe that w(C) and f(C,P) can be
decomposed into the contribution of each point.

F(C.P) = glllp—CH(C)I) and
peEP
w(@) = f{a,b},Pap) =D > gplllp—abl)).
e 7

To prove the first part of the lemma, we thus argue
that for any p € P, its contribution to w(C) is at least as
large as its contribution to f(C, P). Assume p ¢ CH(C),
since otherwise it does not contribute to f(C, P). It suf-
fices to argue there exists an edge (a,b) € C, such that
p € P, 3, since |[p—ab|| > |[p—CH(C)|| and g, is a mono-
tonically increasing function. So assume otherwise that
there is some point p € P such that p lies to the right of
all edges in C'. Create a line ¢ that passes through p and
any interior point of any edge (a,b) € C, but does not
pass through any point in R. ¢ splits the plane into two
halfspaces. As p is to the right of any edge and is out-
side the convex hull of the points, all edges intersecting
¢ have to begin at the same halfspace, and end at the
other halfspace. This implies C' is not a cycle, which is
a contradiction.

To prove the second part of the lemma for an optimal
solution @, we argue that for any p € P, its contribution
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Figure 3.1: b,c € CH({a,d,p}) when p € Py, and p €
P..

to f(Q, P) is equal to its contribution to w(CHL(Q)).
If p € CH(Q) then it lies to the right of all edges in
CHL(Q), and so its contributions to both w(CH(Q))
and f(Q, P) are zero. So consider a point p ¢ CH(Q).
Let ab be the closest edge of CH(Q) (where b follows a
in clockwise order). Note that |[p —CH(Q)|| = ||p — ab||
and p € Py, and thus the contributions of p to f(Q, P)
and w(CHL(Q)) are equal if and only if p lies to right of
all other edges in CH,(Q), as otherwise p has a positive
contribution to another edge since by definition g,(a) >
0 for a > 0. So suppose otherwise, that p lies to the left
of some other edge cd (note it may be that b = ¢). Thus
p is in the intersection of the halfspace to the left of
the line from a through b and to the left of the line
from ¢ through d, see Figure 3.1. This implies that
b,c € CH({a,d,p}). Solet Q" = QU {p} \ {b,c}, then
CH(Q) C CH(Q'). This implies f(Q’, P) < f(Q,P) as
Q' contains p but ) does not, which is a contradiction
with @ being an optimal solution as |Q’'| < |Q]. (Note
that assuming P = R was used to ensure that Q' was a
possible solution.) O

Theorem 4 Given an instance P, R, f,k of Problem 2
in the plane where P = R, it can can be solved in

O(n3logk) time, where n = |P| = |R].

Proof. Let C be a minimum cost cycle in Gg subject
to having at most k vertices. The claim is that the set
of vertices in C' is an optimal solution to Problem 2,
that iS, f(C, P) = mlnXgR’|X|§k f()(7 P) By part 1)
of Lemma 3, w(C) > f(C, P), and thus if C is not op-
timal, then the optimal solution must have cost strictly
less than w(C). However, by part 2) of Lemma 3, the
optimal solution corresponds to a cycle in Gg with the
same cost, which contradicts C' being minimum cost.
Now we analyze the running time. Computing Ggr
takes O(n®) time as there are O(n?) edges, and com-
puting the weight of each edge takes O(n) time, as it
is a sum of at most n constant time computable func-
tions. To compute the minimum cost cycle with < k
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edges, it suffices to compute the all pairs shortest path
distances for paths with < k —1 edges, since afterwards
in O(n?) time we can add the final edge of each cycle.
It is known that for a graph with n vertices the all pairs
shortest path distances for paths with < k — 1 edges
can be computed in O(n3logk) time, see for example
the matrix multiplication algorithm in [7]. Thus, the
overall running time is O(n®log k). O

3.2 Dynamic programming for the general case

We now argue that when P is allowed to differ from R
we can still compute the optimal solution in the plane in
polynomial time by using a slightly more involved and
slightly slower dynamic program.

Let V = {v1,...,u} € R be the vertices of some
convex hull of points from R, labeled in clockwise order,
where v is the vertex of V' with smallest y-coordinate.
Consider our cost function f(V,P) = > _pg.(|lz —
CH(V)||). Any point x € CH(V') contributes zero to f,
as we required ¢,(0) = 0. So consider any point = € P
lying outside of CH(V'). The projection of = onto CH (V')
is either a vertex v; or a point on the interior of an edge
v;_1v;, for some i. Thus the edges and vertices of the
hull define a partition of points in P which lie outside
the hull, which we now formally describe.

Consider the ray with base point v;_; and directed
from v;—; towards v;. Define r;(v;—1,v;) to be the ro-
tation of this ray by 7/2 to the left, that is the ray
with base point v;_; and direction (v;_1.y — v;.y, v;.x —
vi—1.x). Define r.(v;—1,v;) to be ray with the same
direction, but with base point v;. Then slab(v;—1,v;)
is defined as the region of the plane interior to and
bounded by the edge v;—1v; and (between) the rays
ri(vi—1,v;) and r.(v;_1,v;). See Figure 3.2. De-
fine cone(v;_1,v;,v;+1) as the closed region bounded
rr(vi—1,v;) and r;(v;,vi41), again see Figure 3.2. In
other words, slab(v;_1,v;) and cone(v;_1,v;,v;+1) are
the subsets of points in the plane outside of CH(V)
whose projection onto CH(V') lies on the interior of
v;—1v; or on the vertex v;, respectively. In particular,
for a point set P, define

suMgiap(vi—1,v;) = f{vic1, vi}, PN oslab(vi—1,v;))

= > gllp—CH{vi—1,vi})l)

pEslab(vi—1,v;)

SUMcone(Vi1,Vi, Vig1) = f({vi}, P N cone(vi—1,vi, vig1))

= > gl —ul)

pEcone(vi—1,Vi,Vit1)

Observe that sumgiay(vi—1,v;) only depends on v;_1
and v; and suMeone(vi—1, i, vi+1) only depends on v;_1,
v;, and v; 1. In particular, these quantities are respec-
tively defined for any pair or triple of points in R, and
for now assume they have all been precomputed.
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Vit1

Figure 3.2: Three consecutive vertices on the hull, and
the corresponding defined slabs and cone.

By the discussion above, for ordered vertices V of a
convex hull we can rewrite our cost function as

FV.P) =) galllx = CHV)I|) =
rcP
k (3.1)
D (sumicone (vi—1,vi, vig1) + sUMsian (Vi vis1)),
i=1

where indices are mod k, i.e. vg = v and vg41 = v1.
This equation suggests a natural recursive strategy to
minimize f(V,P) (over choices of V) by guessing the
vertices of V' in clockwise order.

First, at the cost of an additional linear factor in
the running time, we guess the point with the small-
est y-coordinate from the optimal hull.?2 We call this
the starting point and denote it by s (i.e. v1 = s). Let
R, be the subset of points in R whose y-coordinate is
greater than that of s. As we assumed s is the lowest
point in the optimal solution, we can disregard points
in R\ Rs. Next, we sort all other points in Ry clockwise
radially around s (i.e. from the negative = axis clock-
wise about s to the positive = axis) and process points
in this order.

One issue we must deal with first is that in Equa-
tion 3.1, suMeone(Vk, $,v2) depends both on the choice
of v and vo. To break this cyclic behavior we cut the
cone for s in two. So cast a ray in the negative y-
direction from s and call it r,, and observe that as s
is the lowest vertex r, must lie in the cone for s. We
cut the cone for s along ry and assign each piece to its
adjacent slab. Specifically, suppose we set vy = u for
some u € Rs. Then define sumsiqr(s,u) as the union
the region sumgqp(s, u) with the cone lying between the
rays rs and r(s,u) (including r,). Similarly, if we set
v = w, then define sumepq(w, s) as the union of the re-
gion sumgqp(w, s) with the cone lying between the rays

2We can assume all points have distinct y-coordinates, by ap-
plying a small random rotation, which does not affect f.
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r.(w,s) and rs (excluding 7). Then we have,

.f(vv P) = Sumstart(5702)+

k—1

Z(sumcone(vi—la Vi, Vit1) + SuMgan(vs, vig1)) (3.2)
i—2

+ (suMcone (Vk—1, Vk, S) + sUMend(Vg, 5)).

Given the above equation breaking the cost function
into a linear ordered set of cones and slabs, it is rela-
tively straightforward to compute the optimal solution
using dynamic programming. Due to space, the pseu-
docode and proof have been moved to Appendix A. We
remark that achieving the specific running time of the
following summarizing theorem though is non-trivial. In
particular, a roughly O(m) factor is saved over the naive
time bound by using sweeping both to batch dynamic
programming table entries together and to implicitly
precompute the sumeone values.

Theorem 5 Given an instance P, R, f,k of Problem 2
in the plane, it can be solved in O(m3k + m?n +
mnlog(n)) time, where n = |P| and m = |R)|.

4 Hardness in Higher Dimensions

A convex polytope T = (V, E) in R, will be defined
as a graph where the vertices V' are a set of points in
convex position in R3, and the edges E are the edges of

CH(V). [8] proved the following variant of vertex cover
is NP-hard.

Problem 6 (Polytope Vertex Cover) Given a con-
vex polytope T = (V, E) in R® and an integer k, is there
a subset U C V of k vertices such that each edge in E
is incident to a vertex in U ?

The following is the decision version of our main prob-
lem, Problem 2.

Problem 7 Given a set P C R? of n points, a set R C
R? of m points, a function f € Fp, and a parameter e,
is there a subset Q C R of at most k points such that
f(Q; P) <e.

We now show Problem 7 is NP-hard for d > 3, where

F(Q,P) = > cpge(llx — CH(Q)|]) is a natural and
simple function. Namely, we set g.(||z — CH(Q)||) =

||z —CH(Q)|| for all z. We denote this sum of distances
function as sd(Q, P) = > . p ||z — CH(Q)||.

Theorem 8 Problem 7 is NP-hard for d > 3, f = sd.

Proof. We give a polynomial time reduction from
Problem 6. Let T = (V,E) and k be an instance of
Problem 6. We first define several quantities based on
T. For any edge e € E, define a vector ue = (n1+n2)/2,
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where ny and ny are the normals of the planes of the two
faces adjacent to e. For any edge e = (v1,v2), consider
the plane z. containing e and with normal u.. Let he be
the distance from z. to the convex hull of V' after remov-
ing the endpoints of e, i.e. he = ||z —CH(V \ {v1,v2})]],
and let h = mineeg he. (Note h is non-zero as V is in
convex position.) Finally, let I, be the length of the
edge e, and let | = maxecg lc.

We construct our instance of Problem 7 as follows.
We use the same value of k, and set R = V. P will
contain one point for each edge e € E, denoted p.. We
place p. outside CH(V') at a distance x in the direction
of u, from the midpoint of e, where x is a value to be
determined shortly. Finally, we set ¢ = ny/x2 + (1/2)2,

and recall f(Q,P)=sd(Q,P) =3 pllp—CH(Q)I-
Observe that for any edge e € F, if at least one of its

endpoints is selected, then the distance from p. to the
hull of the selected vertices is at most /x2 + (I./2)2 <
Va2 4+ (1/2)2. Thus if U C V is a vertex cover of V,
then sd(U, P) < ny/22 + (1/2)? = €. On the other hand
if U is not a vertex cover, then there is an edge e for
which neither endpoint is selected, in which case the
distance from p. to the hull of the selected vertices is
at least z + h. Thus the total distance of all points to
the hull is at least (n — 1)x + (x + h) = nz + h, as by
construction for any e’ € E we have ||po, —CH(R)|| = .
Thus if we select & such that nx + h > &, then U is
vertex cover if and only if sd(U, P) < €. To ensure this
’n

inequality holds, set x = G*. Then we have

e 2n\? | 12
rhgEn (8h> T3
[(2n h\? 2n

<n- (8h+n) —n-8—h+h—nx+h.

By lifting to R* we can argue that the problem re-
mains NP-hard for the restricted variant where P = R,
i.e. the case considered in Section 3.1. The proof is
more technically challenging, though at a high level uses
a similar approach and thus has been moved to Ap-
pendix B for space.

O

Theorem 9 Problem 7 is NP-hard for d > 4, f = sd,
and P = R.

5 Approximation in Higher Constant Dimensions

Given the hardness of our problem when d > 3, it is
natural to consider approximations. For the Set Cover
problem, it is well known that if &k sets cover the ground
set, then the greedy algorithm covers the ground set
with O(klogn) sets. Our hull problem is also a cover-
age problem, though it is more challenging as the points
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in P are not covered by the individual points we select
but rather convex combinations of them. Despite this,
we argue a similar greedy approach works, though it de-
pends on the number of facets of the convex hull of the
optimal k point solution. In 3d the number of facets
is O(k), yielding a (1 + ) approximation to the error
with only O(klog(n/e)) points, similar to Set Cover.
In higher constant dimensions, however, the worst case
facet complexity is O(kl%/2]). On real world inputs the
complexity may be significantly lower (see [12] for the
facet complexity of randomly sampled points), thus our
analysis suggests that greedily selecting roughly a loga-
rithmic factor more points may be a reasonable heuristic
in practice for small constant dimensions.

In this section we assume P and R are contained in
the unit ball, which as remarked in the introduction is
equivalent to measuring the error relative to the diam-
eter, as is standard.

Previously we considered the sum of distances func-
tion sd(Q,P) = > cpllr — CH(Q)||. Similarly, we
can define the maximum distance function md(Q, P) =
maxzep ||z — CH(Q)||. We have the following corre-
sponding optimization problem, considered in [3].

Problem 10 Given a set P C R? of n points and a
set R C RY of m points, select a subset Q C R of at
most k points which minimizes md(Q, P). That is, Q =

arg mianR,\Q\Sk md(Q, P) .
For an instance P, R C R? and k of Problem 10, define

md(Q, P),

and  Optmg = md(optmg, P).

optmd := optma(P, R, k) = ar min
Ptmd p md( ) ) gQQR,\Q\Sk

Similarly define
optua i opta(P, R, k) —arg__min _ sd(Q, P),
QCR,|Q|<k
and optsg = sd(optsd, P).

Lemma 11 ([3]) Let P,R C R and k be an instance
of Problem 10, where d is a constant. Then in polyno-
mial time one can compute a set Qo of O(klog k) points
such that md(Qo, P) < optmd(P, R, k).

Let Qg be the set described in the above lemma. Ob-
serve that

sd@0:P) 140, P) < o5
n

= — t < — t.
gleagllp CH(optma)|| < I;leagl\p CH(optyg)l|

<> [lp— CH(optsa)|| = optsa,

pEP

that is Qg achieves an n-approximation to the optimal
sum distance cost opty.
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For any subset Q@ C R, let Z(Q,P) = sd(Q,P) —
sd(optsd, P) = sd(Q, P) — optsg. For convenience Z(Q)
will denote Z(Q, P) when P is the full point set. The
proof of the following helper lemma is in Appendix C.

Lemma 12 Given an instance P,R C R?% and k of
Problem 2, where f = sd and d is a constant, for any
subset Q@ C R such that Z(Q) > 0, there exists a d-
simplex A such that Z(Q U A) < (1 — —7a77) 2(Q),
where ¢ is a constant.

We remark that the running time of Lemma 11 from
[3] depends exponentially on d, and thus the same is
true for the following theorem which makes use of it.

Theorem 13 Given an instance PR C R? and k of
Problem 2, where f = sd and d is a constant, in
polynomial time one can compute a set Q C R of
O (k9?1 Nog(n/e)) points such that sd(Q, P) < (1 +¢) -
opta(P, R, ).

Proof. Use Lemma 11 to compute a set Qo C R of
O(klog k) points such that sd(Qq, P) < n-opts(P, R, k).
We will iteratively add subsets of d + 1 points to Q; for
i = {0,1,...,m — 1} where m is the total number of
iterations. Let A; := argminac g |aj=a+15d(Qi U A, P)
that is, A; is the d-simplex whose addition to the current
hull minimizes the sum of distances. In the ith iteration
we add Az to Q1 to obtain Qi+1 = Qz U Al

Recall that Z(Q.,) = sd(Qm,P) — opteg. Thus if
Z(Qm) < € - opteg then sd(Qm, P) < (1 + ¢)opty as
desired. If at any iteration Z(Q;) < 0, then Z(Q,) <
0 < e-optsy, since adding more points in later iterations
can only further decrease the error. So assume that
Z(Q;) > 0, then by lemma Lemma 12, there exists a
simplex A such that Z(Q; UA) < (1 — —f7a7) Z(Q:).
Note that since Z(Q; UA) =sd(Q; UA, P) — opteg, we
have Z(Q;4+1) = Z(Q;UA;) < Z(Q;UA) since we chose
A; to minimize sd(Q;UA;, P) and opty is fixed. Thus we
have Z(Qiy1) < (1 — —7727) Z(Qi), and inductively

1 m
2@ = (1= 1) 2@

1 moo_
S (1_Cde/2J> n'OPtsd7

where the second inequality follows as sd(Qg, P) <
n-optsq. Thus if we select m such that (1 — m)m

(e/n), then Z(Qy,) < £-optsq as desired. Note that (1—
—77)™ < eap(m/ckl?/?)) and rearranging the equa-
tion exp(m/ckl¥?) = /n gives m = ckl¥/? log(n/e).
As we are adding d + 1 points in each round, and d
is a constant, we thus get O(kl%2)log(n/c)) points in
total. ]

IN

Corollary 14 Given an instance PR C R? and k of
Problem 2, where f = sd, in polynomial time one can
compute a set Q C R of O(klog(n/e)) points such that
sd(Q, P) < (1+¢) - opta(P, R, k).
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A Proofs from Section 3.2

We now argue that the recursive algorithm shown in Al-
gorithm 1, minimizes Equation 3.2 over all V' C R, such
that V' = {v1 = s,vq,...,v} are the ordered vertices
of a convex hull with lowest point s. This algorithm
makes use of the function right(u, v, w) which returns
true if the ordered triple (u, v, w) represents a right turn
and returns false otherwise. The following simple helper
lemma ensures that we do not need to check for a right
turn at s (i.e. where we split the problem), as long as
we check everywhere else.

Lemma 15 Let V = {vy,va,..., 05} be a sequence of
points such that vy is the lowest point, and va, ..., v are
in clockwise sorted order around vy. If for all1 < i < k,
(Vi—1, 0, Vi41) 18 a Tight turn, where vy = vy, then V
are the ordered vertices of a convex hull.

Proof. By definition V' are the ordered vertices of a
convex hull if V represents a simple closed convex chain.
First, because the vertices in V = {vy,...,v;} are given
in clockwise sorted order around vy, the closed chain V'
must be simple (i.e. when rotating a ray from vy, the
edges of the chain always cross it in the same direction).
In order for the chain to be a closed convex chain, it
must make a right turn at every vertex. We are already
explicitly given that a right turn is made at every vertex
except for vi. To see why (vg,v1,v2) is a right turn, ob-
serve that vy is lower than both v and v, and moreover
v comes after v in clockwise order about v;. These two
facts combined imply the angle Zvgpvivg is < 7 (i.e. the
angle subtended by rotating vivs clockwise about v1 to
vV ), that is a right turn. O

Given the above discussion about breaking the cost
function into cones and slabs according to Equation 3.2,
the proof of correctness of Algorithm 1 is now fairly
straightforward.

Lemma 16 Given an instance P, R, f,k of Problem 2
in the plane, Algorithm 1 computes the optimal solution

cost, namely mingc g o)<k f(Q, P).

Proof. For any s € R, we now argue cost; =
minge g, (SuMstart (s, v) + RECALG(s, k — 1, s,v)) is the
minimum cost k length convex hull with lowest point
s. This will imply WRAPPER computes the optimum
solution as it takes the minimum of this quantity over
all s € R.

Suppose that cost, is not infinite. By the structure
of the recursive algorithm, this can only happen if in
each recursive call determining costs that best is not
infinite. The places where best can be set to a non-
inifinite value are lines 4 and 9, and if the return value
of best is set by line 4 then this represents a terminal
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Algorithm 1 Recursive Algorithm

: function RECALG(s, k', u,v)
best = oo
if right(u,v, s) then
best = suMeone (U, v, 8) + suMenq(v, s)
if ¥’ =1 then
return best
for w € R, after v in clockwise order do
if right(u,v,w) then
best = min{best, sumecone(u,v,w) +
sumsgiap(v, w) + RECALG(s, k' — 1,v,w)}

10: return best

11: function WRAPPER(R, P, k)

12: best = oo

13: for s € R do

14: for v € R, in clockwise order do

15: best = min{best, sumstare(s,v) +

RECALG(s,k — 1,s,v)}

16: return best

call. Moreover, observe that executing line 4 or 9 re-
quires satisfying a right turn check on the proceeding
line. Thus there must have been a sequence of recursive
calls made with a corresponding sequence of vertices
V = {v1 = s,va,...,v,} such that for all 1 < i < &,
right(vi_1,v;,v;41) = true (where v,y; = v1), which
by Lemma 15 implies V' are the ordered vertices of
a convex hull. (Note that s being lowest is enforced
by considering only Ry, and the clockwise ordering of
V is enforced the ordering of the for loops.) More-
over, we have costs = sumsgiart (S, v2) + RECALG(s, k —
1,s,v2), and from line 9 for all 1 < 7 < k we have
RecAlg(s,k—i+1,vi_1,v;) = suMcone(Vi—1, Vi, Vig1) +
suMgiap(Vi, Vit1) + RecAlg(s, k — i,v;,v,41), and from
line 4 we have RecAlg(s,k — k + 1,v,-1,05) =
SUMcone(Vi—1, Uk, S) + SUMend (v, s). Thus putting all
these equations together we have

costy = Sumsta'r’t(s7 U2)+

k—1

Z(Sumcone (Ui—17 Vi, vi-‘rl) + Sumsmb(vi’ Ui+1))

=2

+ (Sumcone(vnfla Vi, S) + sumend(v,{, S)) = f(V’ P)

where the last equality follows from Equation 3.2. Thus
if cost, is not infinite then we know it represents the
true cost of some valid set of convex hull vertices V.
Conversely, by a similar logic it is easy to see that cost;
is never infinite since for the ordered sequence of ver-
tices of any convex hull all the right turn checks will
be satisfied and in the algorithm when looking for the
next vertex we try all possible vertices that remain in
the sorted order. (Note co may be returned if there
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is no non-trivial convex hull, i.e. if s is the highest
vertex in R, a case which can be treated separately.)
Thus what remains is to argue that the output cost
and vertices selected correspond to a minimimal cost
solution, however, this is immediate from the above.
Specifically, let V; be the set of all clockwise ordered
convex hull vertices such that all have the same prefix
{v1,...,v;}. Then minycy, f(V,P) is determined by
selecting {v;11,...vx} so as to minimize the cone and
slab sums they determine, which as argued above is pre-
cisely what lines 9 and 4 do. In particular, because the
cones and slabs define an ordered partition of P, mini-
mizing their cost over the remaining vertices, does not
affect the cone and slab cost determined by the previ-
ously selected vertices, and thus the recursive algorithm
correctly returns the minimal cost overall. O

As the correctness of our approach is established
by the above lemma, the proof of the following theo-
rem mainly focuses on running time. The proof saves
roughly an O(m) factor over the naive time bound by
using sweeping both to batch dynamic programming ta-
ble entries together and to implicitly precompute the
SUMeone Values.

Theorem 5. Given an instance P,R, f,k of Prob-
lem 2 in the plane, it can be solved in O(m>k +m?n +
mnlog(n)) time, where n = |P| and m = |R)|.

Proof. First, observe that the recursive Algorithm 1
can easily be turned into a dynamic program, as the
k' parameter strictly decreases in each recursive call.
Moreover, it is easy to modify the code such that it
returns the actual vertices instead of just the cost of
the hull.

The correctness of this algorithm follows from
Lemma 16. For the running time, first observe that
for every vertex s € R we can compute R, and the
clockwise sorted order of all points in R around s, in
O(m?logm) time. So assume this is done initially, and
moreover assume for now that all the cone and slab
sums have been precomputed. The dynamic program
will compute the value of RECALG(s, k', u,v) for each
quadruple (s, k', u,v). Naively this takes O(m) time per
quadruple since the for loop on line 7 requires a table
lookup for each point in R. Thus overall the dynamic
program takes O(m?k) time as the table size is O(m3k).
However, we can save an O(m) factor in the running
time by instead computing for each triple (s,k’,-,v),
the entire column of u values in O(m) time as follows.

Fix s, k', and w. Define cost(u,v,w) =
SUMcone (U, v, W) + sumgap(v,w) + RECALG(s, k' —
1,v,w). For any u € R, coming before v in the
clockwise order about s, the recursive algorithm com-
putes RECALG(s,k',u,v) = min,ey(y) cost(u,v,w),
where Y (u) is the set of points w € R, such that
right(u,v,w) = true and moreover w is after v in the
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Figure A.1: S;1; with 4 points shown shaded blue
on the right. The two points determining = =
SUMcone (Wit1,V, ") — SUMeone (U, v, +) shown in shaded
yellow on the left.

clockwise order about s. Specifically, this is all points in
the region determined by sweeping the ray from v to s
counterclockwise until it hits the line passing through
u and v. See Figure A.1. So let uy,...,u, be the
vertices in Ry coming before v in the clockwise order
about s, but labelled by their counterclockwise order
about v. Then Y(u;) C Y (u;4+1), and in particular
Sit1 = Y(uiy1) \ Y(u;) are the set of points in the
wedge lying between the line though w; and v and the
line through u;11 and v (again see Figure A.1). Observe
that the S; are disjoint sets, and moreover,

RECALG(s, k', uj11,v) = min

cost(u;y1,v,w)
wEY (uit1)

= min{ min cost(u;41,v,w), min cost(u+1,v,w)}

weESi4+1 weY (u;)
Observe  that ming, ey (u;) st (Uiy1,v,w) =
ming, ey (u;) cost(ug, v,w) + = for a fixed value
x that does not depends on w. Namely, z =
SUMcone(Wit1, Vs ) — SUMeone (Ui, v, ) (see Figure A.1),
as the cone sum is the only term in cost(u,v,w)
depending on u. Then given we already computed
RECALG(s, K, u;,v) = miyey () cost(ug, v, w),
by the above equation the time to compute
RECALG(s, k', u;1+1,v) is proportional to just |S].
Thus as the S; are disjoint, this takes O(m) time over
all the w;, resulting in O(m3k) time for the entire
dynamic program.

Now we must consider the time to precompute the
cone and slab sums. For any pair u,v € R, sumgjqp(u, v)
can be computed in O(n) time by scanning the points in
P to see which fall in the slab, and thus for all pairs in
R the sum slab cost can be computed in O(m?n) time.
As sumeone(u, v, w) is determined by three vertices in
R, similarly computing these values would take O(m3n)
time, however, we now argue that they can be implic-
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b, by

ap Qq

Figure B.1: The edge (ap,aq) with added points in the
added dimension

itly computed more efficiently as follows. First, fix any
vertex v € R. Recal the boundary of cone(u,v,w) is
determined by the rays r.(u,v) and r;(v,w) (defined
above). So let U and W be the sets of all vertices
that come before and after v in the clockwise sorted
order about s, respectively, and let R, = Uycy r(u,v)
and Ry = Uyew m(v,w). Now sort all the vectors in
R,.UR;UP in clockwise order around v, starting from the
first vertex occurring after the negative y-axis direction.
Now walk through the vertices in order maintaining a
rolling sum, which initially is zero. If the next vertex w
is in P then we add g,(]||v — w||) to the sum, otherwise
if w € R, then we assign the current sum as value,(w)
and if w € R; we assign the current sum as value;(w).
Observe that given vertices u,w € R where u comes
before v and w comes after v in clockwise order about
s, that sumecone(u, v, w) = value;(w) — value, (v). Thus
while we do not explicitly compute sumeone(u, v, w) for
all triples, by computing all of the value; and wvalue,
values, then by taking a difference of two such values in
constant time we have access to sumeone(u, v, w). This
takes O((n + m)log(n + m)) time per vertex in R and
thus for all vertices in R takes O(m(n +m)log(n+m))
time. Thus precomputing all the slab sums and im-
plicitly precomputing all the cone sums overall takes
O(m?n +m?log(m) +mnlog(n)) time. Thus total run-
ning time of the entire algorithm is O(m3k + m?n +
mnlog(n)). O

B Proof from Section 4

Theorem 9. Problem 7 is NP-hard for d > 4, f = sd,
and P = R.

Proof. We give a polynomial time reduction from
Problem 6. Let T = (V,E) and k be an instance of
Problem 6. For any edge e € E, let . denote its
length and m. its midpoint. Define the quantity h =
min{¢, hq, he}, where £ = min.cg e, h1 = min,ey ||p —
CH(V\{p})Hv and hy = min(e1,e2)€E Hm(61,€2) _CH(V\
{e1,€2})||. Then for each point p = (pg,py,p:) €
V', define the points a, = (pg,py,p-,0) and b, =
(Pz, Py, Pz, h), and for each edge (p,q) € E define the
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point ¢, , = (E=f%, py;qy,”z;qz,%) See Figure B.1.
Define the sets A = {a, | p € V}, B={b, | p € V},
and C = {cp 4 | (p,q) € E}. Intuitively, we wish to give
all points in B unit weight, and give n? weight to all
points in A and C. To accomplish this let A’ and C” be
the multi-sets consisting of n? copies of all points in A
and O, respectively. Our instance of Problem 7 in R*
is defined by P = R = A UBUC’, kg = k + n, and
€ = nh. Note that any solution to Problem 7 containing
a point from A’ (or C'), does not change in cost if we
add one of its duplicates or exchange it for a duplicate.
Thus we can assume the optimal solution does not se-
lect duplicates, and so below we write A C P and refer
to selecting points from A.

Let W C V be a vertex cover of size k for the given
instance of Problem 6, and let B(W) = {b = (p,h) €
B | p € W}. The claim is that B(W)UA is a solution to
our instance of Problem 7 with cost < e. First, observe
that |[B(W)UA| = k+n = ko as required. Next, observe
that naturally this gives zero error to all points in A’ and
B(W). The same is true for any point ¢,, € C’'. To
see this observe that since W is a vertex cover, it must
contain at least one of p or q. Without loss of generality
suppose it contains ¢, in which case b, € B(W). Thus
B(W) U A contains both b; and a,, and since ¢, 4 is
defined as the midpoint on the segment between b, and
ap, it is in their convex hull, i.e. it is covered with zero
error. Thus the error can only come from points in
B\ B(W), however, the error for these points is easily
upper bounded by e = nh, as |[B\ B(W)| < n and since
for any point b, € B we have ||b, — ap|| = h and a, is
in our solution.

Now let @ be a solution to Problem 7 with kg points
and error < e. We first argue that A C Q). Suppose
otherwise that some point ag € A is not in Q. We now
lower bound ||ag —CH(Q)||. Specifically, we will assume
Q = P\ {ap}, as this minimizes ||jag — CH(Q)|| over all
possible Q. Observe, that ¢, , € CH(Q) for any point
Cpq € C, since by, by, € @, and at least one of a, or a4 is
in Q. Thus every point in CH(Q) either lies in CH(A \
{ap}), in CH(B), or on a segment between a point of
CH(A\{ap}) and CH(B). Let a, § be the closest points
to ap in CH(A\{ao}) and CH(B), respectively. Then by
the definition of h, ||ag—al| > h, and ||ag—CH(B)|| = h.
Moreover, it is not hard to see that the closest segment,
between a point of CH(A \ {ao}) and CH(B), to ag is
the segment between o and 3. Thus the distance form
ap to CH(Q) is at least (v/h2 + h2)/2 = h/\/2. Since A’
contains n? copies of ag, the error of @ for Problem 7
is at least nQ% > ¢ (for n > 2). Thus all points in A
must have been selected.

Observe that for any point ¢, , € C, that ¢,, €
CH(ap,aq,bp) and ¢, 4 € CH(ap, aq,by), see Figure B.1.
That is, since A C @, if a point ¢, 4 is in @, exchanging
it for either b, or b, can only enlarge CH(Q). Thus with-
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out loss of generality we assume () contains no points

from C. Moreover, for any c, 4 € C, at least one of b,

or by is in @), since otherwise ¢, CH(Q), in which

caseqby the same argument as pa(l]oo%/e for( az), we have 2(QUA;)= Z Z(QUA; P +Z(QUA; Fy)
epa—CH(Q)|| = (v/(B/2)2 + (h/2)%)/2 = h/VS. Since sele)i#i

C' contains n? copies of ¢, 4, the total error is then at

least nQ% > ¢ (for n > 3), a contradiction. Thus < Z Z(Q,P,) = ZZ(Q,Pi) - Z(Q, F;)

for every point ¢, , at least one of b, or b, is in @, or i€[l],i#] i€[(]
equivalently W = {p | b, € Q} is a vertex cover of E. 1
Moreover, it must be that |W| =k, as kg = n + k and =|{1- ¢ kld/2] Z(Q)

all n points of A were selected. Thus all that remains is
to argue that the error due to B\ W is less than ¢ (as all U
other points are in CH(Q)). However, since all points in
A are in @), this error is as most (n—k)h <nh=¢. O

C Proof from Section 5

Lemma 12. Given an instance PR C R? and k of
Problem 2, where f = sd and d is a constant, for any
subset Q@ C R such that Z(Q) > 0, there exists a d-
simplex A such that Z(Q U A) < (1— W) Z(Q),
where ¢ is a constant.

Proof. Let {Aq,As, ..., Ay} be the d-simplices of the
d-dimensional triangulation of CH (optsq) with the min-
imum number of d-simplices. It is known that ¢ <
¢ - k%2 where ¢ is a constant (using for example the
bottom vertex triangulation of [6]). Let { Py, Py, ..., Pe}
be the partition of P where p € P; if and only if
llp — Aill = ||p — CH(optsq)||- (If the projection is on
a common point of more than one simplex, assign one
arbitrarily.) Now, rewrite Z(Q) as

4
2@Q) =Y > (le = CH(Q)I| — l& = CH(optsa)|])

i=1 z€P;

Let Avg := @ denote the average of Z(Q) over the

partitions P;. Hence, there exists a simplex A; with
corresponding partition P; such that

2Q,P) = Y (llx = CH(Q)I| - [l= — CH(opta)]])
€ P;
Z(Q)

> Avg > - kld/2]

where note the last inequality is where we used Z(Q) >
0. Finally, we have Z(Q U Aj, P;) = sd(Q U A;, Pj) —
Sd(Optsd,Pj) = Sd(Q U Aj7pj) — Sd(Aj,Pj) < 0. ThUS,
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Fair Covering of Points by Balls

Daniel Lokshtanov*

Abstract

We consider the problem of covering a multi-colored set
of points in R? using (at most) k disjoint unit-radius
balls chosen from a candidate set of unit-radius balls
so that each color class is covered fairly in proportion
to its size. Specifically, we investigate the complexity
of covering the maximum number of points in this set-
ting. We show that the problem is NP-hard even in one
dimension when the number of colors is large. On the
other hand, for a constant number of colors, we present
a polynomial time exact algorithm in one dimension,
and a PTAS in any fixed dimension d > 2.

1 Introduction

Given a set P of n points in R? each of which is col-
ored by one of ¢ colors, the fair covering problem aims
to cover the maximum number of points using £ unit-
radius balls such that the coverage for each color is in
proportion to its size. More precisely, let C be a family
of k unit radius balls, ¢; be the number of the points of
color ¢ that are covered by C, and n; be the total num-
ber of points of color 4, for i € {1,...,t}. Then we say
that the covering C is fair if

lpi-c™] <ei < [pi-c”]

for all i € {1,...,t}, where ¢* = Y!_, ¢; and p; = n;/n
for i € {1,...,t}. Among all fair coverings, we want
the one that maximizes the total coverage c*. We note
that an empty covering trivially satisfies the fairness
condition but covers no points.

Achieving strict fair covering can be computationally
hard, so we also define the notion of approzimately fair
covering. A covering C is called e-fair for some € € [0, 1],
if
(=) lpi-c) <ei<(14e)- [pi-c']

foralli € {1,...,t}. The goal of the approximately fair
covering problem is then to find an e-fair covering that
maximizes the number of covered points.

The topic of algorithmic fairness has received significant
attention recently [17, 25, 9, 15, 4, 10, 18, 7], especially

*University of California, Santa Barbara, USA
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Chinmay Sonar*

Subhash Suri* Jie Xue*

with the increasing use of machine learning in policy
and decision making. Our paper explores the compu-
tational implications of fairness as a constraint in geo-
metric optimization by focusing on the specific problem
of covering by unit balls, or equivalently, fixed-radius
facility location. The different colors in our input rep-
resent different demographic groups and proportionality
is one of the most basic forms of fairness, requiring that
each group’s share in the solution is proportional to its
size. The proportional fairness can be easily extended
to weighted sharing by assigning nonuniform weights to
different points or color classes and measuring fairness
on the overall covered weights. The fair covering prob-
lem can also be viewed as fair clustering under the k-
center measure when each cluster is constrained to have
unit radius.

Our Results

In this paper, we investigate the aforementioned (ap-
proximately) fair covering problem under the discrete-
ness and disjointness constraints defined below. We
require the balls used in a covering to be chosen from
a given candidate set of unit-radius balls (discreteness)
and to be pairwise disjoint (disjointness). Formally, the
input of the problem consists of a set P of n t-colored
points in R, a candidate set B of m unit-radius balls
in R?, and a number & that is the budget of balls to be
used. Our goal is to find a (approximately) fair covering
for P using at most k disjoint balls in B that covers the
maximum number of points. Our main results are the
following:

e We show that there exists an exact algorithm solv-
ing the fair covering problem in R! in O(mn?) time.
Alternatively, the problem can also be solved in
O(nm*) time (Section 2.1).

e We show that the fair covering problem in R! is
NP-hard if the number of colors is part of the in-
put. We also show that the problem is W[1]-hard
parameterized by the number of covering balls k
(Section 2.2).

e For a fixed d > 2 and a fixed number of colors, we
present a PTAS for the approximately fair covering
problem (Section 3).
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Related Work

The problem of covering points by balls or other geo-
metric shapes has a long history in computational ge-
ometry, operations research, and theoretical computer
science, due to its natural connections to clustering and
facility location problems [3, 14, 20, 23, 24]. Tt is known
that covering a set of two-dimensional points with a
minimum number of unit disks is NP-hard, and so is
the problem of maximizing the number of points cov-
ered by k unit disks [13, 19, 8, 11]. Recently, a number
of researchers have considered clustering and covering
problems with an additional constraint of fairness. In
this setting, the input consists of points belonging to dif-
ferent colors (classes), and the goal is to find a solution
where each cluster has approximately equal representa-
tion of all colors [21, 10, 6, 1, 22]. These formulations
are different from our model because we allow individ-
ual clusters to be unbalanced as long as in aggregate
each color receives its fair share. This non-local form
of fair representation seems much harder than requiring
each cluster to locally meet the balance condition. In
another line of work, [5, 15, 2] consider a colorful vari-
ant of the k-center problem where the goal is to satisfy
a minimum coverage for each color type. The colorful
covering however does not achieve fairness because some
color classes can have arbitrarily high representation in
the output, as long as other colors meet the minimum
threshold. In fact, enforcing the fairness by controlling
both the lower and the upper bounds of representation
seems to be a much harder problem, as suggested by
some of our hardness results in one dimension.

2 Fair Covering in One Dimension

We begin by considering the problem in one dimension.
Let P = {p1,...,pn} be aset of n points on the real line
each of which belongs to one of the ¢ color classes, and
let B = {Bjy,...,By} be the candidate set of unit in-
tervals on the line. (Technically speaking, a unit-radius
ball in one dimension would be an interval of length 2,
but a unit-length interval seems more natural, so that we
shall use unit intervals in the following discussion. Note
that the problem with intervals of length 2 is equivalent
to the problem with unit intervals by simply scaling the
points and the intervals.) Our goal is to cover the maxi-
mum number of points using at most k disjoint intervals
in B under the fair covering constraint. We show that an
optimal covering can be computed in polynomial time
when the number ¢ of colors is fixed, but the problem
becomes intractable when ¢ is part of the input.
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2.1 A Dynamic Programming Algorithm

For simplicity, we describe our algorithm for ¢ = 2 and
use red/blue as the two colors for easier reference. The
extension to an arbitrary number of colors is straight-
forward.

Given integers r and b, we define an (r,b)-covering to
be a subset of B consisting of disjoint intervals that
covers exactly r red and b blue points. An optimal
(r,b)-covering is an (r,b)-covering that uses the mini-
mum number of intervals. We solve the fair covering
problem by computing an optimal (r, b)-covering for all
r,b € {1,...,n}. Without loss of generality, we assume
that the unit intervals By, ..., B,, are sorted in the left-
to-right order. Let r(B;) and b(B;) be the number of
the red and blue points covered by B;, respectively. For
each ¢ € {1,...,m}, let m; < i be the largest integer
such that B,, N B; = 0; we assume m = 0. We make
a left-to-right pass over the set of input points and the
intervals on the real line, and compute m;, (B;), b(B;)
foralli e {1,...,m}.

Define F'[i,r,b] as the size of an optimal (r, b)-covering
using only intervals in {Bjy, ..., B;}. For the pairs (r,b)
such that no (r, b)-covering exists, we set F'[i, r,b] = co.
It is easy to see that F satisfies the following recurrence.

Claim 1

Fli—1,7,0b]

F[Zﬂ“,b] = mln{ 1+F[7Ti,T—T(Bi)ab_

b(B;)] }

The above recurrence immediately allows us to com-
pute the table F' using dynamic programming, which
is shown in Algorithm 1. The base case for the dy-
namic program is F'[i,0,0] = 0 for all ¢ € {1,...,m}
and F[0,r,b] = oo for all r,b € {1,...,n}.

Algorithm 1: Computing the F-table
Input: P, 5
Compute 7;,r(B;),b(B;) for i € {1,...,m}
Initialize m x r x b sized table with value oo
for i € {0,...,m}; r,b€{0,...,n} do

Fli,r, b +

min{F[i—1,r,b],14+ Flm;,r—r(B;),b—b(B;)|}

end
return F

Lemma 2 Algorithm 1 can be tmplemented in worst-
case time O((n + m)log(n + m) +mn?).

Proof. Sorting P and B takes O((n + m)log(n + m))
time. Computing m;,7(B;),b(B;) for all i € {1,...,m}
takes additional linear time. After that the F-table can
be computed in O(mn?) time. O
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Once the F-table is computed, we can solve the fair
covering problem by checking all entries in the table for
which the (r,b)-covering is fair and has F[m,r,b] < k.
Among all such valid pairs, we return the pair (r*,b*)
with the maximum r* 4 b*. Clearly, ¢* = r* + b* is the
optimum of the problem instance. We therefore have
the following result.

Theorem 3 The fair covering problem in R! witht = 2
colors can be solved in O((n+m)log(n+m)+mn?) time.

The dynamic program easily extends to the case of t > 2
colors, by using a (¢ + 1)-dimensional DP table.

Theorem 4 The fair covering problem in R' can be
solved in O((n + m)log(n 4+ m) + mn') time.

Remarks. Recall that the fair covering problem we
investigate is defined with the discreteness and disjoint-
ness constraints. In fact, the problem without each of
these two constraints can also be solved using similar
dynamic programming approaches. We omit the details
here because our main focus is the problem with the
discreteness and disjointness constraints.

2.2 NP and W[1]-Hardness of the Fair Covering

In this section, we show that the one-dimensional fair
covering problem is NP-hard if the number of colors ¢
is large. We also show that the problem is W[1]-hard
parameterized by the number of intervals k.

Theorem 5 The one-dimensional fair covering prob-
lem with Q(n) colors is NP-hard.

Proof. We reduce the well-known Exact COVER
problem [16] to our problem. Given a ground set U,
a family F of subsets of U, and an integer ¢, the EXACT
COVER problem is to decide if there exists a S C F of
size £ that contains each element of U exactly once. The
construction is described below.

Construction. Given an instance of EXACT COVER
with U = {uy,us,...,un}t, F = {51,52,...,Sn}, and
an integer ¢, we construct a set of points P, and a set of
centers M as follows. The i*" element of U/ is associated
with color ¢; thus, there are n color classes. We also
introduce an additional color 0, which we call special.
The set of points is organized in the following three
groups.

1. Basic Points: For each set S; € F, we introduce
|Si| points, placed arbitrarily within the interval
[3¢,3i 4 1). Each point has the color of its element.

Figure 1: Constructed fair covering instance for
an Exact COVER instance U = {1,2,3}, F =
{(1,3),(2),(1,2)}, ¢ = 2. We introduce red (1), green
(2), and blue (3) colors corresponding to the elements in
the universe, and we also introduce cyan as the special
color. First five points are introduced in the basic points
group. Since f* = 2 (where f* is a maximum number
of sets to which an element of U belongs to), next, we
introduce one blue point so that each color except for
cyan has exactly two points. At last, we introduce 4
cyan points as enforcers (since f* = ¢ = 2).

The intervals corresponding to S; and Sj, © # j,
are distance 2 apart, which ensures that any unit
interval of B can cover points of at most one such

group.

2. Balancers: We add extra points for each color i to
ensure that all colors ¢ = 1,2,...,n end up with
the same number of points. Specifically, let f* be
the maximum number of sets to which an element
belongs, and let f; be the number of sets containing
the element u;. We introduce f* — f; points of color
i in the interval [3(m + i), 3(m +14) + 1).

3. Enforcers: Finally, we introduce £ f* points of color
0 (special color), at locations 3(m +n + 1),3(m +
n+2),...,3(m+n+£Lf*). These are needed in our
construction to enforce the fair covering condition.
Refer figure 1.

Finally, the set of centers M is defined as follows.

e For each S; € F, we add a center at 3i+1/2, which
allows all points of that group to be covered by one
unit interval.

e Each enforcer point is also a center. We do not need
centers for the balancers—their role is primarily to
make all color classes have equal size.

Finally, we fix the number of covering intervals to be
k= 2¢.

We now argue that the EXacT COVERING instance is
a yes instance if and only if our fair covering instance
admits a k-covering with at least n + ¢ points.

For the forward direction of the proof, suppose & C
F is an exact cover of size £, and T = {i | S; € S}
be the set of indices. Then we build a covering C as
follows. We place first ¢ intervals centered at 3i + 1/2
for ¢ € T, and the remaining ¢ intervals are placed at
3(m+n+j) for j = 1,2,...,¢ covering one special
colored point each. Since S is an exact cover, C contains
exactly n 4+ £ points. The covering is also fair, since
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all the colors i = 1,2,...,n have the same number of
points f*, and the special color 0 has £ f* points. In the
covering, each of the color classes i = 1,2,...,n has one
covered point and the special color has ¢ points.

For the reverse direction, let C be the fair covering with
at least n + £ points. We observe that a fair covering
necessarily contains the same number of points, say p,
for each color ¢ = 1,2,...,n, and contains exactly {p
points of the special color. For p = 2, to cover 2/ special
colored points only, we need all 2¢ intervals. Hence,
for any fair covering, we get p < 2. This implies that
for the covering C, p = 1 to meet the overall covering
requirement. Since, we need £ intervals to cover ¢ special
colored points, it is easy to see that the remaining /¢
intervals cover exactly one point of every other color.
Hence, the intervals covered corresponds to an ExXacT
COVER. O

In the reduced instance above, the number of intervals is
dependent only upon the size of the EXACT COVER (¥).
The EXAcT COVER problem is known to be W[1]-hard
parameterized by ¢ [12]. Hence, the analogous results
for the fair covering problem is summarized as follows:

Theorem 6 The fair covering problem is W[1]-hard pa-
rameterized by the number of covering balls (k).

In dimensions d > 2, the maximum coverage problem
is NP-hard [13], and W[1]-hard [19], even without the

fairness constraint.

3 A PTAS for Fair Covering in d Dimensions

In this section, we describe a PTAS for the approxi-
mately fair covering problem in any fixed dimension d.
Specifically, given an approximate factor ¢ € [0,1], we
want to compute an e-fair covering of P (using at most
k disjoint balls in B) such that the number of the points
covered is at least (1 —¢)-opt, where opt is the size of an
optimal fair covering of P. In other words, the approx-
imation is bi-criteria: one criterion is on the fairness of
the covering while the other one is on the quality of the
solution (i.e., the number of the points covered). For
the simplicity of exposition, we describe the algorithm
in two dimensions (d = 2) and for two colors (t = 2).
The extension to higher dimensions and the general case
of t > 2 colors is straightforward.

3.1 Shifted Partitions & Approximate Covering
When solving the fair covering problem in R!, we were

able to compute an optimal (r,b)-covering for any (r, b)
pair. This seems quite difficult in higher dimensions,
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and so we resort to solving an approximate version of
this problem as follows. We want to compute a table
I'[l...n,1...n]of integers such that for each pair (r,b),
we have the following;:

1. I'[r,b] is at least the size of an optimal (r,b)-
covering, and

2. there exists r* € [(1 —e)r,7] and b* € [(1 — )b, b]
such that I'[r*, b*] is at most the size of an optimal
(r,b)-covering.

For convenience, we call such a table I'" an e-approzimate
covering table (e-ACT) for the instance (P,B). Note
that to solve the approximately fair covering problem,
it suffices to compute an e-ACT.

Lemma 7 Given ane-ACT I for (P, B), one can solve
the approximately fair covering problem in polynomial
time.

Proof. Suppose an optimal fair covering covers ry red
points and by blue points. We call a pair (r,b) with
r,b € {1,...,n} feasible if (1) an (r,b)-covering is fair
and (2) there exists r* € [(1—¢)r,r] and b* € [(1—¢)b, b]
such that I'[r*,;b*] < k. We compute all feasible pairs,
which can clearly be done in polynomial time given I,
and find the feasible pair (r,b) that maximizes r + b.
By definition, we can find r* € [(1 — &)r,r] and b* €
[(1—¢)b, b] such that I'[r*, b*] < k. Note that an (r*, b*)-
covering is e-fair. Furthermore, r+b > opt since (rg, bp)
is feasible, hence r* + b* > (1 — ¢) - opt. Because I’
is an e-ACT, there exists an (r*,b*)-covering using at
most k (disjoint) disks in B. Therefore, r* + b* is a
(1 — e)-approximate solution for the approximately fair
covering problem. O

In order to compute an e-ACT I', we use the shifting
technique [14]. Let h = h(e) be an integer parameter
to be determined later. For an integer ¢ € Z, let [, ;
denote the h x h square [i,i+h] X [j, 7+ h]; we say O, ; is
nonempty if it contains at least one point in P. We first
compute the index set I = {(¢,7) : O, ; is nonempty}.
This can be easily done in time polynomial in n and h,
by computing for each p € P, the O(h?) squares [J; ;
that contains p. For each (,7) € I, define P; ; = PN, ;
and B;; = {B € B: B C [; ;}. In the next step, we
compute a 0-ACT I ; for each (P; ;, B, ;) with (4,j) €
I. We will show later in Section 3.2 how to compute
Iijin (n,; + mm)o(hz’) time, where n; ; = |P; ;| and
mi,; = |Bij;|. At this point, let us assume we have the
0-ACTs I ; and finish the description of our PTAS. We
have the following key observation.

Lemma 8 Let {Py,...,Ps} be a partition of P and
Bi,...,Bs C B be disjoint subsets such that the disks
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in B; do not cover any points in P\P;. Given 0-ACTs
for (P1,B1),...,(Ps,Bs), we can compute a 0-ACT for
(P,U;_, B;) in polynomial time.

Proof. Computing a 0-ACT for (P,|J;_, Bi) is equiv-
alent to computing for all pairs (r,b) the size of the
smallest (r,b)-covering of (P,|J;_, B;). Since the disks
in B; can only cover the points in P;, the entire problem
instance can be divided into independent sub-problems
(P1,B1),...,(Ps,Bs). This allows us to solve the prob-
lem in polynomial time using dynamic programming;
see Algorithm 2. O

Algorithm 2: Computing the 0-ACT

Input: I7,..., s, where I is a 0-ACT for (P;, BB;)
1 Initialize a s x n x n table F' with value oo
2 forte{l,...,s};r,be{l,...,n} do
3 Flt,r,b] «+

mingg, <, A L[, V] + F[t — 1,7 — 7,0 = ']}
0<b' <b

4 end
5 ['*[r,b] = F[s,r,b] for all r,b € {1,...,n}.

6 return [
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For z,y € {0,...,h—1}, let L, , be the set of all integer
pairs (4, j) such that ¢ mod h = z and j mod h = y (See
Fig. 2a). We write I, , = I N Ly .

> D2e

.

5 Pie

‘ P5e Dee

2

! op3  P7e

D4e
o 1 2 3 4 bl
(a) (b)

Figure 2: (a) The squares [J; ; for (i,7) € Ly, with

h = 2. (b) An illustration of the boundary points. The
outer square is [J; ; and the inner square is [i + 2,7 +
h—2] x[j+2,5+h—2], with h = 12. The points in
the gray region (i.e., pa, ps, p5) are the boundary points
in Di,j'

Lemma 9 Forallz,y € {0,...,h—1}, the squares O, ;
for (i,7) € I, are interior-disjoint and cover all points

in P.

Proof. Note that the squares 0, ; for (i,5) € L, , are
interior-disjoint and cover the entire plane R? (see Fig-
ure 2a for an example). It directly follows that the

squares UJ; ; for (¢, j) € I, , are interior-disjoint. Con-
sider a point p € P and let (¢,j) € L, , such that
p € O; ;. Clearly, (4,5) € I as J; ; is nonempty and
hence (i,j) € I,. Therefore, all points in P are cov-
ered by the squares O, ; for (i,7) € I, . O

Fix 2,y € {0,...,h — 1}. We know by Lemma 9 that
{P;; : (4,5) € I,,} is a partition of P and the collec-
tions B; ; for (i,j) € I, are disjoint. Furthermore, the
disks in B, ; do not cover any point in P\P; ;. There-
fore, we can apply Lemma 8 to compute a 0-ACT I"(*+¥)
for (P,U; )er, , Bi,j) in polynomial time. We do this
for all z,y € {0,...,h — 1}. Finally, we construct the
table I" by setting I'[r, b] = ming yc(o,....h—1} @9)[r,b).
We shall show that I' is a 22712 ACT for (P,B). To
this end, we introduce some notions. For a point p € P
and a square [; ;, we say p is a boundary point in [; ;
ifpel;;andp ¢ [i+2,i+h—2] x[j+2,j+h—2] (See
Figure 2b). Now consider some z,y € {0,...,h—1}. We
say p € P conflicts with the pair (z,y) if p is a bound-
ary point in 0; ; where (4, j) € I, is the (unique) pair
such that p € [J; ;. One can easily see that each point
p € P conflicts with exactly h? — (h — 2)? pairs (z,y).

Lemma 10 For any P’ C P, there exists some x,y €
{0,...,h — 1} such that the number of red (resp., blue)

i i DI oy : : 12h—12 1
points m]; conflicting with (x,y) is at most ~=3-=-n_
12h—12 / / / :
(resp., === - Ny,.), where n ., (resp., ny,,.) is the

total number of red (blue) points in P'.

Proof. Define 5% (resp., 654¢) as the number of the
red (resp., blue) points in P’ that conflict with (z,y).
Because any point p € P conflicts with exactly h? — (h—
2)? pairs (z,y), we have

h—1h—-1

Z Z 5red = nred

=0 y=0

— (h=2)%) = njeq(4h — 4).

Therefore, the number of the pairs (z,y) such that
ored > 3nred(4h — 4)/h? is at most h?/3. Equiva-
lently7 the number of the pairs (z,y) such that 5;’“?5

3n! q(4h — 4)/h? is at least 2h?/3. For the same rea-
son, the number of the pairs (z,y) such that 5b1ue <
3ni,..(4h — 4)/h? is at least 2h%/3. Since 2h2/3

2h%/3 > h?, there exists at least one pair (z,y) that
sunultaneously satisfies 01°0 < 3nl.4(4h — 4)/h* and

52};6 < 3np.(4h )/h2 This completes the proof
of the lemma. O

Now we are ready to prove that I" is a 12};17;12—ACT.

Lemma 11 I is a 22712 ACT for (P, B).
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Proof. Set n = 12}}17;12 By the definition of a 7-ACT,
we have to verify that (1) I'[r,b] is at least the size
of a smallest (r,b)-covering of (P,B) and (2) there ex-
ist v* € [(1 —n)r,r] and b* € [(1 — n)b,b] such that
I'[r*,b*] is at most the size of a smallest (r, b)-covering
of (P,B). Condition (1) is clearly true. Indeed, for
all z,y € {0,...,h — 1}, T@Y[r,b] is the size of the
smallest (r,b)-covering of (P, U(i,j)elz,y B; ;) and hence
is at least the size of a smallest (r, b)-covering of (P, B).
Next, we verify condition (2). Let B’ C B be a small-
est (r,b)-covering of (P,B) and P’ C P be the points
covered by the disks in B’ (hence P’ consists of r red
points and b blue points). By Lemma 10, there exist
z,y € {0,...,h—1} such that the number of red (resp.,
blue) points in P’ conflicting with (z,y) is at most nr
(resp., nb). Let B” = B'N(U; jyer, , Bi,j) and P" C P
be the points covered by the disks in B”. Suppose P”
consists of r* red points and b* blue points. Note that
any disk in B’\B" can only cover the points in P that
conflict with (z,y). Therefore, any point in P’ that does
not conflict with (z,y) must be contained in P”, which
implies that r* € [(1 — n)r,r] and b* € [(1 — n)b,b].
Since I'®¥) is a 0-ACT for (P, Ugjer, , Bij), we have
@) b < |B”| < |B|. Tt follows that condition (2)
is also true. O

We set h to be the smallest integer such tha < g
clearly, h = O(1/¢). Then by the above lemma, I" is an
e-ACT for (P, B). In this way, we obtain a PTAS for the
fair covering problem in R2.

12h—12
t =2

Theorem 12 There exists a (1 — €)-approzimation al-
gorithm for the fair covering problem in R? which runs
in n®WmO1/e*) time.

Proof. In our algorithm, the most time-consuming
work is the computation of each I3 ; for (4, ) € I, which

o(1)__O(h?) ,. .
takes n; ;"'m, ;" 7 time as claimed before. All the other
work can be done in time polynomial in h, n, m. Since
I = O(h®n), the overall time complexity of our algo-

rithm is (n + m)o(hz)7 ie., nOMmO/e?), O
The algorithm can be straightforwardly generalized to
higher dimensions and the case t > 2, resulting in the
following theorem.

Theorem 13 There exists a (1 — ¢)-approximation al-

gorithm for the t-color fair covering problem in R% which
runs in nOOmO/e) time.

3.2 Computing the 0-ACTs [} ;

We now discuss the only missing piece in our algorithm
above: the computation of the tables I ;. Recall that
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I ; is a 0-ACT for (P, ;, B; ;). We show that each I ;

O 0

. R?) .
can be computed inn;’; 'm;’; ) time where nij = |Pi ;]

and m; ; = |B; ;|. The key observation is the following.

Lemma 14 For r,b € {1,...,n;,}, an (r,b)-covering
of (Pij,Bi ;) is of size at most |h?/r|.

Proof. Recall that an (r,b)-covering of (P; ;,B; ;) con-
sists of disjoint disks in B; ;. All disks in B; ; are con-
tained in the h x h square [J; ;. The area of 0J; j is h?
and the area of a unit-disk is w. Therefore, any subset
of disjoint disks in [J; ; is of size at most |h%/w|. O

With the above observation, we can compute I ; as
follows. We enumerate all subsets of B; ; of size at most
|h? /|, and keep the ones that consist of disjoint disks.
In this way, we obtain all (r, b)-coverings of (P; ;,B; ;)
for all 7,b € {1,...,n,;}. By checking these coverings
one by one, we can find the smallest (r,b)-covering for

all »,b € {1,...,n;,}, and hence compute I;;. The
O(1),_O(h?)

total time cost isn, . 'm, ;
i,J i,3

4 Conclusion

In this paper, we introduced a new fair-covering prob-
lem, which is motivated by fair representation of mul-
tiple demographics in a geometric facility location set-
ting. We proved that the problem is NP-hard even in
one dimension when the number of color groups is large.
When the number of colors is fixed, we presented a poly-
nomial time exact algorithm in one dimension, and a
PTAS in any fixed dimension. Many open problems re-
main, including whether one can achieve a constant fac-
tor approximation significantly faster than our PTAS,
and whether the PTAS can be achieved for covering by
non-disjoint balls.
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Covering Points with Pairs of Concentric Disks*

Anil Maheshwarif Saeed Mehrabif

Abstract

In this paper, we study the following problem moti-
vated by applications in wireless local area networks.
We are given a set of m pairs of concentric disks in d-
dimensional space, d € {1,2}, where each pair consists
of one disk with radius one and the other with radius
two. We are also given a set of n points such that the
union of the m pairs of disks covers all the n points.
The goal is to select exactly one disk from each pair
such that every point is covered by at least one disk
and the number of points covered by at least one disk
with radius one is maximized; we refer to this as the
sDiskCover problem.

When d =1 (i.e., we have m pairs of intervals on the
real line), we give an exact algorithm that solves the
sDiskCover problem in O(m?n) time. We also consider
a special case of the problem for d = 1, and show that
it can be solved in O(mn) time. For d = 2, we prove
that the sDiskCover problem is NP-hard.

1 Introduction

In this paper, we study a problem that is moti-
vated by applications in wireless local area networks
(WLANS) [1]. In a WLAN, all the users (also called sta-
tions) receive data from access points. An access point
can operate exactly one frequency, which can be chosen
from many different frequencies at the beginning. When
an access point is activated by a single frequency, it cov-
ers a circular area inside a disk. Higher frequency has
higher speed, but lower coverage in disk area (i.e., covers
a disk with smaller radius); see Figure 1 for an example.
One can view different frequencies at an access point as
concentric disks that are centered at the access point
with different radii. Disks with smaller radius have
higher frequency, which means the corresponding ac-
cess point can provide data with higher speed. If a user
is within a higher-frequency region of an access point,
then they can be supplied data with higher speed; this
will correspond to the profit of the service provider who
installs the frequency at the access point. The service

*This work is supported in part by NSERC.

tSchool of Computer Science, Carleton University, Ottawa,
Canada. anil@scs.carleton.ca, saeed.mehrabi@carleton.ca,
michiel@scs.carleton.ca.

tACMU, Indian Statistical Institute (ISI), Kolkata, India.
sasanka@isical.ac.in
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Figure 1: The points in red (resp., black) are the loca-
tions of access points (resp., users). The areas within
red and black disks centered at each access point denote
higher-to-lower frequency disks of the access point. A
user can be served with the maximum speed if they are
within a red disk and the corresponding access point is
activated by that frequency.

provider has to provide services to all the users, which
might force the service provider to allocate lower fre-
quency at an access point to get a higher coverage area.!
The objective of the service provider is to increase sum
of the total speed provided to the users, which in turn
will maximize the profit made by the service provider.
In this paper, we formalize this problem with two types
of frequencies.

Problem statement. Let d € {1,2}. Then, an object
in d-dimensional space is a pair of disks, a disk with
radius one and a disk with radius two, such that the
disk with radius one is entirely contained in the one
with radius two. For an object ¢, we call the disk of ¢
with radius one (resp., two) the small disk (resp., big
disk) of i and denote it by sDisk(i) (resp., bDisk(7)).
Consider a set of n > 0 points py,...,p, and a set
of m > 0 objects in d-dimensional space for some d €
{1,2}. Then, the objective of the sDiskCover problem
is to select exactly one disk from each object such that

IHere, we assume that the union of lowest-frequency disks cov-
ers all the users.
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every point is contained in at least one disk and
n
Z min{1, [small(p;)|}
i=1

is maximized, where small(p;) is the set of selected small
disks that contain the point p;. In other words, we want
to select exactly one disk from each object such that all
the points are covered and the number of points covered
by at least one small disk is maximized.

Notation. For a point p in the plane, we denote the
2- and y-coordinates of p by z(p) and y(p), respectively.
Moreover, we denote the Euclidean distance between
two points p; and p; by dist(p;, p;). For an object i, we
denote the centres of sDisk(z) and bDisk(#) by sCentre(i)
and bCentre(7), respectively.

Consider an instance of the sDiskCover problem. Let
p be an input point that is contained in exactly one big
disk bDisk(¢) (for some object i) and not contained in
any small disk. Then, any feasible solution must select
bDisk(i). Moreover, let M be the set of all input points
q(# p) such that (i) ¢ is covered by bDisk(¢) and (ii) no
small disk covers ¢ (i.e., ¢ is only covered by big disks).
Then, we can include bDisk(z) into the solution, and
then remove the object ¢ and the set M U {p} from the
instance. Therefore, we assume the following through-
out the paper.

Assumption 1 Given an instance of the sDiskCover
problem, if an input point is not contained in any small
disk, then it is contained in at least two big disks.

2 One-dimensional Objects

In this section, we consider the sDiskCover problem for
n points and m one-dimensional objects: each object
is a pair of intervals on the real line (i.e., an interval
with length one and an interval with length two). For
an interval i, we denote its left and right endpoints by
left(¢) and right(4), respectively. Moreover, we write p(i)
to denote the set of input points covered by i. For the
rest of this section, we refer to the small and big disks
of an object i as the small and big intervals of i and
denote them by sint(7) and blnt(i), respectively (we still
use the term “object” whenever we are not referring to
a specific interval). Moreover, we assume that the input
points have distinct z-coordinates and x(p;) is distinct
from that of the endpoints of any interval in the input
objects, for all 1 <14 < n.

Here, we first consider the sDiskCover problem in a
special case in which the objects are left-aligned: we
have x(left(sInt(7))) = x(left(bInt(4))) for all objects 1 <
i < m. In Section 2.2, we will solve the problem without
this restriction. In this subsection, we assume that the
points are ordered from left to right as p1,p2,...,Pn,
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and the objects are sorted from left to right by the -
coordinate of the right endpoint of their big interval.

2.1 Left-aligned Intervals

An object i on the real line is called left-aligned
if x(left(sInt(z))) = x(left(blnt(é))); a set of one-
dimensional objects is called left-aligned if every ob-
ject in the set is left-aligned. Given a set of n points
P1,...,pn and m one-dimensional left-aligned objects
on the real line, we give an exact O(mn)-time algorithm
for the sDiskCover problem.

For 1 < i < mand 1 < j < m, define Afi,j]
to be the objective value of an exact solution for the
problem on the points pi,ps,...,p; and the objects
01,02, ...,0;. Similarly, define B[i,j] to be the objec-
tive value of an exact solution for the problem on the
points pi,p2,...,p; and the objects 01,02,...,0;, as-
suming that blnt(o;) is in the solution. Our goal is
to compute A[n,m]; the actual solution that gives us
Aln,m] can be computed in the standard manner. We
next show how to compute A[i, j] and Bli, j]. First, we
need the following lemma.

Lemma 1 Consider an instance of the sDiskCover
problem, and let £ be the wertical line through
right(sInt(o,,)). Moreover, assume that p, lies to the
right of £, and let T denote the set of all big inter-
vals that intersect ¢ (including bint(o,,)). Then, there
exists an exact solution S for the problem such that
SNT C{bint(oy),blnt(oym—_1)} and SNT # 0.

Proof. Since p, lies to the right of ¢, we have |T'| > 2
by Assumption 1. If |T| = 2, then T' = {om-1,0m}
and so any feasible solution S must contain at least
one of bint(o,—1) and bInt(o,,). Hence, SNT C
{bInt(o,,), bInt(0;,_1)} and SNT # 0.

Now, assume that |T| > 2. Consider an exact so-
lution that contains neither blnt(o,,—1) nor blnt(o,).
Then, p, must be covered by blnt(o;) in this solution,
for some ¢ < m — 1, and so bint(o;) € T. We now re-
place bint(o;) and sInt(0,,—1) with, respectively, sInt(o;)
and blnt(op,—1) in this solution; let S be the result-
ing set of intervals. Since the objects are left-aligned,
these replacements do not leave any point uncovered:
any point that was covered by blnt(o;) U sInt(o,,—1) is
still covered by slnt(o;) U bInt(o,,,—1). Moreover, since
i < m—1and o, € T (ie., bInt(o;) intersects ¢),
any point that was covered by sInt(o,,—1) is still cov-
ered by sint(o;) UslInt(o,,). Hence, S is a feasible solu-
tion for the problem and its objective value is at least
as big as that of the initial solution. Observe that
SNT C {blnt(oy,),bInt(om—1)} and SNT # 0. O

Computing A[i,j]. Let ¢ denote the vertical line
through right(sInt(o;)). We consider two cases depend-
ing on whether p; lies to the right or to the left of £.
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If p; lies to the right of ¢, then we can focus our at-
tention to bInt(o;) and blnt(oj_1) by Lemma 1. Let ¢
be the vertical line through right(sint(o;_1)) and let p;
be the rightmost point that is to the left of ¢. More-
over, let ¢’ be the vertical line through left(sInt(o;))
and let p;» be the rightmost point that is to the left
of ¢”. Now, if bInt(o;) is in the solution, then every
point to the right of ¢’ is covered by blnt(o;) and no
such point is contained in a small interval; hence, the
problem is reduced to B[i’,j]. On the other hand, if
bint(oj_1) is in the solution, then we also take sInt(o;)
into the solution. Hence, the problem is reduced to
B[i",j — 1] + |p(sInt(o;))|. Therefore, we have A[i, j] =
max{Bli", ], Bli",j — 1] + [p(sint(o;))]}.

If p; is to the left of ¢, then we take sInt(o;) into the
solution. This is because if there exist a solution with
bint(o;), then we can replace bint(o;) with sInt(o;) with-
out decreasing the objective value. Now, let ¢/ denote
the vertical line through left(sInt(o;)) and let p;» be the
rightmost point that is to the left of ¢/. Then, the prob-
lem is reduced to A[¢, j — 1] + p(sInt(o;)). In summary,
we compute Ali, j] as follows. First, assume that i > 1
and j > 1. If p, is to the right of ¢, then A[i,j] =
max{B[’, j], B[i", j—1]+|p(sInt(0;))|}; otherwise, if p,
is to the left of ¢, then A[i, j] = A[i/, j — 1] + p(sInt(o;)).
Now, assume that i = 1. If p; is contained in at least one
small interval, then A[i,j] = 1; but, if p; is contained
in no small interval, then A[i,j] = 0. Finally, assume
that j = 1. If there is at least one point that is not con-
tained in sInt(oy), then A[é, j] = 0; but, if every point is
contained in sInt(o1), then A7, j] = |p(sInt(o1))|.

Computing B[i,j]. To compute Bli,j|, let £ be the
vertical line through right(sint(o;)). We again consider
two cases. If p; is to the right of ¢, then the problem
is simply reduced to B[i — 1, j]. If p; is to the left of ¢,
then the problem is reduced to A[i, j —1] because we can
remove the object o, from the instance (as we know that
bint(o;) has been selected) and then solve the problem
with the same points and the objects o1,02,...,0;_1.
Therefore,
Bli,j] = Bli—1,4], if p; is to the right of ¢,
PUT VAL 1), i py s to the left of £.

Moreover, to compute the base cases, assume first
that ¢ = 1. If at least one of sInt(o1),...,sInt(o;_1)
contains p;, then B[i,j] = 1; otherwise, Bli,j] = 0.
Now, if j = 1, then BJi, j| = 0 because we have taken
bint(o1) into the solution.

Running time. The tables A and B each have size mn,
and we spend O(1) time to fill one entry of A or one
entry of B. Hence, the total time spent to fill out A
and B is O(mn) and so we have the following theorem.
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Theorem 2 For a set of n points and m left-aligned
objects on the real line, the sDiskCover problem can be
solved in O(mn) time.

2.2 Arbitrary Intervals

Here, we remove the “left-aligned” restriction and as-
sume that the small interval of an object ¢ can be any-
where within the big interval of the object as long as
dist(sCentre(i), bCentre(i)) < 1/2 (i.e., the small interval
is entirely contained in the big interval). In this subsec-
tion, we assume that the objects are ordered from left to
right by the z-coordinate of the right endpoint of their
small interval.

Lemma 3 There exists an optimal solution for the
sDiskCover problem such that each point is covered by
at most two small intervals.

Proof. Take any optimal solution OPT for the prob-
lem. Let S(p;) denote the set of small intervals in OPT
that cover point p; for all ¢ = 1,2,...,n. For each
point p for which |S(p)| > 2, we do the following: let o,
(resp., o) be the object for which sInt(o;) € S(p) (resp.,
sint(o,) € S(p)) and z(left(sInt(og)) > z(left(sInt(o;)))
(resp., x(right(sInt(o,)) < x(right(sInt(0;)))) for all o,
such that sint(o;) € S(p). Now, for every small interval
in S(p) \ {sInt(o¢),sInt(o;)}, we replace the small inter-
val in OPT by its big interval. Clearly, every point is
covered by at most two small intervals in the resulting
set. Moreover, one can verify that the resulting set of
intervals will still cover all the points and has the same
objective value as OPT. O

We now describe a dynamic programming algorithm.
Let Ti,j] denote the objective value of an optimal so-
lution for covering the points pi, po,...,p; with the ob-
jects 01,02, ..., 0; (where the latter ordering is by their
small interval). Then, the goal is to compute T'[n, m].
To compute T'[i, 7], we assume in the following that the
union of the j objects cover all the ¢ points (as otherwise
we set T[i,j] to —1). Now, take any optimal solution
OPT for TJi,j] and let p, be the rightmost point for
which OPT gets a credit; that is, p, is the rightmost
point that is covered by at least one small interval in
OPT. Then, by Lemma 3, p, is covered by either one
or two small intervals in OPT. Let us consider these in
two cases.

Point p, is covered by one small interval in OPT. Let
04 be the object such that sInt(o,) € OPT and slnt(o,)
covers p,. Let £ (resp., £') be the vertical line through
left(sInt(o,)) (resp., right(sint(o,))). Moreover, let M,
be the set of objects o; such that blnt(o;) intersects ¢'.
To see which interval of the objects in M, \ {o,} are
in OPT, take any object o, € M, \ {0,}. Observe
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that if sint(o;) € OPT, then sInt(o;) does not cover
any points in {py41,...,pn}. Moreover, the points that
lie to the right of ¢ and to the left of p, are already
covered by slnt(o,) (and so for each of which OPT has
gained a credit). This means that, the only way OPT
could potentially gain points by having sInt(o;) is when
left(sInt(o;)) lies strictly to the left of ¢. In that case,
among all such sInt(o;), OPT must have the one with
leftmost left endpoint; consider this object and let t*
be the index of its small interval (in the input order-
ing defined on small intervals). Notice that for all other
objects in M, \ {04}, we can have their big intervals in
OPT. Let p, for some r’ < r, be the leftmost point
covered by sInt(o;+). Then, in this case, we have

T[i,j] = max  {f(sInt(o,),sInt(os+))

pr€{p1,...,pi}
0q€{01,...,05}:
prEsint(oq)

+ T —1,t* — 1]},

where f(sInt(og), sInt(os+)) denotes the number of points
covered by at least one of sInt(o,) and sInt(oz«).

Point p, is covered by two small intervals in
OPT. Let o, and o0, be the two objects such that
sInt(o,), sInt(op) € OPT and they both cover p,. As-
sume w.l.o.g. that x(left(sInt(o,))) < z(left(sInt(op)));
let £ (resp., ') be the vertical line through left(sInt(o,))
(resp., right(sint(op))). Let M, be the set of objects oy
such that blnt(o;) intersects ¢. To see which interval of
the objects in My, \ {04,0p} are in OPT, take any ob-
ject oy € Myp \ {04, 06}. Observe that if sInt(o;) € OPT,
then sInt(o;) does not cover any point in {p,41,...,Pn}-
Moreover, the points that lie to the right of ¢ and to the
left of p, are already covered by sInt(o,) (and so for
each of which OPT has gained a point). This means
that, if z(left(sInt(o;))) > z(left(sInt(o,))), then OPT
does not gain any points by having sInt(o;). Therefore,
the only way OPT could potentially gain points by hav-
ing sInt(o;) is when left(sInt(o;)) lies strictly to the left
of £. In that case, among all such sInt(o;), OPT must
have the one with leftmost left endpoint; consider this
object and let t* be the index of its small interval. No-
tice that for all other objects in My \ {04, 08}, We can
have their big interval in OPT. Let p,, for some r’ < r,
be the leftmost point covered by sInt(o;-). Then, in this
case, we have

Tli,j] = max {f(sInt(04),sInt(op), sInt(os))

pr€{p1,....pi}
{0a,0p}C{o01,...,0;}:
préEsint(og)Nsint(oy)

+Tr' —1,t* — 1]},
where f(sInt(o,),sInt(op), sInt(os+)) denotes the number

of points covered by at least one of sInt(o,), sInt(op) and
sInt(os+). The base case is T[1,j] for all j = 1,...,m;
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we set T[1,j] = 1 if p; is covered by at least one small
interval in {sInt(o1),slnt(02),...,sInt(0;)} and T'[1, j] =
0, otherwise.

Running time. Given an instance of the problem, we
can compute the order of the points and the intervals (as
required by the algorithm) in O(nlogn) and O(mlogm)
time, respectively. Moreover, within the same time
bound, we can preprocess the input to compute the
function f(sInt(o)) for all the input objects o. Each
entry of the table T' can be computed in O(m?n) time,
and so we have the following theorem.

Theorem 4 For a set of n points and m arbitrary in-
tervals on the real line, the sDiskCover problem can be
solved in O(m?n) time.

3 Two-dimensional Objects

In this section, we consider the sDiskCover problem for
objects in the plane and show that the problem is NP-
hard. Recall that for each object i, we have two disks:
sDisk(i) whose radius is one and bDisk(i) whose ra-
dius is two. Throughout this section, we assume that
sCentre(i) = bCentre(4); i.e., the disks are centred at the
same point.

We show a polynomial-time reduction from Planar
Variable Restricted 3SAT (Planar VR3SAT, for short).
Planar VR3SAT is a constrained version of 3SAT in
which each variable can appear in at most three clauses
and the corresponding variable-clause graph is planar.
Efrat et al. [2] showed that Planar VR3SAT is NP-hard.

Let Ispt be an instance of Planar VR3SAT with K
clauses C1,Cs, . ..,Ck and N variables X1, Xo,..., Xn;
we denote the two literals of a variable X; by z; and
T;. We construct an instance I;pc of our problem such
that Ipc has a solution with objective value of at least
MNK + MK/2, for some M that we will determine
its value below, if and only if Isat is satisfiable. Given
Isat, we first construct the variable-clause graph G of
Isat in the non-crossing comb-shape form of Knuth and
Raghunathan [3]. We assume w.l.o.g. that the variable
vertices lie on a vertical line and the clause vertices are
connected from left or right of that line; see Figure 2
(left) for an example. This representation has size poly-
nomial in N and K.

Gadgets. For each variable X; € Isat, we replace the
corresponding variable vertex in G with two objects as
shown in Figure 2 (right); we call this pair of objects
the variable gadget of X;. The top object serves as lit-
eral T; while the bottom object serves as literal ;. The
variable gadget initially contains three disjoint group of
points; we call each such group of points a cloud. There
is one cloud of K points that is shared between bDisk(x;)
and bDisk(z;), called a variable-shared cloud. Moreover,
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Figure 2: Left: an instance of the Planar VR3SAT
problem in the comb-shape form of Knuth and Raghu-
nathan [3]. Crosses on the edges indicate negations; for
example, Co = (T7 VT3 V z5). Right: A variable gad-
get. The three clouds of the gadget are shown as small
shaded disks.

each of sDisk(z;) and sDisk(Z;) contains one cloud, each
of which we refer to as a wvariable-small cloud. We de-
termine the number of points in a variable-small cloud
later.

Observation 1 Given any feasible solution S for the
sDiskCover problem, at most one of sDisk(z;) and
sDisk(T;) can be in S, for any variable X;.

The idea behind the variable gadget (corresponding
to a variable X;) is to ensure that also at most one of
bDisk(x;) and bDisk(Z;) appears in any feasible solution.
Then, we set the variable to true if and only if bDisk(x;)
is in the solution. However, the gadget as it is now does
not enforce this. To enforce this, we must enforce one
of the small disks to be selected in any feasible solution
(hence, forcing its big disk not to be selected). To this
end, we will set the number of points in each variable-
small cloud (in the variable gadget) to a large enough
value that any feasible solution must contain at least
one small disk from every variable gadget in order for
its objective value to meet a minimum requirement. We
will determine this minimum requirement later.

If the literal x; (resp., T;) appears in a clause, then
the bottom object (resp., top object) of the gadget is
connected to the corresponding clause by a chain of ob-
jects, called a wire. A wire starting from the bottom
object (resp., top object) of a variable gadget and end-
ing at a clause has the following structure. (i) Every
object i in the wire has a cloud of K points in sDisk(z).
(ii) The big disk of the first object of the wire shares one
cloud of K points with the big disk of the bottom ob-
ject (resp., top object) in the variable gadget. (iii) The
big disks of every two consecutive objects in the wire
share one cloud of K points. We call the first object of
a wire (that shares a cloud with one of the objects in
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Figure 3: An illustration of a clause gadget.

the variable gadget) the starting object of the wire.

For the clause gadget, where three wires meet, the
small disks of the last three objects (each arriving from
one of the wires) will have a non-empty intersection in
which we place one cloud containing K points; see Fig-
ure 3. We call this K points a clause cloud.

Construction details. Let S be a feasible solution for
the problem, and consider the object x; shown in Fig-
ure 2 (right). The variable-small cloud of this object is
covered by either sDisk(z;) or bDisk(z;) in S. If it is
covered by sDisk(z;) in S, then we must cover the other
clouds in this object by the starting objects of the wires
connected to x;. But, if it is covered by bDisk(x;) in
S, then we can select the small disk of the starting ob-
ject of each wire. Consequently, depending on whether
sDisk(x;) or bDisk(z;) is selected, one can see that the
clouds in the wires connected to this object are covered
in S in one of the two possible ways. (Here, we are as-
suming that S needs to meet the minimum requirement
for its objective value.) By re-scaling and adjusting the
length of a wire, we can ensure that exactly one of these
two possible coverings will let S to select the small disk
of the last object in the wire; the other will only let .S
to select the big disk of the last object. In other words,
exactly one of these two possible ways allows S to gain
K points for covering the corresponding clause cloud.
By the discussion above, we set a variable X; to true
if and only if bDisk(x;) is selected. By having an appro-
priate number of objects in each wire (while keeping the
size polynomial), we can assume that S gains K points
for covering the clause cloud (i.e., the small disk of the
last object in the wire is selected) if and only if bDisk(x;)
is selected (i.e., variable X; is set to true). Notice that
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selecting bDisk(x;) forces S to select sDisk(7;). Now,
by adjusting the number of objects in a wire connect-
ing T; to a clause gadget, we also ensure that the big
disk of the last object of the wire is selected. That is,
sDisk(z;) is selected if and only if the big disk of the
last object of the corresponding wire is selected (i.e., S
does not gain any points from the corresponding clause
cloud). Finally, we require by re-scaling that the num-
ber of objects in each wire is even. This concludes the
consistency for the truth assignment of Xj.

We first prove that the number of objects in each
wire is polynomial in N and K. Consider an edge in
the graph and let L be its length. Notice that since the
drawing is polynomial in N and K, so is L. Moreover,
this edge can have either no bends or one bend. Our
goal is to have each wire consistent with the drawing of
its corresponding edge in G; hence, making each wire
having no bends or one bend. Suppose first that the
edge has no bends. Since the distance between every two
consecutive centres of the disks in the wire is three, we
have at most |L/3] objects in the wire. Now, suppose
that the edge has one bend and let L; and Ly denote
the lengths of its segments (i.e., L = L1+ Ly). Then, by
a similar argument, the corresponding wire will have at
most |L1/3] + [ L2/3| objects. We therefore conclude
that the number of objects in both cases is polynomial
in N and K.

In the full version of the paper, we prove that the
wires can be connected to variable gadgets such that
the objects from different wires do not intersect each
other (except at clause gadgets and/or slightly at vari-
able gadgets). To ensure this, we might require to “re-
route” some of the wires; hence, making new bends.
However, one can verify that the number of objects in
each wire remains polynomial in N and K. The proof
of the following lemma is given in the full version of the

paper.

Lemma 5 Let S be a feasible solution for the problem
with objective value of at least MNK + MK /2. Then,
S has exactly one big disk and exactly one small disk
from every variable gadget.

Lemma 5 gives us the minimum objective value for a
feasible solution that we will use to argue that then the
instance Isat is satisfiable.

Lemma 6 There exists a feasible solution S for Ispc
with objective value of at least MNK + MK/2 if and
only if Isat is satisfiable.

Proof. (=) Let S be a feasible solution for Ipc with
objective value of at least M N K+ MK /2. By Lemma 5,
we know that there is exactly one big disk from every
variable gadget in S. For each variable X;, 1 <17 < N,
we set the variable to true if and only if bDisk(z;) is
in S; otherwise, we set X; to false. To show that this
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results in a truth assignment, suppose for a contradic-
tion that there exists a clause C' that is not satisfied by
this assignment. Take any variable X € C. If z € C,
then the variable X is set to false (resp., true) by the
assignment. This means that S has selected the small
disk of object x. Consequently, the big disk of the last
object in the wire connecting C to x; is selected by S:
the solution S did not gain K points from the cloud of
C. Analogously, if T € C, then the variable X is set to
true by the assignment. This means that S has selected
sDisk(z;). Consequently, the big disk of the last object
in the wire connecting C' to T; is selected by S: again,
the solution S did not gain K points from the cloud
of C. Therefore, S cannot have an objective value of
MNK + MK /2—a contradiction.

(<) Given a truth assignment for Isar, we con-
struct a feasible solution S for Ispc with objective value
MNK + MK/2 as follows. For each variable X; in
IsaT, where 1 < ¢ < N: if X; is set to true, then we add
bDisk(z;) to S; otherwise, we add sDisk(z;) to S. This
selection ensures that we get M K points from each vari-
able gadget. Moreover, by selecting the corresponding
disk of x;, we will select the disks in the wires connected
to x; accordingly by alternating between small and big
disks. The same also happens for the wires that are con-
nected to T;. One can consequently argue that, within
a wire, exactly half of the small disks are selected; that
is, we will gain M K/2 points by covering these clouds
using small disks. Therefore, S has the objective value
MNK + MK/2. |

By Lemma 6, we have the following theorem.

Theorem 7 The sDiskCover problem is NP-hard for
concentric disks in the plane.
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Hardness of Approximation for Red-Blue Covering
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Abstract

In Red-Blue Geometric Set Cover a set of red points,
a set of blue points, and a set of objects are given and
the goal is to find a subset of the objects that cover
all the blue points while covering the minimum num-
ber of red points. Chan and Hu in 2014 showed that
the problem is NP-hard even when the points are in the
plane and objects are axis-aligned unit squares. Here we
study Red-Blue Geometric Set Cover when the objects
are axis-aligned rectangles, convex shapes, and trian-
gles. We also study the problem of Boxes Class Cover:
a red-blue point set is given, and the goal is to find a
minimum number of axis-aligned rectangles that cover
all the blue points but no red. This problem is intro-
duced in a paper in 2012 by Bereg et al., who showed
the problem is NP-hard.

We prove the following: 1) Red-Blue Geometric Set
Cover is APX-hard when the objects are axis-aligned

rectangles. 2) Red-Blue Geometric Set Cover cannot be
approximated to within glog! 1/ (s IeR ™ i ) polynomial

time for any constant ¢ < 1/2, unless P = NP, when
the given objects are m triangles or convex objects. 3)
Boxes Class Cover is APX-hard.

In the non-geometric setting Red-Blue Set Cover is
known to be strictly harder to approximate than Set
Cover. In the geometric setting, no such a relation be-
tween Geometric Set Cover and Red-Blue Geometric
Set Cover was previously known. We show that there
is a class of objects, triangles, for which approximating
Red-Blue Geometric Set Cover is strictly harder than
approximating Geometric Set Cover.

We also define a restricted version of Max3SAT,
MaxRM-3SAT, and we prove that this problem is APX-
hard. This problem might be interesting in its own
right.

1 Introduction

Geometric Set Cover, the geometric version of Set
Cover, is a fundamental theoretical problem that has
been studied for over 30 years. Applications of this
problem include wireless network design, image com-
pression, and circuit-printing [10]. This problem is NP-
hard even for simple geometric objects such as unit

*Department of Computer Science, University of Victoria,
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squares, unit disks, and axis-aligned rectangles [19].
Much effort has been made to develop approximation
algorithms or prove lower bounds for the best possible
approximation ratio for this problem. While Geometric
Set Cover has been studied widely for several geometric
objects, the problem of Red-Blue Geometric Set Cover
has been studied only for axis-aligned unit squares [11].

In this paper, we study Red-Blue Geometric Set
Cover for some classes of objects, and we prove new
results on the hardness of approximation for this and
Boxes Class Cover. Then we compare our result with
the approximability of Geometric Set Cover for the same
class of objects, and we conclude that Red-Blue Geo-
metric Set Cover is a harder problem than Geometric
Set Cover for some class of objects. In the following
section, we define and describe related works to these
problems.

1.1 Problems, and Related Works

We recall that for an optimization problem, a
polynomial-time approximation scheme (PTAS) is a
(1 + €)-approximation algorithm which takes a param-
eter € > 0 as part of the input and is polynomial in
the problem size n for every fixed e. An optimization
problem is APX-hard if no PTAS exists for the problem
unless P = NP.

Set Cover: A universe set X of n elements and a fam-
ily T of m subsets of X are given, and the goal is to
find a minimum sized subset 7V C T such that each
element in X is contained in at least one member of
T’. This fundamental problem has been known to be
NP-hard and NP-hard to approximate within a factor
of (1 — a)Inn of the optimum for every o > 0 [14]. Tt
has also been shown that this problem cannot be ap-
proximated to within glog! ~P¢™m 4 polynomial time
for any constant ¢ < 1/2 unless SAT can be decided in

time 9O (2! (™ "), where 6.(n) = 1/(loglogn)¢ [23].
Geometric Set Cover(GSC): In this version of Set
Cover, we are given a set of points X and a family T
of geometric objects, and the goal is to find a minimum
sized subset 7" C T such that each point is covered with
at least one of the selected objects. The results of this
problem can be studied in two directions.

First, PTASes have been developed for some simple ob-
jects, such as unit-squares [19] and disks in R? [22]. For
some other objects with low VC-dimension, e-net based
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algorithms with constant or almost-constant approxi-
mation factors have been presented [7, 15]. However,
finding a small, O(1/€)-size , e-net is not always pos-
sible. For example, [24] shows that there exist a dual
range space induced by a family of finite families of axis-
aligned rectangles in which the size of the smallest e-net
is (1)log1). In this case the approximation factor of
the e-net based algorithms is O(log OPT'), where OPT
is the size of the optimal solution. Second, it has been
shown that Geometric Set Cover is APX-hard for a large
class of geometric objects including axis-aligned rectan-
gles, axis-aligned slabs, and triangles[10][17].

In this paper we denote the problem of Geometric Set

Cover when the objects are from the class of objects
OBJ with GSC[OBJ], e.g. GSC[AARectangle].

Class Cowver:In class cover problems, points are given
in two sets R and B, red points and blue points respec-
tively, and the goal is to find a minimum sized family T
of a specific type of objects (e.g. balls) that cover all the
points in B but no point in R. Note that in Set Cover
problems, the family of subsets is given as the input,
and we select a subfamily of them. But, in class cover,
the goal is to compute such a family and the candidate
subsets are all the subsets of that type of object. This
problem has been studied also in the context of data
mining when the objects are balls with the constraint
that balls are centered at blue points [8, 13, 20]. The
constraint and non-constraint version of this problem is

NP-hard when the objects are balls [8, 2]

Boxes Class Cover(BCC): In this version of Class
Cover problem, the objects are axis-aligned rectangles.
Bereg et.al. use a reduction from a rectilinear poly-
gon covering problem [12, 21] to show that the BCC is
NP-hard and admits O(log O PT)-approximation, where
OPT is the size of optimal covering [3]. The same paper
also shows NP-hardness and the existence of an O(1)-
approximation algorithm for BCC when the objects are
axis-aligned squares. They also show that BCC is NP-
hard even if the objects are axis-aligned half-slabs, but
BCC can be exactly solved in polynomial time when
the objects are axis-aligned slabs. However, no hard-
ness of approximation has been shown for BCC yet. [1]
also shows that BCC is NP-hard by a reduction from a
version of Max3SAT, NAS-SAT, to this problem.

Note that BCC is a restricted version of
GSC[AARectangle]. In BCC a family of rectan-
gles is not given, but we can consider the family of all
the possible eligible rectangles as the family of given
objects for the Geometric Set Cover. It is interesting
to see that Geometric Set Cover is strictly harder than
BCC. This comes from the fact that Geometric Set
Cover is APX-hard, but BCC can be solved in poly-
nomial time exactly when the objects are axis-aligned
slabs.

Red-Blue Set Cover: This is a more general version
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of Set Cover, where the elements are given in two sets
R and B, red elements and blue elements, and the goal
is to select a subfamily T” of a given family T' of subsets
of RU B such that T” covers all the elements in B, but
includes only the minimum number of elements in R.
Carr et.al. in [9]showed that the problem is NP-hard

and NP-hard to approximate within 2008 m) ™ factor
of the optimal for § = 1/log®logm and any constant
a < 1/2 even in the restricted case that each set in T
contains only one blue and two red elements. They also
present a 2,/m-approximation algorithm for the case
that each set in T contains only one blue element.

Red-Blue Geometric Set Cover (RBGSC): In the
geometric version of Red-Blue Set Cover, the given sets
R and B are points and the given family T" are geometric
objects. Chan and Hu showed that the problem is NP-
hard even when the objects are unit-squares and present
a PTAS for this version of the problem [11]. To the best
of our knowledge, no hardness of approximation result
has been shown for Red-Blue Geometric Set Cover.

Note that Red-Blue Set cover is a general version of
Set Cover: any instance of Set Cover can be transformed
to an instance of Red-Blue set Cover by considering all
the elements of X as blue elements and adding exactly
one distinct red element to each subset in 7. However,
this reduction does not work for the geometric version.
This is because it is not always possible to add exactly
one distinct red point to each member of T. So, Red-
Blue Geometric Set Cover is not yet shown to be a more
general version of Geometric Set Cover, and we do not
know a way to relate lower bounds on these two geo-
metric problems. We independently show a hardness of
approximation for the Red-Blue Geometric Set Cover.

In this paper, we denote the problem of Red-
Blue Geometric Set Cover when the objects are from
the class of objects OBJ with RBGSC[OBJ]. e.g.
RBGSC[AARectangle].

We show APX-hardness of RBGSC[AARectangle]
and Boxes Class Cover via reductions from a newly de-
fined version of Max3SAT. We also show how we can
modify reductions in [11] and [3] to prove the APX-
harness of these two problems.

Max3SAT: This is the version of MaxSAT where a
CNF formula is given and each clause has at most 3
distinct literals, and the goal is to determine the max-
imum number of clauses that can be satisfied by any
assignment. Hastad showed that MaxE3SAT, the ver-
sion of Max3SAT in which each clause is size of exactly
three, is NP-hard to approximate within a factor greater
than 7/8 of the optimum even in the case of satisfi-
able instances of the problem [18]. Here we use MAX-
EKSAT-b, a version of MaxSAT in which every clause
has length k£ and each variable occurs exactly b times

(other notations have been used for this problem e.g.
(k, b)-SAT , EbOCC-EkSAT, and MAX EkSAT(b) [5]).
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Feige showed that MaxE3SAT-5 is hard to approximate
within a specific constant number [16]. MaxE3SAT-4 is
also shown to be hard to approximate within a specific
constant factor of the optimal [5] [6].

1.2 Our Contribution

We present proof of hardness of approximation for some
geometric problems listed below:

¢ RBGSC[Axis-Aligned Rectangles] is APX-hard.
e RBGSC|Triangle] and RBGSC[Convex] cannot be

. 11 1-1/(loglogm)© .\ .
approximated to within 2!°8 PEEET Mo poly-

nomial time for any constant ¢ < 1/2, unless
P = NP, where m is the number of given trian-
gles or convex objects.

e Boxes Class Cover for axis-aligned rectangles is
APX-hard.

These results show that there is a class of objects, trian-
gles, for which approximating Red-Blue Geometric Set
Cover is strictly harder than approximating Geometric
Set Cover.

we also obtain to define a new version of Max3SAT,
MaxRM-3SAT, in Definition 1, and then prove that this
problem is also APX-hard.

1.3 Outline of the Paper

We show our hardness results by a series of reductions.
Figure 1 shows these reductions. In section 2 we de-
fine a new version of Max3SAT, MAX Restricted Mixed
3SAT (MaxRM-3SAT), and we show that the problem
is APX-hard. In Section 2 we only provide the idea of
the reduction, and the details of this reduction appear in
Appendix A. In Section 3 we prove the APX-hardness of
RBGSC[AARectangle] in two ways: First, we show a re-
duction from MaxRM-3SAT to RBGSC[AARectangle].
Second, we show how to modify the presented reduc-
tions in [10] to show that RBGSC[AARectangle] is
APX-hard. As the reduction from MaxRM-3SAT to
BCC is similar to the reduction we described in Sec-
tion 3, we provide the proof of APX-hardness of BCC
in Appendix B. In Appendix B, we also mention how we
can use the reduction presented in [3] to show the sim-
ilar result. In Section 4 we prove hardness results for
RBGSC[Convex] and RBGSC|Triangle] by reductions
from Set Cover and Red-Blue Set Cover.

2 MaxRM-3SAT

Max3SAT is a version of MaxSAT where all clauses have
at most 3 literals and the goal is to determine the maxi-
mum number of clauses that can be satisfied by any as-
signment. Here, we define MaxRM-3SAT, and we prove
this problem is APX-hard.
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% RBGSC[AARectangle]
BCC

MaxE3SAT-5 —» MaxRM-3SAT

SPECIAL-3SC *‘p RBGSC[AARectangle]

Rectilinear Polygon Covering  ** ¢

Set Cover ——» RBGSC[Convex]
Red-Blue Set Cover ——» RBGSC[Convex]

Red-Blue Set Cover ———» RBGSC[Triangle]

Figure 1: Reductions. * This is a modified version of the
reduction that Chan and Grant showed from SPECIAL-
3SC to GSC[AARectangle] in [10]. ** This is the reduc-
tion that Bereg et.al. showed from Rectilinear Polygon
Covering to BCC in [3].

Definition 1 (MaxRM-3SAT) This problem is a
variant of Max3SAT where all the clauses are of size
2 or 8 and have the following properties:

1. All the clauses of size 8 have a literal in negated
form and a literal in non-negated form.

2. Any variable appears in exactly one clause of size
8, i.e., if v; is a variable in this formula, only one
of v; or U; can appear in any clause of size 3.

3. Any variable appears in exactly one of the clauses
of size 2 in negated form, and exactly one of the
clauses of size 2 in non-negated form.

We can observe that by properties 2 and 3 of the
definition if m is the number of clauses of size 3 in an
instance of MaxRM-3SAT, then there are exactly 3m
variables and 4m clauses in total in the formula.

We prove a hardness result for MaxRM-3SAT by
a reduction from MaxE3SAT-5, the version of the
Max3SAT in which each clause is of length exactly 3
and each variable appears in exactly 5 clauses [16].

Theorem 2 MaxRM-3SAT problem is NP-hard to ap-
prozimate within specific constant factor Cryr—sar of
the optimum. (Proof in Appendiz A.)

3 RBGSC[AARectangle]

RBGSC[A ARectangle]: A set of red points R, a set
of blue points B, and a family of axis-aligned rectangles
T are given, the goal is to select a subfamily T' of a
gwen family T such that T' covers all the elements in
B, but includes the minimum number of elements in R.

The hardness result that we prove for
RBGSC[Triangle] in this section shows that Red-
Blue Geometric Set Cover is APX-hard, same as
Geometric Set Cover, when the objects are axis-aligned
rectangles.
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3.1 Reduction from MaxRM-3SAT to

RBGSC[AARectangle]

In this Section, for an instance of MaxRM-3SAT we
construct a set of red points, a set of blue points, and
a set of rectangles in polynomial time. Then, we show
a relation between the number of satisfied clauses in
an optimal solution of MaxRM-3SAT and the size of
the optimum solution in the corresponding instance of
RBGSC[AARectangle]. The idea of this structure was
inspired by the structure used in [1].

For ®, an instance of MaxRM-3SAT with 3m vari-
ables and 4m clauses, we change the order of the clauses
to have all the clauses of size 3 first and then clauses of
size 2. We rename the jth variable of the kth clause of
this order to Xz(x_1)4;-

For each variable X;, 1 < ¢ < 3m, we add 4 blue
points to set B and two vertical and two horizontal rect-
angles to the object set T as shown in Figure2(a). These
axis-aligned rectangles for each variable only cover blue
points associated with their variable. On this arrange-
ment of points RBGSC[AARectangle] has to have an
optimal solution that covers each variable’s blue points
by exactly two rectangles, either both wvertical or both
horizontal. We call these blue points that we added to
B wvariable points, and the rectangles variable rectangles.

The main idea of the reduction from MaxRM-3SAT
to BCC is that the choice of vertical vs horizontal
corresponds to a true vs a false assignment to the
variables. For each clause, we add some blue points
to B to force the choice of the covering rectangle to
be horizontal or wertical in the optimal solution for
RBGSC[AARectangle] based on the structure of the
clauses of ®. The locations of these points are differ-
ent in each type of clauses depending on the size of
the clause and the number of negated literals in the
clause. Figure 2 (c), (d), (e), and (f), show these new
blue points added to B and the associated rectangles
added to T. We call these added blue points clause
points and the rectangles clause rectangles.

Finally, we add one distinct red point to each rect-
angle. Figure2 illustrates that there is a region in each
rectangle that does not overlap with the other rectan-
gles.

Observation 1 a) For each clause ¢ and an assign-
ment for ®, if the clause is satisfied, then one extra
rectangle in addition to variable rectangles’ is needed to
cover clause points of c¢; otherwise two extra rectangles
are needed to cover clause points of c. b) 10m rectangles
are needed to cover blue points in B.

Lemma 3 If there is an assignment for ® with 4m — k
satisfied clauses, then there is a solution for the cor-
responding instance of RBGSC[AARectangle] with at
most 10m + k rectangles.
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Figure 2: a) variable points for all the variables and four
variable rectangles for X (b)Highlighted green areas
are divisions of the plane to Region 1-3. clause points
and clause rectangles for different types of clauses: c¢)
c=(X;VX),d) c=(X;VX),e)c=(X;VX),f)
c=(X; VX1 VXjp) (For = (X; VXV Xjia),
added points are similar to part (e) but rotated by —m/2
in Region 3.) In the figures of this paper, circles and
stars indicate blue and red points respectively. Clause
points are shown in blue and the wariable points are
shown in black.

Proof. The following mapping G maps an assignment
a for @ to a solution 7" for RBGSC[AARectangle]: For
any variable X;, if a(X;) is true, then add two hori-
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zontal variable rectangles associated with X; to T”. For
any variable X, if a(X;) is false, then add two vertical
variable rectangles associated with X; to T”. For each
satisfied clause ¢, add one of the clasue rectangles asso-
ciated with ¢ to T”. For each unsatisfied clause c, add
both of the clasue rectangles associated with ¢ to T".
The rectangles in 77 cover all the blue points and the
size of T" is 10m + k. O

Lemma 4 If there is a solution with 10m—+k rectangles
for this instance of RBGSC[AARectangle], then there
is an assignment for ® with at least 4m — k satisfied
clauses.

Proof. Let T, |T| = 10m + k, denote the set of rect-
angles in this solution for RBGSC[AARectangle]. Here
we show how we can define a mapping G~! that maps a
solution T for RBGSC[AARectangle] to an assignment
a for @.

Assume all the four variable points of any variable is
covered with exactly two wvertical or exactly two hori-
zontal rectangles in T, then G~! is defined as below. If
T does not have such a property, later we show how we
can find another solution 7’ that satisfies this property
with the same or lower number of rectangles than 7.

G a(X;) = 1; if the variable points of X; are cov-
ered with vertical rectangles in T'. «(X;) = 0; if the
variable points of X; are covered with horizontal rect-
angles in 7",

Here we show there is the solution 7", in which all
the four variable points of any variable is covered with
exactly two wvertical or exactly two horizontal rectan-
gles and |T'| > |T”|. Observe that for any variable, each
variable point can be covered only by its variable rect-
angles. Set T’ = (). For any variable X;, 1 < i < 3m,
if T' covers the variable points of X; with exactly two
rectangles, this means either both of them are wvertical
or both of them are horizontal. In this case, we add
both of these rectangles to T”. In the case that T covers
the variable points of X; with three or four rectangles,
check if the two vertical or the two horizontal rectangles
cover the most number of clause points of the clauses
that X; appears in. Add these two variable rectangles
to T'. If a clause point remains uncovered, add one
rectangle clause to T' to cover that. Note that no more
than one clause point might remain uncovered as by the
definition of MaxRM-3SAT each variable only appears
in three clauses, two clauses of size 2 and one clause of
size 3, so either the two wvertical or the two horizontal
rectangles cover at least two of these clauses. There-
fore, for this case, we added three or lees rectangles to
T. O

In this instance of RBGSC[A ARectangles], each ob-
ject covers a distinct red point, so minimizing the num-
ber of covered red points also minimizes the number of
objects.
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Figure 3: Points and rectangles for Reduction from
SPECIAL-3SC to RBGSC[AARectangle]

3.2 Reduction from SPECIAL-3SC to

RBGSC[AARectangle]

In this section, we show how we can modify the pre-
sented reduction in [10] from SPECIAL-3CS, a re-
stricted version of Set Cover, to GSC[AARectangle] to
show that RBGSC[AARectangle] is APX-hard.
ESPECIAL-3SC [10]: we are given universe set
U= AUWUXUY UZ comprising disjoint sets
A=Aar,..,an}, W ={wy,..oun}, X = {z1,...,Zm},
Y ={y1,..,ym}, and Z = {z1, ..., 2} where 2n = 3m.
We are also given a family S of 5m subsets of U satisfy-
ing the following two conditions: 1) for each a <t < m,
there are integers 1 < i < j < k < n such that S con-
tains the sets {a;, w: }, {we, 2+ }, {aj, e, Y}, {ye, 2}, and
{ak, 2} (summing over all ¢t given the 5msets contained
in S.) 2) for all 1 < ¢ < n, the element a; is in exactly
two sets in S. SPECIAL-3SC denotes the Set Cover on
universe set U and subset set S.

Chan and Grant showed SPECTAL-3SC is APX-hard
by a reduction from minimum vertex cover on 3-regular
graphs [10]. Then, they showed a reduction from
SPECIAL-3SC to GSC[Fat Axis-Aligned Rectangles]:
place the elements of A, in order, on the line segment
{(z,x —2) : © € [1,1 + €]} and place the elements of
A=W UXUY UZ, in order, on the line segment
{(z,x+2) : z € [-1,—1 + €]}, for a sufficiently small
€ > 0. Then, add 5m axis-aligned rectangles covering
{a;, w.}, {wi, z}, {aj, 2, 9}y {we, 2}, and {ag, 2} for
any 1 <t < m. Figure 1.(C1) of [10] shows these points
and rectangles.

The following is the modified reduction for
RBGSC[AARectangle].

Reduction from SPECIAL-3SC to
RBGSC[AARectangle]: Add m blue points on
the line y = x — 2 for the elements in A, and add 5m
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blue points on the line y = x + 2 for the elements
in A =WUXUY UZ. For each set s; € S add
the axis-aligned rectangles shown in Figure 3. Note
that here the rectangles are slightly different than the
rectangles in [10]. This is to make sure that there
is an area in each rectangle which is not covered
by any other rectangle. Therefore, we can add a
distinct red point to each rectangle. Thus, an optimal
solution for RBGSC[AARectangle] that minimizes
the number of covered red points also minimizes the
number of rectangles and so an optimal solution for
SPECIAL-3SC.

4 RBGSC[Convex] and RBGSC[Triangle]

Theorem 5 For every a > 0 it is NP-hard to approz-
imate RBGSC[AARectangle] within (1 — «)lnb of the
optimum, where b is the number of blue points.

Proof. Suppose that we have an instance of Set Cover,
in which X is the set of n elements and T is a family
of m subsets of X. The following transformation ,
transforms this instance of Set Cover to an instance of
RBGSC[Convex], where R is the set of red points, B is
the set of blue points, and O is the set of convex objects.

1) takes an arbitrary circle on the plane, and for each
xz; € X, 1 adds the blue point b; on the circle. For each
s; € T, 1 adds the red point r; on the circle as shown in
Figure 4. For set of objects O, for each s; € T, ¢ adds
the convex shape o0;, which is defined by connecting r;
and the blue points corresponded to s;’s members, i.e.
0; = Convex Hull({r;} U {bj|z; € s;}).

In this instance of RGBSC|[Convex], each object cov-
ers exactly one distinct red point. So, any solution for
set cover with size k gives a solution for this instance
of RBGSC[Convex] in which k red points are covered.
Besides, for any solution of RBGSC[Convex] with k cov-
ered red points, there is a solution for set cover with size
k. O

Theorem 6 Red-Blue Geometric Set Cover is cannot
be approzimated to within 208" “FE m i polyno-
mial time for any constant ¢ < 1/2, unless P = NP,
where the objects are convex objects and m is the number
of given convex objects.

Proof. The proof of this theorem is similar to The-
orem 5. If Xp, Xg, and T are the inputs of an in-
stance of Red-Blue Set Cover, for each zb; € Xp,add
the blue point b;, on the circle, to B similar to Fig-
ure 4. For each xr; € Xpg, add the red point r;, on
the circle, to R similar to Figure 4. For each s; € T,
add convex shape o;, which is defined by connecting red
points and blue points corresponded to s;’s members,
ie. 0; = ConvexHull({bj|zb; € s;} U {ri|zr; € s;}).
This implies that RBGSC[Convex] is as hard as Red-
Blue Set Cover, which has been shopwn to be NP-hard
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Figure 4: points and convex shapes for the reduction
from Set Cover to RBGSC[Convex]

to approximate within 20108 m) ™ factor of the optimal

for § = 1/log™ logm and any constant o < 1/2 [9]. O

Carr et.al. showed that their hardness result holds
even in the restricted case that each set in T con-
tains only one blue and two red elements [9]. Here

we reduce this version of the Red-Blue Set Cover to
RBGSC[Triangle].

Theorem 7 Red-Blue Geometric Set Cover is cannot
be approximated to within glog!~H/Cosloem) T ) polyno-
mial time for any constant ¢ < 1/2, unless P = NP,
where the objects are triangles and m is the number of
given triangles.

Proof. This proof is also similar to is similar to the
proof of Theorem 5. Assume Xpg, Xg, and T are the
inputs of an instance of Red-Blue Set Cover, where each
s; € T contains only one blue and two red elements. For
each zb; € Xp,add the blue point b;, on the circle, to
B similar to Figure 4. For each xr; € Xg, add the red
point 7;, on the circle, to R similar to Figure 4. For each
s; € T, add triangle t;, which is defined by connecting
the two red points and the one blue point corresponded
to s;’s members, ie. t; = Triangle({b;|zb; € s;} U
{ri|zr; € s;}).

This implies that RBGSC|[Triangle] is as hard as the
restricted version of Red-Blue Set Cover, which has
been shopwn to be NP-hard to approximate within
9(ogm) ™ factor of the optimal for § = 1/(loglogm)®
and any constant o < 1/2 [9]. O

The hardness result in Theorem 7 shows that Red-Blue
Geometric Set Cover is strictly harder than Geometric
Set Cover, when the objects are triangles. This is be-
cause the VC-dimension of triangles in the plane is 7, so
the approximation factor of e-net based algorithms on
GSC[Triangle] is O(log OPT), which is smaller than the
lower bound we showed for RBGSC[Triangle] in Theo-
rem 7.
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Appendix A. Hardness of Approximation of MaxRM-
3SAT

A.1l. Reduction from MaxE3SAT-5 to MaxRM-3SAT

We use a reduction from MaxE3SAT-5 to show the inap-
proximability of MaxRM-3SAT. Given the fact MaxE3SAT-
5 is APX-hard [16], we can observe that the following prob-
lem is also APX-hard: MaxE3SAT-5 even where every vari-
able appears at least twice. Here we use this instance of
MaxE3SAT-5.

Suppose that an instance ¢ of MaxE3SAT-5 is given with
n variables and m = 5n/3 clauses. The following transfor-
mation F' transforms ¢ to ®, an instance of MaxRM-3SAT
with M clauses and N variables.

F adds all the clauses of ¢ to ®, then changes the name
of variables and adds some clauses as described below.

First, F takes arbitrary orders on ¢’s variables and
clauses. For each variable z, let c;,; be the ith clause that z
appears in ¢.

For each variable x and clause ¢ = ¢;,;, F' replaces = with
xz; or &; in cf/, the corresponding clause in ®, as described
in the following steps. In addition, let f be a mapping that
shows if z replaced by z; or &;; f(z,1) = z; or &;.

1. if c=c¢z = (xVyV2z), F replaces  with &; such that

o= (T VyVz)and f(z,i) = .

2. If ¢ = czs = (x; V ta Vt3), where either or both to = §
and t3 = Zz, F replaces = with z; such that ¢/ = (a; V
ta Vis) and f(z,4) = x4

After step 1 and step 2 are completed, F' adds the clauses in
steps 3 to ® to have equality of x;’s instances with original

z. For each variable x in ¢, let n, be the number of x;’s in
®. If ny, > 1, then

3. F adds the following clauses to ® for each 1 < i < ng:
(f(z,3) V f(z,t)), where t =i+ 1if 1 < i < ngz — 1;
t=11if 1 =n,.

Now @ is an instance of RM-3SAT. This is because it is
a CNF formula, each clause of size 3 has one negated and
one non-negated literal, each variable appears in one of the
clauses of size 3, and each variable appears in exactly one
of the clauses of size 2 in negated form, and exactly one
of the clauses of size 2 in non-negated form. The number
of clauses in ® is M, M = m + 3m = 4m, where m is
the number of clauses in ¢. This is because the number of
clauses of size 3 in ® is m. Besides, the number of clauses of
size 2 associated with each variable z is at most the number
of times it appears in ¢, so the total number of clauses of
size 2 for all the variables is 3m = 5n.

Lemma 8 If there is an assignment for ¢ that satisfies m —
k clauses, then there is an assignment for ® that satisfies at
least M — k clauses and can find such an assignment for ®
by having the assignment for ¢.

Proof. Consider the assignment for ¢ that satisfies at least
m — k clauses. Set the value of all the z;’s in ® to the
equivalent value of z in this assignment for ¢ by using f. e.g
x; = x if f(z,i) = 2, and x; = T if f(x,i) = ;. Therefore,
the only unsatisfied clauses of size 3 in ¢ are the ones whose
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their corresponding clauses in ¢ are not satisfied. Besides,
all the clauses of size 2 are satisfied in ®. This is because
all the values of x;’s are equivalent for any variable z, e.g.
f(x,i) = f(x,j) for any 1 < i, < ng. This means either
all the f(x;)’s are true or all the f(x,7). Thus, at most, k
clauses are unsatisfied by this assignment for ®. |

Lemma 9 If there is an assignment for ® that leaves no
more than k clauses unsatisfied, there is an assignment for
¢ that leaves no more than k clauses unsatisfied and can find
such an assignment for ¢ by having the assignment for ®.

Proof. First, we explain how we can change any assignment
for ® with no more than k unsatisfied clauses to another
assignment, in which for each variable x all the x;’s have
equivalent value and there are no more than k unsatisfied
clauses. Then, in the assignment for ¢, we set the value of
x to the value that all x;’s agreed on, and we show that this
assignment does not leave more than k clauses unsatisfied.
For each z, we change the value of x;’s to the majority
value of them. Now, we describe why this assignment for ®
has no more than k unsatisfied clauses. The number of un-
satisfied clauses in ® with this new assignment is, at most,
the number of unsatisfied clauses of size 3 with the original
assignment added to the number of satisfied clauses of size 3
in ® that are no longer satisfied due to the change in z;’s val-
ues. For each = with equivalent values of z;’s in the original
assignment, there is no change in the value of them in the
new assignment and consequently no change by these vari-
ables in the number of satisfied clauses of size 3. For each x
with non-equivalent values of x;’s in the original assignment,
at most, two clauses of size 3 can be unsatisfied after chang-
ing their values to their equivalent majority value, as ¢ < 5
and there are no more than two changes in z;’s values. On
the other hand, if all the values of z;’s are equivalent, then
the clauses of size 2 for each variable x are all true. But, if
the values of x;’s are not equivalent, then, at least, two of
their clauses of size 2 are unsatisfied. So, changing the value
of x;’s to their majority satisfies, at least, two more clauses
of size 2 for these variables. This means that changing the
value of x;’s to their majority does not increase the number
of unsatisfied clauses. Therefore, we have an assignment for
® with no more than k£ unsatisfied clause and for each z all
the x;’s are equivalent. Finally, for the assignment for ¢,
each variable x gets the majority equivalent value of x;’s in
®, and there are no more than k unsatisfied clauses in this
assignment for ¢. a

A.2. Hardness of Approximation

Observation 2 For any instance of MaxE3SAT-5 there is
an assignment that satisfies at least half of the clauses.

Proof of Theorem 2. Consider the two CNF formu-
las ¢ and ®, an instance of MaxE3SAT-5 with m clauses
and an instance of MaxRM-3SAT with M clauses, respec-
tively. Assume the optimal solution for ¢ has (m — k) true
clauses. Lemma 8 implies that there is an assignment for
® with at least (M — k) true clauses. Assume that there is
an algorithm that approximates MaxRM-3SAT with factor
Crym—sar, where Cry—sar < 1. Then, the algorithm pro-
vides an assignment that has at least Cryr—sar (M —k) true



CCCG 2020, Saskatoon, Canada, August 5—7, 2020

clauses and at most M — Cray—sar(M — k) false clauses in
®. By using Lemma 9, we can find an assignment that has
at most M — Crv—sar(M — k) false clauses and at least
m — M 4+ Crym—sar(M — k) true clauses in ¢. By knowing
M < 4m, then the approximation ratio of this assignment
in ¢ is at least p = m — M + Cry—sar(M — k)/(m — k).
By using Observation 2,k < m,

m — (1 —Cry—sat)M — Cry—sark
m—k

P>

> m(4Cry—saT —3) — Cryv—sark

m—k

If MaxE3SAT-5 is Csgars-inapproximable [16], then we
chose Crar—sar such that TUCRM_sAT 3 Cru_sarh
Cssars. Therefore, there is an algorithm to find Czsars-

approximation for MaxE3SAT-5, which is a contradiction.

Appendix B. Boxes Class Cover

Here we show that BCC is APX-hard in two ways: First,
we demonstrate that the same presented reduction in [3]
from Rectilinear Polygon Cover to BCC for showing the NP-
hardness of this problem also shows that BCC is APX-hard.
Second, we modify the reduction described in Section3.1 to
show a reduction from MaxRM-3SAT to BCC.
Rectilinear Polygon Cover(RPC): Given a rectilinear
polygon P, find a minimum size set of axis-aligned rectangles
whose union is exactly P.

The idea of the reduction in [3] is to add blue points on
the boundary and inside the polygon and add red points
outside of the polygon in a way that the only possible non-
empty rectangles are the ones that are inside P. Thus, any
solution for BCC on these points gives a solution with the
same size for RPC. Given that RPC is APX-hard [4], BCC
is APX-hard.

B.1. Reduction from MaxRM-3SAT to BCC

The idea of the reduction from MaxRM-3SAT to BCC is
very similar to the idea of the reduction from MaxRM-3SAT
to RBGSC[AARectangle]. For this reduction we keep all
the same blue points, but we change the set of red points
in a way that the set of all possible axis-aligned rectangles
is limited to the wariable rectangles and clasue rectangles
and the rectangles in the optimal solution of BCC on this
instance of the problem are the same as the rectangles in the
optimal solution of RBGSC[AARectangle]. Figure 5 shows
the location of these red points.

A rectangle t is a blue-rectangle if ¢ contains only blue
points but no red point. We can observe that blue-rectangles
in any solution for BCC can be expanded to reach a red point
without any change in the size of the solution. We call the
set of all expanded possible axis-aligned rectangles mazimal
rectangles.

In this instance of BCC, the set of mazimal rectangles
that contain blue points is the same as the set of rectangles
of RBGSC[AARectangle] in Section 3.1. In BCC, the goal is
to minimize the number of these rectangles to cover all the
blue points, which is the same as minimizing the number
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of covered red points in RBGSC[AARectangle] when each
rectangle covers only one distinct red point. Therefore the
same proof works here too.
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Figure 5: a) The points in the highlighted gray area are
variable points for X5. b) Highlighted green areas are
divisions of the plane to Region 1-3. ¢) Added red points
and blue points for ¢ = (X; V X;), d) Added red points
and blue points for ¢ = (X; V X)), e) ¢ = (X; V X)), f)
Added red points and blue points for ¢ = (X; V X1V
Xji2) (For ¢ = (Xj V Xj11V Xj42), added points are
similar to part (f) but rotated by —m/2 in Region 3).
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Abstract

This paper investigates a restricted version of robot mo-
tion planning, in which particles on a board uniformly
respond to global signals that cause them to move one
unit distance in a particular direction on a 2D grid board
with geometric obstacles. We show that the problem
of deciding if a particular particle can be relocated to
a specified location on the board is PSPACE-complete
when only allowing 1 x 1 particles. This shows a separa-
tion between this problem, called the relocation problem,
and the occupancy problem in which we ask whether a
particular location can be occupied by any particle on
the board, which is known to be in P with only 1 x1 par-
ticles. We then consider both the occupancy and reloca-
tion problems for the case of extremely simple rectangu-
lar geometry, but slightly more complicated pieces con-
sisting of 1x 2 and 2x1 domino particles, and show that
in both cases the problems are PSPACE-complete.

1 Introduction

The advanced development of microbots and nanobots
has quickly become one of the most significant frontiers
of our time. However, power and computation limita-
tions at these scales often make autonomous robots in-
feasible and individually-controlled robots impractical.
Thus, recent attention has focused on controlling large
numbers of relatively simple robots. Many examples of
large population robot swarms exist, ranging from natu-
rally occuring magnetotactic bacteria [9,11,12] to man-
ufactured light-driven “nanocars” [7,13]. These par-
ticular microrobot swarms are manipulated uniformly
through the use of external inputs such as light or a
magnetic field. That is, all of the agents in the system
react identically to the same global signal.

First proposed by Becker et al. [5], this model con-
sists of movable polyominoes (as an abstraction of these
nanorobots) that exist on a 2D grid board with “open”
and “blocked” spaces. These polyominoes may be af-
fected by global signals and step one unit distance when
given a move command. Similar work has been shown
in [4], where instead of moving one unit distance they

*This research was supported in part by National Science
Foundation Grant CCF-1817602.
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travel maximally (referred to as “tilts”), which causes
them to move linearly from one open location to an-
other.

Previous Work. Before the tilt model was formally
defined, there was research studying uniform control of
particle swarms with precise movement [5]. Shortly af-
ter, investigation began on a version of particle swarm
control where commands became limited and caused
particles to move maximally [4]. In this work, the au-
thors ask if any particle within a system can be moved to
occupy a specified location. We refer to this problem as
the occupancy problem. They prove that deciding the
minimum number of moves needed to reconfigure one
configuration of robots to another is PSPACE-complete.
Recently in [2, 3], two additional natural questions for
the model were proposed: the relocation and reconfigu-
ration problems. The first asks whether a specified par-
ticle can be moved to a specified location. The second
problem is to determine whether or not every particle
in the system can be moved to its own specified loca-
tion. In the later work the authors proved all of these
problems to be PSPACE-complete even when limited
to 1 x 1 tiles. These problems have also been investi-
gated in the single-step model when considering limited
directions. Recent work in [1, 6] shows that the relo-
cation problem when limited to two or three directions
and the reconfiguration problem when limited to two di-
rections are both NP-complete. It was also shown that
the occupancy problem is solvable in polynomial time in
the single-step model even when all four directions are
allowed.

Our Contributions. Our contributions are out-
lined in Table 1. We first show the relocation problem
is PSPACE-complete with only 1 x 1 tiles by way of
a reduction from a restricted version of the relocation
problem within the full-tilt model, recently shown to be
PSPACE-complete in SODA 2020 [2]. We then consider
the case of domino shaped pieces, but with board geom-
etry limited to being a single rectangle, and show that
in this case both the relocation and occupancy prob-
lems are PSPACE-complete by a reduction from the
problem of traversing a toggle-lock maze, shown to be
PSPACE-complete in [8]. Videos of the constructions
can be found at https://asarg.hackresearch.com/
main/cccg2020-Complexity
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Problem Tile Size | Geometry Result Theorem
Occupancy 1x1 All P In [6]
Relocation 1x1 Connected | PSPACE-complete Thm. 2

Occupancy/Relocation | 1x1, 1x2 | Rectangular | PSPACE-complete | Thms. 4,5

Table 1: An overview of the complexity results. For 1 x 1 polyominoes, the occupancy problem is in P, but the
related problem of relocation is PSPACE-complete. We show that if 1 x 2 and 2 x 1 polyominoes (dominoes) are
allowed, both of the problems are PSPACE-complete even with rectangular geometry.

2 Preliminaries

Board. A board (or workspace) is a rectangular re-
gion of the 2D square lattice in which specific locations
are marked as blocked. Formally, an m x n board is a
partition B = (O, W) of {(z,y)|z € {1,2,...,m},y €
{1,2,...,n}} where O denotes a set of open locations,
and W denotes a set of blocked locations- referred to as
“concrete.” We classify the different board geometries
according to the following hierarchy:

e Connected: A board where the set of open spaces
O is a connected shape.

e Simple: A connected board is said to be simple if
O has genus-0.

e Monotone: A simple board where O is either hori-
zontally monotone or vertically monotone.

e Convex: A monotone board where O is both hori-
zontally and vertically monotone.

e Rectangular: A convex board is rectangular if O is
a rectangle.

Tile and Polyomino. A tile is a unit square centered
on a non-blocked point on a given board. Formally a tile
stores a coordinate on the board ¢ and is said to occupy
¢. A polyomino is a finite set of tiles P = {t1,...t;} that
is connected with respect to the coordinates occupied by
the tiles in the polyomino. A polyomino that consists
of a single tile is informally referred to as a “tile.” In
this work we only use single tiles and dominos which are
polyominos consisting of two tiles.

Configurations. A configuration is an arrangement of
polyominoes on a board such that there are no overlaps
among polyominoes, or with blocked board spaces. For-
mally, a configuration C = (B, P = {P; ... P;}) consists
of a board B and a set of non-overlapping polyominoes
P that each do not overlap with the blocked locations
of board B.

Step. A step is a way to turn one configuration into
another by way of a global signal that moves all tiles in
a configuration one unit in a direction d € {N, E, S, W}
when possible without causing an overlap with a blocked
position, or another tile. Formally, for a configuration
C = (B, P), let P’ be the maximal subset of P such
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Init (N) (E) (E)
Figure 1: An example step sequence. The initial board
configuration followed by the resulting configurations
after an N step, F step, and then final F step.

that translation of all tiles in P’ by 1 unit in the direc-
tion d induces no overlap with blocked squares or other
tiles. A step in direction d is performed by executing the
translation of all tiles in P’ by 1 unit in that direction.

We say that a configuration C' can be directly recon-
figured into configuration C’ (denoted C' —; C”) if ap-
plying one step in some direction d € {N, E,S,W} to
C results in C’'. We define the relation —. to be the
transitive closure of —; and say that C' can be recon-
figured into C’ if and only if C —, C’, ie., C may
be reconfigured into C” by way of a sequence of step
transformations. A related concept that is the focus of
previous work is the tilt transformation in which a single
direction d tilt consists of the repeated application of a
direction d-step until the configuration is d-terminal. In
this paper we focus on the step transition, but discuss
connections to previous work using the tilt transforma-
tion.

Step Sequence. A step sequence is a series of steps
which can be inferred from a series of directions D =
(d1,da,...,dy); each d; € D implies a step in that direc-
tion. For simplicity, when discussing a step sequence,
we just refer to the series of directions from which that
sequence was derived. Given a starting configuration,
a step sequence corresponds to a sequence of configu-
rations based on the step transformation. An example
step sequence (N, E, E) and the corresponding sequence
of configurations can be seen in Fig. 1.

3 Hardness Results for Occupancy and Relocation

In this section we present our two PSPACE-
completeness results. We first show the relocation prob-
lem is PSPACE-complete when allowing only 1 x 1
tiles by reducing from a restricted form of reloca-
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(a) initial (b) S (c) W (d) N

(e) E (f) N (g) W (h) S
Figure 2: An example of an empty space moving
through a configuration. The board geometry is just
a rectangular frame. The dominoes along with many
of the tiles (shown in lighter blue) are gridlocked and
cannot move. We can see that through a sequence of

tilts the space can move through the configuration and
eventually allow the orange tile to change position.

tion within the full-tilt model, shown to be PSPACE-
complete in [2]. Then, we show that both relocation
and occupancy problems are PSPACE-complete when
allowing 1 x 2 and 2 x 1 polyominoes even when re-
stricted to a board with rectangular geometry. We show
this by a reduction from the problem of moving a sin-
gle robot through a toggle-lock maze [8]. Both of our
PSPACE-hardness reductions utilize a common tech-
nique in which we consider an empty space in a mostly-
full board as an agent. With this technique, isolated
spaces now travel maximally across the board per step,
similar to a single tile in the full-tilt model. This method
is demonstrated in Figure 2.

3.1 Problem Definitions

Occupancy. The occupancy problem asks whether or
not a given location can be occupied by any tile on the
board. Formally, given a configuration C' = (B, P) and
a coordinate e € B, does there exist a step sequence
such that C' —, C" where C' = (B, P’) and Ip € P’
that contains a tile that occupies coordinate e?

Relocation. The relocation problem asks whether a
specified polyomino can be relocated to a particular po-
sition. Formally, given a configuration C = (B, P),
a polyomino p € P’ | and a coordinate e € B, does
there exist a step sequence such that C' —, C’ where
C’' = (B, P') and a tile in p occupies coordinate e?

3.2 Relocation with 1 x 1s

Recently, [2] proved that occupancy and relocation in
the full-tilt model are PSPACE-complete with only 1x 1
tiles. We can reduce directly from a modified version of
the occupancy problem in full-tilt. The key idea in the
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(a)

(b)

Figure 3: (a) An example input for the k-region relo-
cation problem. (b) Reducing the k-region relocation
problem to the relocation problem.

reduction to invert the construction from [2] so that ev-
ery space is replaced by a single tile, and vice versa.
Now, the empty spaces act as the tiles in the original
reductions and behave similarly to that in Figure 2 (al-
though, this results in a board with no dominoes).

Lemma 1 The relocation problem in the single-step
model is in PSPACE.

Proof. The problem can be solved by non-
determinisitically selecting a movement from the
available current movements until a tile is in the correct
position. We only need to keep track of the current
configuration between each move so the problem can
be solved in NPSPACE which is known to equal
PSPACE. |

Theorem 2 The relocation problem in the single-step
model is PSPACE-complete even when limited to only
1 x 1 tiles and connected geometry.

Proof. To show hardness we reduce from a restricted
version of the relocation problem under the full-tilt op-
eration. The full-tilt model simply moves all pieces max-
imally in a given direction until colliding with a wall or
other obstructed unit. In [2] the following restricted ver-
sion of this problem, which we will call the k-region re-
location problem, was shown to be PSPACE-complete !
by way of a reduction from non-deterministic constraint
logic [10]. In this problem we consider an input board
configuration consisting of k disjoint regions, each with
a single particle within each region. Further, we ap-
pend a 1 x 3 enclosed region to the bottom row of each
of these regions that includes a single central opening at

IThis version of the problem was not explicitly formulated
within the conference version of this paper, but this subproblem
represents the key portion from which the hardness is derived.
Key details and a formal proof is provided in Section 4.
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the center leading the next higher row. See Figure 3a
for an example. Given such an input, the k-region relo-
cation problem asks if it is possible to move all & pieces
into their corresponding 1 x 3 enclosed regions.

Given the PSPACE-hardness of k-region relocation,
we now show the PSPACE-hardness of the relocation
problem within our single-step model. The key idea is
to apply the technique of filling each of the k disjoint
regions with tiles, with the exception of the location of
the given region’s single particle. In this way, each step
transition moves the empty particle in the same manner
a full-tilt transition would maximally move a single par-
ticle (but in the opposite direction). Next, we connect
the 1 x 3 output regions as shown in Figure 3b. In this
way, the k empty spaces are able to reach the bottom-
most row of the configuration if and only if the original
k-region relocation input can relocate it’s k pieces to
the k£ output regions. With a final additional step the
k spaces combine to create enough space for the target
particle (shown in yellow) to move exactly k spaces to
a designated relocation point. O

3.3 Complexity with Rectangular Board Geometry
and Dominoes

In this section we relax the restriction on tile size and
show both the occupancy and relocation problems are
both PSPACE-complete even when restricted to rect-
angular board geometry, and with particles of size at
most 2. We show this by reducing from a simple gadget
model proposed in [8]. The authors show that the prob-
lem of relocating a single agent in a connected system
of these gadgets is PSPACE-complete.

Gadget Basics. The gadgets used follow simple rules.
They have two states, and contain tunnels that allow
traversal through the gadgets. These tunnels exist in
different types, such as the lock and toggle. A toggle
tunnel can always be traversed in one direction, and
on a state change that direction is reversed. The lock
tunnel can be traversed in either direction when it is
unlocked, and neither when it is locked. On a state
change the lock tunnel will either lock or unlock. A
gadget can contain multiple tunnels, each affected by
the gadget’s state changes. For our purpose we will use
a crossing toggle lock, as shown in Figure 4a.

Crossing Toggle-Lock Domino Gadget. The
Crossing Toggle-Lock Domino Gadget, shown in Fig-
ure 4b, enforces the same rules for traversal with two
dominoes. When in the unlocked state the horizontal
tunnel contains only 1 x 1 tiles and allows for the space
to travel through it unblocked. When in the locked state
there is a domino blocking the horizontal path. When a
space attempts to pass through that path it is blocked
by the domino and cannot continue through the gadget.

The vertical tunnel only allows traversal in one di-
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(d)

Figure 4: (a) Crossing Toggle-Lock (CTL) gadget in
state 1 left and in state 2 right. The () represents the
locked state of the lock tunnel. (b) The crossing toggle-
lock gadget implemented in the single-step tilt model.
The left image is in an open position, and the right is
the closed position. (¢) The goal gadget for occupation.
The space can only be covered by a polyomino if another
space is in the gadget. (The light blue tiles are used to
fill up the board and keep polyominoes in the gadgets
from moving. These tiles will never move) (d) The 3-
way branching gadget that allows the space to enter at
any of the 3 locations and exit at any other. (e) The
Start Gadget. Intially contains the space that acts as
the agent and has dominos to enforce that the space can
only exit at one location. (f) The wire gadget, a group
of tiles act as a medium for the space to travel through.
(g) Corner Gadget used to allow the space to change
directions.

rection based on the state of the gadget. When in the
unlocked state, traversal is allowed from south to north
and if attempting to enter from the north, it is blocked
by a domino. When in the locked state traversal is only
allowed from north to south. Any complete traversal
through the vertical tunnel will change the location of
the dominoes in the tunnel and the state of the gadget.

Other Gadgets. In order to fully implement a CTL
puzzle, we need a few other gadgets shown in Figures
4(d-g).

Branching Gadget. The other gadget required in the
motion planning problem is a 3-way branching gadget.
The gadget is shown in Figure 4d and connects all three
locations and allows for movement between them. The
way the gadget is set up is when entering from any point
the space will be able to cycle around the edges of the
gadget. At certain positions in the gadget the space will
be able to exit out one of the locations.

Wire Gadget. The wire gadget shown in Figure 4f is
just a group of single tiles. These tiles connect the other
gadgets and allow the agent to travel through them.

Corner Gadget. The puzzle solvabilty problem allows
for wires that turn. Since the agent travels the maxi-
mum distance possible before reaching a domino or the
edge of the board we create a corner gadget (Figure 4g)
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to allow the agent to stop and change direction.

Start Gadget. The start gadget (Figure 4e) is where
the agent starts. When constructing the reduction the
gadget contains the space that acts as the agent. The
open position is surrounded on three sides by dominoes
so the space can only exit from one side.

Goal Gadget. The goal gadget (Figure 4c) is the ob-
jective for the agent to reach. The gadget contains a sec-
ond empty space that is surronded by dominoes. This
space is the goal location. There is a horizontal domino
that can be moved into this space if the agent reaches
the goal gadget. The horizontal domino can only fill the
goal location if the agent reaches the goal location.

Lemma 3 The occupancy problem in single-step is
PSPACE-hard with a rectangular board.

Proof. Given an instance of a CTL puzzle we create
a configuration by replacing each element of the CTL
puzzle with one of our gadgets. We replace each CTL
gadget with a crossing toggle-lock domino gadget and
every 3-way intersection with a branching gadget. We
also replace the start location with the start gadget and
the goal location with the goal gadget. We finally con-
nect these with wire gadgets and corner gadgets.

Our crossing toggle-lock domino gadget must behave
the same as the CTL gadget. We can see that the space
can only traverse the crossing toggle-lock domino gadget
when an agent can traverse a CTL gadget in the same
state. Observe that a space can travel through the hor-
izontal tunnel when the gadget is in the unlocked state.
While in this state observe that the space can only tra-
verse the vertical tunnel from south to north since the
north entrance is blocked by a domino in all directions.
When traversing from south to north in this state we
can see that the dominoes are able to move downward
one step changing the state of the gadget to the locked
state. Observe that in the locked state the horizontal
tunnel is blocked by a vertical domino so a horizontal
traversal in either direction is not possible. Also, ob-
serve that the space cannot traverse the vertical tunnel
when entering from the south since it is blocked by a
domino. When entering from the north in this state
the space can traverse and changes the locations of the
dominoes.

There exists a solution to the given instance of the
CTL puzzle if and if only if there exists a solution to the
occupancy problem on the given configuration. Since
the crossing toggle-lock domino gadget has the same
behavior of the CTL gadget, and the branching gadget
allows a tile to enter and exit at any location, we can
see that if the CTL puzzle is solvable then there exists
a move sequence that solves the occupancy problem.
Also since our gadgets behave the same as the gadgets
in the CTL puzzle if there does not exist a solution to
the CTL puzzle then there is no way for the space to

53

reach the goal gadget and no way to solve the occupancy
problem. O

Theorem 4 The occupancy problem in single-step is
PSPACE-complete when limited to rectangular board ge-
ometry if both 1 x 1 tiles and 1 x 2 /2 x 1 dominoes are
included.

Proof. We can see that the occupancy problem is in
PSPACE in the same way as in Lemma 1 since we
can non-deterministically select a valid move sequence.
Through the reduction in Lemma 3 we show the prob-
lem is PSPACE-hard so the occupancy problem with
the paramaters shown is PSPACE-complete. |

Corollary 5 The relocation problem in single-step is
PSPACE-complete even when limited to a rectangular
board geometry when allowing 1 x 1 tiles and 1 x 2 /
2 x 1 dominoes.

Proof. We can see from Lemma 1 that the relocation
problem is in PSPACE. The reduction from above can
be extended to show the relocation problem is PSPACE-
hard by asking if the horizontal domino in the goal gad-
get can reach the positon directly below it. O

4 Relocation Complexity in Full Tilt

This section is taken from [2] with the additional proof
of k-region relocation hardness. To achieve this re-
sult we provide a polynomial time reduction from Non-
Deterministic Constraint Logic [10]. We explain high
level details of this construction along with key lemmas.

4.1 Non-Deterministic Constraint Logic

A constrant logic graph is a weighted directed graph
with a constraint on each of the vertices [10]. The con-
straint specifies the minimum weight required from the
edges directed in (the sum of the inflow) to any ver-
tex. When given a graph, the usual problem studied
is whether a particular edge can be “flipped”- the di-
rection of the edge changed, i.e., is there a sequence of
edge flips that maintain the constraints on all vertices,
and allows the target edge to be flipped? This is a one-
player unbounded game. The problem is still PSPACE-
Complete when the edge weights are all strength 1 or 2,
and vertices have max degree 3. We address the follow-
ing equivalent problem.

Configuration-to-Configuration Problem. Given two
states of a constraint graph G and G’, does there exist
a sequence of edge flips starting with G that results in

G’ [10].
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Figure 5: An overview of the layout of the different com-
ponents for the reduction. The dotted red lines repre-
sent where each of the vertex gadgets go (not to scale),
the dotted green boxes below denote the geometry spe-
cific to each vertex to force the state tile into the top
row (the vertex was in the wrong state) unless the ver-
tex is in the state specified by the target configuration.
The bottom row requires all |V| state tiles in order for
a tile to get into the goal location g.

4.1.1 Vertex Gadget

Assuming a max degree of three, there are 8 possible
arrangements of in/out edges. Define the vertex state
as a label from 0 to 7 determined by the directions of its
incident edges. A vertex gadget contains a single 1 x 1
tile refered to as the state tile, a transition area, and
a number of state gadgets equal to the number of legal
states of that vertex. Since there are eight states, there
are eight basic paths in the gadget that the state tile
could be in representing the vertex’s state.

Flipping an edge is represented by a move sequence
performed while in a valid state that moves the state tile
from one state path to another, which happens simul-
taneously in two vertex gadgets since an edge connects
two vertices. This edge flip happens in all vertex gad-
gets, but if the edge is not incident to that vertex, there
is no effect on the path of the state tile.

4.1.2 Goal Area

An overview of the reduction layout is in Figure 5 where
the goal area is shown at the bottom of all the vertex
gadgets. Once all the tiles are in positions that represent
the target configuration, the tiles can be extracted into
the goal area though the bottom of a state gadget. After
extraction the tiles enter the goal area. The goal area
consists of two rows. The valid row and the invalid
row. The invalid row (top row) traps any tiles that
enter when a vertex was not in the specified (in the
target configuration) state. If there exists a solution
to the Configuration-to-Configuration Problem then all
tiles will be able to reach the valid row.

Lemma 6 After performing a move sequence to flip an
edge, only the two vertex gadgets representing vertices
incident to that edge will have their state tile change
state paths. All other vertex gadgets will have their state
tile stay in the same state path.
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Lemma 7 If a vertex enters an illegal state, the repre-
sentative vertex gadget’s state tile will be trapped in an
“tllegal’ state path and cannot be extracted.

4.2 Hardness of k-region Relocation

In this section we will describe how to modify the reduc-
tion from [2] to show hardness for the k-region relocation
problem.

k-region relocation. The k-region relocation problem
asks: given a board with k& disjoint regions each contain-
ing a single tile, and a set of positions in each region
called goal areas, does there exist a move sequence that
relocates all tiles to their goal area?

Theorem 8 The k-region relocation problem in the
full-tilt model is PSPACE-hard.

Proof. First, note in the orginal reduction that the goal
location may be filled if and only if each tile is extracted
from its vertex gadget and enters the goal row. This
means that the problem of ”Can each tile be extracted
from it’s vertex gadget?” is PSPACE-hard. Now con-
sider the board used for the proof of hardness for the
occupancy problem in [2]. Each vertex gadget is only
connected to the others through the two rows at the
bottom of the construction. Both of these rows can be
removed and replaced with the 1 x 3 regions described
in Theorem 2. The k-many 1 x 3 rows (which replaced
the goal row) can now be reached if and only if each tile
can be extracted from it’s goal gadget. ]

5 Future Work

There are a number of directions for future work.
We show that with only 1 x 1 tiles the relocation
problem is PSPACE-complete with a connected board.
Relocation and occupancy become PSPACE-complete
when restricted to a rectangular board but allowing for
larger pieces. How much power do these constraints
remove? Do these problems become easier when only
restricting either the board geometry or the number of
larger pieces (i.e., constant number of dominoes), or
are they still hard?
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Abstract

This paper investigates a restricted version of robot mo-
tion planning, in which particles on a board uniformly
respond to global signals that cause them to move one
unit distance in a particular direction. We look at the
problem of assembling patterns within this model. We
first derive upper and lower bounds on the worst-case
number of steps needed to reconfigure a general pur-
pose board into a target pattern. We then show that
the construction of k-colored patterns of size-n requires
Q(nlog k) steps in general, and Q(nlog k 4+ Vk) steps if
the constructed shape must always be placed in a des-
ignated output location. We then design algorithms to
approach these lower bounds: We show how to construct
k-colored 1 x n lines in O(nlogk + k) steps with unique
output locations. For general colored shapes within a
wx h bounding box, we achieve O(wh log k+hk) steps.

1 Introduction

In this paper we investigate a model of robot motion
planning first proposed by Becker et. al. [7] in which
n robots exist on a 2D grid consisting of “open” and
“blocked” spaces, and are controlled by way of uniform
control signals which tell all robots to move one step
in any one of the four cardinal directions. This model,
which we call the single-step model, has important ap-
plications for the scalable development of microbot and
nanobot swarms due to the simplified method of con-
trol [9,11]. While previous work in this model has inves-
tigated how to build general shapes [7], and the hardness
of relocation related problems [1], here we focus on the
problem of quickly rearranging the robots into a desired
colored pattern (with an arbitrary shape).

In particular, our problem is as follows. Given a color
palette of k distinct colors, as well as a bounding box of
width w and height h, our goal is to design a universal
board configuration (a board with open and blocked
locations, as well as specified locations for a set of robots
each assigned one of the k colors) with the property that
any pattern fitting within a w x h bounding box can
be assembled (the robots can be reconfigured into the
provided pattern) in a near-optimal number of steps.

*This research was supported in part by National Science
Foundation Grant CCF-1817602.

Our results. We first focus on a special case class of
patterns consisting of 1 x n lines over k colors. We
provide a board that can assemble any 1 x n patterned
line over k colors within O(nlogk+ k) steps, along with
showing a lower-bound of Q(nlogk + v/k) under the
assumption that the board must always place the output
pattern in the same location. We extend this to general
2D shapes of size n and provide a construction achieving
O(whlog k + hk) steps, which for dense shapes of size n
is comparable to the lower bound of Q(nlogk + V).
Previous Work. The single-step model of this pa-
per was first studied in [7] where it was shown how to
reconfigure n robots into any size n shape within O(n?)
steps given a single blocked location. An additional line
of related research considers global movement signals,
but requires that all pieces move maximally in the input
direction [4]. This line of research has explored build-
ing shapes [2,3,6,8,10], performing computation [5], as
well complexities for reconfiguration and relocation of
particles [2-5]. Additionally, [12] considers the recon-
figuration of rectangular patterns of n colored robots
within O(n?) steps. While closely related to our work,
this work differs from the problem we are considering
in that 1) they consider the maximal-movement of par-
ticles, and 2) we are attempting to build arbitrary pat-
terns, while they are rearranging a given set of pieces
(meaning the number of each color in the pattern is
fixed). We also consider general shaped patterns and
striving for near-optimal construction times, and are not
attempting to reconfigure all pieces on the board.

2 Preliminaries

Board. A board (or workspace) is a rectangular re-
gion of the 2D square lattice in which specific locations
are marked as blocked. Formally, an m x n board is a
partition B = (O, W) of {(z,y)|z € {1,2,...,m},y €
{1,2,...,n}} where O denotes a set of open locations,
and W denotes a set of blocked locations- referred to as
“concrete.”

Tiles/Robots. A tile/robot is a labeled unit square
centered on a non-blocked point on a given board. For-
mally, a tile is an ordered pair (¢, a) where ¢ is a coor-
dinate on the board, and a is a label.

Configurations. A configuration is an arrangement
of tiles on a board such that no tiles occupy the same
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Result Step Complexity Theorem
Lower Upper

Patterned Lines | Q(nlogk + k) O(nlogk + k) Thms. 3, 4

General Patterns | Q(nlogk + vk) | O(whlogk + hk) | Thms. 3, 5

Table 1: Construction Results. The patterned lines result is for 1 x n lines using k colors. The general patterns

result is for k-colored size-n w x h-bounded shapes.

location, or occupy blocked board spaces. Formally, a
configuration C' = (B, P) consists of a board B and
a set of tiles P whose coordinates do not overlap each
other, or with blocked locations of board B.

Step. A step is a way to turn one configuration into
another by way of a global signal that moves all tiles in
a configuration one unit in a direction d € {N, E, S, W}
when possible without causing an overlap with a blocked
position, or another tile. Formally, for a configuration
C = (B, P), let P’ be the maximal subset of P such
that translation of all tiles in P’ by 1 unit in the direc-
tion d induces no overlap with blocked squares or other
tiles. A step in direction d is performed by executing the
translation of all tiles in P’ by 1 unit in that direction.
We say that a configuration C can be directly recon-
figured into configuration C’ (denoted C' —; C") if ap-
plying one step in some direction d € {N, E,S, W} to
C results in C’'. We define the relation —, to be the
transitive closure of —; and say that C' can be recon-
figured into C’ if and only if C —, C’, i.e., C may
be reconfigured into C’ by way of a sequence of step
transformations. A related concept that is the focus of
previous work is the tilt transformation in which a single
direction d tilt consists of the repeated application of a
direction d-step until the configuration is d-terminal. In
this paper, we focus on the step transition, but discuss
connections to work using the tilt transformation.

Step Sequence. A step sequence is a series of steps
which can be inferred from a series of directions D =
(dy,da,...,dy); each d; € D implies a step in that direc-
tion. For simplicity, when discussing a step sequence,
we just refer to the series of directions from which that
sequence was derived. Given a starting configuration,
a step sequence corresponds to a sequence of configu-
rations based on the step transformation. An example
step sequence (N, E, E) and the corresponding sequence
of configurations can be seen in Figure 1la.

Universal Configuration. A configuration C’ is uni-
versal to a set of configurations C = {Cy,Cs,...,C} if
and only if ' —, C;, V C; € C.

Shape/Pattern. We define a shape to be a connected
subset S C Z?. We define a pattern to be a tuple (S, L),
where S is a shape and L : S — A is a total function
that maps each point to a label in a set of labels A.

Configuration Representation. A configuration
may be interpreted as having constructed a “shape” in
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Figure 1: (a) An example step sequence. The initial
board configuration followed by the resulting configura-
tions after an N step, E step, and then final F step. (b)
Configuration Representation Examples. Both of these
configurations are different representations of the shape
“A.” First, we show a strong representation where every
tile in the configuration contributes to the shape. Then
we show a regional representation. The yellow square
represents the output region, and the orange tiles repre-
sent additional polyominoes on the board which do not
count towards shape representation (as they are not in
the output region).

a natural way. A configuration C' strongly represents
shape S if the collection of all tile coordinates in C' is
exactly the set of points of some translation #(.5).

An alternate form of representation allows for a rect-
angular region of the board to be deemed the output
region. Here, we say a configuration regionally repre-
sents a shape S w.r.t. output region T if the collection
of all tile coordinates in T is exactly the set of points of
some translation ¢(S). Figure 1b illustrates the different
types of representations. In the regional representation,
any tiles outside of the output region are ignored.

We extend this idea of shape representation to include
patterns. A configuration C' represents a pattern (.S, L)
if C' represents S and there exists a translation ¢, such
that for all tiles (¢,a), L(t(c)) = a. The idea of regional
representation of a pattern extends in the same way.

Universal Pattern Builder. Given the concept of
pattern representation, a configuration C’ is universal
for a set of patterns S if and only if there exists a set of
configurations C such that 1) each S € S is represented
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by a unique C' € C and 2) C’ is universal for C.

We say that C” is regionally universal for S w.r.t. out-
put region T if VS € § 3 C' € C s.t. C regionally repre-
sents S w.r.t. T. Further, C’ achieves unique placement
if output region T is exactly the size of the minimum
bounding box which can contain any of the patterns in
S. In this paper we focus on designing regionally uni-
versal configurations for general patterns fitting within
a w x h bounding box.

Worst-Case Step Complexity for Universal Con-
figurations. Given a universal configuration C, the
worst-case step complexity is the maximum number of
steps required to reconfigure C' into some element from
its universe set. Consider a universal configuration C
over a set of configurations U. For each u € U, let
d(C,u) denote the length of the smallest step-sequence
from C to u. The worst-case step complexity of C' over
U is defined to be max{d(C,u)|u € U}.

3 Fast Universal Constructors: Patterns

We now focus on building shapes with a desired color
pattern. To model this, we specify each robot in the sys-
tem to have a designated color from a given set of k col-
ors. Our goal is then to design configurations that allow
quick reconfiguration of the robots into a specified shape
with a specified color pattern. We start with an analysis
of some lower bounds for any k-color pattern construc-
tors in Section 3.1. We then derive upper bounds for
linear patterns in Section 3.2, general patterns in Sec-
tion 3.3. Accompanying videos for these constructions
can be found at https://asarg.hackresearch.com/
main/CCCG2020-Patterns.

3.1 Lower Bounds on Patterns

Lemma 1 For a given set of n distinct points from the
2D integer lattice, consider the corresponding set of all
size-n colored patterns over those points using at most k
distinct colors. Any universal configuration for such a
set of patterns has worst-case step complezity Q(nlogk).

Proof. There are k™ distinct k-color patterns over n
points. Therefore, any universal configuration for this
set of patterns must be universal to a set of k™ configura-
tions. The maximum number of distinct configurations
reachable from an initial configuration C’ within r steps
is upper bounded by

T

; _4T+1_1
S =——.

=0

Thus C’ must satisfy that * > k™, implying that
r = Q(nlogk). O

Lemma 2 Any universal configuration for all k-colored
patterns over a size-n shape with unique placement has
worst-case step complexity Q(Vk).

Proof. Consider a unique placement universal con-
structor for all k-colored patterns over some size-n
shape. As this is a unique placement constructor, the
output zone is a fixed region of size exactly the bound-
ing box of the size-n shape. Select an arbitrary point
p = (z,y) within the output region that is covered by
the size-n shape when inscribed within the output re-
gion. Let d = L% — 1] and note that the number of
points within (Manhattan) distance d of (z, y) is strictly
less than k. Therefore, there must be one color ¢ for
which all tiles of color ¢ are at least distance d from
point (x,y). Further, as this system is universal for all
k-colored patterns over the target shape, and the unique
placement restriction enforces the output shape into a
fixed position for each represented pattern, there exists
a pattern in the universe for which the color ¢ must be
placed at position (x,y). The step-sequence to place a
color c¢ tile at location (z,y) requires at least d = Q(v/k)
steps, and therefore requires at least Q(v/k) steps to fin-
ish this pattern. O

Theorem 3 Any wuniversal configuration for all k-
colored patterns over a shape of size-n has worst-case
run-time at least Q(nlogk). If the configuration sat-
isfies the unique placement requirement, the worst-case
run-time is at least Q(nlogk + vk).

Proof. This follows from Lemma 1 and Lemma 2. O

3.2 Fast Linear Patterns

For our first positive result on universal pattern building
we focus on the case of linear 1 x n shapes over k colors.
We construct a universal configuration with worst-case
run time of O(nlogk+k) (Theorem 4), which is reason-
ably close to the lower bound of Q(nlogk + vk) shown
in Theorem 3, and optimal in the case where n > k. The
linear pattern constructor is made up of three sections:
fuel chambers, bit selectors, and holding chambers.

Fuel Chambers. This section of the constructor con-
sists of the fuel chambers, where each are 3 x n open
spaces surrounded by concrete with an opening on the
center right. Morever, each chamber contains a 1 x n
line of robots of one color. Using the opening on the
right side of each chamber we can “chop” off one robot
at a time. By chopping off a robot from each chamber
in parallel, we transmit a column of k differently colored
robots into section 2.

Bit Selectors. The bit selectors are gadgets used to
assign a unique bit-string to each colored robot enter-
ing the section. These bit-strings are created by the
unique combination of two smaller gadgets called the
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Figure 2: (a) The linear patterns constructor and (b) the different sections. Section 1 consists of the fuel chambers.
Section 2 comnsists of bit-selector gadgets. Section 3 consists of tile holding chambers, as well as a concrete floor
where the line will be assembled. (¢) Example bit selection where one robot is extracted via execution of its unique

bit-string.

up-select and down-select. Each of these smaller gad-
gets has an open space path from one side to the other
such that each of their paths are the opposite of the
other smaller gadget. The incorrect path causes a robot
to get stuck. This idea is demonstrated in Figure 2d,
where one robot can sucessfully traverse the bit selectors
at the cost of the other robot stopping in the up-select
gadget. Therefore, for all k robots entering this section
from the fuel chamber, we can design a unique combi-
nation of up-select and down-select gadgets such that
traversal of any robot through their respected gadgets
will yield that robot on the other side, while all others
stay within their gadgets. Therefore, bit selectors con-
sisting of log k bits each are needed to yield a unique
bit-string per robot, each of which creates an open space
path from one side to the other of length O(log k).

Holding Chambers. Each individual robot enters
section 3 through the left side at possibly different
heights since each colored robot comes from a different
bit selector. There are nk holding chambers in the
output area of the bit selectors, where each holding
chamber is a 1 X 3 open space surrounded by concrete
tiles, with an open space path from the center left
to right. These chambers hold the robots in place
while another robot is being extracted from the fuel
chambers. After outputting a robot from a bit selector
gadget, we place the robot in the closest holding
chamber to the right. After placing the new robot in a
holding chamber, we address the unselected robots that
were blocked in the bit selectors. The unused robots
are placed back into the fuel chambers by the sequence
<W4, N2, WO(log Ic)7 587 WO(log k),N4, W2,N, EO(log k)>
After returning the unselected robots to their fuel cham-
bers, we continue the building process. The sequence
to extract robots and traverse the robot through the
bit selector gadgets also moves all robots in a holding
chamber to the next holding chamber on their right.
After the n*" robot has been placed in section 3, we
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combine them by extracting them from the holding
chambers and placing them all on the concrete floor.
Then, we push them together using the single concrete
tile on the right of this floor. Figure 3 shows an
example of this sequence.

Theorem 4 For any positive integers n and k, there
ezists a regionally universal configuration for all 1 xn k-
colored lines with worst-case step complexity O(nlog k+
k). Moreover, this configuration obtains unique place-
ment and has board-size O(n + logk) x O(k).

Proof. Above we describe a configuration C' = (B, P)
such that it consists of three sections. The first section
pertains to the fuel chambers, which is used to hold &
1 x n lines of robots, one line for each color, in separate
chambers. It follows that a single robot can be extracted
from each of these chambers, resulting in a column of
k robots entering the third section. The third section
consists of the bit-string gadgets, where each receives
one of the k robots. We have shown that the bit-string
gadgets each have a specific unique sequence that takes
the robot from the left side to the right side such that
performing the sequence of one bit-string gadget will
make all robots, save for the one that is within that bit-
string gadget, stuck in one of the compartments in the
bit selectors of the other bit-string gadgets. Therefore,
it is possible to send one robot to the third section in
O(log k) steps. The holding chambers in the third sec-
tion are used to hold the robots in place while the next
robots are being extracted from the former two sections.
Together, these sections can place n robots in the hold-
ing chambers in the third section, after which we can re-
move these robots from the holding chambers and com-
bine them to form a line at the bottom side of the third
section. Placing the robots at the bottom of the third
section takes O(k) steps, while combining them takes
O(n) steps. Therefore, the configuration C' = (B, P)
is a universal configuration for all 1 x n k-colored lines
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Figure 3: Line building depicted.
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Figure 4: Line holders depicted. After each line is built
and extracted from the holding chambers, we place them
in the first row of the line holder. This, in parallel, will
move each line already within the line holder down into
the next row.

with worst-case runtime O(nlogk + k). Moreover, this
configuration has board size O(n + logk) x O(k) and
achieves unique placement w.r.t. a 1 X n rectangular
output region located at the bottom-right of the board,
along the concrete floor. O

3.3 General Patterns

We now generalize our line pattern construction to gen-
eral shapes over k colors. For given positive integers n,
h and w we focus on size-n shapes fitting in a h x w
bounding box.

Line Holders. For general shapes, we replace the
south concrete floor of section 3 of the line pattern
builder with the line holder depicted in Figure 4. As
shown, each new line built can be moved into the line

holder. If some lines are inside the line holder already,
those lines will move in parallel to the next chamber
below whenever a new line is added to the line holder.
After all lines have been built, we extract them, yielding
essentially a general w x h pattern, but with a constant
vertical and horizontal gap between tiles. Further, by
adding in an “empty” color chamber, we can include
empty spaces within this pattern, yielding a general pat-
terned shape. Finally, to remove the gaps in the shape,
we apply a funneling operation, described in Section 4.

Theorem 5 For positive integers w and h, each greater
than some constant, and positive integer k, there exists a
regionally universal configuration for any k-colored size-
n shape fitting within a h X w bounding box with worst-
case step complexity O(whlogk + hk) and board size
O(wh + log k) x O(max(h, k)).

Proof. The k-colored shape constructor is a simple ex-
tension from the 1 X n constructor. The main addition
of the line constructor is the line holders at the bottom
of the third section. Each different line we construct
can be held inside one of these different line holders in
order to build another line. After each line is made, we
can move that line into the line holders and at the same
time move any line already in the line holders down
one row. After each line is built, we can extract them
and send them through the funneling gadget in order
to remove the constant amount of space between each
tile. With the inclusion of “empty” tiles, we obtain
general patterned shapes. The details of the funneling
gadget are presented in 4. Therefore, the configuration
C = (B, P) is a universal configuration for all k-colored
size-n shapes fitting within a A x w bounding box with
worst-case step complexity O(wh log k+ hk). Moreover,
this configuration has board size O(n+log k) x O(k) and
achieves unique placement w.r.t. a w x h output region
located just above the funneling gadget. O

4 Funneling Gadget

The funneling gadget is designed to take a group of
robots separated by a constant amount of spaces and co-
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Figure 5: (a) An example funneling gadget for a 3 x 3
shape. (b) Basic functional sections of the funneling
gadget. (c-d) Repeating the sequence (N, E) will yield
the shape on the outside of the funneling gadget.
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Figure 6: (a-b) Reducing the horizontal distance be-
tween the rightmost column of robots. (c-d) Reducing
the vertical distance between the topmost row of robots.

alesce them into a desired shape. The architecture and
sections of the funneling gadget are illustrated in Figure
5. Let a and 3 be constants equaling the largest num-
ber of vertical and horizontal spaces, respectively, that
separates a robot from its neighbor in the shape. The
first section of the funneling gadget reduces [ so that
the largest horizontal separation between two robots is
two. Section two takes the group of robots from the
former section and reduces a until it is one. The third
section finally reduces o and 3 to zero, and outputs the
group of robots as the desired shape outside the funnel-
ing gadget. However, this process skews the shape in
one direction. This effect can be countered if the input
group of robots are instead skewed in the opposite direc-
tion before passing them through the funneling gadget.

Section One. Section one consists of a grid-like or-
ganization of concrete tiles that are themselves spaced
out vertically by a but horizontally by two, as shown in
Figure 6. To reduce S to two, we place the rightmost
column of the group of robots between the two leftmost
columns of concrete tiles (Figure 6a). By stepping in
the (E) direction enough times, the second-to-rightmost
column of the group of robots will meet the leftmost
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Figure 7: (a-b) Making the rows of robots adjacent by
using section three.

column of section one, reducing the spaces between the
two columns of robots. After repeating this process for
every column of robots, section one will contain within
itself the group of robots vertically separated by « and
horizontally separated by a distance of two.

Section Two. Section two is a grid-like configuration
of concrete tiles that are vertically separated by one
space and horizontally separated by two spaces. The
same basic process is applied here, but we instead place
the rows of robots in between the rows of concrete tiles
and perform sufficient steps in the (N) direction, as
shown in Figure 7.

Section Three. By positioning the group of robots in
the third section as depicted in Figure 7a, stepping twice
in the (N) direction will cause the topmost rows of the
group of tiles to meet. This is repeated for every row by
first stepping in the (E) direction, followed by two steps
in the (N) direction. After every row has been made
adjacent, repeating the step sequence (N, E) will output
the robots from the funneling gadget, bringing together
each column of robots and outputting the desired shape
at the top of the gadget, (Figures 5¢, 5d).

5 Future Work

Our work leads into a number of areas for future work.
The first direction is to attempt to close the gaps be-
tween our upper bounds and our lower bounds for linear
and general patterns. For lines, the goal is to close the
O(vk) gap between our upper and lower bounds, and
with general shapes, we are interested in closing the gap
for sparse shapes existing in large bounding boxes. An-
other direction is to consider how the unique placement
requirement affects the required run-time. Without it,
the Q(v/k) lower bound no longer holds. Ts it possible to
achieve O(nlogk) step complexity by placing different
patterns at different locations? And if so, can this be
done with a polynomial sized board? Finally, another
interesting direction is to focus on pattern reconfigura-
tion, similar to what [12] have looked at within the full
tilt model. How fast can reconfiguration be done in the
single-step model? Can reconfiguration be done quickly
for general patterns and general shapes?
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New Results in Sona Drawing: Hardness and TSP Separation
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Abstract

Given a set of point sites, a sona drawing is a single
closed curve, disjoint from the sites and intersecting
itself only in simple crossings, so that each bounded
region of its complement contains exactly one of the
sites. We prove that it is NP-hard to find a minimum-
length sona drawing for n given points, and that such a
curve can be longer than the TSP tour of the same points
by a factor > 1.5487875. When restricted to tours that
lie on the edges of a square grid, with points in the grid
cells, we prove that it is NP-hard even to decide whether

such a tour exists. These results answer questions posed
at CCCG 2006.

1 Introduction

In April 2005, Godfried Toussaint visited the second
author at MIT, where he proposed a computational
geometric analysis of the “sona” sand drawings of the
Tshokwe people in the West Central Bantu area of Africa.
Godfried encountered sona drawings, in particular the
ethnomathematical work of Ascher [1] and Gerdes [7],
during his research into African rhythms. Together with
his then-student Perouz Taslakian, we came up with a
formal model of sona drawing of a set P of point sites
— a closed curve drawn in the plane such that

1. wherever the curve touches itself, it crosses itself;

2. each crossing involves only two arcs of the curve;

3. exactly one site is in each bounded face formed by
the curve; and

4. no sites lie on the curve or within its outside face.
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Our first paper on sona drawings appeared at
BRIDGES 2006 [5], detailing the related cultural prac-
tices, proving and computing combinatorial results and
drawings, and posing several open problems. In early
2006, we brought these open problems to Godfried’s
Bellairs Winter Workshop on Computational Geometry,
where a much larger group tackled sona drawings, re-
sulting in a CCCG 2006 paper later the same year [4].
Next we highlight some of the key prior results and open
problems as they relate to the results of this paper.

Sona vs. TSP. Every TSP tour can be easily converted
into a sona drawing of roughly the same length: instead
of visiting a site, loop around it, except for one site
that we place slightly interior to the tour [5, Lemma 11].
Conversely, every sona drawing can be converted into a
TSP tour of length at most a factor “T“ ~ 1.63661977
larger [4, Theorem 12], settling [5, Open Problem 6]. Is
this constant tight? The best previous lower bound was a
four-site example proving a TSP /sona separation factor
of 24+ 23 ~ 1.05156685 [5, Lemma 12]. In Section 2, we
construct a recursive family of examples proving a much

; 14+8V2+7w(vV2+1)
larger TSP /sona separation factor of ST/

1.54878753. We also study L; and L., metrics, where
we prove that the worst-case TSP /sona separation factor
is exactly 1.5.

Length minimization. The relation to TSP implies a
constant-factor approximation algorithm for finding the
minimum-length sona drawing on a given set of sites.
But is this problem NP-hard? In Section 3, we prove NP-
hardness for Ly, Lo, and Lo, metrics, settling [5, Open
Problem 5] and [4, Open Problem 4].

Grid drawings. The last variant we consider is when
the sona drawing is restricted to lie along the edges of a
unit-square grid, while sites are at the centers of cells of
the grid. Not all point sets admit a grid sona drawing;
however, if we scale the sites’ coordinates by a factor of
3, then they always do [4, Proposition 10]. A natural
remaining question [4, Open Problem 3] is which point
sets admit grid sona drawings. In Section 4, we prove
that this question is in fact NP-hard.
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2 Separation from TSP Tour

We first show an example which gives a large TSP /sona
separation factor under the Ly metric in the plane.

Theorem 1 There exists a set of sites for which
the length of the minimum-length TSP tour is

14+8v2+m(v/241) .
ravain(virD) 1.54878753 times the length of the

minimum-length sona drawing.

The full proof can be found in Appendix A.

Sketch of Proof. We construct a problem instance
whose minimum-length TSP tour is longer than its

minimum-length sona drawing by a factor within ¢ of
1448247 (v/241)
8+4v2+m(V2+1)
ure 1 and follows a fractal approach with e~1 levels (for

simplicity, we assume that e~! is an integer).

Our construction is illustrated in Fig-

1. We start by defining a few auxiliary points:

(a) The initial set of auxiliary points Ay is
the intersection between a slightly shifted
integer lattice and the L; ball B(0,e7!)
of radius &' centered at the origin.
That is, Ay = {(&,2):4,j€Z} n
{(z,y): |z| + |yl <e7'}. In Figure la, the
aux1hary points are exactly the intersections
of solid red lines.

(b) Then, in Step ¢ (starting with ¢ = 1), for each
auxiliary point p € A;_1, we add five points to
A;: p itself, and four new points at distance

2%
( 1+1 \/5) from p in each of the four cardinal
directions. Let A = A.-1. By construction, we
have |A4;| = 5¢|Ag| and |Ag| = 2672 + O(e71).
We note that set A contains auxiliary points
(not sites). These points will not be part of
the instance.

2. We now use the auxiliary points to create some sites
(the isolated black points of Figure 1):

(a) For any i > 1 we define set P; of sites as follows:
for each auxiliary point ¢ € A;_; we add the
four sites whose x and y coordinates each differ

2i
from ¢ by % (1+1\/§> . We note that all the

added sites are distinct sites.

(b) We define P, as the set of integer lattice points
in B(0,e71). Equivalently, for each auxiliary
point ¢ € Ay we add the sites whose x and y
coordinates each differ from g by %, but we do
not add sites that lie outside B(0,e71), which
affects O(e71) sites (out of Q(e72

In this case, the sites created by different

auxiliary points may lie in the same spot.
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) sites of Py).

In total, P, contains only one site per aux-
iliary point of Ay (except for O(e~!) auxil-
iary points near the boundary). Thus, |P;| =
4-|A;—q| = 4571 |A| (for i > 1) and
[Pl = o] + O™ = (272 + O(c™).

Let P

=P UPU---UP,-1.

3. Next, we place additional sona sites packing line
segments and/or curves. Whenever we pack any
curve, we place sites spaced at a distance ¢ small
enough that the length of the shortest path that
passes within & of all of them is within a factor
(1 — ¢) of the length of the curve.

(a) Solid lines as drawn in red in Figure la: for
each z € {z—l—% c—(e7t+1) <i<elandie
Z}, we pack the vertical line segment with
endpoints (z,e "1 +1—|z|) and (z, |z|—e~1-1),
and analogously with y for the horizontal line
segments.

(b) In Step i of the above recursive definition (start-
ing with ¢ = 1), when we create four new aux-
iliary points of A; from a point p € A;_1, we
also pack the boundary of the region within

21
Euclidean distance % ( 1+1 \/5) of the square

whose vertices are the four auxiliary points
of A;. Note that this boundary region forms a
square with rounded corners as in Figure 1b.
With these extra points we preserve the invari-
ant that the auxiliary points are exactly the
intersections of packed curves.

Let P be the set of sites created in Step 3 in our
construction, and P = P U P(®)_ This is a complete
description of the construction.

In the full proof we show that the length of the packed
curves is a (1 + ¢)-approximation of the total length
of the minimum-length sona drawing of P. Careful

calculations then yield that the length of the minimum-
length sona drawing is (2672 + O(e71)) (2 + 2?}”2)
We then argue that the minimum-length TSP has
an additional length of (2e72 + O(¢71))(2v2 + 3).
Thus, the TSP /sona separation factor for the construc-
245 AT +2V243

24 4+7r2

tion is, ignoring lower-order terms,

1447 (V2+1)+8v2
RTINS ~ 154878753,

We have presented a construction for the Lo metric in
the plane showing that the ratio between the lengths of
the minimum-length TSP and the minimum-length sona
drawing can be strictly greater than 1.5. Our next result
shows that this cannot be the case for the L; and L
metrics in the plane.
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(a) First step of our construction for e ! = 2: points of Ag

lie in the intersection of solid lines (packed segments). In
the construction, P; contains thirteen sites (shown as black
dots).
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(b) Final construction for e 1 =2. Sets P1, P, and P; are
shown as black dots of varying sizes. Additional sites of P(?)
pack lines and rounded squares nearby the auxiliary points
Of Ao, Al, and AQ.

Figure 1: Recursive construction of sites requiring = 1.54878753 factor shorter sona tour (drawn in red) compared to
TSP tour (red plus doubled radius of each grey circle). All red lines have black sites sprinkled densely along them.

Theorem 2 For the Manhattan (L1) and the Chebyshev
(Lo ) metrics, the minimum-length TSP tour for a set of
sites P has length at most 1.5 times that of the minimum-
length sona drawing for P. Moreover, this bound is tight
for both metrics.

Proof. The proof of the upper bound on the length
of the minimum-length TSP tour follows the lines of
the (unpublished) proof of [4, Theorem 12]. Let P =
{p1,...,pn} beaset of nsites, S(P) the minimum-length
sona drawing for P, and TSP(P) the minimum-length
TSP tour for P. The sona drawing S(P) must have n
bounded faces, each containing a site of P. Let f; be
the face of S(P) containing the site p;. In this proof,
for an edge-weighted graph H, |H| denotes the sum of
the weights/lengths of all the edges of H. In particular,
|S(P)| denotes the length of the sona drawing S(P).

For each site p;, let ¢(p;) be the closest point in S(P)
to p; and r; the distance between p; and ¢(p;). By the
definition of ¢(p;), the open disk centered at p; and
with radius r; does not intersect S(P). This implies
that the length of the boundary of f; is at least the
perimeter of a disk with radius r;, that for both the L,
and the Lo, metrics is 8r;. That is, |f;| < 8r;. Moreover,
the sum of the lengths of all the faces is 2|S(P)|, so
Ifil + - + |fnl < 2|S(P)| since we do not sum the
length of the unbounded face.
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We define a multigraph G whose vertex set is the
union of the set of sites P, the set of vertices of S(P),
and {c(p;) € S : p; € P}. The edge set of G is the
union of the set of edges of S and two parallel edges
{pi,c(p;)} for each p; € P. The weight of each edge is
its length in the drawing. By the observations above,
(G = [S(P)| + 21 + -+ 21, <|S(P)| + |1l /4 + - +
[Fal/4 < |S(P)] +[S(P)|/2 = 1.5/S(P)].

To obtain the desired upper bound on |TSP(P)| it
remains to show that |TSP(P)| < |G|. By construction,
since S(P) is Eulerian, so is G. An Euler tour of G
defines a TSP tour for the vertices of G' by skipping
vertices that were already visited (as in the Christofides
1.5-approximation algorithm for TSP on instances where
the distances form a metric space [3]). This TSP tour
has length at most |G| and can be shortcut so that it
only visits the sites of P. By the triangle inequality, the
length of the tour does not increase with these shortcuts.
Thus, we have that |TSP(P)| < |G| < 1.5|S(P)]|.

The construction for the matching this bound is similar
to the one in the proof of Theorem 1, but simpler. An
illustration can be found in Figure la. For every € > 0 we
construct a set of sites P. (the set of TSP vertices/sona
sites) such that |TSP(F.)| > (1.5 —¢)|S(P:)].

We fix k = [1/(2¢)]. The set of sites P. includes
every integer lattice point (z,y) such that |z| + |y| < k.
Consider drawing @ resulting from the union of the axis-
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aligned unit squares centered at these sites. It is easy
to see, for example by rotating the construction, that
so far we have added (k + 1)? + k? sites to P. and that
the length of @ is 4(k + 1)?. Straightforward compu-

tations show that A1 (B )P 4R 5/4 + ﬁ >

A(k+1)2
2
5/4+ gz = 15— e+ e > 1.5 — . Thus, a
dense-enough packing of sites along @ yields the desired
result. 0

We next consider sona drawings on the sphere. By the
definition of sona drawings in the plane, the unbounded
face contains no sites. For the sphere we consider the
following analogue: if there is a face that contains in
its interior a half-sphere then this face contains no sites.
Note that there is at most one such face. The following
theorem shows a tight upper bound on the TSP /sona sep-
aration factor for drawings on the sphere. (We consider
the usual metric inherited from the Euclidean metric
in R3.)

Theorem 3 For drawings on the sphere, the length of
the minimum-length TSP tour for a set of sites P is
at most 2 times the length of the minimum-length sona
drawing for P. Moreover, this bound is tight.

Proof. The proof of the upper bound on the length of
the minimum-length TSP tour again follows the lines of
the (unpublished) proof of [4, Theorem 12]. Tt only differs
slightly from the first part of the the proof of Theorem 2.
Using the same notation, in this case, the distance 7;
between a site p; € P and its closest point ¢(p;) in S(P)
corresponds to the length of the shortest arc on the great
circle through p; and ¢(p;). The open disk centered at
p; and with radius r; is an open spherical cap that does
not intersect S(P). Assuming that the sphere has radius
p, the boundary of this cap has length 2wpsin(r;/p).
Since the face containing a site cannot contain a half-
sphere in its interior we have that 0 < r;/p < w/2.
The function sin(z)/x in the interval 0 < z < 7/2 is
decreasing. Thus, p/r;sin(r;/p) > 2/msin(7/2) = 2/7.
This implies that 2mpsin(r;/p) > 4r;. Thus, the face
fi of S(P) containing the site p; has length |f;| > 4r;.
Moreover, |fi| + -+ |fn] < 2|S(P)|. With the same
arguments and defining the same multigraph as in the
proof of Theorem 2 we obtain that |TSP(P)| < 2|S(P)|.

The construction showing that this bound is tight
places two sites on the north and south poles of the
sphere and packs the equator densely with sites. Then
the minimum-length sona drawing goes along the equator
while the minimum-length TSP must reach both poles,
yielding a 2 — ¢ TSP /sona separation factor. O

3 Complexity of Length Minimization

In this section and Appendix B, we prove that finding
a sona drawing of minimum length for given sites is
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NP-hard, even when the sites lie on a polynomially sized
grid. The complexity of minimum-length sona drawing
was posed as an open problem in 2006 by Damian et
al. [4, Open Problem 4]. We use a reduction from the
problem of finding a Hamiltonian cycle in a grid graph
(a graph whose n vertices are a subset of the points in
an integer grid, and whose edges are the unit-length line
segments between pairs of vertices), proven NP-complete
by Itai, Papadimitriou, and Szwarcfiter [8].

Let V be the set of n vertices in a hard instance for
Hamiltonian cycle in grid graphs. If V' is a YES instance,
its Hamiltonian cycle forms a Euclidean traveling sales-
man tour with length exactly n. If it is a NO instance,
the shortest Euclidean traveling salesman tour through
its vertices has length at least 1 for every grid edge, and
length at least v/2 for at least one edge that is not a
grid edge (as this is the shortest distance between grid
points that are non-adjacent), so its total length is at
least n + V2 — 1 ~ n + 0.414. For the L4 distance, the
increase in length is larger, at least 1. Our reduction
replaces each point of V' by two points, close enough
together to make the increase in length from converting
a TSP to a sona drawing negligible with respect to this
gap in tour length.

Theorem 4 [t is NP-hard to find a sona drawing for
a given set of sites whose length is less than a given
threshold L, for any of the Ly, Lo, and Lo, metrics.

4 Complexity of Grid Drawing Existence

While minimizing the length of sona drawings in general
is hard, if we restrict the drawing to lie on a grid, then
even determining the existence of a sona drawing is hard.

Given n sites at the centers of some cells in the unit-
square grid, a grid sona drawing is a sona drawing
whose edges are drawn as polygonal lines along the
orthogonal grid lines (like orthogonal graph drawing).

We show that finding a grid sona drawing for a given
set of sites is NP-hard by a reduction from Planar CNF
SAT [9].

4.1 Construction

In this section we view the grid as a graph, thus by
edge we mean a unit segment of a grid line, and by
vertex we mean a grid vertex — these terms are distinct
from “sona edge” etc. We say that an edge is either on
or off according to as it belongs in the sona drawing.
The subgraph of the grid that is on is the path graph.
Observe that two grid-adjacent sites always require the
edge between them to be on; otherwise both would be
in the same sona face (connected). Also, every vertex
must have even degree in the path graph.

Here we are concerned with internal properties of the
gadgets. Their exteriors are lined with unconnected
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Figure 4: Turn /
Split / Invert
gadget

Figure 2: Wire
gadget

Figure 3:
Constant gadget

edges; we will show later how to connect them.

Wire. The wire gadget is shown in Figure 2. One of
edges A and B must be on, otherwise two sites would
be connected. Assume without loss of generality that
A is on. Now, suppose C is off. Then D must be too,
to preserve even vertex degree. Then, B and F must
both be on to prevent sites from being connected, but
this is impossible with C off. Therefore C' and D are
on. The same reasoning shows that the entire line A, D,
etc. is on, as well as edges C, F, etc. Then E must be
off to prevent an empty face, and thus the entire line B,
FE, etc. is off. The wire thus has two states: the upper
line can be on and the lower off, or vice-versa. We can
extend a wire as long as necessary. An unconnected wire
end serves as a variable.

In Figures 2 through 5, all marked edge states (red for
on, gray for off) are forced by the indicated wire states.
These marks were generated by computer search, but
are easy to verify by local analysis.

Constant. The gadget shown in Figure 3 forces the
attached wire to be in the up state: the edge between
the two left sites must be on, forcing the rest.

Turn / Split / Invert. The gadget shown in Figure 4
is multi-purpose. If we view the left wire as the input,
then the upper and lower outputs represent turned sig-
nals, and the right output represents an inverted signal.
(Unused outputs can be left unattached, thus uncon-
strained.)

Any wire state forces all the others. Given that the
left wire is in the up state, suppose the right wire is also
up. Then the top wire and bottom wire must be in the
same left /right state, otherwise we will have degree-three
vertices in the middle. But this would leave the central
site connected to another site, so the right wire is forced
down. Then, if the (top, bottom) wires are not in the
(left, right) states, again the central site will be connected
to another one. (This figure contains multiple loops, but
these will be eliminated in the final configuration by
adding more edges.)
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OR. Figure 5 shows the OR gadget. The upper wire is
interpreted as an output, with the left state representing
true; the other wires are inputs, with true represented
as down on the left wire and up on the right wire. (We
can easily adjust truth representations between gadgets
with inverters.) If either input is true, then the output
may be set true, as shown. If both inputs are false, the
output may be set false. Figure 5e shows that setting
the output to true when both inputs are false is not
possible: all marked edge states are forced by the wire
properties, but two sites are left connected.

4.2 Hardness

Theorem 5 It is NP-hard to find a grid sona drawing
for a given set of sites at the centers of grid cells.

Proof. Given a CNF Boolean formula with a planar
incidence graph, we connect the above gadgets to rep-
resent this graph: unconstrained wire ends represent
variables, and are connected to splitters and inverters to
reach clause constructions. A clause is implemented with
chained OR gadgets, with the final output constrained to
be true with a constant gadget. By the gadget properties
described above, we will be able to consistently choose
wire states if and only if the formula is satisfiable.

We must still show that all edges can be joined to-
gether into a single closed loop, while retaining the sona
properties. Our basic strategy for connecting loose ends
is to border each gadget with “crenellations”, as shown
in Figure 6. This figure also shows how to pass pairs of
path segments across a wire without affecting its internal
properties, which we will use to help form a single loop.

Adding crenellations to the other gadgets is straight-
forward, and we defer explicit figures to Appendix C,
with one exception. (The crenellations do add a parity
constraint when wiring gadgets together; we show in the
appendix how to shift parity.) When we use the gadget
in Figure 4 to turn a wire, it will be useful to use the
crenellated version in Figure 7. With the connections
to other gadgets on the left and top, the right and bot-
tom portions are unconstrained. We can place edges as
shown, so that they leave the gadget identically regard-
less of which state it is in. Then, all paths entering from
the left or the top leave on the bottom or the right as
loose edges, except that in Figure 7a, one path connects
the left to the top. If we connect a right turn to the top
port, this path will also terminate in an unconnected
edge. If every wire contains a left turn and matching
right turn, then every path in the sona graph must end
in two unconnected edges in turn gadgets, because there
are no internal loops in any of the gadgets.

The space occupied by the loose ends of a turn lies
either in an internal face of the wiring graph, or on its
exterior. We route the interior ends to pass-through
pairs as shown in Figure 6, so all unconnected edges
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Figure 5: OR gadget

Figure 6: Wire gadget with crenellations and pass-
through
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(a) State 1 (b) State 2

Figure 7: Crenellated turn

wind up on the outer border of the graph. Because
the terminal edges are placed identically in Figures 7a
and 7b, we can plan their routing without knowing the
wire states. As a result, we can place additional sites as
required for the property that a single site lies in each
internal sona face. (We can lengthen the wires as needed
to create additional routing space in the internal faces.)

Now we are in a state where all paths end on the
exterior of the construction. If we join these paths
together without crossing, the number of extra sites
needed in the outer face is just the number of paths. We
place that many sites in a widely spaced grid (spacing
proportional to number of paths) surrounding the inner
construction. Then, we can complete the path greedily
by repeatedly connecting one outer path end to one of
its neighboring path ends, surrounding one of the added
sites. Only one of its two neighboring path ends can
come from the same path, so there’s always another one
to connect to. The wide grid spacing of the outer sites
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means there is always room to route the connection. [J
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A Separation from TSP Tour under the Ly, Metric

Theorem 1 There exists a set of sites for which
the length of the minimum-length TSP tour is

144+8v2+m(vV2+1) .
Saain(vair) 1.54878753 times the length of the

minimum-length sona drawing.

Proof. We construct a problem instance whose
minimum-length TSP tour is longer than its minimum-

length sona drawing by a factor within ¢ of
144+8v2+m(v/2+1)
8+4v2+m(V2+1)
ure 1 and follows a fractal approach with e=1 levels (for
simplicity, we assume that ¢! is an integer).

Our construction is illustrated in Fig-

1. We start by defining a few auxiliary points:

(a) The initial set of auxiliary points Ag is
the intersection between a slightly shifted
integer lattice and the L; ball B(0,e7!)
of radius &' centered at the origin.
That is, Ao = {(%,2H):4,je€Z} n
{(z,y) : |z|+ |y| <e7'}. In Figure la, the
auxiliary points are exactly the intersections
of solid red lines.
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(b) Then, in Step ¢ (starting with ¢ = 1), for each
auxiliary point p € A;_1, we add five points to

A;: p itself, and four new points at distance
2i
( 1+1 \/5) from p in each of the four cardinal

directions. Let A = A.-1. By construction, we
have |A;] = 5|Ag| and |Ag| = 2672 + O(e71).
We note that set A contains auxiliary points
(not sites). These points will not be part of
the instance.

2. We now use the auxiliary points to create some sites

(the isolated black points of Figure 1):

(a) For any i > 1 we define set P; of sites as follows:
for each auxiliary point ¢ € A;_; we add the
four sites whose z and y coordinates each differ

2%
1 1
from ¢ by 3 (m> . We note that all the
added sites are distinct sites.

(b) We define Py as the set of integer lattice points
in B(0,e~1). Equivalently, for each auxiliary
point ¢ € Ay we add the sites whose x and y
coordinates each differ from ¢ by %, but we do
not add sites that lie outside B(0,e~1), which
affects O(e™!) sites (out of Q(e72) sites of P).
In this case, the sites created by different
auxiliary points may lie in the same spot.
In total, Py contains only one site per aux-
iliary point of Ay (except for O(¢~!) auxil-
iary points near the boundary). Thus, |P;| =
4 - ‘Ai—l‘ = 4.5"L. |A0| (fOI‘ T > 1) and
|Pol = Ao +O(e™") = (2672 + O(e™)).

Let P = PpUP,U---UP.—1.

. Next, we place additional sona sites packing line

segments and/or curves. Whenever we pack any
curve, we place sites spaced at a distance ¢ small
enough that the length of the shortest path that
passes within ¢ of all of them is within a factor
(1 — ¢€) of the length of the curve.

(a) Solid lines as drawn in red in Figure la: for
eachz € {i+1:—(e7'+1)<i<e'andic
Z}, we pack the vertical line segment with
endpoints (z,e "1 +1—|z|) and (z, |z|—e71-1),
and analogously with y for the horizontal line
segments.

(b) In Step i of the above recursive definition (start-
ing with ¢ = 1), when we create four new aux-
iliary points of A; from a point p € A;_1, we
also pack the boundary of the region within

2i
. . 1 1
Euclidean distance 3 ( T \/5) of the square

whose vertices are the four auxiliary points
of A;. Note that this boundary region forms a
square with rounded corners as in Figure 1b.




32" Canadian Conference on Computational Geometry, 2020

With these extra points we preserve the invari-
ant that the auxiliary points are exactly the
intersections of packed curves.

Let P be the set of sites created in Step 3 in our
construction, and P = P U P), This is a complete
description of the construction.

We now find the minimum-length sona drawing of P.
Each pair of consecutive points in a packed curve must
be in a separate sona region, so any sona drawing must
pass between them; in particular, any sona drawing must
pass within § of each of them, and so the length of any
valid sona drawing is at least 1 —¢ times the length of the
packed curves. Also, there’s a valid sona drawing that’s
at most 1+¢ times the length of the packed curves: follow
all the packed curves exactly, adding small loops around
the sona sites of the packed curves as necessary (loops
small enough to lengthen the curve by a factor of at most
1+ ¢€). The graph of packed curves is Eulerian (because
it’s defined as a union of boundaries of regions, which are
cycles), so the TSP tour can follow an Eulerian circuit
through it. At an intersection of packed curves, we have
two options for the sona drawing (as shown in the inset
images of Figure 1). We can have one sona path cross
over the other in the Eulerian circuit (by including every
site of the packed curve in a small loop). Alternatively,
we can have one sona path cross over the other in two
places p and q at the intersection, and leaving one sona
site of the packed curve out of a small loop to be the
sona site of the extra region between p and ¢. In either
case, we conclude that there is a valid sona path that
follows an Eulerian circuit of the packed curves within
(1+¢). Note that, although our description focused in
the sites of P(?)_ this is a valid sona tour for P since the
sites of PM) lie in different faces.

The total length of the packed curves is hence a (1+4¢)-
approximation of the total length of the minimum-length
sona drawing.

The total length of the packed segments of P(®) (the
square lattice) is 4¢72 + O(e 1), since the area of the
region |z| + |y| < e~! and the number of lattice points
in it are each 2¢72 + O(e71).

Now we bound the length of the packed curves
(rounded squares). In Step 4 of the construction (starting
with ¢ = 1), we added a packed curve that is the bound-

2%
ary of the region within Euclidean distance % ( 1+1 \/5)

2%
of a square of side length ( ) (with a total length

1+v2

21

of (4 + ) (1+¢§ ).

Recall that we added one such curve for each of the
points of A; 1 and that |4;| = 5771(2e72 4+ O(e™1)).
Thus, the total length of the sona drawings introduced

at Step i is (4 + ) (1-‘4-1\[) 51272+ O(e~1)).

this series is well-approximated

For & small,
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by an infinite series with sum

@7+ 0™ ((1+f) LEM T )) B
(1+v2)

(2e72 + O(e1)) (23/‘%j2), and adding in the length of

geometric

the packed segments of P2 (the square lattice) gives
—2 —1 447
(2:72+0(=) (24 757%5)

We have approximated the minimum length of a valid
sona drawing; now we approximate the minimum length
of a TSP tour.

Any TSP tour must also come within § of every point
on every packed curve, which requires a length at least

(2672 + O(e™Y)) (2 + 2?}2) as above. Also, the TSP

tour must visit each site of P,
properties of this set:

We observe some

e Set P is defined so that sites are far from each
other. Specifically, the Euclidean ball centered at

2
1+1 \/5> does not
contain other sona sites. This means that we must
include at least 2r; in the length of the TSP tour for
each point in P;, for the part of the tour that passes
from the boundary of this ball to P; and then back
to the boundary.

any site p € P; of radius r; = (

e There are 4 - 571(2e72 + O(e™!)) sites in P; (for
i>1) and (2672 + O(e71)) sites in Py.

When € tends to zero, the additional length needed
in the TSP tour is

2e2+0(e )+ ) 2ri-4-57)

i>1

Ly . 4 5 ‘

= (26240 ))(1+5;<3+2f))
4 1

= (2e24+0@E))+ )

3+2f 1-
)

3+2f
= (28_2 + O(E_l))(l + m
H)(2v2 +3).

So, the total length of the TSP tour is at least
(2672 + O(s7Y)) <2+ 2?”2 +2\f—i—3) Hence the
ratio of the length of the TSP tour to the length
of the sona drawing is, ignoring lower-order terms,
Zaa VR lin(VIRUSSVE | sagerss. O

= (267 2+0(e

222
24547 8+4\f+7r(f+1)

B Complexity of Length Minimization

Theorem 4 It is NP-hard to find a sona drawing for
a given set of sites whose length is less than a given
threshold L, for any of the Ly, Lo, and Lo, metrics.
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Figure 8: Local modifications to convert a grid Hamilto-
nian cycle into a short sona drawing for a set of doubled
sites

Proof. Let V be the set of n vertices in a hard instance
for finding a Hamiltonian cycle in grid graphs. We
may form a hard instance of the minimum-length sona
drawing problem for L; or Lo distances by replacing
each vertex in V' by a pair of sites, one at the original
vertex position and the other at distance less than ¢ from
it, where e = ©(1/n) is chosen to be small enough that
dne < /2 —1. We set L = n + 2ne. For Lo, distance,
we use a hard instance for L; distance, rotated by 45°.

If V is a yes-instance for Hamiltonian cycle, let C be a
Hamiltonian cycle of length n for V. We may form a sona
drawing of length less than L by modifying C' within a
neighborhood of each pair of sites so that, for all but
one of these pairs, it makes two loops, one surrounding
each site (Figure 8), and so that for the remaining pair it
makes one loop around one of the two sites and surrounds
the other point by the face formed by C' itself. In this
way, each face of the modified curve surrounds a single
site of our instance. Each of these local modifications to
C may be performed using additional length less than
2¢, so the total length of the resulting sona drawing is
less than L.

If V is a NO instance for Hamiltonian cycle, let C
be any sona drawing for the resulting instance of the
minimum-length sona drawing problem. Then C must
pass between each pair of sites in the instance, and by
making a local modification of length at most 2e near
each pair, we can cause it to touch the point in the
pair that belongs to V itself. Thus, we have a curve of
length |C| + 2ne touching all points of V. Because V is
a NO instance, the length of this curve must be at least
n++2— 1, from which it follows that the length of C
is at least m + V2 — 1 — 2ne > L. O

By scaling the sites by a factor of ©(1/¢) = O(n) we
may obtain a hard instance of the minimum-length sona
drawing problem in which all sites lie in an integer grid
whose bounding box has side length O(n?).

It is possible to represent a minimum-length sona
drawing combinatorially, as a conveyor belt [2] formed
by bitangents and arcs of infinitesimally small disks
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centered at each site, and to verify in polynomial time
that a representation of this form is a valid sona drawing.
However, this does not suffice to prove that the decision
version of the minimum-length sona drawing problem
belongs to NP. The reason is that, when the sites have
integer coordinates, the limiting length of a sona drawing,
represented combinatorially in this way, is a sum of
square roots (distances between pairs of given points)
and we do not know the computational complexity of
testing inequalities involving sums of square roots [6,10].
(Euclidean TSP has the same issue.)

C Crenellations for Grid Drawing

Figures 9, 10, and 11 show how to add crenellations to the
Constant gadget, an unconstrained wire end (variable),
and the OR gadget, respectively. The crenellated Split
/ Invert is the same as in Figure 7, extended in the
obvious way for ports that are used. In no case do
the crenellations affect the internal properties described
in the main text; these figures simply show that it is
possible to add the crenellations appropriately.

As mentioned in the main text, the crenellations do
add a parity constraint when connecting gadgets with
wires; we can no longer make wires of arbitrary length,
but must match the crenellations to the gadgets at each
end. In order to do that we need one additional gadget,
an inverting turn, shown in Figure 12. Unlike in Figure 7,
the wire state is switched during the turn. Observe that
in Figure 7, turning does not change crenellation parity,
but the straight-through path, which would invert if
not terminated, does change crenellation parity. The
inverting turn also does not change crenellation parity.
Therefore, to change the crenellation parity of a wire,
we can invert it (straight through), changing the parity,
and add a sequence left inverting turn, right turn, right
turn, left turn to restore the original line of the wire.
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Figure 10: Crenellated unconstrained wire end
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Figure 11: Crenellated OR gadget

Figure 12: Crenellated inverting Turn gadget
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Abstract

In the pattern formation problem, robots in a system
must self-coordinate to form a given pattern, regardless
of translation, rotation, uniform-scaling, and/or reflec-
tion. In other words, a valid final configuration of the
system is a formation that is similar to the desired pat-
tern. While there has been no shortage of research in the
pattern formation problem under a variety of assump-
tions, models, and contexts, we consider the additional
constraint that the maximum distance traveled among
all robots in the system is minimum. Existing work
in pattern formation and closely related problems are
typically application-specific or not concerned with op-
timality (but rather feasibility). We show the necessary
conditions any optimal solution must satisfy and present
a solution for systems of three robots. Our work also
led to an interesting result that has applications beyond
pattern formation. Namely, a metric for comparing two
triangles where a distance of 0 indicates the triangles
are similar, and 1 indicates they are fully dissimilar.

1 Introduction

While distributed systems have clear advantages over
centralized ones, their complexity has stunted their
potential in the mobile robotics market. Where dis-
tributed systems are cheap to build, scalable, and fault-
tolerant in theory, they are extremely difficult to prop-
erly design in practice [14]. In this paper, we present
results from a study on pattern formation, a common
problem in distributed robotics. In the pattern forma-
tion problem, a system of mobile robots on the plane
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must move to form a given pattern. While this problem
has been studied extensively, we consider the additional
constraint that the maximum distance traveled among
all robots must be minimum. For the purpose of this
paper, we call solutions that satisfy this constraint op-
timal.

The main goal of this study is to develop a theoreti-
cal understanding of the pattern formation problem. In
this study, we make contributions to establishing this
baseline and, in doing so, make many interesting ob-
servations about properties and limitations for patterns
and the systems that form them.

Our Contributions. The goal of this study is
to develop a theoretical understanding of the min-max
traversal pattern formation problem. To do so, we first
explore the necessary conditions that any optimal solu-
tion must satisfy. For example, we prove in Section 4
(Lemma 1) that for any optimal solution, at least three
robots must travel exactly the maximum distance. No-
tice that for systems of three robots, this means all three
robots must move exactly the same distance, regardless
of the pattern they must form. Clearly, the three-robot
case is an important lower bound for the general case
and is therefore the primary focus of this study. In
Section 6, we present an algorithm for computing the
optimal solution for systems of three robots. While not
directly applicable, the three-robot solution has impor-
tant implications on systems of many robots. In Sec-
tion 9, we discuss these implications in further detail.

Our work on systems of three robots also yielded
a surprising, but profound result. In Section 7, we
prove that by modifying the aforementioned algorithm
slightly, we can use it as a metric for measuring the
similarity between two arbitrary triangles. This has po-
tential applications beyond pattern formation for mo-
bile robotic systems, like computational geometry and
computer vision.

Models. In this paper, we are interested in the glob-
ally optimal solution to the pattern formation problem.
Different models, however, may or may not be able to
compute the optimal solution. In this section, we briefly
discuss various models used in related literature and
their implications on the pattern formation problem.
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All models discussed in this paper follow the look, com-
pute, move execution cycle. In the look phase, each
robot observes the position of all other robots in the
system (either globally or relative to their own local co-
ordinate frame). Then, robots compute a solution and
move some distance towards it. We also assume that, in
each cycle, all robots move the same distance § toward
their destination unless they reach it, in which case they
move some distance less than 4.

In accordance with related literature, we consider
whether robots in the system are globally coordinated,
oblivious, oriented, and/or synchronous. Robots are
globally coordinated if they have access to a global co-
ordinate system, otherwise they are said to be locally
coordinated. Robots are oblivious if they do not have
access to previous states of the system. In oblivious
models, a solution must be computed using only a snap-
shot of the system at a given time. Robots are oriented
if they have a common sense of direction (i.e. North,
South, East, and West), otherwise they are unoriented.
Robots are synchronous if they start each phase of their
look, compute, move cycles at the same time (according
to some global clock). In this paper, we also assume
synchronous robots move at the same speed.

It has been shown that asynchronous and oblivious
robots cannot form any arbitrary pattern (Theorem 3.1
in [15]). It has also been shown that locally coordi-
nated, synchronous robots cannot form any arbitrary
pattern (even sub-optimally) [15], but that locally co-
ordinated, asynchronous robots can as long as they are
oriented [10] due to possible symmetry in the initial con-
figuration of robots. We assume robots are in general
position and therefore do not consider the special case
where robots are symmetric. Note that for any special
case where robots are synchronous with each other, we
can perturbate each robot’s position by some small arbi-
trarily random amount to break symmetry. Table 1 is a
summary of which models can and cannot form patterns
optimally or sub-optimally for systems of three robots.

In this paper, we show that our solution for systems
of three robots is valid under all globally coordinated,
synchronous models and under the locally coordinated,
oblivious, synchronous, and oriented model.

Notation. For any system of n robots, we denote
their initial positions by R = (r9,71,...,7n—1) (robot @
is at position r;). We define a pattern to be a sequence
of distinct points on the plane and use capital letters,
like P and S, to denote them. Lower-case letters and
subscript indices are used to denote the elements of the
sequence. For example, p; is the i element of P. Sets
of sequences of distinct points on the plane (e.g. sets of
patterns) are denoted in calligraphic font, for example
P and S. Elements of these sets are denoted with their
non-calligraphic equivalent and a superscript index. For
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example, S* is the i element of S and s’ is the j*
element of S°.

The number of elements in a sequence P, or its length,
is denoted by |P|. Two sequences P and @ are equiva-
lent, or P = @, if and only if |P| = |Q| and p; = ¢; for
0 <i < |P|. Wesay P and @ are similar, or P ~ @
if and only if there exists some translation, rotation,
uniform scaling, and/or reflection of any permutation
of P that is equivalent to ). P and @ are rigidly sim-
ilar, or P ~ @ if and only if there exists some trans-
lation, rotation, and/or uniform scaling of P, say P’,
such that P’ = Q. Observe that P ~ Q = P ~ @, but
P~Q#PAQ.

Let C(p,r) be the circle centered at p with radius r
and D(p,r) be the closed disk with center p and ra-
dius r. Also, let d(u,v) be the Euclidian distance be-
tween points v and v.

Outline. This paper is organized as follows. First,
we formally introduce the problem statement in Sec-
tion 2 and discuss related work in Section 3. Then, we
discuss the necessary conditions any optimal solution
must satisfy in Section 4. In Section 5, we introduce
Replication, a tool we use in Section 6 to show that
our main contribution, an optimal solution for systems
of three robots, is in fact optimal. In Section 7, we
present a metric based on the optimal solution for sys-
tems of three robots. In Section 8, we discuss some
properties of systems of three robots and the patterns
they can form. Finally, Section 9 concludes this study
with a discussion about future work and the significance
of our contributions toward a theoretical understanding
of the pattern formation problem.

2 Problem Statement

Consider a system of n robots with initial positions R =
(ro,71,.--yTn—1). The trajectory of robot i is defined as
a continuous function f;(¢) for all t > 0. A strategy A
defines a trajectory for every robot. Given a pattern
P, we say that the strategy A is valid if there exists a
time t such that the robots’ positions are similar to P.
Otherwise the strategy is invalid. To simplify notation
we say robots that use a valid strategy form P. Let t(A)
be the earliest time at which the robots form P using
strategy A. The distance that each robot traverses is
defined as d4 = [V fA(t)dt.

In this study we are interested in a strategy that min-
imizes the maximum distance any robot traverses to
form the desired pattern:

Problem 1 (Min-Max Traversal Pattern Formation)
Given a system of n > 3 robots with initial positions R
and a pattern P, determine the minimum d* for which
there exists a valid strategy for forming P such that ev-
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Globally Oblivious | Synchronous | Oriented Pattern
Coordinated Formable

Yes - Yes - Optimal Corollary 9,Theorem 7

No No - Valid [15]

No Yes Yes Yes Optimal Corollary 9,Theorem 7

- No Impossible [15]

No Yes - Optimal Corollary 9

No Yes Valid 10

No Impossible 10

Table 1: A globally optimal pattern is only formable in the general case under some models. Under some models,
a valid sub-optimal formation can always be formed while under others, valid formations are not formable at all in
the general case. Note that the results reported in this paper are only valid for systems of three robots.

ery robot travels at most distance d*. Formally:

d* = mi i
VR

where A is the set of all valid strategies.

3 Related Work

The pattern formation problem has been studied exten-
sively under a variety of assumptions, models, and con-
texts. Many researchers use the pattern formation prob-
lem to study the algorithmic limitations of autonomous
mobile robots [10, 15]. It has been shown, for exam-
ple, that systems of synchronous robots with initially
symmetric positions cannot form any geometric pattern
[15] but that systems of asynchronous robots with com-
passes (A global sense of North/South and East/West)
can [10]. We mitigate the problems that symmetry in-
troduces to the pattern formation problem by assuming
robots initial positions are random, and the probabil-
ity of exact symmetry approaches zero. Since we are
interested in finding any theoretically optimal solution
for the general case, a feasibility discussion is out of the
scope for this paper and left as future work.
Researchers have proposed solutions for many vari-
ants of the pattern formation problem. For example,
it has been shown that it is possible to form a uni-
form circle (one such that the distance between neigh-
boring robots on the circle is equal) for any system of
robots arbitrarily deployed on the plane [8]. Other vari-
ations of the pattern formation that have been studied
include gathering on a ring [11], point-convergence [4],
and forming a series of patterns in succession [6]. There
has also been work in variations of these problems where
robots have visibility constraints, that is, they can only
see other robots in the system if they are within a given
distance [3, 9, 5]. Various methods and solutions for bio-
inspired pattern formation are reviewed in [13]. When
the destination positions are known, the pattern forma-
tion is reduced to robot-destination matching. There
are many available solutions for these kinds of variants
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of the problem that guarantee a variety of different prop-
erties (i.e. no collision, minimum total distance trav-
eled, etc.) [2]. Solutions typically involve a combinato-
rial optimization algorithm for the assignment problem,
like the Hungarian Algorithm [12]. The quantity and
variety of the literature reflects the seemingly unlim-
ited variants and applications of the pattern formation
problem. There is, however, no unifying theory that
ties all these solutions together. In this study, we make
progress toward addressing this shortcoming of the field.
The pattern formation problem has also been stud-
ied from an operations research perspective. A solution
has been proposed that formulates the problem as a
second-order cone program [7] and uses interior-point
methods to solve it. This solution, however, relies on
a prescribed assignment and does not consider reflec-
tion. The authors report a constant runtime, but this is
in the number of iterations of the convex optimization
step, and does not consider the time to create the nec-
essary data structures. Our implementation has a time-
complexity of O(n?®) where n is the number of robots in
the system. Some work has been done to incorporate
assignment as well, but current solutions exist only for
minimizing the total distance traveled by all robots (as
opposed to the maximum distance traveled by any robot
in the system) [1]. While these solutions are practical
and useful for many situations, they are not analytical
and do not provide any insight into the properties of
optimal solutions. In this study, we develop a theoreti-
cal understanding of the pattern formation problem and
work toward an analytical solution to the problem.

4 Necessary Conditions

First, we start by characterizing an optimal solution.
In this section we present the necessary conditions that
every optimal solution must satisfy.

Critical Robots. Throughout the paper, we use
critical Tobots to refer to robots which move the maxi-
mum distance (the solution). In Lemma 1 we show that
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in any optimal solution there are at least three critical
robots.

Lemma 1 Given a system of n robots with initial po-
sitions R = (ro,71,...,7n—1), let d* be the optimal so-
lution for forming some pattern. Then at least three
robots traverse exactly distance d*.

Lemma 1 does not prove the existence of any upper
bound on the number of robots that move distance d*.

5 Replication

In this section we present Replication as a tool that we
use to derive results presented later in the study. The
replication machine is based on pure geometry and re-
sembles a Pantograph. While replication is naturally
applicable for any pattern with three or more vertices,
we present replication for triangles in this study to sim-
plify notation and proofs.

Definition 1 (Trivial Replication) The Trivial Repli-
cation of a triangle P on a pair of points (u,v) is the
triangle rigidly similar to P whose first two points are
fixed to u and v. Formally:

Rrpiv(Pyu,v) =T ~ P such that to = u, and t; = v.

For any Trivial Replication T = Ry (P, u,v), we
call u = ty and v = t; its anchors. We call the third
point, to, the Trivial Replication Point. Note that the
Trivial Replication Point is not explicitly fixed to a pre-
scribed point, rather, its position is entirely dependent
on the triangle being replicated and the two anchors.

Definition 2 (Replication Machine) The Replication
Machine of a triangle P on a point and a circle
(u, C(v,r)) is the infinite set of triangles rigidly similar
to P whose first point is fized to u and whose second
point is on the circle C(v,r). Formally:

Rurach(Pyu,v,r) =4{T ~ Plto = u,t1 € C(v,7)}.
or equivalently:
Ryrach(Pyu,v,7) = {Rrpin (P, u,v") v € C(v,7)}.

Observe that Raraen(P,u,v,r) is the set of all pat-
terns rigidly similar to P such that, for any T €
Ryrach(Pyu,v,1), to is fixed to w and ¢; is exactly dis-
tance r from v. Observe that each triangle in a Repli-
cation Machine is also a Trivial Replication of the same
triangle. We call the set of Trivial Replication Points of
the Trivial Replications in a Replication Machine Repli-
cation Machine Points.

Definition 3 (Replication Spanner) The Replica-
tion Spanner of a triangle P on a pair of circles
(C(u,r),C(v,r)) is the infinite set of triangles rigidly
similar to P whose first and second points are on the
circles C(u,r) and C(v,r), respectively. Formally:
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RSP‘WL(Pa u,v,r) = {T ~ P|t0 € C(U,T),tl € C(’U,’f‘)}.
or equivalently:

RSpan(Pauavar) = U RMach(Pv ’U,/7’U,7’).

u' €C(u,r)

Rspan(P,u,v,r) is the set of all patterns rigidly sim-
ilar to P such that, for any T' € Rgpen (P, u,v,7), both
to and t; are exactly distance r from p and ¢, respec-
tively. We call the set of Trivial Replication Points of
the Trivial Replications in a Replication Spanner Repli-
cation Spanner Points.

It is starting to become clear why Replication is a
useful tool for pattern formation. Suppose v and v are
the initial positions of two robots in a system that must
form a triangle P. Then Rspan(P,u,v,r) is the set of
all patterns rigidly similar to 7" that the robots can
form by each moving distance r. Since we are deal-
ing with a system of three robots (forming triangular
patterns), we know that all three robots are critical
(Lemma 1). Therefore, the optimal pattern (without
considering permutation or reflection) must be one from
Rspan (P, u,v,r) for some value of r.

Lemma 2 Let ¢ be the Trivial Replication Point of a
triangle P on a pair of points (u,v). Then the set Repli-
cation Machine Points of P on (u,C(v,r)) is enclosed

by the circle C (C’ngu,c)).

w,v)

Proof. [Proof sketch] First, we show that the Replica-
tion Machine Points form a circle. Consider the Trivial
Replication T = Ry (P, u,v) (note that to = ¢) and
an arbitrary Trivial Replication M € Rpraen (P, u,v,7)
(note that mg is in the Trivial Replication Circle of
Ryrach(Pyu,v,1)). First, observe that since 7' is rigidly
similar to M, then d(u, m1) = k d(u,v) and d(u, ms) =
k d(u,c) for some k, thus Aumegc is similar to Aumqv
and d(c, ms) must be proportional to 7.

In order to simplify the calculation of the cir-
cle’s radius, consider the Trivial Replication M &
Rpyrach(P,u,v,7) such that m; is colinear with the line
0. Observe that k d(u,v) = d(u,v)+r and k d(u, ¢) =
d(u,c) + d(c,mz). Solving the system of equations re-

d(u,c)
d(u,v) " 0

sults in d(c,mo) =7

We call C (c, ngu’c)> the Replication Machine Circle

w,v)

of Ryraen(P,u,v,r).

Lemma 3 If ¢ is the Trivial Replication Point of

a triangle P on a pair of points (u,v). Then
C(C,T%) is the smallest circle that en-

closes the Replication Spanner Points of P on

(Clu,7), Clv, 7).
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Proof. [Proof sketch] Consider the Trivial Replication
T = Rrriv(P,u,v), and the replication machines M =
Rarach((p1,p0, p2), v, u, ) and, for some M € M, S =
Rarach(Pymo,v,r).

Observe that for any S € S, by the definition of Repli-
cation Spanner, S € Rgpen(P,u,v,7). Observe that
the center of the Replication Machine Circle of S is in
the Replication Machine Circle of M. Therefore, ¢ is
the center-of-centers of two Replication Machine Cir-
cles. O

We call C' (c, r%) the Replication Spanner
Circle of Rspan(P,u,v,r).

6 Three-Robot Solution

In this section, we present the main contribution of this
study: a solution for systems of three robots. First, we
show the optimal solution under rigid similarity, that is,
we do not consider assignment (i.e. robot ¢ with initial
position r; will assume the role of p; in the desired pat-
tern). Note that this is not necessarily the optimal so-
lution. For systems of three robots, there are 3! possible
assignments (permutations) of P that could be optimal.
After presenting the solution for the trivial assignment,
we demonstrate a simple method for choosing the cor-
rect assignment without testing all 3! = 6 possibilities.
Algorithm 1 produces a construction based entirely on
geometric properties.

Algorithm 1 Algorithm for robot ¢ in system with cur-
rent positions R to form pattern P

// Let the perimeter of P be 1
// indices are modulo 3

1: t; + point such that Zt;r; 4171 = Zp;pi+1pi—1 and
Lrigari—it; = £pis1pi-1pi

2: 7 <= d(ri, ti) d(pit1,pi-1)

3: r; moves r toward t;

Lemma 4 For any system of robots with initial posi-
tions R and any triangular pattern P, the distance r
computed in Algorithm 1 (Line 2) is the same for each
robot.

Recall that for systems of three robots, all robots
travel exactly the same distance. We show in Lemma 4
that Algorithm 1 satisfies this necessary condition.

Theorem 5 For any system of robots with initial posi-
tions R and triangular pattern P with perimeter 1, let
Q be the positions that robots move to after running Al-
gorithm 1. Then @Q is a valid solution. In other words,
Q is similar to P.

Algorithm 1 computes a valid solution such that all
robots move the same distance. These conditions are

I

necessary for any optimal solution, although not suffi-
cient. We show in Theorem 6 that the solution Algo-
rithm 1 produces is optimal.

Theorem 6 For any system of robots with initial posi-
tions R and triangular pattern P, let Q) be the positions
that each robot moves to after running Algorithm 1, then
Q is an optimal formation under rigid similarity.

Optimal Pattern Formation by  Three
Robots. In order to prove Algorithm 1 is op-
timal, we assumed that robots move directly to their
computed destinations. In Section 1, though, we dis-
cussed models where each robot executes look, compute,
move cycles. In other words, we want to consider
systems in which robots move a small distance € toward
their target, then re-compute the solution based on the
new system state. In this section, we show that our
solution is valid for models with oblivious robots.

Consider a modification of Algorithm 1, where instead
of moving incrementally toward (rather than directly to)
their destinations by replacing line 3 with:

r; < moves min(r, €) toward t;

Theorem 7 Let f;(t) denote the position of robot i at
time t. For any € > 0, let Q be the solution computed
at time t. Then, Q' = Q't!.

Assignment. The geometric construction provides a
solution under rigid similarity only and therefore does
not consider different assignments (permutations) of the
desired pattern. In order to find the globally optimal
solution, the geometric construction must be considered
for all permutations of P. In this section, we present
a simple method for choosing the optimal assignment
without testing all 3! = 6 possibilities.

Theorem 8 Consider a system of robots with initial
positions R = (ro,71,72), a pattern P = (po, p1,p2), and
d(ro,m1) < d(r1,m2) < d(re,r9). Then P is an optimal
assignment for R if and only if d(po,p1) < d(p1,p2) <
d(p2; po)-

Observe that, for any triangle P, d(po,p1)
d(p1,p2) < d(p2,po) if and only if Zp;_1popit1
Zpopiy1Pi—1 < £pit1pi—1po- Theorem 8 indicates that
the optimal formation can be obtained by first sorting
R and P by their angles (or side lengths), and then
running Algorithm 1.

<
<

Corollary 9 For a system of robots with initial posi-
tions R = (ro,m1,72), such that d(ro,m1) < d(r1,r2) <
d(re,r9) and a pattern P = (po,p1,p2) such that
d(po,p1) < d(p1,p2) < d(p2,po) let Q be the positions
that robots move to after running Algorithm 1. Then Q
is an optimal formation.

Proof. Follows from Theorems 6 and 8. O
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7 Triangle Metric

In this section, we introduce a metric for comparing
triangles inspired by the solution for systems of three
robots presented in Section 6. Let d*(A, B) be the op-
timal distance that robots with initial positions A need
to form B. This distance can also be interpreted as a
distance between the triangles A and B. d* is not a
valid metric by itself, though. In particular, since d*
depends on the position and size of the first argument
only, it is not symmetric, or d*(A, B) # d*(B,A). In
order to enforce symmetry, our metric should be invari-
ant to translation, rotation, uniform scaling, reflection,
and permutation of both A and B.

Lemma 10 Let « and 8 the ordered sequences of inte-
rior angles of two triangles. Then T is a valid metric
for comparing the triangles:

sin?(B)
sin?(fz2)
_,sin(aq) sin(f1)

sin(ag) sin(Bs)

sin?(ayq)

7—2(0‘75) =

sin?(ag)
cos(ao — Po)

The 7-distance between two triangles, defined by their
angles, is a measure of similarity between them. Two
triangles, A and B are similar when 7(4,B) = 0. If
T(A, B) < (A, C) this indicates that B is more similar
to A than C'is. In other words, a system of robots with
an initial formation of A would need to travel further
to form C' than it would move in order to form B.

8 Arising Geometric Properties

In this section, we present some interesting properties of
systems of three robots and the patterns they can form.

Focal Point.  One interesting property that emerges
for every system of three robots forming any arbitrary
pattern is that all three of their paths can be character-
ized by a single point on the plane.

Theorem 11 For systems of three robots and any opti-
mal formation, there exists a point that all robots move
either directly toward or directly away from.

For any optimal pattern, we call this single point that
robots move either directly to or from, the focal point.

Constant Center-of-Mass. For systems forming
equilateral triangles, an even stronger property emerges.

Lemma 12 Suppose Q is an optimal formation for a
system of three robots with initial positions R to form
an equilateral triangle. Then, the center of mass of @
is equivalent to that of R. Furthermore, since robots
move at the same speed, the system’s center of mass is
invariant with respect to time.
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9 Conclusion

The main contribution of this study is an optimal so-
lution for systems of three robots. Systems of three
robots are interesting because they have clear applica-
tions to systems of many robots. Recall that, even in
the general case, at least three robots must traverse the
maximum distance, therefore it is a lower bound for the
general case, that is, d is the minimum optimal solution
for all combinations of three robots and triangular sub
patterns of P with a prescribed assignment, or:

d= mi d*((ri,rj ' Di
poin ( max (d°(ri, 75, 7). (Pis 2jo Pr))))

Finding an upper bound on the solution is an area for
future work. A generalized Replication Machine tool
might prove useful in finding the solution for systems of
n robots.

We are also interested in finding an algorithm for de-
termining the optimal assignment in the general case.
It is clear that some assignments are infeasible. For
example, it makes intuitive sense that a robot’s set of
nearest neighbors in the initial configuration of the sys-
tem should be close to that of final configuration.

Further work is also needed to understand under
which models (see Section 1) our solution (or some vari-
ant of it) is valid for. For example, Algorithm 1 is
only valid for synchronous models, where each robot
starts its cycle at the same time (according to a global
clock). If the robots were asynchronous, they would
compute optimal solutions for different initial configu-
rations, since they would observe the current positions
of robots at different times.

Finally, we plan to explore applications for the trian-
gle metric introduced in Section 7. The metric provides
a nice way to score, classify, or sort triangles based on
their similarity to each other. This has potential ap-
plications in computer vision, computational geometry,
and of course, mobile robotics.
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Path Planning in a Weighted Planar Subdivision
Under the Manhattan Metric

Mansoor Davoodi* t

Abstract

In this paper, we consider the problem of path planning
in a weighted polygonal planar subdivision. Each poly-
gon has an associated positive weight which shows the
cost of path per unit distance of movement in that poly-
gon. The goal is finding a minimum cost path under the
Manhattan metric for two given start and destination
points. We propose an O(n?) time and space algorithm
to solve this problem, where n is the total number of
vertices in the subdivision. We also study the case of
rectilinear regions in three dimensions, and generalize
the proposed algorithm to find a minimum cost path
under the Manhattan metric in O(n®logn) time and
O(n?) space.

1 Introduction

Path planning (PP) problem is one of the fundamen-
tal problems in motion planning whose objective is to
find an optimal path with minimum length between two
start and destination points s and t in a work space.
In the classical version of PP, the work space contains
some obstacles, and the path must avoid these obstacles
[7, 14]. However, in a general formulation of PP — called
Weighted Region Problem (WRP) — which was first in-
troduced by Mitchell and Papadimitriou [17], each ob-
stacle has an associated weight and a path is allowed to
enter them at extra costs. In fact, these weights rep-
resent the cost per unit distance of movement in the
obstacles (or say weighted regions). This generalization
of PP has a lot of applications, e.g., it can be used in
self-driving cars navigation, robot motion planning [6],
military purposes [16], crowd simulation [13], and gam-
ing applications [13]. An important theoretical result
on WRP [9] has shown that this problem cannot be
solved in the algebraic computation model over the ra-
tional numbers under the Euclidean metric. Motivated
by this result, we investigate WRP under the Manhat-
tan metric and show that it can be solved efficiently in
polynomial time.
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Mitchell and Papadimitriou [17] introduced an e-
optimal algorithm with running time of O(n®L), where
n is the total number of vertices of polygonal regions
and L is the precision of problem’s instance. Precisely,
L = O(log(nNW/ew)), where N is the maximum inte-
ger coordinate of any vertex of the subdivision, W and
w are the maximum non-infinite and minimum non-zero
integer weights assigned to the faces of the subdivision,
and € > 0 is a user-specified error tolerance. The output
is the shortest path from the starting point s to all ver-
tices of the polygons with an error tolerance € under the
Euclidean metric. Mata and Mitchell [16] have proposed
an algorithm based on constructing a relatively sparse
graph — called pathnet — that can search for paths that
are close to optimal. They have proved that a path-
net of size O(nk) can be constructed in O(kn?) time.
As a matter of fact, the pathnet limits the paths that
can extend from vertices with k cones at each vertex.
Searching for a path on the constructed pathnet yields
a path whose weighted length is at most (1 + €) of op-
timal path. Precisely, ¢ = k‘g::fn’ where W/w is the
ratio of the maximum non-infinite weight to the mini-
mum non-zero weight, and 6,,;,, is the minimum internal
face angle of the subdivision. One of the common tech-
niques for obtaining approximate shortest paths is to
positioning Steiner points for discretizing the edges of
the triangular regions and then constructing a graph by
connecting them. Finally, by using graph search algo-
rithms such as Dijkstra, an approximate minimum cost
path can be computed [1, 2, 18].

There are several variants of WRP due to the metric
and the shape of weighted regions. Lee et al. [15] have
solved the problem in the presence of isothetic obsta-
cles (the boundary edges of obstacles are either vertical
or horizontal line segments). They have presented two
algorithms for finding the shortest path under the Man-
hattan metric. The first algorithm runs in O(nlog?n)
time and O(nlogn) space, and the second one runs in
O(nlog®?n) time and space. Gewali et al. [10] have
considered a special case of this problem in which there
are only three types of regions: regions with weight of
00, regions with weight of 0, and regions with weight of
1. They have presented an algorithm in O(m + nlogn)
time, where m € O(n?) is the number of visibility edges.
Furthermore, they have presented an algorithm for the
case that linear feathers are added. Precisely, edges of
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the subdivision are allowed to have arbitrary weights.
Their algorithm for this case takes O(n?) time for con-
structing a graph of size O(n?) for searching the short-
est path. In fact, it takes O(n?logn) time for finding
the shortest path. Gheibi et al. [11] have discussed the
problem in an arrangement of lines. Due to the fact that
this special case of the problem has unbounded regions,
they have presented a minimal region — called SP-Hull
— to bound the regions. This minimal region contains
the minimum cost path from s to t. They construct
SP-Hull in O(nlogn) time, where n is the number of
lines in the arrangement. After constructing SP-Hull,
an approximate minimum cost path can be obtained by
applying the existing approximation algorithms within
bounded regions. Jaklin et al. [13] have analyzed the
problem when the weighted regions are cells of a grid.
They have also presented a new hybrid method — called
vertex-based pruning — which is able to compute paths
that are e-optimal inside a pruned subset of the scene.

In this paper, we consider a planar subdivision with
arbitrary positive weights. We present an algorithm
which constructs a planar graph in O(n?) time with
O(n?) vertices and edges, where n is the total number of
vertices of the subdivision. The constructed graph con-
tains the minimum cost path between two points s and
t in the plane, where the distances are measured under
the weighted Manhattan metric — the length of a path is
the weighted sum of Manhattan lengths of the sub-paths
within each region. It has been shown that this prob-
lem is unsolvable over the rational numbers when the
distances are measured under the weighted Euclidean
metric [9]. To the best of our knowledge, this is the
first result that presents an exact algorithm for solv-
ing WRP under the Manhattan metric in a case where
the regions are arbitrary simple polygons with positive
weights. We propose an exact algorithm for finding the
minimum cost path under the weighted Manhattan met-
ric in O(n?) time which is also a v/2—approximation for
the Euclidean metric. Also, we show that the proposed
algorithm can be used for WRP with rectilinear subdivi-
sion in three dimensions in O(n?logn) time and O(n?)
space.

This paper is organized in five sections. In section 2,
we give some preliminaries and definitions. In section 3,
we present our algorithm for constructing a graph which
contains the minimum cost path in a two dimensional
work space, and prove that the shortest path is within
the constructed graph. In section 4, we generalize the
algorithm for the case of rectilinear regions in three di-
mensions, and in section 5, we draw a conclusion.

2 Preliminaries and Definitions

The problem of weighted region path planning, WRP,
considered in this paper is defined as follows: let S be
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Figure 1: A path from s to t with seven breakpoints.

a subdivision of the plane into polygonal regions with
n vertices, and s,t € S be two start and destination
points in the plane. Each region of S has an associated
positive weight. The weight of an edge e € S (boundary
of regions) is assumed to be min{w,., w, }, where w, and
w, are the weights of regions incident to e. The goal is
to find a minimum cost path between s and ¢, where the
distances are measured under the weighted Manhattan
metric — the length of a path is the weighted sum of
Manhattan lengths of the sub-paths within each region.
Let 74 denote a path between s and ¢ which consists
of some sub-paths between consecutive breakpoints. A
breakpoint is a point on the path in which the path
turns. We also consider s and ¢ as breakpoints (see
Fig. 1). Let p1, p2, ..., px be sub-paths between consec-
utive breakpoints of a path mg in which each p;, for
t = 1,2,...,k lies completely within one region. If a
part of a path 7, does not lie totally in one of the re-
gions, we decompose it to some sub-paths. We denote
d(p;) as the Manhattan distance between two endpoints
of p;. The weighted length of a path 74 under the Man-
hattan metric, denoted by d,, (7st), is defined as:

du(ms) = Y5, d(pi) x wi,

where w; is the weight of the region in which p; lies.

A path 7 is called a horizontal (resp., vertical) path
if it consists of a horizontal (resp., vertical) sub-path
between only two consecutive breakpoints. Also, we say
two horizontal (resp., vertical) paths are consecutive if
and only if they have the same starting and termination
points. This definition is used in Lemma 1.

The basic idea behind the proposed algorithm is
reducing the problem to a graph searching problem.
Therefore, we provide an algorithm for constructing a
graph that contains the minimum cost path under the
weighted Manhattan metric. The constructed graph is
a planar graph with O(n?) vertices and edges, where n
is the total number of vertices of the subdivision. For
planar graphs with positive edge weights, Henzinger et
al. [12] have given a linear-time algorithm to compute
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single-source shortest paths. By running this algorithm
on the constructed graph, we obtain the minimum cost
path between s and ¢ under the Manhattan metric in
O(n?) time. Since a simple polygon with n vertices can
be triangulated in O(nlogn) time and O(n) space [8],
w.l.o.g. we assume all the regions to be triangular re-
gions in all parts of the paper.

3 The Graph Construction Algorithm

3.1 The Algorithm

Let G = (V,E) be a graph. First, we initialize V
=@ and F = O. Let HL(«;) and VL(c;) be hori-
zontal and vertical lines passing through point «;, for
i =1,2,...,n. Precisely, a;, for i = 1,2,...,n are the
vertices of the subdivision which contain s, ¢, and the
vertices of the triangles. We add s, t, vertices of the tri-
angles, and the intersection points among H L(«;) and
VL(wj), for 4,j = 1,2,...,n to V. We also add the
intersection points among HL(«a;) (resp., VL(«;)), for
i =1,2,...,nand the edges of the triangles to V. Next,
we add the line segments between two consecutive ver-
tices in V' that lie on the considered horizontal lines,
vertical lines or the edges of the triangles as edges of G
to E. For an edge (u,v) € E where lies in a region with
wight w;, let d(u,v) denote the Manhattan distance be-
tween two endpoints of the edge. The weight of the edge
is equal to the product of d(u, v) and w;. Note that each
edge lies completely within one region.

The basic idea of our algorithm is to extend four rays
to the up, down, right and left directions (horizontal
and vertical lines) at every vertex of the subdivision.
This idea has similarity to vertical cell decomposition
(VCD) method [14]. In this method, the free space is
partitioned into a finite collection of one-dimensional
and two-dimensional cells by extending rays upward and
downward through free space. In this method, the rays
are not allowed to enter obstacles, however, in our al-
gorithm the rays are extended to all parts of the sub-
division since the paths are allowed to enter weighted
regions at extra costs. Also, we extend rays to the four
directions at every vertex, however, in the VCD method
the rays are extended only upward and downward. In
both methods, the motion planning problem is reduced
to a graph search problem. In VCD method, a roadmap
is constructed by selecting sample points from the cell
centroids, however, in our algorithm the graph is con-
structed by intersecting the rays with each other and
also by the edges of the triangles.

Some of the edges of G which lie on an edge of a
triangle are oblique. These edges are useful when two
triangular regions are close to each other and the region
among them has a lower weight than these triangles. A
path which passes between these two triangles cannot
be completely horizontal or vertical since it will enter

—

Figure 2: The constructed graph of Fig. 1.

the triangles. So it will be oblique and lie on one of the
edges of the triangles (see the sub-path between b4 and
bs on Fig. 1).

According to the construction of the graph, some ver-
tices and edges are added to the graph by vertical and
horizontal lines passing through vertices of the subdivi-
sion. We call the part of the work space which lies be-
tween two consecutive horizontal (resp., vertical) lines,
a horizontal lane (vesp., vertical lane) denoted by LH
(resp., LV). So each LH (resp., LV) is surrounded by
two consecutive horizontal (resp., vertical) lines. There-
fore, when we say the lines of an LH (resp., an LV), we
mean these consecutive lines.

For constructing the graph, we can use one of the line
segments intersections algorithms [3, 5] which computes
all k intersections among n line segments in the plane
in O(nlogn + k) time. These intersection points are
vertices of G. After specifying the set of vertices of G,
the set of edges of G can be specified. It takes O(n?)
time to construct G since the graph has O(n?) vertices
and edges. The constructed graph of the work space
on Fig. 1 is shown on Fig. 2. For simplicity, we do
not triangulate the white regions with weight 1 in these
figures. Precisely, we can apply the proposed algorithm
in a polygonal subdivision in which the regions are not
triangular. The triangulation of the regions just helps
us for showing that G contains the minimum cost path
between s and t.

For computing the minimum cost path under the
Manhattan metric between s and ¢, we can apply Di-
jkstra’s algorithm to G. In this case, the minimum cost
path is obtained in O(n%logn) time. However, since
G is a planar graph with positive edge weights, we can
apply the algorithm presented by Henzinger et al. [12],
which is a linear-time algorithm, to G. Therefore, the
minimum cost path is obtained in O(n?) time.

3.2 Correctness Proof

Now, we show that the constructed graph contains the
minimum cost path between s and ¢ under the Manhat-
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tan metric. Since our metric for measuring the distance
is Manhattan, we can convert any path between s and ¢
to a path which consists of vertical and horizontal line
segments. In other words, when a sub-path between
two consecutive breakpoints is oblique, we can replace
it by two horizontal and vertical line segments where
the cost of movement on these horizontal and vertical
line segments is equal to the cost of movement along
the oblique line segment. In a case where a sub-path
lies between two close triangular regions and the region
between these two triangular regions has lower weight
than these triangles, by applying this conversion, some
parts of the horizontal and vertical line segments may
lie in the triangular region with higher weight. In this
case, we can replace the part which lies in a triangular
region with higher cost with a line segment which lies
on an edge of the triangles (see the sub-path between
by and bs on Fig. 1). Since the weight of each of the
edges of the work space is equal to the minimum weight
of the regions that are incident to that edge, the cost
of movement between two breakpoints on the replaced
line segments is equal to the cost of movement along the
oblique line segment. Therefore, a path between s and
t can only consist of horizontal, vertical, and oblique
line segments, the latter of which are located on the
edges of the triangles. As a result, all the paths that we
consider in the following lemmas consist of the above
mentioned line segments. Our first objective is to prove
the following lemma.

Lemma 1 Let wy, 73, and w3 be three consecutive hor-
izontal (or wvertical) sub-paths from s’ to t' which lie
inside an LH (resp., an LV) and pass through k > 0
triangular regions. If dy,(m2) < dy(m1), then dy(ms) <
dw (71'2).

Proof. We consider the case k = 2, the proof is similar
for any k£ > 0. For simple comparison among the sub-
paths, let the points s’ and ¢’ lie on the same horizontal
line segment. Assume w.l.o.g. that both triangles have
vertical edges (see Fig. 3). The weighted lengths of 71,
7o and 73 are defined as follows (refer to Fig. 3 for the
notations):

dw(ﬂ'l) = (w1 X al) + (UJQ X (IQ) —+ 29 + X2 +L,
dw(ﬂ'g) = (2 X h)—l—l'l + (w1 X bl) + (’wg X bg)-l—l'g—f—L,

dw(ﬂ'g) = (2 X h)—|—a:1 + (2 X h/) +z1+ (w1 X Cl)
+ (’LU2 X CQ)+L.

According to Fig. 3, a; = by + 1 and ag = by — 29. Due
to the assumption that d,(m2) < dy(m1), we have the
following inequality:

(2><h)<x1x(w171)+22x(17w2),

and due to the triangle similarity theorems we have the
following equations:
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Figure 3: Three consecutive horizontal sub-paths from
s’ to t’ through two triangular regions.
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By applying the triangle similarity equations in the
mentioned inequality and adding (wy X ¢1) + (w2 X b2)
to both sides of the inequality we get:

(2Xh/)+21+(w1 X61)+(w2><62) <
(w1 X bl) + (U)Q X b2) + Ty = dw(ﬂ'3) < dw(ﬂg).

Thus, the weighted length of 73 is less than mo. In fact,
the proof is based on the following equation:
h oz 2

)
h' Z1 X9

and since % is constant, we can generalize the proof for
any k > 0 triangular regions between s’ and t'. There-
fore, the lemma holds. O

Note that inside an LH (resp., an LV'), we can con-
sider all the triangles to have vertical (resp., horizontal)
edges since vertical (resp., horizontal) lines are consid-
ered passing through vertices of the subdivision. The
result of this lemma helps us to show that there exists
a shortest path between s and ¢ under the Manhattan
metric such that all the horizontal (resp., vertical) sub-
paths between consecutive breakpoints in LHs (resp.,
LVs) lie on the lines of the LHs (resp., LVs). We call
such a path, a perfect shortest path between s and ¢,
denoted by 7%,. Note that according to the principle
of optimality, since 7%, is optimal in length, all of its
sub-paths in LHs and LVs are also optimal in length.

Lemma 2 There exists a shortest path between s and
t under the Manhattan metric such that, for any sub-
path of the shortest path in an LH (resp., an LV), all
the horizontal (resp., vertical) sub-paths between consec-
utive breakpoints lie on the lines of the LH (resp., LV).
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According to Lemma 2, a path between the entrance
(s") and exit point (¢') of an LH (resp., an LV) is not
optimal in length, unless there exists an optimal path
in length such that all the horizontal (resp., vertical)
sub-paths between consecutive breakpoints lie on the
lines of the LH (resp., LV). Precisely, there is always
a path 7%,,, in an LH (resp., an LV'). According to the
construction of the graph, lines of an LH (resp., an LV')
are edges of G and a horizontal (resp., vertical) sub-path
of a path 7%, between two consecutive breakpoints in
an LH (resp., an LV) lies on the edges of G.

Corollary 3 For any path 7%, in an LH (resp., an
LV), the sub-paths between consecutive breakpoints can-
not be simultaneously horizontal (resp., vertical) and lie
between two lines of the LH (resp., LV).

Lemma 4 A breakpoint of a path 7%,,, in an LH (resp.,
an LV) is located on a line of an LH or an LV or possibly
both.

Proof. We assume that b is a breakpoint in an LH
which is not located on a line of the LH or a LV. Ac-
cording to Corollary 3, the line segment that is incident
to b cannot be horizontal. Therefore, one of the line
segments is vertical and the other one is located on an
edge of a triangle. Since b is also located in an LV and
is not located on one of the lines of the LV, the vertical
line segment incident to b lies between the left and right
lines of the LV, which contradicts Corollary 3. Thus, the
lemma holds. g

Lemma 4 shows that the breakpoints of the perfect
shortest paths in LHs (resp., LVs) must lie on the lines
of the LHs and LVs, meaning that they lie on the edges
of G (since the lines of LHs and LVs are edges of G). The
next step is to show that these breakpoints are located
on the vertices of G.

Lemma 5 For a path n%,,, in an LH (resp., an LV),
the breakpoints of the path are located on the vertices of

G.

Proof. According to Lemma 4, a breakpoint of a path
7t in an LH (resp., an LV') is located on a line of
an LH or an LV or possibly both. If a breakpoint is
located on both a line of an LV and a line of an LH, it
is on the intersection point of these two lines. Thus, it
is on a vertex of G. If it is only located on a line of an
LH or an LV, and one of the incident line segments lies
on a triangle edge, then the breakpoint is located on a
vertex of G (since the intersection of an LH or LV line
with a triangle edge is a vertex of G). Therefore, the
breakpoints of a path 7%, are on the vertices of G. O

Lemma 5 shows that the breakpoints of a path 7%,
in an LH (resp., an LV') are located on the vertices of

G. The next step is to show that a path 7%, under the
Manhattan metric in an LH (resp., an LV') is on G. To
this end, we need to show that the edges of the path
n?,,, are on the edges of G.

Lemma 6 A path 7%, in an LH (resp., an LV) is on
g.

Proof. According to Lemma 5, the breakpoints of a
path 7%, in an LH (resp., an LV) are on the vertices
of G. Let e be an edge between two consecutive break-
points. If e is on an edge of a triangle, it is on G. Now
we assume that e is in an LH and is not on G. Accord-
ing to Corollary 3, e cannot be horizontal since it must
lie on one of the lines of the LH and the lines of LHs
are edges of G. Therefore, it is a vertical edge. Since it
is also located in an LV and is not on G, it is not on
a line of the LV. Therefore, it contradicts Corollary 3.
Thus, e is on G. O

According to Lemma 6, perfect shortest paths in LHs
and LVs which are sub-paths of a path 7%, are on the
constructed graph. Note that in all the lemmas, a path
between s and ¢ only consists of horizontal, vertical, and
oblique line segments, the latter of which are located
on the edges of the triangles. In the continuous work
space, an arbitrary path between s and ¢ consists of line
segments which are not in the form of the mentioned line
segments. Finally, we prove that there exists a shortest
path between s and ¢t on G.

Theorem 7 For a shortest path w1 under the weighted
Manhattan metric in the continuous work space from s
to t, there exists a path mo from s to t on G such that
dw(7T2) S dw(ﬂ'l)-

Proof. It is obvious that when the metric for measuring
the distance is Manhattan, any arbitrary path in the
continuous work space, can be converted to a path which
consists of the three mentioned line segments without
increment in the cost of the path. Thus, we convert
to 7 such that the line segments in 7] are in the form
of the mentioned line segments. Obviously, d,,(7}) =
dw(m1). According to the principle of optimality, each
sub-path of an optimal path in length is also optimal.
Therefore, 7} consists of optimal sub-paths in length in
LHs and LVs. According to Lemma 2, for any shortest
path in an LH (resp., an LV), there exists a path «%,,,
and due to the Lemma 6, perfect shortest paths in LHs
and LVs are on G. Thus, 7] can be converted to a
perfect shortest path (m2) without increment in the cost
of the path. Therefore, a path from s to t on G exists
(m2) whose weighted length is not greater than m. O

According to Theorem 7, G contains a shortest path
from s to t under the weighted Manhattan metric. Since
simple polygons can be triangulated in O(nlogn) time
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and O(n) space [8], work spaces with simple polygonal
regions can be discretized by using the mentioned graph
construction algorithm. Thus, the proposed algorithm
solves WRP under the Manhattan metric.

Theorem 8 The weighted region problem in a planar
polygonal subdivision with positive weights under the
Manhattan metric can be solved in O(n?) time and
space, where n is the total number of vertices of the
subdivision.

By using the triangular inequality, it is easy to see
that the length of a path under the Manhattan metric
is at most /2 times of the length of the path under the
Fuclidean metric. Thus, the proposed algorithm is also
a v/ 2-approximation algorithm for solving WRP under
the Euclidean metric.

4 The Three-Dimensional Case

In this section, we consider WRP in three dimensions.
It has been shown that the problem of finding a shortest
path under any L¥ metric in a three-dimensional poly-
hedral environment is NP-hard [4]. Here, we consider a
specific variation where the regions are rectilinear.

Since the metric for measuring the distance is Man-
hattan, any oblique path between two consecutive
breakpoints in three-dimensional space can be converted
to three parallel line segments to x, y and z axes with-
out increment in the cost of the path. Thus, we consider
all the paths to be rectilinear.

Let n be the total number of vertices of the subdivi-
sion and let (z;, y;, 2), for i = 1,2,...,n be the coor-
dinates of the vertices of the regions (and of s and ).
Let P be the set of planes x = z;, y = vy;, 2 = z;, for
1=1,2,...,n The set of vertices of the graph consists
of the intersection points among at least three planes in
P, and the set of edges of the graph consists of the line
segments between two consecutive vertices of the graph
which lie on the intersection lines between at least two
planes in P. The constructed graph has O(n?) vertices
and edges, and by applying Dijkstra’s algorithm to it,
the minimum cost path under the Manhattan metric
can be obtained in O(n®logn) time.

Similar to the definitions of LH and LV in the pla-
nar case, we define similar notations for the three-
dimensional case. Let XY C denote a part of the
work space which is surrounded by two consecutive
planes orthogonal to the x-axis and two consecutive
planes orthogonal to the y-axis in P which is called an
XY — container. Precisely, an XY C' is not surrounded
along the z-axis. XZC and Y ZC notations are defined
similarly. Since all the paths are considered to be recti-
linear, for any path in an XY C, there exists an equiva-
lent path in length such that all the sub-paths between
consecutive breakpoints along the z-axis are located on
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the planes surrounding XY C. Precisely, according to
the graph construction algorithm, each XY C' consists
of some cuboids where the cost of movement in every
part of a cuboid is equal. Therefore, the sub-paths along
the z-axis in a cuboid have the same cost when they are
located either on the planes surrounding XY C or in-
side the cuboid. Similar results hold for an XZC and
a YZC. Thus, an equivalent path in length between s
and t exists where all the sub-paths between consecu-
tive breakpoints are located on the considered planes in
P. Arguments similar to the ones used in Theorem 7
show that the constructed graph contains the minimum
cost path between s and ¢ under the Manhattan metric.

Theorem 9 The weighted region problem in a three-
dimensional work space among rectilinear regions with
positive weights under the Manhattan metric can be
solved in O(n®logn) time and O(n?®) space, where n is
the total number of vertices of the subdivision.

5 Conclusion

In this paper, we have considered a generalization of
path planning problem — called weighted region prob-
lem (WRP). While unsolvability of WRP over the ra-
tional numbers under the Euclidean metric has been
proved [9], we proposed an algorithm for solving WRP
under the Manhattan metric which is also a +/2-
approximation solution for the Euclidean case. We also
considered the case of rectilinear regions in three dimen-
sions, and generalized our algorithm for it. Improving
the time complexity of the algorithm and providing a
better approximation factor for the Euclidean metric
remain open.
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Appendix

Proof of Lemma 2

Lemma 2 There exists a shortest path between s and t un-
der the Manhattan metric such that, for any sub-path of the
shortest path in an LH (resp., an LV), all the horizontal
(resp., vertical) sub-paths between consecutive breakpoints lie
on the lines of the LH (resp., LV).

e 3 f/
HL(e) / 7
c T2 d

HL(«;) [a T b

e/

Figure 4: Three horizontal paths passing through £ tri-
angular regions.

Proof. Suppose the lemma for the case of a horizontal lane.
Similarly, the lemma holds for a vertical lane. We consider
s" as the entrance point to the LH and t’ as the exit point.
W.l.o.g. we consider that s’ is on the left side of . Due to
the assumption that the path between s and t is optimal in
length, any sub-path of this path is also optimal in length.
Thus, the path between s’ and ¢’ is optimal in length. We
consider a path between s’ and ¢’ where a horizontal sub-
path between two consecutive breakpoints does not lie on
the lines of the LH. We show that there exists an equivalent
path in length between s’ and t’ such that all the horizontal
sub-paths between consecutive breakpoints lie on the lines of
the LH. We assume ¢ and d as two consecutive breakpoints
such that the horizontal sub-path between them does not lie
on the lines of the LH (see Fig. 4). There are k triangular
regions between ¢ and d and the sub-path between these two
breakpoints must pass all k triangular regions (w.l.0.g. as-
sume ¢ and d are located on the edges of the triangles). We
also assume that the path between s’ and t' contains other
two breakpoints — we call them a and b — which are on the
lower line of the LH (these two breakpoints are also located
on the edges of the triangles). For passing these triangles, a
path can directly go from a to b. Since the path between s’
and t' is optimal in length, the path which contains ¢ and d
(m2) has less than or equal length to the case in which it goes
directly from a to b (m1). If dw(m1) = dw(72), an equivalent
path in length which does not contain the horizontal path
between ¢ and d exists. If dy(m1) < dw(m2), it contradicts
our assumption that the path between s and t is optimal
in length. For the other case where dy(m2) < dw(m), we
consider another path which goes from a to e (a breakpoint
on the upper line of the LH and on the edge of the left
most triangle) and then from e to f (a breakpoint on the
upper line of the LH and on the edge of the right most tri-
angle) and then to b (m3). According to Lemma 1, since
dw(m2) < dw(m1), therefore, dy(m3) < dy(m2) and this con-
tradicts our assumption that the path between s and t is
optimal in length. Thus, the lemma holds. O
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Scheduling Three Trains is NP-Complete

Christian Scheffer*

Abstract

We consider the TRAIN SCHEDULING PROBLEM which
can be described as follows: Given m trains via their
tracks, i.e., curves in the plane, and the trains’ lengths,
we want to compute a schedule that moves collision-free
and with limited speed the trains along their tracks such
that the maximal travel time is minimized. We prove
that the TRAIN SCHEDULING PROBLEM is NP-complete
already for three trains.

Furthermore, we extend our NP-completeness con-
struction to the AIRCRAFT SCHEDULING PROBLEM
which means from the case of three trains, i.e., sub-
curves, to the case of three aircrafts, i.e., disks or squares
moving on curves.

1 Introduction

In this paper, we consider a parallel motion planning
problem, the TRAIN SCHEDULING PROBLEM which is
naturally motivated from practice and defined as fol-
lows: Consider k given trains each one defined as a pair
which is made up of a curve in the plane, called the track
of the train and a value, called the length of the train.
We want to compute a schedule moving collision-free
and with bounded velocity all trains along their tracks
from their tracks’ start points to their tracks’ end points
such that the maximal travel time called the makespan
is minimized.

Furthermore, we consider the AIRCRAFT SCHEDUL-
ING PROBLEM which considers aircrafts, i.e., squares or
disks, instead of trains, i.e., subcurves of the tracks.

1.1 Our Results

1. We show that the TRAIN SCHEDULING PROBLEM
is NP-complete already for three trains, see Theo-
rem 1.

2. We establish that the AIRCRAFT SCHEDULING
PROBLEM is NP-complete already for three air-
crafts, see Theorem 6.
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1.2 Related Work

Multi-robot coordination is one of the most famous and
traditional interfaces between robotics and computa-
tional geometry. Due to the amazing large landscape
of parallel motion planning topics and corresponding
results, we refer to surveys as [7, 8, 9] for detailed
overviews.

In their pioneering work, Hopcroft, Schwartz, and
Sharir [6] show that even the simple WAREHOUSEMAN’S
PRrROBLEM which requires to coordinate a set of rectan-
gles from a start configuration to a target configuration
inside a rectangular box is PSPACE-hard.

In a previous paper [4] accepted to the International
Symposium on Computational Geometry 2018, we con-
sider the variant of our AIRCRAFT SCHEDULING PROB-
LEM such that the aircrafts’ movements are not re-
stricted to curves but to the common Euclidean plane.
Amongst others, we showed that this 2D variant is NP-
complete for arbitrary many vehicles and gave a con-
stant factor approximation for the case that the air-
crafts are sufficiently separated. Furthermore, in [2] we
demonstrate a practical realization of our approaches.

In a recent paper [13], we show that there is no
FPTAS neither for the TRAIN SCHEDULING PROBLEM
nor for the AIRCRAFT SCHEDULING PROBLEM but do
not answer the question whether there is an efficient
algorithm for a constant number of vehicles.

O'Donnell and Lozano-Perez [11] consider the
PATH COORDINATION PROBLEM which corresponds
to our AIRCRAFT SCHEDULING PROBLEM and give
a O(q?logq) runtime algorithm for coordinating two
robots at which only forward movements are allowed
and ¢ is the maximal number of segments on the
considered trajectories.  Akella and Hutchinson [1]
consider TRAJECTORY COORDINATION PROBLEMS in
which both the traveling curves and the velocity at
which the robots traverse the curves are known. They
showed that it is NP-complete to compute departure
times for arbitrary many robots such that a minimum-
time collision-free robot coordination is achieved.

Reif and Sharir [12] consider DYNAMIC MOVERS
PROBLEMS in which a given polyhedral body B has to
be moved collision-free within some 1D, 2D, or 3D space
by translations and rotations from a start position to a
target position amid a set of obstacles that rotate and
move along known trajectories. They provide PSPACE-
hardness of the 3D dynamic movement problem if the
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body B has to hold a velocity bound and NP-hardness
if the body’s velocity is unbounded. Furthermore, Reif
and Sharir [12] consider ASTEROID AVOIDANCE PROB-
LEMS as a special variant of DYNAMIC MOVERS PROB-
LEMS in which neither the moving body B nor the ob-
stacles may rotate. In particular, Reif and Sharir pro-
vide a near-linear time algorithm for the 1-dimensional
ASTEROID AVOIDANCE PROBLEM in which each of the
obstacles is a polyhedron traveling with fixed (possi-
ble distinct) translational velocity along a 1-dimensional
line. Reif and Sharir provide an efficient algorithm for
the two-dimensional ASTEROID AVOIDANCE PROBLEM
if the number of the obstacles is a constant and for
the three-dimensioal ASTEROID AVOIDANCE PROBLEM
a single exponential time and a polynomial space algo-
rithm for a convex polyhedron B and arbitrary many
obstacles.

2 Preliminaries

A train is a pair (H, L) where Lj, € Rs is the length
of the train and H is the track of the train which is
defined as a curve H : [0,1] — R?. We simultaneously
denote by H, the function H : [0,1] — R? and its image
{p € R? | thereisat € [0,1] with p = H(t)}. The
length |T'| of a track T : [0,1] — R? in the ambient
space is defined as its length w.r.t. the Euclidean norm,
ie., |T| := fol [|T"(t)||2 dt. A k-fleet is an k-tuple of
trains. Two trains (H, L) and (X, L;) collide for the
parameters A, and \; if the subcurves of H and X with
midpoints H(Ay) and X (\;) and lengths Ly, and L, are
intersecting each other. A reparametrization of a train
(H, L) is a continuous and piecewise linear function
a : [0,400) — [0,1] such that (1) a(0) = 0, (2) there
is a minimal value A > 0 with a(y) = 1 for all u >
A, and (3) the speed of the train is upper-bounded by
1, i.e., for each point in time ¢ € [0,+o00), both left
and right derivative of H o a have Euclidean length at
most 1. A schedule for a k-fleet ((T1,L1),...,(Tk, Li))
is a tuple (aq : [0, M1] — [0,1],..., : [0, M}y — [0, 1])
such that (1) «; is a reparametrization for the train
(T3, L;) for all i € {1,...,k} and (2) T; and T do not
collide for the parameters o;(t) and o;(t) for all i # j €
{1,...,k} and t > 0. The makespan of the schedule
(a1 : [0, M1] = [0,1],..., 0 : [0, M}y, — [0,1]) is defined
as the maximum M., of the My, ..., M. Wlo.g., all
travel times are equal to Thax by extending a; with
a;(t) = a;(M;) for all M; < t < Mpax. Given a k-
fleet F', the TRAIN SCHEDULING PROBLEM asks for a
schedule with minimal makespan.

The  parameter space P of a  k-fleet
((Ty,Ly),...,(Tx, Lg)) is defined as P =
[0,|T1]] x --- x [0,|Tk]].  The forbidden or black
space B of P is the union of all parameter points
p = (A1,..., ) € P such that there are two trains T;
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and T} that collide with the parameters A\; and A;. The
allowed or white space W is defined as P\ B° where B°
denotes the interior of B. Note that the white space W
is closed.

A path is a curve 7 : [0,1] — P and the length ¢(m)
of 7 is defined as its length w.r.t. the maximum metric,
ie., ((m) = fol [|7(t)||oc dt. An a-b-path in the free
space diagram of ((Th,L1),...,(Tk, Li)) is a path 7 C
W between a and b. If not stated otherwise, a path in
the free space diagram is a path m C W connecting the
points (0,...,0) and (|T4], ..., |Tk|)-

3 Scheduling Three Vehicles is NP-complete

In this section, we show that surprisingly the TRAIN
SCHEDULING PROBLEM already for three trains,
TRAIN (3) for short, and the AIRCRAFT SCHEDULING
PROBLEM already for three aircrafts, AIRCRAFT (3) for
short, are NP-complete. We start with the hardness
proof for TRAIN (3).

Theorem 1 TRAIN (3) is NP-complete.

We show that TRAIN(3) is NP-complete by prov-
ing that it is NP-complete to decide whether there is
a schedule with a makespan no larger than M where
M is an input value. Given an M, w.lo.g., we set
s := (0,0,0) and t := (M, M, M). It is obvious that
in an optimal schedule for each point in time there is a
train that travels with speed 1. Thus we obtain:

Observation 2 For a given fleet F, there is a schedule
with makespan M if and only if there is an s-t-path of
length M w.r.t. the mazimum metric in the free space
diagram of F'.

In Section 3.1, we construct an instance Z of a 3D-
shortest path problem that implies a polynomial time
reduction from 3-SAT to a 3D-shortest path problem
that is NP-complete. In Section 3.5, we give a reduction
of 3-SAT to TRAIN (3) by providing a construction of an
instance for TRAIN (3) whose optimal makespan is equal
to the shortest path distance of Z.

3.1 An NP-Completeness Construction for 3D-
Shortest Paths

We consider the three-dimensional Euclidean space R?
and refer to the three corresponding axes and coor-
dinates as h-, x-, and y-axis and -coordinates. For
a € {h,x,y}, the a-length of a point set A C R? is
defined as max, 4ec4 [p.a — ¢g.a| where p.a and g.a de-
note the a-coordinates of p and g. Furthermore, the
a-distance between two connected point sets A, B C R3
is defined as minyca ¢en [p.a — q.al.
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Definition 3 A plank is an azis-aligned cuboid R C R3
whose h-, x- or y-length is long enough to be assumed
infinity. The width and height of a plank are the maxi-
mum and minimum of the lengths of R in the remaining
two axes directions. A plank R is

e horizontal if the h- and x-lengths of R are the height
of R and infinity

e vertical if the h- and y-lengths of R are the height
of R and infinity, and

e perpendicular if the y- and h-lengths of R are the
height of R and infinity.

The orientation of R is horizontal, vertical, or perpen-
dicular.

Next, we define the shortest path problem to which
we reduce 3-SAT.

Definition 4 An instance T =: (s,t,L,§,R) of
3DPLANKS asks if there is a shortest path of length
L € R>g w.r.t. the mazimum metric between the points
s,t € R3 and among the set R of horizontal, vertical,
or perpendicular planks that have all a height of &.

For the polynomial-time reduction of 3-SAT to
3DPLANKS, we apply the path encoding technique as
already used for hardness results of other 3D-shortest
path problems [3, 10]. However, in the context of
our problem setting we need to ensure important
new aspects, see Properties (P1)-(P8), because our
construction needs to be realisable by the free space
diagram of three trains.

In the remainder of this section we show that
3DPLANKS is NP-complete. First we prove that
3DPLANKS is in NP. After that we give the construc-
tion of Z and its analysis.

The piecewise linear environment implies that a
shortest path is piecewise linear. Thus, the length of
a given path can be calculated within polynomial time
w.r.t. the complexity of the environment. Hence, we
obtain that 3DPLANKS is in NP.

3.2 Outline of the Construction

We consider shortest paths between two points s and ¢
at which st induces a line that has a slope close to 1
w.r.t. -, y-, and h-coordinate, see Figures 1.

We construct an instance with exponentially many
topologically different shortest path classes represent-
ing all possible variable assignments for a given 3-SAT
formula F. Thus, we first construct a sequence of n
path splitter gadgets, see the green gadget in Figure 1,
at which each path splitter gadget doubles the number
of incoming shortest path classes.
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splitter (blue and green), blocker (violet), and shuffle
gadgets (orange). (Bottom) Detailed illustration of the
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Next it follows a sequence of m clause filters. A clause
filter realizes a clause C; = (€;1 V €;2 V £;3) and is made
up of three parallel literal filters at which parallel means
that each literal filter is passed by an individual tube
containing 2" shortest path classes. In order to produce
these tubes, a clause filter starts with a 3-way path split-
ter gadget, see the blue gadget in Figure 1, and ends with
an inverted 3-way path splitter gadget which merges
three input tubes of 2™ shortest path classes into one
tube of 2™ shortest path class.

Inside a clause filter C;, each literal filter represents a
literal ¢;; and is made up of a sequence of n path shuffle
gadgets (see the orange gadgets in Figure 1) which is
interrupted by one path blocker gadget (see the violet
gadget in Figure 1). The path blocker gadget blocks all
shortest path classes whose represented bit assignment
for by, ..., by, contradicts ¢;;. In particular, the shortest
path classes inside each literal filter lie inside a thin di-
agonal tube. The prefixed sequence of path shuffle gad-
gets ensures that all shortest path classes corresponding
to bit assignments that contradict ¢;; lie either on the
top left side of the tube or on the bottom right side of
the tube. Correspondingly, the path blocker gadgets in-
creases the length of all these shortest path classes to
be blocked, i.e., blocks them from being a shortest path
of length L between s and ¢. Finally, the postposed se-
quence of path shuffle gadget rebuilds the configuration
of the shortest path classes inside the tube.

Finally, the bundle of all remaining shortest path
classes are merged by a sequence of n inverted path
splitting gadgets. By the above discussion it follows
that F' is satisfiable if and only if there is a shortest
path of length L between s and ¢ which we call prop-
erty (P1).

The first sequence of n path splitter gadgets generates
2" shortest path classes lying inside a tube of width
€ < 1 which is maintained for all three copies inside
each clause filter.

Each gadget is made up of O(1) planks, see Figure 1
for an overview and the following section for more de-
tails. All in all we have 2n+ m(2 +n + 1) path gadgets
which implies that Z has O(mn) planks which we call
property (P2).

3.3 Detailed Construction of the Path Gadgets

In the following, we discuss the approaches of path split-
ter gadgets, path blocker gadgets, path shuffle gadgets,
and 3-way path splitter gadgets separately, see Figure 1.
The inverted versions of the path splitter and the 3-way
path splitter gadget are constructed in inverted order.
The input to the path splitter gadget is a thin bundle
of shortest path classes, see the green gadget in Figure 1.
The produced output is a bundle containing two copies
of the input bundle. A perpendicular plank blocks paths
from being a shortest path by enforcing the “unwanted”
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paths to take a detour around the perpendicular plank,
see the black bar and the red arrow in the green gadget
of Figure 1.

The path blocker gadget blocks either an upper or
lower part of the input bundle of shortest paths from
being an overall shortest path.

The path shuffie gadget realizes a perfect shuffle to
all input shortest path classes and is made up of three
stages, see the orange gadget in Figure 1: A path splitter
gadget which is colored in gray and two path blocker
gadgets colored in yellow, gold, and orange.

The 3-way path splitter gadget produces three in-
stances 7y, 72, and 73 of the input shortest path classes
for a clause filter representing a clause C; = (£;1V¥{; 2V
l; 3), see the blue gadget of Figure 1. Each instance my,
T, and 73 represents one of the three literals /; 1, ¢; 2,
and ¢; 3 which are logically linked by an “or”. Thus, a
plank in the clause filter corresponding to Cj is only al-
lowed to have an influence to either the shortest paths in
1, T, or 3. In order to ensure that, we construct the
3-way path splitter gadget such that the distance be-
tween two points from two different bundles of my, o,
and 73 on a diagonal line ¢ is a constant times larger
than the widths of the planks used in the clause filter
of Cj, see Figure 1. In particular, the 3-way path split-
ter gadget is made up of three stages: (1) Four planks,
splitting the input shortest path class into two classes,
(2) four planks, splitting the upper class of Stage (1)
into two shortest path classes m; and 72, and (3) two
planks extending the length of the second shortest path
class 3 of Stage (1) about a distance equal to the length
extension caused by Stage (2) for m and ms.

In the following section, we prove that the remaining
properties (P3)-(P8) of Theorem 5 are fulfilled by Z.

Theorem 5 3DPLANKS is NP-complete. In particu-
lar, for each 3-SAT formula ® with n variables and m
clauses, there is an instance T = Z(®) = (s,t,L,&,R)
of 3DPLANKS (see Figure 1) such that

e (P1): the shortest s-t-path has a length of L if and
only if ® is satisfiable,

o (P2): there are O(mn) planks,
e (P3): all planks have the same height &,
o (P4): the minimal width of a plank is 1,

e (P5): the minimal h-distance of two planks that
are not perpendicular is (1),

e (P6): all planks have a width of O(mn),

e (P7): the mazimal x-distance between two vertical
planks of the same path gadget is O(mn), and

e (P8): the maximal y-distance between two con-
secutive horizontal planks of the same path gadget
is O(mn).
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3.4 Properties (P3)-(P8)

Property (P3) is trivially ensured by explicitly using
planks of a common height. Furthermore, w.l.o.g. we
assume that the minimal width of planks used in 7 is 1
which is property (P4). Otherwise, we scale the whole
construction of Z which maintains that all planks have
the same height.

For each path gadget, we ensure that the h-distance
between two planks that are not perpendicular is Q(1).
As the input and output path bundles of all path gad-
gets are diagonal, we can construct Z such that the
length of the (shortest) subpath between two consec-
utive path gadgets is in ©(mn). Analogously, we en-
sure that the shortest path distance between two stages
of the same path shuffle or 3-way path splitter gadget
is ©(mn). Thus we can ensure in our overall construc-
tion that the h-distance between any pair of planks that
are not perpendicular is at least ©(1) which is prop-
erty (P5).

In our reduction from 3-SAT to 3DPLANKS, we ap-
ply that some planks are only passed at one side. We
guarantee that by choosing the widths of these planks
“sufficiently large” (see below for details) such that pass-
ing the plank at a forbidden side would cause a detour
which prevents the path from being shortest. In the fol-
lowing, we discuss the details of that approach for each
type of path gadgets separately.

e The path splitter gadget is constructed such that
doubling the input shortest path classes causes a
detour of constant length. In order to enforce that
a shortest path passes through all 2n path splitter
gadgets despite a detour of length ©(n), we choose
the widths of the planks Py, P5, Ps, and Py of all
2n path splitter gadgets as O(n). Furthermore, we
choose the widths of the planks Py, Ps, Ps, and Py
as O©(1) to ensure that a shortest path passes the
planks Py, Ps, P, and P; on the required sides of
the planks, as illustrated in Figure 1.

e A path blocker gadget simply needs to ensure that
shortest path classes that represent variable assign-
ments that are forbidden by the represented literal
are blocked from being an overall shortest path.
Thus, it suffices to choose the width of all planks
of all path blocker gadgets as O(1).

e Each path splitter of a path shuffle gadget causes a
detour of constant lengths. Inside each clause filter,
a shortest path passes through n path shuffle gad-
gets resulting in summed detour of O(n). In order
to enforce that a shortest path inside each clause
filter passes through all n path shuffle gadgets of a
literal filter, we choose the widths of the first, the
second, and the last two planks of the path split-
ter part of the path shuffle gadget as ©(n). The
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widths of the remaining planks are chosen equal to
the widths of the corresponding planks in the path
splitter and path blocker gadgets.

e The 3-way path splitter gadget ensures that the
distance between two points from different out-
put bundles is ©(n). This results in a detour of
length ©(n) caused by each 3-way path splitter gad-
get. In order to ensure that a shortest path passes
each plank of a clause filter only at the intended
side we choose the width of each one-sided passed
plank larger than the entire detour length caused
by all m clause filters, i.e., as ©(mn).

From the above discussion it follows that the widths
of all planks used in our overall construction of Z are
upper-bounded by O(mn) which is property (P6).

Let P, and P, be two vertical planks of the same path
gadget such that there is not another vertical plank ly-
ing between P; and P, w.r.t. the h-axis. We distinguish
wether P; and P; belong to a path splitter gadget or not:
If P, and P, belong to a path splitter gadget, our con-
struction of Z ensures that the z-distance between P;
and P, is 0. As a path splitter gadget is made up of O(1)
planks with widths no larger than O(1) we obtain that
the z-distance between P; and P, is upper-bounded by
O(1). If P, and P, belong to path shuffle or a 3-way
path splitter gadget, we combine that the path distances
between different stages of the path gadget is upper-
bounded by O(mn), that the planks have a width of
O(mn), that each stage is made up of O(1) planks, and
that the path shuffle and the 3-way path splitter gad-
get are made up of three stages. Thus, we obtain that
the z-distance between P; and P, is upper-bounded by
O(mn). In both cases, we obtain that the z-distance
between P; and P» is upper-bounded by O(mn) which
is property (P7).

A symmetric argument implies that the y-distance
between two consecutive horizontal planks belonging
to the same path gadget is in O(mn) which is prop-
erty (P8) concluding the proof of Theorem 5.

3.5 Reduction of 3-SAT to TRAIN (3)

We construct a 3-fleet with optimal makespan equal to
the shortest path distance of the instance Z constructed
in Section 3.1. A triple (Ap, Az, Ay) of parameters for
the three trains of a 3-fleet F' is forbidden if at least two
trains collide with their parameters independent from
the parameter of the third train. This means the for-
bidden space B of F' is the union of a set of axis-aligned
planks at which each single plank corresponds to an in-
tersection point of two curves, see Figure 2(a)+(b).
The lengths of the planks in the axes directions corre-
sponding to the colliding trains are equal to the lengths
of the colliding trains. Furthermore, the plank extends
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Parameter space of
h Hx X

Parameter space of
stair X —

h

stair.

width g
of the zig-zag
folding

(d)

Figure 2: (a) A vertical plank as part caused by an
intersection point of the curves H and X that are illus-
trated in (b). The length of the plank in y-axis direction
is infinite because a collision of the trains on H and X
is independent from the position of the train on Y. (c)
Replacing a vertical plank R by a vertical stairway Sg,
and (d) the curves Hgpair and Xgpair-

in parallel to the axis corresponding to the third train
through the whole parameter space of H, X, and Y.
Thus, we occasionally say that a plank has a length of
infinity (w.r.t. the axis corresponding to the train which
is not necessarily involved in the collision).

The forbidden space of F' is piecewise linear implying
that a shortest path #’ inside the free space diagram is
piecewise linear, i.e., 7’ can be represented by a polyno-
mial sequence of edges it flips over. This implies, that
the length of 7’ can be determined in polynomial time.
Thus, Observation 2 implies that TRAIN (3) is in NP.

In order to prove that TRAIN (3) is NP-hard we con-
sider an arbitrary 3-SAT formula ¢ and the correspond-
ing instance Z := Z(®) := (s,t,L,£,R) of 3DPLANKS
constructed in Section 3.1. We construct a 3-fleet
F:=((H,Ly),(X,L;),(Y,L,)) and a value L' such that
verifying if there is an optimal schedule for F' with max-
imal travel time no larger than L’ is equivalent to ver-
ifying if there is a shortest path with length no larger
than L for Z. As the construction of Z induces a poly-
nomial time reduction from 3-SAT to 3DPLANKS, it fol-
lows that the construction of F' induces a polynomial
time reduction from 3-SAT to TRAIN (3).

Straightforwardly substituting the planks of Z by
planks that are caused by intersection points of the
trains (H, Ly,), (X,L,), and (Y, L) is not possible be-
cause in the construction of Z we use different horizon-
tal planks that have different widths while all horizon-
tal planks in the forbidden space of (H, L), (X, L.),
and (Y, L,) have a width of L,. Furthermore, there is
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the same issue with vertical and perpendicular planks.
Thus, we replace each single plank R of Z by a so called
stasrway Sk and give an approach how to construct
three trains whose forbidden space modulo translations
is equal to Sg, see Figures 2(c)+(d) for illustrations.

By assembling all resulting curves corresponding to
stairways, we obtain the trains (H,Ly), (X, L,), and
(Y, L,) concluding the proof of Theorem 1.

3.6 Reduction of 3-SAT to AIRCRAFT (3)

We remark that scheduling three aircrafts, i.e., squares
or disks instead of trains, i.e., subcurves is also NP-
complete. Generally speaking, we use the 3D-shortest
path instance Z and substitute planks of Z by (curved)
wedges, see Figure 3.

Parameter space of
hHsmmp X Xstamp

Hstamp

™ o
[N,

Parameter space of
n Hstamp X Xstamp

Figure 3: (a)+(c): In the case of square-shaped and
disk-shaped aircrafts, we substitute planks by wedges
and curved wedges. (b)+(d): In a fixed configuration,
two aircrafts collide if and only if the centre of the first
aircraft lies inside the square By(¢) with radius 2 and
centre ¢ in the midpoint of the second aircraft.

Theorem 6 AIRCRAFT (3) is NP-complete for disk-
shaped and square-shaped aircrafts.

4 Conclusion

We presented hardness results for parallel motion plan-
ning problems considering objects to moved collision-
free along their tracks. Our hardness constructions in-
volve curves that are quite dense in the following man-
ner: Driemel et al. [5] say that a curve is c-packed for a
¢ > 0 if the total intersection of the curve with any ball
of radius 7 > 0 is no larger than cr. The curves con-
structed in our hardness proof are not c-packed for any
constant ¢. Thus, we ask the question whether there
is an efficient algorithm for scheduling three trains or
aircrafts along c-packed curves.
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Chasing Puppies

Jeff Erickson*

I will describe a topological solution to the following puzzle, which Michael Biro posed as an open problem at
CCCG 2013. A human and a puppy find themselves at different points on a walking trail, which is a simple closed
curve in the plane. The human and puppy can see each other from anywhere on the trail, but they cannot leave the
trial. The puppy always moves as quickly as possible to decrease its distance to the human. Can the human catch
the puppy? (Yes!)

This is joint work with Irina Kostitsyna, Maarten Loffler, Tillman Miltzow, Jérome Urhausen, and Jordi Ver-
meulen.

*University of Illinois at Urbana-Champaign, USA, jeffe@illinois.edu
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Folding Small Polyominoes into a Unit Cube

Erik D. Demaine’
Klara Mundilova'

Kingston Yao Czajkowski*

Abstract

We demonstrate that a 3 x 3 square can fold into a unit
cube using horizontal, vertical, and diagonal creases on
the 6 x 6 half-grid. Together with previous results, this
result implies that all tree-shaped polyominoes with at
least nine squares fold into a unit cube. We also make
partial progress on the analogous problem for septomi-
noes and octominoes by showing a half-grid folding of
the U septomino and 2 x 4 rectangle into a unit cube.

1 Introduction

Which polyominoes fold into a unit cube? Aichholzer et
al. [ABD"18] introduced this problem at CCCG 2015,
along with a variety of different models for folding. Ta-
ble 1 summarizes the main models and known results.
We focus here on the powerful half-grid model (the
bottom two rows of Table 1) where

1. the polyomino can be folded along horizontal, ver-
tical, and £45° diagonal creases;

2. every crease has endpoints whose coordinates are
integer multiples of %; and

3. each crease can be folded by +90° or +180°.

In particular, the paper can overlap itself, using multi-
ple layers to cover the cube (as in origami, but unlike
polyhedron unfolding), so long as the paper covers every
point of the cube. Look ahead to Figures 4, 5, and 6 for
examples of foldings in the half-grid model.

A strong positive result [ABD*18, Theorem 3] is that
every polyomino of at least ten squares can fold into a
unit cube in the half-grid model.! In this paper, we

*Cairo-Durham Middle School, Cairo, NY, USA. stonkinge41@
gmail.com

TMIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA. {edemaine,mdemaine,kmundil}@mit.edu

fMassachusetts Institute of Technology, Cambridge, MA,
USA. kimeppling@gmail.com

$The New School, New York, NY, USA. robbykraft@gmail.
com

9The Newton School, Strafford, VT, USA. levipaulsmith08@
gmail.com

LA small typo in [ABD'18] is that the Introduction fails to
mention the half-grid nature of this result, though their Theorem 3
correctly states the result. Their result also guarantees that every
face of the cube is covered by a seamless square in the folding, a
property we ignore here.
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tackle the analogous problem for smaller polyominoes,
with at most nine squares.?

Any polyomino folding into a unit cube has at least
six squares (because the cube has surface area 6). In-
deed, for hexominoes, the half-grid and diagonal fea-
tures of the model are not useful, because the folding
cannot have any overlap (again by an area argument).
Therefore, the hexominoes that fold into a unit cube are
exactly the eleven hexomino nets of the cube; see e.g.
Gardner [Gar89] for the list. Aichholzer et al. [ABD'18,
Fig. 16] verified by exhaustive search that this claim re-
mains true even if we allow cutting the polyomino with
slits until the dual graph (with a vertex for each square
and edges for uncut edge adjacency) is a tree; we call
these tree-shaped polyominoes.

In between this solved hexomino case and the uni-
versally foldable > 10-ominoes are polyominoes with
between seven and nine squares: septominoes, octomi-
noes, and nonominoes. For these cases, Aichholzer et
al. [ABD"18, Fig. 17] did an exhaustive enumeration of
which tree-shaped polyominoes cannot fold into a unit
cube in a more restrictive grid + diagonals model
(the two middle rows of Table 1), which is identical to
the half-grid model above except that every crease has
endpoints whose coordinates are integers.

Therefore the only remaining unsolved tree-shaped
cases for the half-grid model are exactly these examples
not foldable in the grid + diagonals model. Aichholzer
et al. [ABD"18, Fig. 17] lists twelve septominoes, three
octominoes, and just one nonomino with the property
that some cutting into a tree-shaped polyomino has no
grid folding. Figures 1, 2, and 3 list all tree-shaped
cuttings of these polyominoes that lack a grid folding,
as computed by Aichholzer for [ABD"18] (but which
have not previously appeared).

2 Results

In this paper, we show how to fold the one nonomino
case (the 3 x 3 square), one of the octomino cases (the
2 X 4 square), and one of the septomino cases (the U)

2The Introduction of [ABD 18] claims to “characterize all the
polyominoes that can be folded into a unit cube, in grid-based
models”, but in fact the characterizations for < 10 and > 10
squares are in two different models, as we now detail, so neither
is a complete characterization.



32" Canadian Conference on Computational Geometry, 2020

Coordinates H Creases Polyominoes | Polyomino sizes and results
Characterized < 14 [ABD 18]
Grid Orthogonal | Tree-shaped Characterized height-2 and height-3 [ABD 18]
OPEN: > 15 of height > 3
: . Partially characterized [AAC19]
Grid Orthogonal | Arbitrary OPEN: > 7
. . Characterized < 14; all 10,11,12,13,14 [ABD"18]
Grid Diagonal Tree-shaped OPEN: > 15
Grid Diagonal Arbitrary OPEN: > 7
. . All > 9 [this paper]
Half-grid Diagonal Tree-shaped OPEN: 7,8
. . . All > 10 [ABD™18]
Half-grid Diagonal Arbitrary OPEN: 7.8.9

Table 1: Summary of known/open characterizations of which polyominoes fold into a unit cube in six different models,
according to whether crease endpoints must be integers (“grid”) or can be half-integers (“half-grid”); whether creases must
be horizontal and vertical (“orthogonal”) or they can also be at £45° (“diagonal”); and whether the polyominos’ duals must

be trees (“tree-shaped”) or can have cycles (“arbitrary”).

Numbers (between 7 and 15) refer to the number of squares in

the polyomino, except that “height” refers to the smaller dimension of the polyomino’s bounding box. “All” means that all
polyominoes of a given size fold into a unit cube; “Characterized” means that there is a list of which do and which do not;
“Partially characterized” means that there are necessary conditions and sufficient conditions.

into a cube in the half-grid model. Because our foldings
do not require any particular cuts, they also work for
any tree-shaped polyomino resulting from cutting these
polyominoes (the shaded cases in Figures 1, 2, and 3).
In particular, our solution to the sole nonomino case
implies (together with [ABD*18, Theorem 3]) that all
tree-shaped polyominoes with at least nine squares fold
into a cube in the half-grid model.

Figures 4, 5, and 6 show how to fold a 3 x 3 square,
2 x 4 rectangle, and U, respectively, into a unit cube.
In the crease patterns of subfigures (a), dotted lines in-
dicate the integer grid, while solid lines indicate creases
and paper boundary. Mountain creases are drawn in
red, valley creases are drawn in blue, and crease lines
are partially transparent if they fold by +90° and fully
opaque if they fold by +180°. This notation enables ver-
ification of the folding via Origami Simulator [GDG18],
which generated the intermediate 3D foldings in subfig-
ures (c). (As Figure 6(c) makes clear, the simulation
allows collisions and material stretch during the mo-
tion, but it still verifies the final folding.) Subfigures (b)
present human-drawn views of the folded states with the
faces spread out slightly to make clear how the faces can
be stacked while avoiding collision. In addition to the
full folded state with translucent faces (right), which re-
veals mainly the front three faces of the cube, we show
the subfolding of just the back three faces of the cube
(left). To show the correspondence between the crease
pattern (a) and folded state (b), we also label the faces
that make up the outer cube surface.

The foldings in Figures 4 and 5 shift the grid of the
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polyomino by % to make the grid of the unit cube. Cu-
riously, the folding of the U septomino in Figure 6 does
not, and barely uses the half-grid model by having two
crossing diagonals which meet at a half-integer point.

3 Other Related Work

Beyond the problem studied in this paper, several other
variations have been considered.

In addition to the results mentioned above, Aich-
holzer et al. [ABD*18] studied the grid model where
creases must be horizontal or vertical (no diagonals)
and have endpoints at integer coordinates (the top two
rows of Table 1). Specifically, they characterized exactly
which tree-shaped polyominoes of height 2 or 3 (i.e., fit-
ting in a 2 X co or 3 x oo strip) fold into a unit cube;
their condition can be checked in linear time. A general
characterization remains open. They also proved sep-
arations between the models in Table 1, along with a
few other models, and characterized which polyiamonds
(edge-to-edge joinings of equilateral triangles) fold into
a unit tetrahedron in an analog to the grid model.

At CCCG 2019, Aichholzer et al. [AACT19] consid-
ered the grid model when the polyomino has holes (and
is thus not tree-shaped). This case corresponds to some
puzzles invented by Nikolai Beluhov [Bell4] which orig-
inally motivated [ABD*18] as well. Aichholzer et al.
[AACT19] gave sufficient conditions when a polyomino
containing certain hole shapes can fold into a cube, as
well as some necessary conditions, but a general char-
acterization remains open.
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Figure 1: Tree-shaped septominoes that cannot fold into
a unit cube in the grid + diagonals model, as computed
by Aichholzer [ABD"18]. Figure 6 shows how to fold the
shaded case in the half-grid model.

Gardner [Gar95] posed a puzzle about cutting the
3 x 3 square with slits and then folding along orthogonal
grid lines into a unit cube with the additional property
of just one side of the paper showing on the outside.
Gardner gave one solution, and stated that it can be
done “in many different ways”. Dunham and Whiel-
don [DW17] subsequently found all solutions (with and
without the additional property) by exhaustive search.

Off the polyomino grid, Catalano-Johnson, Loeb, and
Beebee [CLBO01] (see also [DO07, Section 15.4.1]) proved
that the smallest square that folds into a unit cube has
dimensions (2v/2) x (2v/2) ~ 2.8284 x 2.8284. This fold-
ing implies a folding of a 3 x 3 square into a unit cube:
just fold away the extra material first. Our innovation
is to show that there is a folding in the half-grid model.
By contrast, the solution in [CLB01] rotates the square
45° to make the grid of the unit cube.
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Figure 2: Tree-shaped octominoes that cannot fold into
a unit cube in the grid + diagonals model, as computed
by Aichholzer [ABD118]. Figure 5 shows how to fold the
shaded cases in the half-grid model.

Figure 3: Tree-shaped nonominoes that cannot fold into
a unit cube in the grid + diagonals model, as computed by
Aichholzer [ABD'18]. Figure 4 shows how to fold all of
them in the half-grid model.

4 Open Problems

We conjecture that the remaining septomino and oc-
tomino cases cannot be folded into a cube, but could
not find an easy argument for impossibility. The best
approach may be an exhaustive search for foldings in
the half-grid model.

Beyond just tree-shaped polyominoes, we conjecture
that all polyominoes with at least nine squares fold into
a cube in the half-grid model. The result for at least
ten squares [ABD 18, Theorem 3] does not rely on the
tree-shaped property, but the existence of grid foldings
for all nonominoes beyond the 3 x 3 square does. Thus
we would need to verify that all 438 non-tree-shaped
nonominoes fold into a cube, which we have started
to do, but may be easiest to complete via exhaustive
search.

There are also countless other models and additional
conditions to consider. We mention a few now.

As mentioned in Footnote 1, the universal folding for
at least ten squares [ABDT18, Theorem 3] guarantees
that every face of the cube is covered by a seamless unit
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(a) Crease pattern

(¢) Folding animation from Origami Simulator [GDG18]

Figure 4: Folding the 3 x 3 square into a unit cube.

square. Our folding of the U septomino in Figure 6
shares this property, but we conjecture that this prop-
erty is unattainable for the 2 x 4 rectangle or 3 x 3 square
because (unlike the U) they seem to need to misalign the
cube’s grid with the polyomino’s grid.

Gardner’s 3 x 3 puzzle [Gar95] mentioned in Section 3
required that the surface of the cube be made entirely
from the same side of the piece of paper. Our foldings of
the 3x 3 square (Figure 4) and 2 x4 rectangle (Figure 5),
while our folding of the U (Figure 6) does not, and we
conjecture that it cannot. With this restriction, many
other problems become open again. For example, can
all polyominoes of at least ten squares still fold into a
unit cube?

Finally, the animations we draw in Figures 4(c), 5(c),
and 6(c) raise the question of which cube foldings are
achievable as rigid origami (avoiding collisions while
folding only at creases). This direction has yet to be
explored.
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(¢) Folding animation from Origami Simulator [GDG18]

Figure 6: Folding the U septomino into a unit cube.
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Some Polycubes Have No Edge Zipper Unfolding

Erik D. Demaine*

Abstract

It is unknown whether every polycube (polyhedron con-
structed by gluing cubes face-to-face) has an edge un-
folding, that is, cuts along edges of the cubes that un-
folds the polycube to a single nonoverlapping polygon
in the plane. Here we construct polycubes that have no
edge zipper unfolding where the cut edges are further
restricted to form a path.

1 Introduction

A polycube P is an object constructed by gluing cubes
whole-face to whole-face, such that its surface is a man-
ifold. Thus the neighborhood of every surface point is
a disk; so there are no edge-edge nor vertex-vertex non-
manifold surface touchings. Here we only consider poly-
cubes of genus zero. The edges of a polycube are all
the cube edges on the surface, even when those edges
are shared between two coplanar faces. Similarly, the
vertices of a polycube are all the cube vertices on the
surface, even when those vertices are flat, incident to
360° total face angle. Such polycube flat vertices have
degree 4. It will be useful to distinguish these flat ver-
tices from corner wvertices, nonflat vertices with total
incident angle # 360° (degree 3, 5, or 6). For a polycube
P, let its 1-skeleton graph Gp include every vertex
and edge of P, with vertices marked as either corner or
flat.

It is an open problem to determine whether every
polycube has an edge unfolding (also called a grid
unfolding) — a tree in the 1-skeleton that spans all cor-
ner vertices (but need not include flat vertices) which,
when cut, unfolds the surface to a net, a planar nonover-
lapping polygon [O’R19]. By nonoverlapping we
mean that no two points, each interior to a face, are
mapped to the same point in the plane. This definition
allows two boundary edges to coincide in the net, so the
polygon may be “weakly simple.” The intent is that we
want to be able to cut out the net and refold to P.

It would be remarkable if every polycube could be
edge unfolded, but no counterexample is known. There

*MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA, {edemaine,mdemaine}@mit.edu

fComputer Science Department University of California,
Irvine, CA 92679, USA eppstein@uci.edu Supported in part by
NSF grants CCF-1618301 and CCF-1616248
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has been considerable exploration of orthogonal poly-
hedra, a more general type of object, for which there
are examples that cannot be edge-unfolded [BDD98].
(See [DF18] for citations to earlier work.) But poly-
cubes have more edges in their 1-skeleton graphs for
the cut tree to follow than do orthogonal polyhedra, so
it is conceivably easier to edge-unfold polycubes.

A restriction of edge unfolding studied in [She75,
DDL*10, O'R10, DDU13] is edge zipper unfolding
(also called Hamiltonian unfolding). A zipper un-
folding has a cut tree that is a path (so that the surface
could be “unzipped” by a single zipper). It is appar-
ently unknown whether even the highly restricted edge
zipper unfolding could unfold every polycube to a net.
The result of this note is to settle this question in the
negative: polycubes are constructed none of which have
an edge zipper unfolding. Two polycubes in particular,
shown in Fig. 1, have no such unfolding. Other poly-
cubes with the same property are built upon these two.

(b)

(a)

Figure 1: Two polycubes that have no edge zipper un-
folding.

2 Hamiltonian Paths

Shephard [She75] introduced Hamiltonian unfoldings of
convex polyhedra, what we refer to here as edge zip-
per unfolding, following the terminology of [DDL*10].
Any edge zipper unfolding must cut along a Hamilto-
nian path of the vertices. It is easy to see that not every
convex polyhedron has an edge zipper unfolding, simply
because the rhombic dodecahedron has no Hamiltonian
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path. This counterexample avoids confronting the diffi-
cult nonoverlapping condition.

We follow a similar strategy here, constructing a poly-
cube with no Hamiltonian path. But there is a differ-
ence in that a polycube edge zipper unfolding need not
include flat vertices, and so need not be a Hamiltonian
path in Gp. Thus identifying a polycube P that has no
Hamiltonian path does not immediately establish that
P has no edge zipper unfolding, if P has flat vertices.

So one approach is to construct a polycube P that has
no flat vertices—every vertex is a corner vertex. Then,
if P has no Hamiltonian path, then it has no edge zipper
unfolding. A natural candidate is the polycube object
Ps shown in Fig. 2. However, the 1-skeleton of Py does

Figure 2: All of Py’s vertices are corner vertices.

admit Hamiltonian paths, and indeed we found a path
that unfolds Py to a net.

Let Gp be the dual graph of P: each cube is a node,
and two nodes are connected if they are glued face-to-
face. A polycube tree is a polycube whose dual graph is
a tree. P is a polycube tree. That it has a Hamiltonian
path is an instance of a more general claim:

Lemma 1 The graph Gp for any polycube tree P has
a Hamiltonian cycle.

Proof. It is easy to see by induction that every poly-
cube tree can be built by gluing cubes each of which
touches just one face at the time of gluing: never is
there a need to glue a cube to more than one face of the
previously built object.

A single cube has a Hamiltonian cycle. Now assume
that every polycube tree of < n cubes has a Hamilto-
nian cycle. For a tree P of n + 1 cubes, remove a Gp
leaf-node cube C, and apply the induction hypothesis.
The exposed square face f to which C glues to make
P includes either 2 or 3 edges of the Hamiltonian cycle
(4 would close the cycle; 1 or 0 would imply the cycle
misses some vertices of f). It is then easy to extend the
Hamiltonian cycle to include C, as shown in Fig. 3. O

So to prove that a polycube tree has no edge zipper
unfolding would require an argument that confronted
nonoverlap. This leads to an open question:
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(a) ¢ (b) ¢

Figure 3: (a) f contains 3 edges of the cycle (blue); (b)
f contains 2 edges of the cycle. The cycles are extended
to C' by replacing the blue with the the red paths.

Question 1 Does every polycube tree have an edge zip-
per unfolding?

3 Bipartite Gp

To guarantee the nonexistence of Hamiltonian paths,
we can exploit the bipartiteness of Gp, using Lemma 3
below.

Lemma 2 A polycube graph Gp is 2-colorable, and
therefore bipartite.

Proof. Label each lattice point p of Z? with the {0,1}-
parity of the sum of the Cartesian coordinates of p. A
polycube P’s vertices are all lattice points of Z3. This
provides a 2-coloring of G p; 2-colorable graphs are bi-
partite. O

The parity imbalance in a 2-colored (bipartite)
graph is the absolute value of the difference in the num-
ber of nodes of each color.

Lemma 3 A bipartite graph G with a parity imbalance
> 1 has no Hamiltonian path.!

Proof. The nodes in a Hamiltonian path alternate col-
ors 010101.... Because by definition a Hamiltonian
path includes every node, the parity imbalance in a bi-
partite graph with a Hamiltonian path is either 0 (if of
even length) or 1 (if of odd length). O

So if we can construct a polycube P that (a) has no
flat vertices, and (b) has parity imbalance > 1, then we
will have established that P has no Hamiltonian path,
and therefore no edge zipper unfolding. We now show
that the polycube P,y4, illustrated in Fig. 4, meets these
conditions.

Lemma 4 The polycube Pyy’s graph Gp,, has parity
imbalance of 2.

Proof. Consider first the 2 x 2 x 2 cube that is the core
of Pyy; call it Pyss. The front face F' has an extra 0;
see Fig. 5. It is clear that the 8 corners of Psgo are all

IStated at
HamiltonianPath.html.

http://mathworld.wolfram.com/
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Figure 4: The polycube P44, consisting of 44 cubes, has
no Hamiltonian path.

Figure 5: 2-coloring of one face of Psos.

colored 0. The midpoint vertices of the 12 edges of Pa2o
are colored 1. Finally the 6 face midpoints are colored
0. So 14 vertices are colored 0 and 12 colored 1.

Next observe that attaching a cube C' to exactly one
face of any polycube does not change the parity: the
receiving face f has colors 0101, and the opposite face
of C' has colors 1010.

Now, P44 can be constructed by attaching six copies
of a 6-cube “cross,” call it Py, which in isolation is a
polycube tree and so can be built by attaching cubes
each to exactly one face. And each P, attaches to one
corner cube of Pygy. Therefore Py retains Pooo’s imbal-
ance of 2. O

The point of the P, attachments is to remove the flat
vertices of Psoo. Note that when attached to Psgo, each
P, has only corner vertices.

Theorem 5 Polycube Py has no edge zipper unfolding.
Proof. Although it takes some scrutiny of Fig. 4 to
verify, Pys has no (degree-4) flat vertices. Thus an edge

zipper unfolding must pass through every vertex, and
so be a Hamiltonian path. Lemma 4 says that G p,, has
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imbalance 2, and Lemma 3 says it therefore cannot have
a Hamiltonian path. O

4 Construction of P4

It turns out that the smaller polycube P4 shown in
Fig. 6 also has no edge zipper unfolding, even though
it has flat vertices. To establish this, we still need an

Figure 6: Pp4: Psoo with six 1-cube attachments.

imbalance > 1, which easily follows just as in Lemma 4:

Lemma 6 The polycube Pi4’s graph Gp,, has parity
imbalance of 2.

But notice that P4 has three flat vertices: a, b, and c.

Theorem 7 Polycube P14 has no edge zipper unfolding.

Proof. An edge zipper unfolding need not pass through
the three flat vertices, a, b, and ¢, but it could pass
through one, two, or all three. We show that in all
cases, an appropriately modified subgraph of Gp,, has
no Hamiltonian path. Let p be a hypothetical edge zip-
per unfolding cut path. We consider four exhaustive
possibilities, and show that each leads to a contradic-
tion.

(0) p includes a,b,c. So p is a Hamiltonian path
in Gp,,. But Lemma 6 says that Gp,, has imbal-
ance 2, and Lemma 3 says that no such graph has
a Hamiltonian path.

(1) p excludes one flat vertex a and includes b, c.
(Because of the symmetry of Pj4, it is no loss of
generality to assume that it is a that is excluded.)
If p excludes a, then it does not travel over any of
the four edges incident to a. Thus we can delete a
from Gp,,; say that G_, = Gp,, \ a. This graph is
shown in Fig. 7. Following the coloring in Fig. 5,
all corners of Pag9 are colored 0, so each of the edge
midpoints a, b, ¢ is colored 1. The parity imbalance
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Figure 7: Schlegel diagram of G_,. We follow [DF18] in
labeling the faces of a cube as F, K, R, L, T, B for Front,
bacK, Right, Left, Top, Bottom respectively. The cor-
ners of Psoo are labeled 0, 1,2, 3 around the bottom face
B, and 4,5,6,7 around the top face T. m is the ver-
tex in the middle of B. The edges deleted by removing
vertex a are shown dashed.

of Py, is 2 extra 0’s. Deleting a maintains bipartite-
ness and increases the parity imbalance of G_, to
3. Therefore by Lemma 3, G_, has no Hamiltonian
path, and such a p cannot exist.

(2) p includes just one flat vertex ¢, and excludes
a,b. (Again symmetry ensures there is no loss of
generality in assuming the one included flat vertex
is ¢.) p must include corner z, which is only ac-
cessible in Gp,, through the three flat vertices. If
p excludes a,b, then it must include the edge czx.
Let G_op = Gp,, \ {a,b}. In G_,p, = has degree
1, so p terminates there. It must be that p is a
Hamiltonian path in G_g;, but the deletion of a,b
increases the parity imbalance to 4, and so again
such a Hamiltonian path cannot exist.

(3) p excludes a,b,c. Because corner z is only ac-
cessible through one of these flat vertices, p never
reaches z and so cannot be an edge zipper unfold-
ing.

Thus the assumption that there is an edge zipper un-
folding cut path p for P4 reaches a contradiction in all
four cases. Therefore, there is no edge zipper unfolding
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cut path for Pjy.2 O

5 Edge Unfoldings of P;4 and Pyy

Now that it is known that P;4 and P4 each have no edge
zipper unfolding, it is natural to wonder whether either
settles the edge-unfolding open problem: can they be
edge unfolded? Indeed both can: see Figures 8 and 9.

Figure 8: Edge unfolding of Py4. Colors: green = cut,
red = mountain, blue = valley, yellow = flat.

The colors in these layouts are those used by Origami
Simulator [GDG18]. Fig. 10 shows a partial folding
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Figure 9: Edge unfolding of Py4. Colors: green = cut,
red = mountain, blue = valley, yellow = flat.

of P4, and animations are at http://cs.smith.edu/
~jorourke/Unf/NoEdgeUnzip.html.

2Just to verify this conclusion, we constructed these graphs in
Mathematica and FindHamiltonianPath[] returned {} for each.
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Figure 10: Partial folding of the layout in Fig. 9. Com-
pare with Fig. 4.

6 Many Polycubes with No Edge Zipper Unfolding

As pointed out by Ryuhei Uehara,? Py, can be extended
to an infinite number of polycubes with no zipper un-
folding. Let P§ be the polycube in Fig. 2 with the bot-
tom cube removed. So P} has a ‘+’ sign of five cubes
in its base layer. Let B be the bottom face of the cube
at the center of the ‘+’ sign. Attach P§ to the highest
cube of Py4 in Fig. 1(a) by gluing B to the top face of
that top cube. It is easy to verify that all new vertices
of this augmented object, call it Pj,, are corners. The
joining process can be repeated with another copy of
P}, producing Pj,, and so on. All of these polycubes
have no zipper unfolding.

We have not attempted to edge-unfold these larger
objects.

7 Open Problems

The most interesting question remaining in this line of
investigation is Question 1 (Sec. 2): Does every poly-
cube tree have an edge zipper unfolding?

Acknowledgements. We thank participants of the
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from suggestions by the referees.
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Acutely Triangulated, Stacked, and Very Ununfoldable Polyhedra

Erik D. Demaine*

Abstract

We present new examples of topologically convex edge-
ununfoldable polyhedra, i.e., polyhedra that are combi-
natorially equivalent to convex polyhedra, yet cannot be
cut along their edges and unfolded into one planar piece
without overlap. One family of examples is acutely
triangulated, i.e., every face is an acute triangle. An-
other family of examples is stacked, i.e., the result of
face-to-face gluings of tetrahedra. Both families achieve
another natural property, which we call very unun-
foldable: for every k, there is an example such that
every nonoverlapping multipiece edge unfolding has at
least k pieces.

1 Introduction

Can every convex polyhedron be cut along its edges
and unfolded into a single planar piece without overlap?
Such edge unfoldings or nets are useful for construct-
ing 3D models of a polyhedron (from paper or other ma-
terial such as sheet metal): cut out the net, fold along
the polyhedron’s uncut edges, and re-attach the poly-
hedron’s cut edges [25]. Unfoldings have also proved
useful in computational geometry algorithms for find-
ing shortest paths on the surface of polyhedra [3,5,9].

Edge unfoldings were first described in the early 16th
century by Albrecht Diirer [16], implicitly raising the
still-open question of whether every convex polyhedron
has one (sometimes called Diirer’s conjecture). The
question was first formally stated in 1975 by G. C. Shep-
hard, although without reference to Diirer [17,23]. It
has been heavily studied since then, with progress of
two types [15,22]:

1. finding restricted classes of polyhedra, or general-
ized types of unfoldings, for which the existence of
an unfolding can be guaranteed; and

2. finding generalized classes of polyhedra, or re-
stricted types of unfoldings, for which counterex-
amples — wununfoldable polyhedra — can be
shown to exist.
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@mit.edu

fComputer Science Department, University of California,
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Results guaranteeing the existence of an unfolding in-
clude:

e Every pyramid, prism, prismoid, and dome has an
edge unfolding [15].

e Every sufficiently flat acutely triangulated convex
terrain has an edge unfolding [21]. Consequentially,
every acutely triangulated convex polyhedron can
be unfolded into a number of planar pieces that is
bounded in terms of the “acuteness gap” of the
polyhedron, the minimum distance of its angles
from a right angle.

e Every convex polyhedron has an affine transforma-
tion that admits an edge unfolding [18].

e Every convex polyhedron can be unfolded to a sin-
gle planar piece by cuts interior to its faces [3,14].

e Every polyhedron with axis-parallel sides can be
unfolded after a linear number of axis-parallel cuts
through its faces [10].

e Every triangulated surface (regardless of genus) has
a “vertex unfolding”, a planar layout of triangles
connected through their vertices that can be folded
into the given surface [13].

e For ideal polyhedra in hyperbolic space, unlike Eu-
clidean convex polyhedra or non-ideal hyperbolic
polyhedra, every spanning tree forms the system
of cuts of a convex unfolding into the hyperbolic
plane.

Previous constructions of ununfoldable polyhedra in-
clude the following results. A polyhedron is topolog-
ically convex if it is combinatorially equivalent to a
convex polyhedron, meaning that its surface is a topo-
logical sphere and its graph is a 3-vertex-connected pla-
nar graph.

e Some orthogonal polyhedra and topologically con-
vex orthogonal polyhedra have no edge unfolding,
and it is NP-complete to determine whether an
edge unfolding exists in this case [1,8].

e There exists a convex-face star-shaped topolog-
ically convex polyhedron with no edge unfold-
ing [20,24].
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e There exists a triangular-face topologically convex
polyhedron with no edge unfolding [7].

e There exist edge-ununfoldable topologically convex
polyhedra with as few as 7 vertices and 6 faces, or
6 vertices and 7 faces [4].

e There exists a topologically convex polyhedron that
does not even have a vertex unfolding [2].

e There exist domes that have no Hamzltonian un-
folding, in which the cuts form a Hamiltonian path
through the graph of the polyhedron [12]. Simi-
larly, there exist polycubes that have no Hamilto-
nian unfolding [11].

e There exists a convex polyhedron, equipped with
3-vertex-connected planar graph of geodesics par-
titioning the surface into regions metrically equiv-
alent to convex polygons, that cannot be cut and
unfolded along graph edges [6].

In this paper, we consider two questions left open
by the previous work on edge-ununfoldable polyhe-
dra with triangular faces [7], and strongly motivated
by O’Rourke’s recent results on unfoldings of acutely-
triangulated polyhedra [21]. First, the previous coun-
terexample of this type involved triangles with highly
obtuse angles. Is this a necessary feature of the con-
struction, or does there exist an ununfoldable polyhe-
dron with triangular faces that are all acute? Second,
how far from being unfoldable can these examples be?
Is it possible to cut the surfaces of these polyhedra into
a bounded number of planar pieces (instead of a single
piece) that can be folded and glued to form the polyhe-
dral surface? (Both questions are motivated by previ-
ously posed analogous questions for convex polyhedra,
as easier versions of Diirer’s conjecture [15, Open Prob-
lems 22.12 and 22.17].)

We answer both of these questions negatively, by find-
ing families of topologically convex edge-ununfoldable
polyhedra with all faces acute triangles, in which any
cutting of the surface into regions that can be unfolded
to planar pieces must use an arbitrarily large number
of pieces. Additionally, we use a similar construction
to prove that there exist edge-ununfoldable stacked
polyhedra [19], formed by gluing tetrahedra face-to-
face with the gluing pattern of a tree, that also re-
quire an arbitrarily large number of pieces to unfold.
We leave open the question of whether there exists
an edge-ununfoldable stacked polyhedron with acute-
triangle faces.

2 Hats

Our construction follows that of Bern et al. [7] in being
based on certain triangulated topological disks, which
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Figure 1: Combinatorial structure of a hat

they called hats. The combinatorial structure of a hat
(in top view, but with different face angles than the hat
we use in our proof) is shown in Figure 1: It consists
of nine triangles, three of which (the brim, blue in the
figure) have one edge on the outer boundary of the disk.
The next three triangles, yellow in the figure, have a
vertex but not an edge on the disk boundary; we call
these the band of the hat. The central three triangles,
pink in the figure, are disjoint from the boundary and
meet at a central vertex; we call these the crown of the
hat.

In both the construction of Bern et al. [7] and in our
construction, the three vertices of the hat that are inte-
rior to the disk but not at the center all have negative
curvature, meaning that the sum of the angles of the
faces meeting at these vertices is greater than 27. The
center vertex, on the other hand, has positive curvature,
a sum of angles less than 27. When this happens, we
can apply the following lemmas:

Lemma 2.1 At any negatively-curved vertex of a poly-
hedron, any unfolding of the polyhedron that cuts only its
edges and separates its surface into one or more simple
polygons must cut at least two edges at each negatively-
curved vertez.

Proof. If only one edge were cut then the faces sur-
rounding that vertex could not unfold into the plane
without overlap. O

Lemma 2.2 Let D be a subset of the faces of a polyhe-
dron, such that the polyhedron is topologically a sphere
and D s topologically equivalent to a disk (such as a
hat). Then in any unfolding of the polyhedron (possible
cutting it into multiple pieces), either D is separated
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Figure 2: Two paths from a boundary vertex of a hat,
through all three negatively curved vertices, to the cen-
ter vertex

into multiple pieces by a path of cut edges from one
boundary vertex of D to another or by a cycle of cut
edges within D, or the set of cut edges within D forms
a forest with at most one boundary vertex for each tree
in the forest.

Proof. If the cut edges within D do not form a forest,
they contain a cycle and the Jordan Curve Theorem
implies that this cycle separates an interior part of the
boundary from the exterior. If they form a forest in
which some tree contains two boundary vertices, then
they contain a boundary-to-boundary path within D,
again separating D by the Jordan Curve Theorem. The
only remaining possibility is a forest with at most one
boundary vertex per tree. 0

Lemma 2.3 For a hat combinatorially equivalent to
the one in Figure 1, with positive curvature at the center
verter and negative curvature at the other three interior
vertices, any unfolding that does not cut the hat into
multiple pieces must cut a set of edges along a single
path from a boundary vertex to the center verter.

Proof. By Lemma 2.2, each component of cut edges
must form a tree with at most one boundary vertex
within the hat. But every tree with one or more edges
has at least two leaves, and every tree that is not a path
has at least three leaves. By Lemma 2.1, the only non-
boundary leaf can be the center vertex, so each com-
ponent must be a path from the boundary to this ver-
tex. 0

Up to symmetries of the hat, there are only two
distinct shapes that the path of Lemma 2.3 from the
boundary to the center of a hat can have (Figure 2).
These two cuttings differ in how the crown triangles are
attached to the band and to each other, but they both
cut the brim and band triangles in the same way, into
a strip of triangles connected edge-to-edge around the
boundary of the hat.

Our key new construction is depicted in unfolded (but
self-overlapping) form in Figure 3. It is a hat in which
all triangles are acute and isosceles:

e The three brim triangles have apex angle 85° and
base angle 47.5°.

e The three band triangles have base angle 85° and
apex angle 10°.

e The three crown triangles are congruent to the
band triangles, with base angle 85° and apex angle
10°.

As in the construction of Bern et al. [7], this leaves neg-
ative curvature (total angle 425° from five 85° angles)
at the three non-central interior angles of the hat, and
positive curvature (total angle 30°) at the center vertex,
allowing the lemmas above to apply. The cut edges of
the figure form a tree with a degree-three vertex at one
of the negatively curved vertices of the hat, and a leaf
at another negatively curved vertex, the one at which
the self-overlap of the figure occurs, So the cutting in
the figure does not match in detail either of the two
path cuttings of Figure 2. Nevertheless, the brim and
band triangles are unfolded as they would be for either
of these two path cuttings. It is evident from the fig-
ure that this unfolding of the brim and band triangles
cannot be extended to a one-piece unfolding of the en-
tire hat: if a crown triangle is attached to the middle
of the three unfolded band triangles (as it is in the fig-
ure) then there is no room on either side of it to attach
the other two crown triangles, and a crown triangle at-
tached to either of the other two band triangles would
overlap the opposite band triangle. We prove this visual
observation more formally below.

Lemma 2.4 The hat with acute triangles described
above has no single-piece unfolding.

Proof. As we have already seen in Lemma 2.3, any un-
folding (if it exists) must be along one of the two cut
paths depicted in Figure 2. As a result, the unfolding of
the brim and band triangles (but not the crown trian-
gles) must be as depicted in Figure 3. In this unfolding,
the three base sides of the unfolded band triangles form
a polygonal chain whose interior angles (surrounding
the central region of the figure where the pink crown
triangles are attached) can be calculated as 105°.

A regular pentagon has interior angles of 108°, and
has the property that each vertex lies on the perpendic-
ular bisector of the opposite edge. Because the interior
angles of the chain of base sides of band triangles are
105°, less than this 108° angle, it follows that the band
triangle at one end of the chain extends across the per-
pendicular bisector of the base edge at the other end
of the chain. Further, it does so at a point closer than
the vertex of a regular pentagon sharing this same base
edge (Figure 4).

If a crown triangle were attached to one of the two
base edges at the ends of the chain of three base edges,
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Figure 3: A hat made with acute isosceles triangles. Un-
like Figure 2, the cuts made to form the self-overlapping
unfolding shown do not form a path.

Figure 4: Each vertex of a regular pentagon lies on the
perpendicular bisector of the opposite side; in a path of
three equal edges with the tighter angle 105°, the last
edge overlaps the perpendicular bisector of the first.

its altitude would lie along the perpendicular bisector of
the base edge. And because the crown triangle has an
apex angle of 10°, sharper than the angle of an isosceles
triangle inscribed within a regular pentagon, its altitude
extends across the perpendicular bisector farther than
the regular pentagon vertex, causing it to overlap with
the band triangle at the other end of the chain of three
base edges.

Therefore, attaching a crown triangle to either the
first or last of the band triangle base edges in the
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Figure 5: Tetrahedron with faces replaced by hats

chain of these three edges necessarily leads to a self-
overlapping unfolding. However, these two ways of at-
taching a crown triangle are the only ones permitted by
the two cases depicted in Figure 2. Attaching a crown
triangle to the middle of the three base edges, as in Fig-
ure 3, can only be done by cutting along a tree that is
not a path. Therefore, no unfolding exists. O

The following construction is straightforward, and
will allow us to construct polyhedra with multiple hats
while keeping the hats disjoint from each other.

Lemma 2.5 The hat with acute triangles described
above can be realized in three-dimensional space, lying
within a right equilateral-triangle prism whose base is
the boundary of the hat.

3 Acute Ununfoldable Polyhedra

We now use these hats to construct a topologically con-
vex ununfoldable polyhedron.

Theorem 3.1 There exists a topologically convex un-
unfoldable polyhedron whose faces are all acute isosceles
triangles.

Proof. Replace the four faces of a regular tetrahedron
by acute-triangle hats, all pointing outward, as shown
in Figure 5. Because each lies within a prism having
the tetrahedron face as a base, they do not overlap each
other in space. By Lemma 2.4, no hat can be unfolded
into a single piece, so any possible unfolding (even one
into multiple pieces) must cut each hat along some path
between two of its three boundary vertices (at least;
there may be more cuts besides these). The four paths
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Figure 6: Hat for stacked polyhedra (top view, left, and
exploded view as a stacked polyhedron, right)

formed in this way are disjoint except at their ends, and
connect the four vertices of the tetrahedron, necessarily
forming at least one cycle that separates the tetrahedron
into at least two pieces. O

Like the examples of Tarasov, Griinbaum, and Bern
et al. [7,20,24], the resulting polyhedron is also star-
shaped, with the center of the tetrahedron in its kernel.

4 Stacked Ununfoldable Polyhedra

A stacked polyhedron is a polyhedron that can be
formed by repeatedly gluing a tetrahedron onto a single
triangular face of a simpler stacked polyhedron, starting
from a single tetrahedron [19]. To make ununfoldable
stacked polyhedra, we use a similar strategy to our con-
struction of ununfoldable polyhedra with acute-triangle-
faces, in which we replace some faces of a convex poly-
hedron by hats. However, the acute-triangle hat that we
used earlier cannot be used as part of a stacked polyhe-
dron: in a stacked polyhedron, every non-face triangle is
subdivided into three smaller triangles, but that is not
true of the outer triangle of Figure 1. Instead, we use the
hat shown in Figure 6. As before, it has three brim tri-
angles, three band triangles, and three crown triangles,
but they are arranged differently and less symmetrically.
We make the brim and band triangles nearly coplanar,
with shapes approximating those shown in the figure,
but projecting slightly out of the figure so that the result
can be constructed as a stacked polyhedron. We choose
the crown triangles to be isosceles, and taller than the
isosceles triangles inscribed in regular pentagons, as in
our acute-triangle construction, so that (as viewed in
Figure 6) they project out of the figure.

Lemma 4.1 The hat described above has no single-
piece unfolding.

Proof. As with our other hat, the center vertex of this
hat has positive curvature, and the other three interior
vertices have negative curvature, so by Lemma 2.3 any
unfolding of the hat that leaves it in one piece must
form a path consisting of a single edge cutting from the

boundary to the crown, two edges cutting between the
band and the crown, and one edge cutting to the center
of the crown.

There are many more cases than there were in Fig-
ure 2, but we can avoid case-based reasoning by arguing
that in each case, the brim and band triangles unfold in
such a way that the three edges between the band and
crown triangles form a polygonal chain with interior an-
gles less than the 108° angles of the regular pentagon
(in fact, close to 60°, because of the way we have con-
structed this part of the hat to differ only by a small
amount from the top view shown in Figure 6. There-
fore, just as in Figure 4, each edge at one end of this
chain of three edges overlaps the perpendicular bisector
of the edge at the other end of the chain.

Cutting along a path from a boundary edge of the hat
to its center vertex forces the three crown triangles to
be attached to the unfolded brim and band triangles on
one of the two edges at the end of this path. However,
our construction makes the three crown triangles tall
enough to ensure that, no matter which of these two
edges they are attached to, they will overlap the edge
at the other end of the path at the point where it crosses
the perpendicular bisector. O

Theorem 4.2 There exists an ununfoldable stacked
polyhedron.

Proof. We replace the four faces of a regular tetrahe-
dron with the hat described above. Each such replace-
ment can be realized as a stacking of four tetrahedra
onto the face, so the result is a stacked polyhedron. As
in Theorem 3.1, each hat lies within a prism having the
tetrahedron face as a base, so they do not overlap each
other in space; and the set of edges cut in any unfolding
must include at least four paths between the four tetra-
hedron vertices, necessarily forming a cycle that cuts
one part of the polyhedron surface from the rest. O

A stacked hat with the same combinatorial structure
as the one used in this construction, with the center ver-
tex positively curved and the surrounding three vertices
negatively curved, cannot be formed from acute trian-
gles, because that would leave the degree-four vertex
with positive curvature. We leave as an open question
whether it is possible for an ununfoldable stacked poly-
hedron to have all faces acute.

5 Very Ununfoldable Polyhedra

Both families of examples above can be made into very
ununfoldable families. In both cases, the approach is the
same: instead of starting from a tetrahedron, we start
from a polyhedron with many triangular faces, and show
that attaching hats to more and more triangles requires
more and more unfolded pieces.
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Theorem 5.1 There exist topologically convex polyhe-
dra with acute isosceles triangle faces such that any un-
folding formed by cutting along edges into multiple non-
self-overlapping pieces requires an unbounded number of
pieces.

Proof. For any integer k > 1, refine the regular tetra-
hedron by subdividing each edge into k equal-length
edges and subdivide each face into a regular grid of
>i1(2i — 1) = k? equilateral triangles of side length
1/k, for a total of 4k? faces and (by inclusion-exclusion)
Zfilli —6(k + 1) +4 = 2k* + 2 vertices. Replace
each equilateral triangular face by an acute-triangle hat
pointing outward. As in Theorem 3.1, each hat lies
within a prism having the face of the tetrahedron as a
base, so they do not overlap each other in space; and
any unfolding into multiple pieces must, in each hat, ei-
ther cut along a cycle within the hat or cut along some
path connecting two of its three boundary vertices. Let
¢ be the number of cycles within hats cut in this way, so
that we have a system of at least 4k2 4 ¢ disjoint paths
connecting pairs of subdivided-tetrahedron vertices.
Now consider cutting the polyhedron surface along
these paths, one by one. Each cut either connects
two subdivided-tetrahedron vertices that were not pre-
viously connected along the system of cuts, or two
subdivided-tetrahedron vertices that were previously
connected. If cutting along a path connects two ver-
tices that were not previously connected, it reduces the
number of connected components among these vertices;
this case can happen at most 2k? + 1 times. If cut-
ting along a path connects two vertices that were previ-
ously connected, then that path and the path through
which they were previously connected form a Jordan
curve that separates off two parts of the surface from
each other. Because there are 4k — ¢ paths connecting
pairs of subdivided-tetrahedron vertices, only 2k2+1 of
which can form new connections, this case must happen
at least 2k? — 1 — ¢ times. Because the surface started
with a single piece and undergoes at least 2k* — 1 — ¢
separations, it ends up with at least 2k2—c pieces, which
together with the ¢ additional pieces formed by cycles
within hats, form a total of at least 2k pieces. O

Theorem 5.2 There exist topologically convex stacked
polyhedra such that any unfolding formed by cutting
along edges into multiple non-self-overlapping pieces re-
quires an unbounded number of pieces.

Proof. For any integer k > 0, refine the regular tetra-
hedron by choosing any face and attaching to the face
a very shallow tetrahedron whose apex is near the in-
center of the face, effectively splitting the face into three
faces, and repeating this process a total of k times. Be-
cause each attachment increases the number of faces by
2 and the number of vertices by 1, the result is a stacked
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polyhedron with 4 4 2k triangular faces (not necessarily
equilateral) and 4 + k vertices. Replace each triangle
with a version of the hat from Section 4 pointed out-
ward, using the availability flexibility to make the inter-
face between the band and crown an equilateral triangle
near the in-center of the original triangle. As in Theo-
rem 4.2, the result is a stacked polyhedron; each hat lies
within a prism having the face of the tetrahedron as a
base, so they do not overlap each other in space; and any
unfolding into multiple pieces must cut each hat along
some path connecting two of its three boundary vertices.
As in Theorem 5.1, at most 3 + k£ such paths can de-
crease the number of connected components among the
4+ k vertices, leaving at least 1+ k paths that separate
the surface into at least 2 + k pieces. O
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Nets of higher-dimensional cubes

Kristin DeSplinter* Satyan L. Devadoss'

Abstract

In this extended abstract, we show that every ridge un-
folding of an n-cube is without self-overlap, yielding a
valid net. The results are obtained by developing ma-
chinery that translates cube unfolding into combinato-
rial frameworks. The bounding boxes of these cube nets
are also explored using integer partitions.

1 Introduction

The study of unfolding polyhedra was popularized by
Albrecht Diirer in the early 16th century in his influ-
ential book The Painter’s Manual. It contains the first
recorded examples of polyhedral nets, connected edge
unfoldings of polyhedra that lay flat on the plane with-
out overlap. Motivated by this, Shephard [6] conjectures
that every convex polyhedron can be cut along certain
edges and admits a net. This claim remains tantaliz-
ingly open.

We consider this question for higher-dimensional con-
vex polytopes. The codimension-one faces of a polytope
are facets and its codimension-two faces are ridges. The
analog of an edge unfolding of polyhedron is the ridge
unfolding of an n-dimensional polytope: the process of
cutting the polytope along a collection of its ridges so
that the resulting (connected) arrangement of its facets
develops isometrically into an R"~! hyperplane.

There is a rich history of higher-dimensional unfold-
ings of polytopes, with the collected works of Alexan-
drov [1] serving as seminal reading. In 1984, Turney [7]
enumerates the 261 ridge unfoldings of the 4-cube, and
in 1998, Buekenhout and Parker [2] extend this enumer-
ation to the other five regular convex 4-polytopes. Both
of these works focus on enumerative rather than geo-
metric unfolding results. Miller and Pak [4] construct
an algorithm which provides an unfolding of polytopes
without overlap. However, their method allows cuts in-
terior to facets, not just along ridges.

Our work targets ridge unfoldings of the n-cube. For
the 3-cube, Figure 1 shows the 11 different unfoldings
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(up to symmetry), all of which yield nets. Section 2 gen-
eralizes this into our main result: every ridge unfolding
of the n-cube results in a net. Section 3 considers pack-
ing these cube nets into boxes using integer partitions.
Finally, we form a conjecture concerning regular convex
polytopes in Section 4.

| | L [
ot O e

Figure 1: The 11 edge unfoldings of the 3-cube.

2 Rolling and Unfolding

We explore ridge unfoldings of a convex polytope P by
focusing on the combinatorics of the arrangement of its
facets in the unfolding. In particular, a ridge unfolding
induces a tree whose nodes are the facets of the polytope
and whose edges are the uncut ridges between the facets
[5]. Indeed, this is a spanning tree in the 1-skeleton of
the dual of P.

The dual of the n-cube is the n-orthoplex, whose 1-
skeleton forms the mn-Roberts graph. The 2n nodes of
this graph (corresponding to the 2n facets of the n-cube)
can arranged on a circle so that antipodal nodes repre-
sent opposite facets of the cube. Thus, unfoldings of
an n-cube are in bijection with spanning trees of the
n-Roberts graph.

Example 1 Figure 2(a) considers an edge unfolding of
the 3-cube with its underlying dual tree. This appears as
a spanning tree on the 1-skeleton of the octahedral dual
(b), redrawn on the 3-Roberts graph (c).

(a) by (c) 1*

* 2*
1 3 3 3*
3

1

3%

N

Figure 2: An unfolding of a 3-cube with its correspond-
ing spanning tree on the 3-Roberts graph.
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Recall that a ridge unfolding of an n-cube is a con-
nected arrangement of its 2n facets, developed isomet-
rically into hyperplane R”~!. Begin the unfolding by
choosing a (base) facet b of the n-cube, placing it on
the hyperplane. Then the normal vector n; to b be-
comes normal to the hyperplane. Consider an adjacent
facet ¢ to b, and roll the cube along the ridge between
these facets, with facet ¢ now landing on the hyper-
plane. Figure 3 shows a rendering of the orthogonal
projection of such a roll, with cx and bx corresponding
to the antipodal facets of ¢ and b, and the marked red
edge representing the ridge between ¢ and b.

b* c*

c*t (\Tc | b

initial position rolling

final position
Figure 3: Rolling a cube on a hyperplane.

Since we rotate only along the plane spanned by the
normal vectors n, and n., the remaining directions stay
fixed in the development. This is captured combinato-
rially as a rotation of a subgraph of the Roberts graph:

Definition 1 A roll from base facet b towards an ad-
jacent facet ¢ rotates the four nodes {b,c,bx,cx} of the
Roberts graph along the quadrilateral (keeping the re-
maining nodes fized), making ¢ the new base facet.

Figure 4 shows an example for the 5-cube, where the
highlighted quadrilateral (depicting the roll) is invoking
the colored square of Figure 3.

1* 1% 3
5 2% 5y A 2% —,2"

JEERN, RN, JEER
N

AN

1 1 3%

4
1

k
N

Figure 4: Rotating facet 1 towards 3* on a 5-cube.

The advantage of unfolding a cube (compared to an
arbitrary convex polytope) into hyperplane R™~! is that
its (n—1)-cube facets naturally tile this hyperplane. We
exploit this by recasting the unfolding in the language
of lattices. Without loss of generality, we can situate
a ridge unfolding of the n-cube so that the centroid of
each facet occupies a point of the integer lattice Z"!
of R" 1. To see the lattice structure manifest in the
n-Roberts graph, we imbue the latter with a coordi-
nate system: arbitrarily label the 2n — 2 edges of the
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n-Roberts graph incident to the base node with the di-
rections

{x17 —L1,T2, —X2y ..., Tn—1, _xn—l} )

where edges incident to antipodal nodes get opposite
directions.! Figure 5 shows examples of coordinate sys-
tems for the 3D, 4D, and 5D cases.

. .. ..
“ / ‘\‘\\.xz -x1 ./ \. x3 ?1'/ \'<
i / \ -X2& *x3
-X29 X2 ‘
\ / X389, X2
x2s X1 -x3e ox1 \ /
V¢ Y x4~ *x1

Figure 5: Coordinate systems for 3D, 4D, and 5D cubes.

These n — 1 directions are mapped to the axes of the
R™! hyperplane into which the n-cube unfolds. In par-
ticular, the 2n — 2 ridges of the n-cube incident to the
base facet are in bijection with these coordinate direc-
tions, with opposite directions corresponding to parallel
ridges of the facet. The roll keeps track of the combina-
torics, whereas the coordinate system shows the direc-
tion of unfolding in the lattice. This is made precise:

Lemma 1 Let T be a spanning tree of the n-Roberts
graph with a coordinate system. The unfolding of the
n-cube along T into R"™! can be obtained by mapping
T to the lattice Z"~1 through a sequence of rolls.

Proof. Choose some base facet b of T and map it to
some point p, € Z"'. Let node ¢ be adjacent to b
along T" with associated direction x from the coordinate
system. The roll from b towards ¢ maps node ¢ to the
point in Z™ ! that is adjacent to p, in direction 2. The
four facet labels {b, ¢, b, cx} permute with the roll of
the cube whereas the coordinate system directions are
always anchored to the base facet. In particular, after
the roll, facet bx lies in the = direction with respect to
the new base facet ¢, since the plane spanned by normal
vectors ng, and n,. was rotated.

Given any node t of T, traverse the path between
b and t through a series of rolls as described above;
this maps all the nodes of T into Z"~'. To obtain the
unfolding of the n-cube, simply replace each mapped
point of the lattice with an (n — 1)-cube. O

Example 2 Figure 6 shows an unfolding of the 3-cube
along a spanning path using Lemma 1. At each itera-
tion, there is a roll of the Roberts graph and a direction
of unfolding based on the given coordinate system. The
unfolded facets are colored white, and the unfolded ridges

1The isometry group of the cube acts simply transitively on
these labelings. Thus, without loss of generality, we can choose a
counterclockwise labeling of the edges in cyclic order.
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become dashed-lines. Figure 7 showcases a 3-cube un-
folding along a spanning tree. Given any two nodes of
this tree, we unfold along the path between these nodes
by rolls using Lemma 1. Figure 8 provides an example
of an unfolding of the 4-cube along a spanning path.

Figure 6: Unfolding a 3-cube along a spanning path.

Lemma 2 Let T be a spanning tree of the m-Roberts
graph with a coordinate system. If direction x is used
in the unfolding along some path of T, direction —z will
not be used in the unfolding along this path.

Proof. Assume we roll along a path in the = direction,
moving the current base facet b into the —z direction.
Since b has now been visited, it cannot be used again in
the unfolding. Thus, the only way a roll along direction

2\/ 3

(c)

Figure 7: Unfolding a 3-cube along a spanning tree.

—x can occur is if b is rotated out of that direction. How-
ever, the only moves that can displace b are rolls along
the z and —z directions. The latter is not possible and
the former simply replaces b with another visited facet,
continuing to obstruct motion in the —z direction. 0O

Example 3 Figure 6(ab) shows an example where the
first roll is in direction x1, moving facet 1 into the —x;
position, and facet 3* into the base position. Since facet
1 has been wvisited, rolling in direction —x1 is restricted.
Another roll in Figure 6(bc) displaces 1 but simply re-
places it with facet 3%, which has now been visited.

Theorem 3 FEvery ridge unfolding of an n-cube yields
a net.

Proof. Consider an unfolding of the n-cube, given by a
spanning tree T on the n-Roberts graph. By Lemma 2,
antipodal directions will never appear in unfolding of
paths. Thus, as the combinatorial distance between any
two nodes of a path along the spanning tree T increases,
the Euclidean distance of their respective facets in the
hyperplane R™~! (under the mapping to the integer lat-
tice from Lemma 1) strictly increases. Since the facets
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Figure 8: Unfolding a 4-cube along a spanning path.

in the unfolding along any path of T' do not overlap, the
unfolding of the entire tree T results in a net. O

3 Packings and Partitions

Having unfolded cubes into their nets, we now turn to
packing these nets into boxes. A boz (or orthotope) is
the Cartesian product of intervals, and the bounding box
of a net is the smallest box containing the net, with box
sides parallel to the ridges of the net.

Definition 2 An n-cube partition is an integer parti-
tion of 3n — 2 into n — 1 parts, where each part is at
least two.

Figure 9: Spanning trees and bounding boxes.
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Example 4 Figure 9 displays four spanning trees of the
4-cube and their corresponding nets in bounding bozes.
Notice that the dimensions of each bounding box form a
4-cube partition. In particular, these are all the possible
4-cube partitions. Theorem 4 below claims that all 261
nets of the 4-cube must fit into one of these four boxes.

Theorem 4 For every net of an n-cube, the dimen-
sions of its bounding box is an n-cube partition.

Proof. Each net of the n-cube has 2n facets that need
to be unfolded in R"~!. Since each facet is an (n — 1)-
cube, the placement of the first facet in the unfolding
contributes n—1 to the bounding box number of the net,
one for each of its n — 1 dimensions. We show that each
of the remaining 2n — 1 facets of the unfolding increases
the bounding box number by exactly 1, resulting in a
total box number of 1- (n —1)+ (2n—1)-1=3n—2.

Suppose (by contradiction) that in the unfolding, the
roll from facet b to adjacent facet ¢ in direction = does
not increase the bounding box number of the current
net. Assume the ridge between b and ¢ is supported
by some hyperplane H of R"~!. Since the box number
did not increase, there must be another facet (call it
d) in the current unfolding that lies on the same side
of hyperplane H as ¢. Thus, the unfolding of the path
between facets ¢ and d must have crossed H at least
twice, moving along x in both the positive and negative
directions, contradicting Lemma 2.
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Figure 10: Rolls on the Roberts graphs reinterpreted as a token sliding game.

Finally, it needs to be shown that our cube will roll
in all n— 1 unfolding dimensions (satisfying the require-
ment that each part of a cube partition is a least two).
But the cube net is a spanning tree of the Roberts graph,
with the unfolding forced to visit all the nodes. And
such visits can only be accomplished by rolling along
each of the n — 1 distinct directions. O

The converse of Theorem 4 also holds: given an in-
teger partition of 3n — 2 into n — 1 parts, there exists
an unfolding of an n-cube whose bounding box dimen-
sions match the partition. The remainder of this section
is devoted to proving this result. As discussed earlier,
the placement of the first facet in the unfolding of the
n-cube contributes n — 1 to the bounding box number.
Thus, the cube partition can be reinterpreted as an in-
teger partition of 2n—1 (the remaining facets) into n—1
parts (the possible directions), with each part at least
one. For such a partition, our task is to find a sequence
of rolls along the n—1 directions so that the 2n—1 facets
are unfolded into their respective partitioned directions.
Without loss of generality, we consider rolls only in the
positive directions.

In order to construct cube unfoldings for such parti-
tions, we reinterpret the Roberts graph as a token slid-
ing game, with Figure 10 serving as a Rosetta stone.
Consider the first column of this figure, where the n-
Roberts graph on top is unraveled below into a game
board with n — 1 slides (appropriately color-coded).
Here, the base node of the Roberts graph is replaced
by our given partition, one for each direction, with the
2n — 1 positions represented by black tokens. The goal
of this game is to move these tokens into the 2n — 1
empty slots on the game board above by a sequence of
slides, corresponding to rolls of the Roberts graph.

The top row of Figure 10 shows a 5-cube rolling twice
in the xq direction, followed by a roll in the x4 direc-

tion, and a roll in the x3 direction. The bottom row
displays the corresponding tokens moving along their
appropriate slides, leaving the partition box and occu-
pying empty slots on the game board above. The fea-
tures of the token game, inherited from the properties
of rolls, are as follows:

1. Each roll of the Roberts graph in a particular direc-
tion slides all the tokens along that direction one
place up.

2. When a token reaches the end of its slide (eg, di-
rection x4, as displayed by the fourth column of
Figure 10), it can no longer use that direction.

3. The antipode to the base (topmost on the Roberts
graph) acts as a transfer point, moving tokens from
one directional slide into another.

Theorem 5 For any n-cube partition, there exists a
path unfolding of an n-cube whose bounding box dimen-
sions matches the partition.

Proof. We provide an unfolding algorithm by rolling
along directions satisfying a given partition. Parts in
the partition with more than one token are called tow-
ers, whereas parts with exactly one token are dubbed
singletons. Begin by decomposing the 2n—1 tokens into
four groups:

1. The set S of tokens in the singletons.

2. The set B of bottom tokens in each tower.
3. The set T of top tokens in each tower.
4

. The remaining set M of (middle) tokens.
It follows that |T'| = |B| = (n — 1) — | S| and

[M| = (2n—1) = [T| = |B| = [S| = |S] + L.
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Example 5 Figure 11 shows two distinct partitions of
15 tokens into 7 parts (when n = 8), labeled according
to the terminology above. In these cases, it is clear that
|T| = |B| and |M| = |S| + 1.

0000000
0000000
0

Figure 11: Two distinct partitions when n = 8.

Our algorithm is broken into three steps:

Step 1: Perform one slide in each direction of a to-
ken from B. This is possible since the transfer point is
empty; see Figure 12(abc).

Step 2: Perform alternating slides between tokens
from M and S, starting and ending with M, until all
such tokens depleted. This is well-defined since |M| =
|S|+1. Since the first position on the game board along
any element of M already contains a token from Step
1, a slide along its direction moves this token into the
transfer point; see Figure 12(d). Now, sliding a token of
S fills the first and last positions along this directional
track with tokens, making this direction unusable; see
Figure 12(e). This is ideal, for S contains only one token
in each direction. After alternating between M and S,
depleting all elements of S, slide one final time along
the last element of M, loading a token onto the transfer
point; see Figure 12(f).

Step 3: Perform one slide in each direction of a to-
ken from T. Each slide moves the token of the transfer
point to the end of the track, which replenishing the
transfer point with another token. This fills all the po-
sitions, as these are the final elements in each tower; see
Figure 12(ghi). O

Observation 1 Theorem 5 shows that the n-cube can
be unfolded into extremes: a long thin 2 X --- X 2 X
(n +2) box and a cubelike 3 x -+ x 3 x 4 box, with a
spectrum of sizes in between. It would be interesting
to explore the distribution of cube partitions over all
possible unfoldings of the n-cube.

Observation 2 Up to symmetry, there are 11 nets of
the 3-cube and 261 nets of the 4-cube. For a general
n-cube, it is an open problem to enumerate its distinct
nets. The theorem above provides a (very weak) lower
bound to this problem.
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Figure 12: The partition slide algorithm.

4 Conclusion

The work of Horiyama and Shoji [3] show that every
edge unfolding of the five Platonic solids results in a
net. The higher-dimensional analogs of the Platonic
solids are the regular convex polytopes: three classes of
such polytopes exist for all dimensions (simplex, cube,
orthoplex) and three additional ones only appear in 4D
(24-cell, 120-cell, 600-cell). We have considered all un-
foldings of cubes, and a similar result for simplices easily
follows. We are encouraged to claim the following:

Conjecture 1 FEvery ridge unfolding of a regular con-
vex polytope yields a net.
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Efficient Folding Algorithms for Regular Polyhedra

Tonan Kamata* Akira Kadoguchif

Abstract

We investigate the folding problem that asks if a poly-
gon P can be folded to a polyhedron @ for given P and
Q. Recently, an efficient algorithm for this problem is
developed when @ is a box. We extend this idea to two
different cases; (1) @ is a regular dodecahedron, and (2)
Q is a convex polyhedron such that each face is formed
by regular triangles. Combining the known result, we
can conclude that the folding problem can be solved ef-
ficiently when @ is a regular polyhedron, also known as
a Platonic solid.

1 Introduction

In 1525, the German painter Albrecht Diirer published
his masterwork on geometry [7], whose title translates
as “On Teaching Measurement with a Compass and
Straightedge for lines, planes, and whole bodies.” In
the book, he presented each polyhedron by drawing a
net for it: an unfolding of the surface to a planar layout
by cutting along its edges. To this day, it remains an im-
portant open problem whether every convex polyhedron
has a (non-overlapping) net by cutting along its edges.
On the other hand, when we allow to cut anywhere, any
convex polyhedron can be unfolded to a planar layout
without overlapping. There are two known algorithms;
one is called source unfolding, and the other is called
star unfolding (see [6]).

|12
X 2-X

Kz

Figure 1: A Latin cross made by six unit squares. For
any real number x with 0 < x < 1, folding along dotted
lines, we can obtain a doubly-covered fat cross.
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To understand unfolding, it is interesting to look at
the inverse: what kind of polyhedra can be folded from a
given polygonal sheet of paper? For example, the Latin
cross, which is one of the eleven nets of a cube, can fold
to 23 different convex polyhedra by 85 distinct ways
of folding [6] and an infinite number of doubly covered
concave polygons (Figure 1). Comprehensive surveys of
folding and unfolding can be found in [6].

We investigate the folding problem when a polygon
P and a polyhedron @ are given. That is, for a given
polygon P and a polyhedron @, the folding problem
asks if P can fold to @ or not. This is a natural prob-
lem, however, there are few results so far. When @ is a
regular tetrahedron, we have a mathematical character-
ization of its net [4]; according to this result, P should
be a kind of tiling, and hence the folding problem can
be solved efficiently. Abel et al. investigated the fold-
ing problem of bumpy pyramids [1]: For a given petal
polygon P (convex m-gon B with n triangular petals),
it asks if we can fold to a pyramid (with flat base B)
or a convex bumpy pyramid by folding along a certain
triangulation of B. In [1], they gave nontrivial linear
time algorithms for the problem. Recently, the fold-
ing problem was investigated for the case that @ is a
box. Some special cases were investigated in [8] and
[11], and the problem for a box @ is solved in [10] in
general case. The running time of the algorithm in [10]
is O(D''n?(D® +logn)), where D is the diameter of P.
In these algorithms, @ is given as just a “box” without
size, and the algorithms try all possible sizes. If @ is
explicitly given, the running time of the algorithm in
[10] is reduced to O(D"n?(D® +logn)) time.

In this paper, we investigate two other cases. In the
first case, we assume that @) is a regular dodecahedron.
This is a very special case, however, it is one of the five
regular polyhedra. The second case is that @ is a con-
vex deltahedron whose faces consist of regular triangles.
A deltahedron is said to be strictly convex if it is con-
vex and no two adjacent faces are coplanar. It is known
that there are eight strictly convex deltahedral: a regu-
lar tetrahedron, a regular octahedron, a regular icosahe-
dron, a triangular bipyramid, a pentagonal bipyramid, a
snub disphenoid, a triangulated triangular prism, and a
gyroelongated square bipyramid. In this paper, we also
consider non-strictly-convex cases as a kind of deltahe-
dron. That is, we allow each face to consist of coplanar

1See, e.g., https://en.wikipedia.org/wiki/Deltahedron.
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regular triangles like a regular hexagon. Then there are
infinite number of non-strictly-convex deltahedra. For
these two cases, we give pseudo-polynomial time algo-
rithms:

Theorem 1 Let P be a simple polygon with n vertices.
We denote by L the perimeter of P. Then the folding
problem of a regular dodecahedron from P can be solved
in O(n?(n+ L)*) time.

Theorem 2 Let P be a simple polygon with n vertices
of perimeter L. Let Q be a non-concave deltahedron?
with m vertices. Then the folding problem of Q from P
can be solved in O(n?m(L + n)?) time.

Combining with the result in [10], we have the following:

Corollary 3 The folding problem for the five reqular
polyhedra (also known as Platonic solids) can be solved
in pseudo-polynomial time.

We here note that we use real RAM model, and the time
complexity is evaluated by the number of mathematical
operations.

2 Preliminaries

We first state the folding problem: the input is a poly-
gon P = (po,p1,.-.sPn—1,Pn = po) and a polyhedron
@, and the problem asks if P can fold to @ or not.
Let z; and y; be the z-coordinate and y-coordinate of a
point p;, respectively. We assume the real RAM model
for computation; each coordinate is an exact real num-
ber, and the running time is measured by the number
of mathematical operations.

When @ is a regular dodecahedron, we do not need
to give it explicitly as a part of input. The length of
the edges of @) can be computed from the area of P.
Without loss of generality, we assume that the length
of an edge of @ is 1. When @ is a non-concave deltahe-
dron, @ is represented in the standard form in compu-
tational geometry (see [5]). Precisely, Q) consists of ver-
tices q; = (x4, Y, 2i), edges {¢:, ¢;}, and faces fi1,..., f,
where each f; is represented by a cycle of vertices in
counterclockwise-order in relation to the normal vector
of the face.

Let @ be a convex polyhedron. Let g be a vertex of
Q. The curvature at q is the angle defined by the value
360° — a, where a is the angle surrounding ¢ when it is
unfolded on a plane.

Theorem 4 ([Gauss-Bonnet Theorem]) The total
sum of the curvature of all vertices of a convexr poly-
hedron is 720°.

2For simplicity, we call “non-concave deltahedron” a polyhe-
dron that is either a convex deltahedron or a non-strictly-convex
deltahedron.
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See [6, Sec. 21.3] for details.

Let @ be a convex polyhedron. A development of Q
results when we cut @ along a set of polygonal lines,
unfold on a plane, and obtain a polygon P. We assume
that any cut ends at a point with curvature less than
360°. Otherwise, since @) is convex, it makes a redun-
dant cut on P, which can be eliminated (the proof can
be found in [9, Theorem 3]). The polygon P is called a
net of @ if and only if P is a connected simple polygon,
i.e., without self-overlap or hole. Let T be the set of cut
lines on @ to obtain a net P. Then the following is well
known (see [6, Sec. 22.1.3] for details):

Theorem 5 T is a spanning tree of the vertices of Q.

2.1 Properties of Unfolding

A tetramonohedron is a tetrahedron that consists of four
congruent triangles. This polyhedron is exceptional in
the context of unfolding. To avoid this case, we first
show the following lemma.

Lemma 6 Let QQ be a convex polyhedron. Then @ is
a tetramonohedron if and only if the curvature of every
vertex s 180°.

Proof. If ) is a tetramonohedron, by its symmetric
property, each vertex ¢ consists of three distinct angles
of a congruent triangle. Thus the curvature at ¢ is 180°.
In order to show the opposite, we assume that every
vertex of a polyhedron ) has curvature 180°. Then,
by Theorem 4, @ has four vertices. Let qo, q1,q2, g3 be
these four vertices. We cut along three straight lines
4091, 90492, gogqs on @, respectively. Since the curvature
at any point on @ except qo,q1,q2,qs is 360°, we can
take three non-crossing straight lines from ¢g to ¢1, g2,
and g3 on @ and they are the shortest lines from ¢y to
them. By developing @ from gy along these three cut
lines, we obtain a polygon P = (qo,q1, 40,92, 90 935 90)-
Then, by assumption, curvatures at qi, ¢o, g3 are all
180°. That is, P is a triangle with three vertices qq, q{,
and ¢(. Moreover, each edge of the triangle consists of
two cut lines which form an edge on Q). Therefore, g1,
g2, and g3 are all the middle points of three edges goqy,
4544, and ¢(/qo of the triangle P, respectively. Thus all
four triangles qoq143, 419092, 439290, and g2g3q1 are con-
gruent, which implies that @ is a tetramonohedron. [

We note that there is a mathematical characterization

of a net of a tetramonohedron by a tiling (see [3, Chap-

ter 3]%). Using this property, the folding problem for a

tetramonohedron @ can be solved in pseudo-polynomial

time (the details are omitted in this conference version).
In this paper, the following theorem is useful:

31n [3], a tetramonohedron is called an isotetrahedron.
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Theorem 7 Let ) be a convexr polyhedron that is not
a tetramonohedron, and P be a net of Q. Then (1) all
vertices of @ appear on the boundary of P, and (2) P
has at least two vertices of angle not equal to 180° that
correspond to distinct vertices of Q.

Proof. A vertex of @ has positive curvature. Hence it
cannot correspond to an interior point of P. Thus we
have the claim (1). Now we focus on the claim (2). We
first show that @ has at least two vertices of curvature
not equal to 180°. Let qq,...,qr be the vertices of Q.
Since @ is a convex polyhedron, £ > 3. When k =
3, the only possible solid is a doubly covered triangle.
Then it is easy to see that @Q satisfies the claim (2). If
k > 4, by Theorem 4, it is easy to see that at least
two vertices have curvature not equal to 180°. Thus
we consider the case that k = 4. By Lemma 6, since
Q is not a tetramonohedron, four vertices cannot have
curvatures equal to 180°. By Theorem 4, it is impossible
that three vertices have curvature 180°, and one vertex
does not. Thus @ has at least two vertices ¢ and ¢’
of curvature not equal to 180°. Then, by (1), ¢ and ¢’
correspond to distinct vertices of P. Now consider the
set S, of vertices of P that are glued together to form
g. Then, since the curvature of ¢ is not equal to 180°,
at least one of the elements in S, has an angle not equal
to 180°. Thus g produces at least one vertex on P of
angle not equal to 180°. We have another vertex on P
produced by ¢ by the same argument. Thus we have
the theorem. 0

3 Algorithms

In this section, we first describe the common outline of
algorithms and show the details for each case.

3.1 Outline of Algorithm

The outline of our algorithm is simple:

That is, the algorithm checks all possible combina-
tions of pairs {p;, pi} and ¢;. By Theorem 7, if ) can
be folded from P, there are at least two vertices p;, p;s
of P that correspond to g, g;+ of @ for some g;, respec-
tively, with 7 # i’ and j # j'. Hereafter, we assume that
the vertex pg of P corresponds to the vertex gy of @, and
p; of P corresponds to the vertex g; of @), respectively,
without loss of generality.

The key point is how to decide the relative orientation
of @ and P, which has an influence of time complexity of
the algorithm. Intuitively, for this issue, we also try all
possible cases. The time complexity (or the number of
trials) is different depending on the shape of Q). For the
remainder of Section 3.1, we assume that the orientation
of @ relative to P is fixed. We give the details of the
two phases in the algorithm.
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Input : A polygon P = (po,p1,--.,Pn-1,P0)
and a convex polyhedron @

Output: All ways of folding P to @ (if one
exists)

Let {qo,--.,qm—1} be the set of vertices of Q;

foreach pair of two vertices {p;,pi} of P do

foreach verter q; of @ do
Check if @ is reachable from p; to py on

P by stamping @ so that p; and p;/
correspond to ¢; and g;, respectively, for
some ¢;» with j # j' on Q;

Check if P is a net of @ by folding and
gluing P based on the partition of @) by
stamping;

end

end

Figure 2: An example of stamping.

3.1.1 The first phase: stamping

When we have the correspondence of py and ¢qg, we
imagine placing @ on P at pg = go. Then we “roll” @
on P from the initial position in the depth first search
(DFS) manner. This idea is called stamping in [2]. In
[2], Akiyama rolled a regular tetrahedron on a plane
as a stamper and obtained a tiling by the stamping.
The key property of the stamping in [2] is that a reg-
ular tetrahedron has the same orientation and position
when it returns to the original position, no matter what
the route was. Therefore, the cut lines of any net on
the surface of a regular tetrahedron tile the plane as a
p2 tiling (see [2] for the details of p2 tiling).

In our case, we use a polyhedron () as a stamper
on P. We first put () on P so that pg = qo. Then
the intersection of P and Fj can be a set of polygons.
Among them, we take a polygon Py that contains pg =
qo as a vertex of Py. (If two or more such polygons exist,
we can take any one of them.) Then, if Py properly
contain a vertex of Fjy, we reject this position. It is not
difficult to see that F{y should have a part of edges e of
Fp that is inside of P. Then we can roll @ along the edge
e, and the next face F; of ) is put on P, which shares
the edge e with Fyy. Then the intersection of F} and P
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Figure 3: Tree structure of P: Each face of @ is cut
into “patches”. Then the adjacent relationship of the
patches induces a tree on P.

gives the new set of polygons. Among them, we take P;
that shares a part of e with Py. (If two or more such
polygons exist, we can take any one of them again.)
If P, properly contains a vertex of Fj, this stamping
fails. Repeating this process, we can stamp @ on P.
See Figure 2 for a simple example. Precise description
of this stamping can be found in [10]. In our algorithm,
pi» can be used as a check point. if p;; does not match
a certain g/, this stamping fails immediately.

Then, in our context, if P is a net of ), we have the
following properties by Theorem 7(1): (1) all (copies
of) vertices of @ are on the boundary of P, and (2) for
each vertex ¢; of @, the curvatures corresponding to the
points on the boundary of P sum up to the angle at g; on
Q. In other words, no vertex of ) exists inside of P. On
the other hand, since P has no hole, each point in P is
stamped by a face of @ (or an edge of Q) exactly once.
We will use the tree structure of P defined as follows
(Figure 3). Each face of @ is cut into “patches” when it
is developed to P. In other words, P is partitioned into
patches by the edges of @ (or folding lines of P). On the
tree, the patches of P correspond to the vertices, and
two vertices are adjacent if and only if the corresponding
patches share a part of an edge of positive length on
Q. Then since P is a simple polygon (without hole)*
and all vertices of () are on the boundary of P, the
resulting graph induces a tree. Essentially, the sequence
of stamping of @ on P is a search algorithm on this tree
structure, or it gives the partition of P into the patches
by stamping of ). We can traverse the tree by rolling Q.
Hereafter, for simplicity, we assume that the algorithm
traverses this tree by rolling ¢ on P in a DFS manner.
Formally, we have the following lemma:

Lemma 8 ([10]) Assume that Q gives us a feasible

4Precisely speaking, it is enough that P is a weakly simple
polygon (see https://en.wikipedia.org/wiki/Simple_polygon#
/media/File:Weakly_simple_polygon.svg) to obtain this tree
structure.
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stamping of P. We also assume that P is a net of Q.
Then, the stamping gives us a mapping from each point
p in P to a point q in a face of Q, or p is glued to the
point q in a face of Q (except on the edges of Q; in this
case, the point p of P is glued to a point q on the edge
of Q). That is, the stamping gives us a partition of P
by the edges of Q.

In [10], they give a proof of Lemma 8 when () is a box.
However, the arguments in [10] use only the fact that @
is convex. Thus, we can obtain Lemma 8 as a natural
extension of the result in [10].

We note that each feasible stamping gives us all the
vertices ¢; of @ on the boundary of P. Therefore, we can
check if each vertex ¢; has a certain curvature in total
in linear time of n in this phase. Therefore, after the
first phase, we know that P is partitioned into patches
of faces of ) with their correspondence (i.e., each patch
knows its corresponding face of Q) and each vertex ¢;
has a correct curvature in total.

3.1.2 The second phase: gluing

After the first phase, we obtain a set of patches of faces
of @, and corresponding vertices produce certain cur-
vatures, however, we have not yet checked if each set
of patches really forms the corresponding face of @ by
gluing. In other word, we have to check if the mapping
in 8 is one-to-one mapping or not. Thus, in the second
phase, we check if we fold to @ by P along the crease
lines computed in the first phase. Hereafter, we some-
times consider the polygon P = (pg,p1,---,Pn-1,P0)
consists of vectors m,plpg, . ,pn_—lpo> for the sake of
simplicity. Then we can deal with “gluing of two edges”
by an operation of vectors. For example, we assume
that we glue two edges pop1 and popr_1. Then, we have
three cases after gluing:

(1) |pop1l > |popn—1|: We obtain Proapi such that
[Pn—1p1| = |pop1| — [Popn-1]-

(2) |popi| < |popn_1]: We obtain p, ip; such that
|Pn—1P1] = [Popn—1| — [Pop1l-

(3) Ipop1| = [popn—1|: We obtain p,—1 = p1.

Recall that if P is a net of @, the set of line segments
of cut on @ forms a spanning tree T' (Theorem 5). More-
over, each edge of T appears twice on the boundary of
P. Now we know that vg = pg is a vertex of @), and the
orientation of ) with respect to P is fixed, then along
the tree produced by stamping, we can check the gluing
one by one from the leaves of T'. Since T' is a tree, we
always have a pair of edges to be glued. The details of
this part can be found in [8].

3.2 Case 1: @ is a Regular Dodecahedron

In this section, we assume that @ is a regular dodeca-
hedron and the length of each edge is 1. Since the area
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of a pentagon of unit edge is 7”25'210\/5, we assume the

area of Pis12x 7VK)J£1()\/5 = 3/25 + 10+/5 without loss

of generality. Since we know @, the input of this prob-
lem is just a polygon P = (po,p1,...,Pn-1,P0) of area
3V 25 + 10\/5, and we will decide if P can be folded to
a unit-size regular dodecahedron ). By the argument
in Section 3.1, we also know that two vertices py and p;
of P correspond to two distinct vertices, say go and g;,

of Q.

Figure 4: An example of overlapping stamping. Some
pentagons are overlapping by stamping of @) along a
feasible net P.

Stamping By assumption, @ can reach from pg to
p; on P by stamping @ such that py and p; are cor-
responding to two different vertices of ). By rota-
tion of P, we have a sequence of regular pentagons
(Py, Py, ..., Py) such that (1) Py contains the edge join-
ing points pg = (0,0) and (1,0) as its base edge, (2)
pi = (25,;) is a vertex of P, and (3) two consecutive
pentagons Pj/ and Pj/_l,_l share an edge for each j' with
0 < j' < k. We note that two consecutive pentagons do
not overlap (without their shared edge), but nonconsec-
utive pentagons can overlap by stamping (see Figure 4).

Figure 5: Four unit vectors for a unit pentagon.

Intuitively, if we put @@ on P with a proper relative
angle, (Q can be unfolded along P, and we can reach
from py to p; by traversing the edges of these regu-
lar pentagons. If we consider each edge of the pen-
tagons as a unit vector, this traverse can be represented
by a linear combination of the following four vectors:
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— — -
bo = (0, 1), by = (cosZ,sinZ), by = (cos &=, sin 27),
ani b3_>: (cos 3, sin 37). Note that (cos 4T, sin 4F) =

— =
—bg + by — by + b3. Thus, Q can be folded from P only
if we have four integers By, B, Bs, B3 such that

—S — — — —
(po,pi) = Boby + B1b1 + Babs + B3bs,

and hence

[

It is clear that |Bg| + |B1| + |Bz| + |Bs| is at most
L, where L = Z;:ol ’(pi,pﬂ_l ’ is the perimeter of P.

— — — —
= ‘Bobo + B1b1 + Baby + Bsbs|.

Thus, in our algorithm, we check O((L +n)*) combina-
tions of four integers By, B1, Bs, Bs. For each possible
integers By, By, Ba, B3, we can compute p; = (x4, ;) by
rotation of P. After putting P on the proper place so
that po = (0,0) and p; = (x;, y;), we perform the stamp-
ing of @ on P and obtain the partition of P. We here
note that we use the commutative law of vectors. Thus
the first relative gosition of @ is one of four positions
= = — .

along bg, b1, ba, by. For each position, we perform the
second phase for checking gluing.

Gluing By stamping of Q on P, P is partitioned into
patches P = {Py, P1,...,Pr_1}. More precisely, Py
is the intersection of P and () on an initial position
such that po = gqo = (0,0). Since it is a valid stamp-
ing, there are no vertices of () inside of Py. When we
roll @ on P along an edge e of @, the other face is
on P, and we have the next patch P, by the inter-
section of P and (). We note that P; is the compo-
nent of the intersection of P and () that contains the
edge e (can be partial, but not just a point). That
is, even if we have non-empty intersection polygons of
P and @, we do not count them if they do not in-
clude any non-empty set of e. By repeating this pro-
cess in the DFS manner, we obtain a set of patches
P ={Py,P1,...,P,_1} that forms a partition of P. We
now define the graph ' = (P,E) by E = {{F;, P;} |
P;, P; share a non-empty edge inside P}. Intuitively,
P; and P; share a non-empty edge inside P, and F;
is put in P by rolling @ from P; along the edge or vice
versa. As discussed in Section 3.1.1, the graph T is a
tree. For notational convenience, we consider Py is the
root of T', and the elements in P are numbered from Py
in the way of the DFS manner.

First, we glue Py on @ so that the corresponding ver-
tex pp on P (or Py) comes to a vertex gg of . Then
the gluing process is done on ) from Fy in the DFS
manner. This can be done in O(Z?;()l | P;|) time, where
| P;| is the number of vertices of P;. The number (h—1)
is given by the number of stampings made by . For
this number, we have the following upper bound:

Theorem 9 h = O(L +n).
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Proof. The number of stampings of () on P is given
by the total number of visits of each P;. On the other
hand, h is the number of P;s. Thus, precisely, (h — 1)
is the number of the first visiting each P; by @Q except
Py. The stamping of @ is done along the DFS tree.
Therefore, since each edge of the DFS tree is traversed
twice, the number of stampings made by @ is 2(h — 1).
Thus h is proportional to the number of stampings.

Figure 6: An edge e can be covered by O(e|) pentagons
since each angle of a pentagon is 108°.

Let e be an edge of P. By stamping of @) along the
edge e, since each pentagonal face of @) has unit size, the
number of pentagons P; to cover e is O(|e|), where |e| is
the length of e (Figure 6; see also [10]). Thus, we have
the number of pentagonal faces of Q) as stamps to cover
all the edges e of P is O(L + n) in total. Therefore, we
obtain h = O(L + n). O

Time complexity Now we consider the time complex-
ity of our algorithm for a regular dodecahedron. For a
given polygon P = (po,p1,---,Pn-1,P0), the algorithm
first guesses all possible combinations of (p;, p;/), which
produce O(n?) cases. We here note that we essentially
have one way of choosing ¢y by symmetry of Q). For
this go, we have a constant number (precisely, it is 7)
of cases of ¢;. Thus we do not need to consider this
constant factor for a regular dodecahedron. For each

pair (p;, pi7), we construct a vector (p;,py) = Bob—o> +
By b1+ Baby+ Bsbs by finding By, By, By, Bs. This step
checks O((L + n)*) combinations if we check all com-
binations. However, when By, Bi, By are fixed, since
‘(po,pi;’ = ‘Bob_g + Biby + Baby + ng_:;’, we have two
possible values depending on Bz > 0 or By < 0, and
they can be computed in a constant time. Thus it is
enough to check O((L + n)3) combinations. For each
case, the algorithm performs stamping of ). During
the stamping, we check if each vertex of a face of @ is
inside P or not. It is done along the traverse of the tree
in DFS manner, and hence it can be done in O(n) time
in total. Thus the running time of stamping is O(n+h),
where (h — 1) is the number of stampings. By Theorem
9, we have h = O(L + n). After the (valid) stamp-
ing, we obtain a partition P = {Py, P1,...,P,_1} of
P. Checking the gluing of elements in P onto Q) takes
O(Z?:_()l |P;|) time. Since the tree T = (P, E) has h
vertices and h —1 edges, we have Z?;Ol |Pi| = O(n+h).
Therefore, in total, the algorithm runs in O(n?(n+ L)*)
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time, which completes the proof of Theorem 1.

3.3 Case 2: () is a Non-concave Deltahedron

In this section, we assume that () is a non-concave delta-
hedron. We assume that each face of () consists of some
unit regular triangles; each unit triangle has three edges

of unit length 1 and area %. Let ¢ be the total num-
ber of unit triangles on the surface of (). That is, the

surface area of Q) is %t. Let {q0,q1,.-.,Gm-1} be the
set of vertices of ). We assume that (1) the set of faces
{Fo,F1,...,Fy_1} of Q is given, where f is the num-
ber of faces of @, (2) each vertex g; has its coordinate
(zj,y5,%), and (3) each face has its vertices in clock-
wise order. The basic idea of the algorithm is the same
as in Section 3.2; we here consider the differences.

We still have the property that we can reach from pg
to p; on P by stamping ) on it. However, now we have
O(n*m) combinations for pairs of pair (p;,pi) and g;.
Hereafter, we assume that the vertex p; of P forms a
vertex ¢; on () and the vertex py forms some vertex g;/
on . In the same argument in the pentagonal case,
for two vectors b_g = (1,0) and b} = (cos §,sin %) =

3
(%, @), Q@ can be folded from P only if we have two

integers B( and Bj such that

’ (pi, par ;

We again have that |Bj| 4 | Bj| is at most L, and hence
we have O((L +n)?) combinations to be checked. How-
ever, once we fix B, then Bj has two possible values.
Thus this step requires O(L + n) combinations. Each
partition of P by stamping of @ takes O(L+n) time by
the same argument in the case of dodecahedron.

For gluing, almost all arguments are the same as pen-
tagonal case since they do not use the fact that the
shape of a face is a pentagon. The only difference is
that we stamp all (possibly different) faces of Q; this
fact gives us an additional lower bound f of the num-
ber of stampings. Therefore, the time complexity of
our second algorithm for a non-concave deltahedron is
O(n*m(n+ L)(n+ f + L)). Here, by the Euler charac-
teristic, we have f = 24e—m, where e is the number of
edges of (). When we consider @) as a graph, it is a pla-
nar graph, which implies that e = O(m), or f = O(m).
By Theorem 4, @ has at most four vertices of curvature
180°. Thus we have m = O(n). Therefore, the time
complexity of the second algorithm is O(n?m(n + L)?),
which completes the proof of Theorem 2.

%
= ‘B{)bo + Biz :

4 Concluding Remarks

In this paper, we developed efficient folding algorithms
for some classes of convex polyhedra. The next step is
the extension to general convex polyhedra. In this case,
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the number of unit vectors cannot be bounded by a con-
stant number. Thus we need some different approaches.
Additional future work is the extension to non-convex
polyhedra. In this case, we cannot use Theorem 4 or
Theorem 7 any longer. Is there any reasonable class
of non-convex polyhedra such that the folding problem
can be solved efficiently?
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Vertex-Transplants on a Convex Polyhedron

Joseph O’Rourke

Abstract

Given any convex polyhedron P of sufficiently many ver-
tices n, and with no vertex’s curvature greater than m,
it is possible to cut out a vertex, and paste the excised
portion elsewhere along a vertex-to-vertex geodesic, cre-
ating a new convex polyhedron P’ of n + 2 vertices.

1 Introduction
The goal of this paper is to prove the following theorem:

Theorem 1 For any convex polyhedron P of n > N
vertices, none of which have curvature greater than T,
there is a vertex vy that can be cut out along a digon
of geodesics, and the excised surface glued to a geodesic
on P connecting two vertices vi,ve. The result is a
new convex polyhedron P’ with n + 2 vertices. N = 16

suffices.

I conjecture that N can be reduced to 4 so that the
theorem holds for all convex polyhedra with the stated
curvature condition. Whether this curvature condition
is necessary is unclear.

I have no particular application of this result, but
it does raise interesting questions (Sec. 8), including:
What are the limiting shapes if vertez-transplants are
repeated indefinitely?

2 Examples

Before detailing the proof, we provide several examples.

We rely on Alexandrov’s celebrated gluing theorem
[Ale05, p.100]: If one glues polygons together along their
boundaries' to form a closed surface homeomorphic to
a sphere, such that no point has more than 27 incident
surface angle, then the result is a convex polyhedron,
uniquely determined up to rigid motions. Although we
use this theorem to guarantee that transplanting a ver-
tex on P creates a new convex polyhedron P’, there is
as yet no effective procedure to actually construct P’,
except when P’ has only a few vertices or special sym-
metries.

In the examples below, we use some notation that will
not be fully explained until Sec. 3.

1To “glue” means to identify boundary points.
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Regular Tetrahedron. Let the four vertices of a regu-
lar tetrahedron of unit edge length be vy, v9, v3 forming
the base, and apex vg. Place a point x on the vsvy edge,
close to vs. Then one can form a digon starting from z
and surrounding vy with geodesics v; and 7, to a point y
on Avivgvg, with |v1| = |y2| = 1. See Fig. 1(a,b). This
digon can then be cut out and its hole sutured closed.
The removed digon surface can be folded to a doubly
covered triangle, and pasted into edge vivs. The re-
sulting convex polyhedron guaranteed by Alexandrov’s
Theorem is a 6-vertex irregular octahedron P’.

Yo
X ) X

V1 V2

\ | bAY)
v, O

© @ "

Figure 1: (a) Unfolding of tetrahedron, apex vp.
(b) Digon ; connects z to y, surrounding vg. (c) After
removal of the digon. (d) Digon doubly covered triangle
sutured along edge vy vs.

Cube. Fig. 2 shows excising a unit-cube corner vy with
geodesics y; and 2, each of length 1, and then suturing
this digon, folded to a doubly covered triangle, into the
edge vi1vy. After closing the digon hole, the result is a
10-vertex, 16-triangle polyhedron P’.

Doubly Covered Square. Alexandrov’s theorem holds
for doubly covered, flat convex polygons, and vertex-
transplanting does as well. A simple example is cut-
ting off a corner of a doubly covered unit square with a
unit length diagonal, and pasting the digon onto another
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Figure 2: Left: Digon zy surrounding vy. Right: wvg
transplanted to vvs; vg is the apex of a doubly covered
triangle, the digon flattened. Hole to be sutured closed
to form P’.

edge. The result is another doubly covered polygon: see
Fig. 3.

Yo V2

Y Y2

Vi

Figure 3: A doubly covered square P (front F', back K)
converted to a doubly covered hexagon P’.

A more interesting example is shown in Fig. 4. The
indicated transplant produces a 6-vertex polyhedron
P’—combinatorially an octahedron—whose symmetries
make exact reconstruction feasible. Vertices vy and wvg
retain their curvature 7, and the remaining four vertices
of P, v1,vs,2,y, each have curvature 7/2.

Vo
Y1 Y1

Vi

V2 V3

Figure 4: Transplanting vg to v1v2 on a doubly covered
square (front F', back K) leads to a non-flat polyhedron
P

Doubly Covered Equilateral Triangle. The only poly-
hedron for which T am certain Theorem 1 (without re-
strictions) fails is the doubly covered, unit side-length
equilateral triangle. The diameter D = 1 is realized by
the endpoints of any of its three unit-length edges. Any
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other shortest geodesic is strictly less than 1 in length,
as illustrated in Fig. 5. Thus there is no opportunity

Figure 5: Point « is on the front, y on the back. Three
images of y are shown, corresponding to the three paths
from z to y. The shortest of these paths is never > 1
unless both z and y are (different) corners.

to create a digon of length 1 surrounding a vertex, but
length 1 would be needed to glue into an edge.

3 Preliminaries

Let the vertices of P be v;, and let the curvature (angle
gap) at v; be w;. We assume all vertices are corners in
the sense that w; > 0. Let vg,v1,vs be three vertices,
labeled so that wy is smallest among the three, < wy, ws.
Let vivs be the shortest geodesic on P connecting vy
and v, with |vjvs| = ¢ its length. Often such a shortest
geodesic is called a segment. A digon is a pair of shortest
geodesics 71,72 of the same length, |v1| = |y2| = ¢,
connecting two points on P. For us, digons will always
surround one vertex vg. Since shortest paths cannot
go through vy, geodesics slightly left and right of vg
meet on the “other side” of vy. We will show that, with
careful choice of vy, v1,v2, we can cut out a digon X
surrounding vy, fold it to a doubly covered triangle and
paste it into vivg slit open.

The technique of gluing a triangle along a geodesic
v1ve on P was introduced by [Ale05, p.240], and em-
ployed in [OV14] to merge vertices. Excising a digon
surrounding a vertex is used in [INV11, Lem. 2]. What
seems to be new is excising from one place on P and
inserting elsewhere on P.

Let C(x) be the cut locus on P with respect to point
z € P. (In some computer science literature, this is
called the ridge tree [AAOS97].) C(z) is the set of points
on P with at least two shortest paths from z. It is a
tree composed of shortest paths; in general, each vertex
of P is a degree-1 leaf of the closure of C(x).

We will need to exclude positions of x that are non-
generic in that C(z) includes one or more vertices. It
was shown in [AAOS97, Lem. 3.8] that the surface of P
may be partitioned into O(n*) ridge-free regions, deter-
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mined by overlaying the cut loci of all vertices: |J; C(v;).
Say that x € P is generic if it is not a vertex and lies
strictly inside a ridge-free region. For later reference,
we state this lemma:

Lemma 2 Within every neighborhood of any point p €
P, there is a generic x € P.

Proof. This follows because ridge-free regions are
bounded by cut-loci arcs, each of which is a 1-
dimensional geodesic. O

For generic x, the cut locus in the neighborhood of a
vertex vy consists of a geodesic segment s open at vy and
continuing for some positive distance before reaching a
junction u of degree-3 or higher. Let é(x,u) = § be the
length of s; see Fig. 6.

F—§ —

Figure 6: Geodesic segment s of C(z) (red) incident to
vertex vg. A pair of shortest geodesics from z to y € s
are shown (green).

4 Surgery Procedure

We start with and will describe the procedure for any
three vertices vg, v1, v, but later (Sec. 5) we will chose
specific vertices.

Let = be a generic point on P and ~ a shortest
geodesic to vy with length |y| = |vjve| = ¢. The ex-
istence of such an z is deferred to Sec. 5. If we move
x along v toward vg, 7 splits into two geodesics 71, e
connecting x to a point y € C(x), with 2 and y moving
in concert while maintaining |y1| = |y2| = ¢. If we move
x a small enough distance e, then y will lie on the seg-
ment s C C(z) as in Fig. 6. Because Lemma 2 allows
us to choose x to lie in a ridge-free region R, we can
ensure that s has a length |s| =6 > 0. Now 71, v2 form
a digon X surrounding vg. With sufficiently small ¢, we
can ensure that X is empty of other vertices, and that
y is generic as well. See Fig. 7.

Let the surface angles inside the digon at x and at
y be o and B respectively. By Gauss-Bonnet, we have
a+ 8= wp:

THwy=2n=((r—a)+ (7 —0)) +wo =27,

where the turn angle 7 is only non-zero at the endpoints
x and y. In particular, 0 < o, 8 < wp. These inequali-
ties are strict because the digon wraps around vy after
moving x toward vg, so a > 0.
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v,
c ik )
o
X ©o
(a) VO ]/ZB Y
(b) ;
X /2

Figure 7: (a) Flattened digon surrounding vo: a+ =
wp. (b) Sliding z along ~y toward vy, and y along s, while
maintaining length ¢ constant.

Now we can suture-in the digon X to a slit along v;vs
because:

e The lengths match: |vyve| = ¢ and |y1]| = || =c.

e The curvatures at vy,vo remain positive: «a,f <
wo < wi,ws, Sow; —a>0and wy — > 0.

We then close up the digon on the surface of P and in-
voke Alexandrov’s theorem to obtain P’. We now detail
the curvature consequences at the five points involved
in the surgery: vg, vy, ve, 2, Y.

e vg is unaltered, just moved, i.e, transplanted.

e Both x and y become vertices after the transplant,
of curvatures o and 3 respectively. Because neither
was a vertex (both generic), this accounts for the
increase from n to n + 2 vertices in P’.

e Because a < wg < wi, the change at v; cannot
flatten v1. So v; remains a vertex, as does vs.

We note that the condition that wyg < wy,ws is in
fact more stringent that what is required to ensure that
the curvatures at vy, vs remain non-negative. The lat-
ter implies that wy < w1 + wo, a considerably weaker
condition. Moreover, our restriction to generic z and y
is also not necessary: either or both of x and y could be
vertices without obstructing the transplant. Our strict
conditions are aimed at guaranteeing a transplant. We
leave exploring loosenings to the open problems.

5 Existence of vy, vy, 0o

In order to apply the procedure just detailed, we need
several conditions to be simultaneously satisfied:

(1) wo S Wi, wWa.

(2) [vrve] = nl| = el =c
(3) v1v2 should not cross the digon X.
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Although (1) is satisfied by any three vertices, just by
identifying vg with the smallest curvature, the difficulty
is that if vy vy is long—say, realizing the diameter of P—
then we need there to be an equally long geodesic from
x to vy, to satisfy (2). A solution is to choose v; and
va to be the nearest neighbors on P, so that |vjvs] is
small. But then if wq,ws are both small, we may not be
able to locate a vy with a smaller wg. We resolve these
tensions as follows:

1. We choose vy to be a vertex with minimum curva-
ture over all vertices of P, so automatically wy <
w1,ws for any choices for vy and vs.

2. Several steps to achieve (2):

(a) We choose wvi,v2 to achieve the smallest
nearest-neighbor distance NN,,;, = r over all
pairs of vertices (excluding vg), so vivy is as
short as possible.

(b) We prove that the nearest neighbor distance r
satisfies r < %D, where D is the diameter of

P.
(¢) We prove that there is an z such that
d(z,v0) > i D.

Together these imply that we can achieve |vjvs| =
1l = [el-

3. We show that if v1vy crosses X, then another point
x may be found that avoids the crossing. This last
claim is the only use of the assumption that w; < 7
for all vertices v;.

The next section addresses items (1) and (2) above, and
Sec. 7 addresses item (3).

6 Relationship to Diameter D

The diameter D(P) of P is the length of the longest
shortest path between any two points. The lemma be-
low ensures we can find a long-enough geodesic v = zvy.

Lemma 3 For any x € P, the distance p to a point
f(x) furthest from x is at least 3D, where D = D(P)
is the diameter of P.

Proof. 2 Let points y,z € P realize the diameter:
d(y,z) = D. For any x € P,

D =d(y,z) < d(y,r) + d(z, 2)

by the triangle inequality on surfaces [Ale06, p.1]. Also
we have p < d(z,y) and p < d(z, z) because p is the fur-
thest distance. So D = d(y, z) < 2p, which establishes
the claim. 0

2Proof suggested by Alexandre FEremenko.
mathoverflow.net/a/340056/6094. See also [IRV19].

https://
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Next we establish that the smallest distance (via
a shortest geodesic) between a pair of vertices of P,
NNpin—the nearest neighbor distance—cannot be large
with respect to the diameter D = D(P).

6.1 Nearest-Neighbor Distance

Here our goal is to show that sufficiently many points
on P cannot all have large nearest-neighbor (NN) dis-
tances. First we provide two examples.

1. Let P be a regular tetrahedron with unit edge
lengths. D is determined by a point in the center of
43 2

372 V3
The NN-distance is 1 = 2D = 0.866 D.

the base connecting to the apex, so D =

2. Let P be a doubly covered regular hexagon, with
unit edge lengths. Then D = 2, connecting oppo-
site vertices, and the NN-distance is 1 = %D.

Our goal is to ensure the NN distance is at most %D,
which is not achieved by the regular tetrahedron but is
for the hexagon. We achieve this by insisting P have
many vertices.

Lemma 4 Let P be a polyhedron with diameter D. Let
S be a set of distinguished points on P, with |S| > N.
Let r be the smallest NN-distance between any pair of
points of S. Then r < D/(\/N/2). In particular, for
N =16,r < 3D.

Proof.

1. Let a geodesic from x to y realize the diameter D
of P. Let U be the source unfolding of P from
source point  [DO07, Chap.24.1.1]. U does not
self-overlap, and fits inside a circle of radius D; see
Fig. 8. Thus the surface area of P is at most wD?2.

2. Let r be the smallest NN-distance, the smallest sep-
aration between a pair of points in S. Then disks of
radius r/2 centered on points of S have disjoint in-
teriors. For suppose instead two disks overlapped.
Then they would be separated by less than r, a
contradiction.

3. N non-overlapping disks of radius r/2 cover an area
of N (r/2)?, which must be less than® the surface

area of P:
Nz(r/2)? < 7D? (1)
D

T<\/>T/2 (2)

Thus, for N =16, r < %D.
|

3Strictly less than because disk packings leave uncovered gaps.
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Figure 8: Source unfolding of a regular tetrahedron. zy
realizes D.

7 Crossing Avoidance

Although Lemma 3 ensures that we can find an x on
the geodesic from f(vg) to vy far enough from vy so
that we can match |y| with |vjvg|, if v crosses vjvg,
the procedure in Sec. 4 fails. We now detail a method
to locate another x in this circumstance. We partition
crossings into two cases, long and short.

Recall that vy was excluded from the NN calculation
of 7, so vy could be closer to v; and/or ve than r =
|’l)11}2|.

Case (1) [long]. Case: d(vg,v;) > r for either i = 1
or i = 2. Assume d(vg,v2) > r. Then choose v = vgus.
We can locate x near vs on v to achieve |zvg| = r. See
Fig. 9.

)

Figure 9: Crossing avoided: d(vg,v2) > r (vg is outside
vy’s r-disk).

Case (2) [short]. If d(vg,v;) < rfori=1,2, then v is
located in the half-lune to the opposite side of (below)
v1vg from f(vg). It is possible that with large curvatures
wy and we that there is no evident “room” below vjvg
to locate an x far enough away so that d(x,vy) > 7.
However, with assumptions on the maximum curvature
per vertex, room can be found.

The main idea is illustrated in Fig. 10. Although
there might not be room either right or left or below
for an = achieving |zvg| = r, we can “wrap around” the
cone whose apex is v or vs to avoid crossing vy vs.

So)

Figure 10: Curvatures w; = we = 7/2. Here xvy wraps
around vy.

With larger curvatures at v; and vy, the situation
could resemble a doubly covered equilateral triangle
with w; = %77, which we saw in Sec. 2 violates The-
orem 1. However, if we assume w; < 7 for all i, a
long-enough v to vy can be found.

Assume the worst case, w; = wy = w. As illustrated
in Fig. 11, an r-long segment left of vy re-enters above
v1vy (red), and similarly right of vy (green). In fact, it is
easy to see that the red and green segments above and
below have total length 27, regardless of the orientation
of the semicircle bounding the angle-gap lines through
v1 and vg. So there is always enough room to locate x
above v1vy connecting “horizontally” to vy below.

Svo)

Figure 11: Crossing avoided: Both the red and green
segments have total length r each.

8 Open Problems

1. Extend Theorem 1 to all convex polyhedra, i.e.,
lower N = 16 to N = 4, and remove the w; < 7
restriction.
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2. Establish conditions that allow more freedom in the
selection of the three vertices vg, v1, v2. Right now,
Thm. 1 requires following the restrictions detailed
in Sec. 5, but as we observed, these restrictions are
not necessary for a successful transplant. Addi-
tional freedom might permit controlling the shape
changes, allowing one to “aim” from P to some de-
sired Q.

3. Study doubly covered convex polygons as a special
case. When does a vertex transplant on a dou-
bly covered polygon produce another doubly cov-
ered polygon? See again Sec. 2. (There is a pro-
cedure for identifying flat polyhedra [O’R10]; and
see [INV11, Lem. 4].)

4. What limit shapes are realized under repeated
vertex-transplanting, as n — oo? Note that be-
cause «, < wg, new smaller-curvature vertices are
created at x and y at each step.

5. Does the transplant guaranteed by Thm. 1 always
increase the volume of P? Note that a transplant
flattens v; and v by « and (, and creates new
smallest curvature vertices, o, 8 < wp. So the over-
all effect seems to “round” P.

6. Can Thm. 1 be generalized to transplant several
vertices within the same digon? For example, one
can excise both endpoints of an edge of a unit cube
with a digon of length v/2 and suture that into a
face diagonal.

Related work is under preparation [OV20].
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Fitting a Graph to One-Dimensional Data*

Siu-Wing Cheng'

Abstract

Given n data points in R?, an appropriate edge-weighted
graph connecting the data points finds application in
solving clustering, classification, and regresssion prob-
lems. The graph proposed by Daitch, Kelner and Spiel-
man (ICML 2009) can be computed by quadratic pro-
gramming and hence in polynomial time. While a
more efficient algorithm would be preferable, replac-
ing quadratic programming is challenging even for the
special case of points in one dimension. We develop a
dynamic programming algorithm for this case that runs
in O(n?) time.

1 Introduction

Many interesting data sets can be interpreted as point
sets in R?, where the dimension d is the number of fea-
tures of interest of each data point, and the coordinates
are the values of each feature. Given such a data set,
graph-based semi-supervised learning is a paradigm for
making predictions on the unlabelled data using the prox-
imity among the data points and possibly some labelled
data (e.g. [2, 5, 8, 10, 12, 13, 14]). Classification, regres-
sion, and clustering are some popular applications. The
graph has to be set up first in order to perform the subse-
quent processing. This requires the determination of the
graph edges and the weights to be associated with the
edges. For example, let w;; denote the weight determined
for the edge that connects two points p; and p;, and
regression can be performed to predict function values
fi’s at the points p;’s by minimizing Y-, wi;(fi — f;)?,
subject to fixing the subset of known f;’s [2]. To allow
efficient data analysis, it is important that the weighted
graph is sparse.

The graph connectivity should satisfy the property
that similar discrete samples are connected. To this
end, different proximity graphs have been suggested for
connecting proximal points. The kNN-graph connects
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each point to its k nearest neighbors. The e-ball graph
connects each point to all other points that are within a
distance . After fixing the graph connectivity, edges to
“near” points are given large weights and edges to “far
away” points are given small weights. That is, the larger
the weight of an edge between points p and ¢, the higher
the influence of ¢ on p and vice versa. It is thus inappro-
priate to use the Euclidean distances among the points
as edge weights. Naively setting an edge weight as the re-
ciprocal of the edge length does not work either because
the influence of a point is required to fall much more
rapidly as that point moves farther away. It has been
proposed to associate a weight of exp(—¢2/20?) to an
edge of Euclidean length ¢ for some a priori determined
parameter o (e.g. [10]). A well-tuned o is important.
A slight change in ¢ may greatly affect the processing
outcomes as observed in some previous work (e.g. [12]).
Several studies have found the KNN-graph and the e-ball
graphs to be inferior to other proximity graphs [2, 3, 13]
for which both the graph connectivity and the edge
weights are determined simultaneously by solving an
optimization problem.

We consider the graph proposed by Daitch, Kelner,
and Spielman [2]. It is provably sparse, and experi-
ments have shown that it offers good performance in
classification, clustering and regression. This graph
is defined via quadratic optimization as follows: Let
P = {p1,p2,...,pn} be a set of n points in R?. We as-
sign weights w;; > 0 to each pair of points (p;, p;), such
that w;; = wj; and wy; = 0. These weights determine
for each point p; a vector ¥;, as follows:

Let v; denote ||U;||. The weights are chosen so as to
minimize the sum

n

2

Q=2 vk
i=1

under the constraint that the weights for each point add
up to at least one (to prevent the trivial solution of
w;; = 0 for all 4 and j):
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The resulting graph contains an edge connecting p; and
p; if and only if w;; > 0.

Daitch et al. [2] showed that there is an optimal so-
lution where at most (d + 1)n weights are non-zero.
Moreover, in two dimensions, optimal weights can be
chosen such that the graph is planar.

The optimal weights can be computed by quadratic
programming. A quadratic programming problem with
m variables can be solved in O(m?) time in the worst
case [9]. In our case, there are n(n—1)/2 variables, which
gives a worst-case running time of O(n6). Graphs based
on optimizing other convex quality measures have also
been considered [5, 13]. Our goal is to design an algo-
rithm to compute the optimal weights in Daitch et al.’s
formulation that is significantly faster than quadratic
programming. Perhaps surprisingly, this problem is chal-
lenging even for points in one dimension, that is, when
all points lie on a line. In this case, it is not difficult to
show (Lemma 1) that there is an optimal solution such
that w;; > 0 if and only if p; and p; are consecutive.

Despite its simplicity, the one-dimensional problem
can model the task of detecting change points and con-
cept drift in a time series (e.g. [1, 4, 6, 7, 11]); for example,
seasonal changes in sales figures and customer behavior.
A time series of multi-dimensional data (z1,22,-+) is
given, and the problem is to decide the time steps t
at which there is a “significant change” from z;_; to
z¢. Suppose that the “distance” between z;,_1 and z;
can be computed according to some formula appropriate
for the application (e.g. [4]). By forming a path graph
with vertices corresponding to the data points and edge
weights determined as mentioned previously, one apply
clustering algorithms (e.g. [2, 10]) to group “similar” ver-
tices and detect the change points as the boundaries of
adjacent clusters. This gives a potential application of
the graph fitting problem in one dimension.

In general, although there are only n — 1 variables in
one dimension, the weights in an optimal solution do
not seem to follow any simple pattern as we illustrate in
the following two examples.

Some weights in an optimal solution can be arbitrarily
high. Consider four points p1, p2, p3, ps4 in left-to-right
order such that po —p1 =ps —p3 =1 and p3g — p = €.
By symmetry, w2 = w34, and so v1 = vy = wio. Since
wig + woz = 1 and wag + wsg > 1 are trivially satisfied
by the requirement that wis = wss > 1, we can make
vy zero by setting was = wi2/e. In the optimal solution,
w1z = w34 = 1 and wag = 1/e. So wag can be arbitrarily
large.

Given points pi,- -+, pn in left-to-right order, it seems
ideal to make v; a zero vector. One can do this for i €
[2,n—1] by setting w;—1,;/wi i+1 = (piy1—pi)/(Pi—Pi-1),
however, some of the constraints w; + w;+1 > 1 may
be violated. Even if we are lucky that for i € [2,n —

1], we can set w;—1;/wiit1 = (Pi+1 — Pi)/(Pi — Pi—1)
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without violating w; + w;4+1 = 1, the solution may not
be optimal as we show below. Requiring v; = 0 for
i € [2,n — 1] gives v; = v, = wi2(p2 — p1). In general,
we have ps — p1 # Pn — Pn—1, SO We can assume that
P2—P1 > Ppn—Pn—1. Then, w,_1, = wia(p2 —p1)/(Pn —
Pn-1) > 1 as wia > 1. Since w,_1, > 1, one can
decrease wy—_1, by a small quantity § while keeping
its value greater than 1. Both constraints w,_1, = 1
and wp_2 p—1 + Wp_1,, = 1 are still satisfied. Observe
that v, drops to wi2(p2 — p1) — §(prn — Pn—1) and v,_1
increases to §(p, — pn_1). Hence, v2_; + v2 decreases
by 2671}12(]72 - pl)(pn - pn—l) - 252(1% - pn—1)27 and
so does (). The original setting of the weights is thus
not optimal. If wy,_3 9 + wp_2,-1 > 1, it will bring
further benefit to decrease wy,_2 ,,—1 slightly so that v,,_;
decreases slightly from 6(p, — pn—1) and v,_o increases
slightly from zero. Intuitively, instead of concentrating
wiz(p2 — p1) at vy, it is better to distribute it over
multiple points in order to decrease the sum of squares.
But it does not seem easy to determine the best weights.
Although there are only n — 1 variables in one dimen-
sion, quadratic programming still yields a running time
of O(n®). We present a dynamic programming algorithm
that computes the optimal weights in O(n?) time in the
one-dimensional case. The intermediate solution has an
interesting structure such that the derivative of its qual-
ity measure depends on the derivative of a subproblem’s
quality measure as well as the inverse of this derivative
function. This makes it unclear how to bound the size
of an explicit representation of the intermediate solu-
tion. Instead, we develop an implicit representation that
facilitates the dynamic programming algorithm.

2 A single-parameter quality measure function

We will assume that the points are given in sorted order,
so that p1 < p2 < p3 < -+ < p,. We first argue
that the only weights that need to be non-zero are the
weights between consecutive points, that is, weights of
the form Wi i41-

Lemma 1 Ford =1, there is an optimal solution where
only weights between consecutive points are non-zero.

Proof. Let the width of an optimal solution S be
max{|i — k| : w;r > 01in S}. Among all optimal solu-
tions, consider the solution O with the minimum width,
and in case of ties, pick O to minimize the number of
non-zero weights that achieve the minimum width.
Assume to the contrary that the width of O is at least
two, achieved by w;; > 0 for some ¢ < k—1. Let j be an
arbitrary index strictly between ¢ and k. We construct
a new optimal solution as follows: Let a = p; — p;,
b = pr — pj, and w = ws. In the new solution, we
set wy, = 0, increase w;; by “T'H’w, and increase w;

by aTerw. Note that since a +b > a and a +b > b,
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the sum of weights at each vertex increases, and so the
weight vector remains feasible. The value v; changes
by —a x aTH’w + b X a+bw = 0, the value v; changes by
—(a+b) xw+ax “"‘bw = 0, and the value vj changes
by +(a+b) x w—b x 22w = 0. It follows that the
new solution has the same quality as the original one,
and is therefore also optimal. But then we should have
preferred this optimal solution to O, a contradiction. [

To simplify the notation, we set d; = p;+1 — p;, for
1 <7 < n, rename the weights as w; := w; ;+1, again for
1 <7 < n, and observe that

v = widy,
V; = |wld1 — wi_ldi_1| for 2 Z n — 1

Vp = Wp_1dp_1.

For i € [2,n

i
_ J2,,,2 2
Ql—diwi—&—g 5
=1

— 1], we introduce the quantity

= d?w? + djw? + Z(djwj —dj_qwj_1)?,

and note that Q,—1 =Y., v v? = Q. Thus, our goal is
to choose the n — 1 non-negative weights w1, ..., w,—1

such that @,,—1 is minimized, under the constraints

g
AV

wj + Wjt1 for2<j<n—2,

—_ =

Wp—1
The quantity Q; depends on wy,ws,...,w;. We con-
centrate on w; and consider the function
Wi—1, wi)a

w; »—>Qz(w1) = min Qi(wl,wg,...,

W1 yeneyWi—1
where the minimum is taken over all choices of
wy,...,w;_1 that respect the constraints w; > 1 and
w; +w;qt1 = 1 for 2 < j <i— 1. The function Q;(w;) is
defined on [0, 00).

We denote the derivative of the function w; — Q;(w;)
by R;. We will see shortly that R; is a continuous,
piecewise linear function. Since R; is not differentiable
everywhere, we define S;(z) to be the right derivative
of R;, that is

Si(z) = lim Ri(y).

y—xt
The following result discusses R; and S;. The shorthand
& =2d;diyq, forl<i<n-—1,

will be convenient in its proof and the rest of the paper.
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Theorem 2 The function R; is strictly increasing, con-
tinuous, and piecewise linear on the range [0,00). We
have R;(0) < 0, S;(z) = (2 + 2/i)d? for all z > 0, and
Ri(z) = (2 + 2/i)d3x for sufficiently large x > 0.

Proof. We prove all claims by induction over i. The
base case is ¢ = 2. Observe that

Q2 = vf + v% + d%w% = d1w1 — 2d1dawiwe + 2d§w§.

The derivative with respect to wy is

0
aTUlQQ = 4dw; — 2ddaws, (1)

which implies that ()2 is minimized for wy = %wg. This
choice is feasible (with respect to the constraint wy > 1)
when wy > 24 If wy < 24 then aw Q- is positive for
all values of wy = 1, so the minimum occurs at w; = 1.
It follows that

d2w2 for wq > %,

Qalwn) = { d3w3 — &wy + 2d3

otherwise,

and so we have

2d

2
3d5ws for wy > T;’

4d% wy — &1 (2)

Ro(w2) =
(w2) otherwise.
In other words, Ry is piecewise linear and has a sin-

gle breakpoint at %. The function Ry is continuous

because 3d3ws = 4d3ws — & when wy = %. We
have Rp(0) = —& < 0, Sa(w) > 3d3 for all 2 > 0
and Ry(z) = 3d3x for z > 2d1 The fact that Se(z) >
3d3 > 0 makes Ry strictly i 1ncreasmg

Consider now i > 2, assume that R; and S; satisfy the
induction hypothesis, and consider @;+1. By definition,
we have

)

Qit1 = Qi — Lwiwiy1 +2d wh, . (3)
For a given value of w;4+1 > 0, we need to find the value
of w; that will minimize @Q;11. The derivative is

aiwiQi-&-l = Rj(w;) — &witr.
The minimum thus occurs when R;(w;) = &w;t1.
Since R; is a strictly increasing continuous function
with R;(0) < 0 and lim, o R;(z) = oo, for any given
wir1 = 0, there exists a unique value w; = R;l(fiWi+1).
However, we also need to satisfy the constraint w; +
wiy1 = 1.
We first show that R;y; is continuous and piecewise
linear, and that R;;+1(0) < 0. We will distinguish two
cases, based on the value of wf := R; *(0).
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Case 1: w{ > 1. This means that R_l(fzwwl) 1 for
any w;4+1 = 0, and so the constraint of wl —|— w1 = 1is
satisfied for the optimal choice of w; = R; (52w1+1). It
follows that

Qit1(Wit1) = Qi(R; (&wit1)) — &wit1 Ry N (&wit)
+2d7wi

The derivative R;4 is therefore

&i

Rip1(wiy1) = Ri(Ri_l(giwi+1))R{(Rfl(é-,w,+1))

- gz (gzthl)

- fiwi+1

§i
RI(R; ' (&wisr))
+ 4df+1wi+1
= 4d12+1wi+1 SRy (gzwz-i-l) (4)

Since R; is continuous and piecewise linear, so is R; L
and therefore R;;; is continuous and piecewise linear.
We have R;11(0) = —&w; < 0.

Case 2: w) < 1. Consider the function z — f(z) =
x + Ri(z)/&. Since R; is continuous and strictly in-
creasing by the inductive assumption, so is the function
f.- Observe that f(w) = w < 1. As wy < 1, we
have R;(1) > R;(wy) = 0, which implies that f(1) > 1
Thus, there exists a unique value w}* € (wg, 1) such that
Flw™) = wf + Ra(w?) /€ 1.

For wiy1 > 1 — w) = R;j(w])/&, we have
R:l(&wi_,_l) > U}l , and so R:l(fsz_l) + Wi+1 = 1.
This implies that the constraint w; + w;y1 > 1 is sat-
isfled when Q;41(w;4+1) is minimized for the optimal
choice of w; = R;l(fiwl‘+1). So R;+1 is as in (4) in
Case 1.

When w41 < 1 —w], the constraint w; + w;+1 > 1
implies that w; > 1 — w; 41 > w)'. For any w; > w)
we have 52-Qip1 = Ri(w;) — &wigr > Ry(w]) — &(1 -
w') = 0. So Q41 is increasing, and the minimal value
is obtained for the smallest feasible choice of w;, that is,
for w; =1 —w; 1. It follows that

Qit1(wit1) = Qi(1 — wiy1) — &wipr (1 — wis1)
+2d;, wiyy
= Qi(1 —wiy1) — fiwi+1
+ (& +2d7 w?y ),

and so the derivative R;;1 is

Riy1(wiy1) = —Ri(1 — wit1)
+ (26 +4d7y Jwigr — & (5)

Combining (4) and (5), we have
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o If w1 <1—w], then

Riv1(wit1) = —Ri(1 — wit1)
+ (28 +4d7 wigr — & (6)

o If Wi41 > 1 —’LUZN, then

Rip1(wi1) = 4d7ywirr — &R (i), (7)

For w11 = 1—w]*, we have R;(1—w;41) = R;(w*

) =
&(1—w)) and R (Gwin) = Ry NG — w))) = w)',
and so both expressions have the same value:

- R'(1 —wi1) + (26 + 4d7, w1 — &
= &w; 52—4—251—25210 +4dz+1( —w) =&
= 4d1+1( w;') — §w;
= 4di+1(1 - ) &R, (fzwz+1)
Since R; is continuous and piecewise linear, this implies
that R;11 is continuous and piecewise linear. We have

R;i1+1(0) = —R;(1) — &;. Since wi < 1, we have R;(1) >
R;(w?) =0, and so R;11(0) < 0.

Next, we show that Sjiq(x) = (2 4 2/i+1)d3, ; for all
x > 0, which implies that R;; is strictly increasing. If
wf <1and z <1—w, then by (6),

Siv1(z) = Si(1 — x) + 2& + 4d? 4
> 4d2,,
> (24 Y2, .
fw>1lorz>1—w! ) We have by (4)and (7) that
Ri+1( ) = 4d?, |z — &R; (&), By the inductive as-

sumption that S;(x) > (2 +2/i)d? for all x > 0, we get
%R;l(aj) <1/(2+ 2/i)d?). Tt follows that

2d;dis1)? 4
. > 2 — 7( i1 = — 2
Sl-l-l(x) = 4dz+1 (2 ¥ 2/1)(112 (4 2+ Q/i)dz+1

= (4 - %)d?—kl
(24 27

This establishes the lower bound on S;41(z).
Finally, by the inductive assumption, when x is large
enough, we have R; ' (z) = z/((2 + 2/i)d?), and so

(Qdidi+1)2
@+2d”

<2+ T l)dz+1x

completing the inductive step and therefore the
proof. O

Rit1(x) = 4dz+1x
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3 The algorithm

Our algorithm progressively constructs a representation
of the functions Rs, R3, ..., R,—1. The function repre-
sentation supports the following three operations:

e Op 1: given z, return R;(z);
e Op 2: given y, return R; ' (y);

. o % X Ri(z™) _
e Op 3: given &, return =™ such that =™ + —e = 1.

The proof of Theorem 2 gives the relation between
R;+1 and R;. This will allow us to construct the func-
tions one by one—we discuss the detailed implementation
in Sections 3.1 and 3.2 below.

Once all functions Rs, ..., R,_1 are constructed, the
optimal weights wq,ws, ..., w,_1 are computed from
the R;’s as follows. Recall that Q = Q,_1, SO w,_1
is the value minimizing Q,_1(w,—1) under the con-
straint w, , > 1. If R;*,(0) > 1, then R (0) is
the optimal value for w,,_1; otherwise, we set w,,_1 to 1.

To obtain wy,_o, recall from (3) that Q@ = Q,—1 =
Qn—2(wp_2) — En_oWpn_2w,_1 + 2d2_w2_,. Since we
have already determined the correct value of w,_1, it
remains to choose w,, _s so that (),,_1 is minimized. Since

0
an—1 =Ry _2(wp—2) — &—owWp_1,
Qn—1 is minimized when R,,_o(wp—2) = &,—2wp—1, and
SO Wp—2 = R;Ez(fn—an—l)

In general, for i € [2,n—2], we can obtain w; from w; 41
by observing that

Qn-1 = Qi(w;) — LEwiwipr + g(Wig1, ..., Wn—1),

where g is function that only depends on w;1, ...
Taking the derivative again, we have

, Wn—1-

0
%Qn_l = R;(w;) — &wiga,

so choosing w; = R;l(fiwiﬂ) minimizes Q,,_1. To also
satisfy the constraint w; + w; 1 > 1, we need to choose
w; = max{R; "(&wit1), 1 — w1} for i € [2,n — 2].
Finally, from the discussion that immediately follows (1),
we set wy = max{%wg, 1}. To summarize, we have

wy—1 = max{R;1(0), 1},
w; = max{R; ' (&wit1), 1 —wit1}, for i € [2,n — 2],
wy = max{%wg, 1}.

It follows that we can obtain the optimal weights using
a single Op 2 on each R;.

3.1 Explicit representation of piecewise linear func-
tions

Since R; is a piecewise linear function, a natural rep-
resentation is a sequence of linear functions, together
with the sequence of breakpoints. Since R; is strictly
increasing, all three operations can then be implemented
to run in time O(log k) using binary search, where k is
the number of function pieces.

We construct the functions R;, for ¢ = 2,...,n — 1,
one by one.

The function R, consists of exactly two pieces. We
construct it directly from dy, ds, and &; using (2).

To construct R;1, we make use of the explicit repre-
sentation of R; that we have already computed. We first
compute wy = Ri_l(()) using Op 2 on R;. If w{ > 1, then
by (4) each piece of R;, starting at the z-coordinate wy,
gives rise to a linear piece of R;y1, so the number of
pieces of R;;1 is at most that of R;.

If w) < 1, then we compute w}* using Op 3 on R;.
The new function R;;1 has a breakpoint at 1 — wf“ by
(6) and (7). Its pieces for x > 1 — w® are computed
from the pieces of R; starting at the z-coordinate w*.
Its pieces for 0 < x < 1 — w* are computed from the
pieces of R; between the z-coordinates 1 and w;. (In-
creasing w;41 now corresponds to a decreasing w;.) This
implies that every piece of R; that covers xz-coordinates
in the range [w’, 1] will give rise to two pieces of R;1,
so the number of pieces of R;;1 may be twice the number
of pieces of R;.

Therefore, although this method works, it is unclear
whether the number of linear pieces of R; is bounded by
a polynomial in 3.

3.2 A quadratic time implementation

Since we have no polynomial bound on the number of
linear pieces of the function R,,_1, we turn to an implicit
representation of R;.

The representation is based on the fact that there is a
linear relationship between points on the graphs of the
functions R; and R;;1. Concretely, let y; = R;(x;), and
Yi+1 = Riy1(xiq1). Recall the following relation from
(4) for the case of w > 1:

Riy1(wit1) = 4d7wigr — &R (wign).
We can express this relation as a system of two equations:

2
Yisr = 4di  wip1 — &,
Yi = §iTit1-

This can be rewritten as

Yirr = 4d7 1y /6 — G,
Tiv1 = Yi/&i,
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or in matrix notation

Ti41 X
Yirl | =My | vi | (8)
1 1

where

0 1/& 0
My ==& 4d2,/& 0
0 1

On the other hand, if wy < 1, then R;;; has a break-
point at 1 — w;. The value w)* can be obtained by
appying Op 3 to R;. We compute the coordinates of
this breakpoint: (1 — w)", Ri41(1 — w; )) Note that
Ripi(1—w) = 4d12+1(1 —w) = &R, (@(1 - w,;"))
which can be computed by applying Op 2 to R;. For
Tit1 > 1 —w}, the relationship between (z;,y;) and
(@it1,yiy1) is given by (8). For 0 < @jp1 < 1 — w*,
recall from (5) that

—R;i(1 — wiy1)
+ (252 + 4d22+1)w¢+1 — gl

Ri+1(wz‘+1) =

We again rewrite this as

Yip1 = =Y + (2& + 4d?+1)33i+1 - &,
T =1—xiq1,

which gives

Yirr = —yi + (26 +4d2 ) (1 — ) — &,
Tip1 =1 — x4,

or in matrix notation:

Tit1 T
Yir1 | =Liv1- | v |
1 1
where
-1 0 1
Ligy = | =26 —4d2,, -1 &+4d2,,
0 0 1

We will make use of this relationship to store the
function R;y1, for ¢ > 2, by storing the break-
point (z},,y5 ) = (1 —w, Riy1(1 — w))) as well
as the two matrices L;1 and M;;;. The function Ry is
simply stored explicitly.

We now discuss how the three operations Op 1, Op 2,
and Op 3 are implemented on this representation of a
function R;. For an operation on R;, we progressively
build transformation matrices 177,77 |, T} o,..., T4, T4
such that (z;,y;,1) = T; (:v],y], ) for every 2 < j <14
in a neighborhood of the query. Once we obtain T%, we
use our explicit representation of Ry to express y; as

139

a linear function of z; in a neighborhood of the query,
which then allows us to answer the query.

The first matrix 7} is the identity matrix. We obtain
T} from T}, ,, for j € [2,i — 1], as follows: If R;i,
has no breakpoint, then T; Tj?_Irl M. If Rjp
has a breakpoint (%F41,Y541), then either Tj = ]?_H .
M1 or T TH_1 - Lj+1, depending on which side
of the breakpomt applies to the answer of the query.
We can decide this by comparing (z/,y’,1)! = T; 11
(TF1 Y1 1) with the query. More precisely, for Op 1
we compare the input = with 2/, for Op 2 we compare
the input y with 3’, and for Op 3 we compute 2’ + ' /¢
and compare with 1.

Assuming the Real-RAM model common in computa-
tional geometry, where arithmetic on real numbers takes
constant time, it follows that the implicit representation
of R; supports all three operations on R; in time O(z).

Finally, we discuss how the representation of all func-
tions R; is obtained. We again build it iteratively, con-
structing Ry, R3, R4, ..., R,—1, one-by-one in this order.
The first function Ry is stored explicitly. To construct
the implicit representation of R;11, we only need to
perform on our representation of R (that we already
computed) one Op 2 to get wg = R; '(0), one Op 3 to get

, and one Op 2 to get R; (&;(1 —w*)), which allows
us to determine the breakpomt (1—w, Rit1(1—w])),
if there is one (when wj < 1). The two matrices Lz+1
and R;y1 can be computed in O(1) time.

Since operations on R; take time O(¢), the total time
to construct R, is O(n?).

Theorem 3 Given n points on a line, we can compute
an optimal set of weights for minimizing the quality
measure Q in O(n?) time under the Real-RAM model.

4 Conclusion

We do not have a polynomial time bound on the running
time using the explicit representation of the functions
R;. Future work should determine if there is good bound
on the number of pieces in the explicit representation,
or an example in which the number of pieces is large.

It would also be nice to obtain an algorithm for higher
dimensions that is not based on a quadratic programming
solver.

In two dimensions, we have conducted some exper-
iments that indicate that the Delaunay triangulation
of the point set contains a well-fitting graph. If we
choose the graph edges only from the Delaunay edges
and compute the optimal edge weights, the resulting
quality measure is very close to the best quality measure
in the unrestricted case. It is conceivable that one can ob-
tain a provably good approximation from the Delaunay
triangulation.
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Planar Emulators for Monge Matrices

Hsien-Chih Chang*

Abstract

We constructively show that any cyclic Monge distance
matrix can be represented as the graph distances be-
tween vertices on the outer face of a planar graph. The
structure of the planar graph depends only on the num-
ber of rows of the matrix, and the weight of each edge
is a fixed linear combination of constantly many matrix
entries. We also show that the size of our constructed
graph is worst-case optimal among all planar graphs.

1 Introduction

Monge property, named after the 18th century math-
ematician Gaspard Monge, roughly say that the sum
of shortest-path distances between two crossing pairs
of points (z,y) and (z,w) is at least the sum of the
ones between corresponding non-crossing pairs (z, z)
and (y,w). The original motivation is to study the opti-
mal transport of masses in the plane [31,40]. As a simple
consequence of the Jordan curve theorem, Monge prop-
erty has been tremendously helpful in designing efficient
algorithms for planar optimization problems—whether
the input is a planar graph or geometric objects lying
in the plane [12,25,26,39,43]. Most famously, Monge
property is central to the design of the SMAWK algo-
rithm [2] for row-minimum queries in totally monotone
matrices and the Monge heap data structure [28] for
speeding up various optimization algorithms on planar
and surface graphs [15,28,30,33,35,41]. In some prob-
lems where Monge property is evident, it is not clear
whether the problem has an obvious connection to pla-
nar metrics. Examples are fast dynamic programming
using quadrangle inequalities [6,29], as well as string
problems such as the edit distance and longest com-
mon subsequence [46,50]. (See Burkard et al. [11,12],
Park [43], and the citations within for additional ap-
plications of the Monge properties.) A characteriza-
tion of matrices satisfying the Monge property is known
to exist [7,10,45], but the following fundamental ques-
tion relating planar metric to Monge property remains
unanswered: Given a metric between a finite number
of points satisfying some Monge property, is the metric
planar?

We answer this question affirmatively. We show that

*Duke University, USA.
TMichigan State University, USA.
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given any distance matrix satisfying the (cyclic) Monge
property, one can construct an edge-weighted planar
graph realizing entries of the matrix exactly as graph
distances between some subset of vertices (called ter-
minals). In other words, we construct a planar emu-
lator for any (cyclic) Monge matrix with zero diago-
nals. Moreover, the construction is optimal in size and
takes time linear in the size of the distance matrix. In
fact, each edge in the graph along with its weight is
determined by a constant number of entries in the ma-
trix. Such property is of independent interest and might
be useful in designing efficient algorithms under various
computation models.

1.1 Related work

Sketching graph distances. Emulators—arbitrary
graphs that preserve distances between terminals in
the input graph—are known to exist in general [8,9,
19].  But without additional assumptions on the in-
put graph there is a linear lower-bound on the size
of the emulator (with respect to the size of the input
graph) when the number of terminals is a polynomial
O(n®) for some range of « strictly less than 1 [19].!
Chang, Gawrychowski, Mozes, and Weimann [14] con-
structed the first sub-linear size emulator for any undi-
rected unweighted planar graph: given any k-terminal
planar graph with n vertices, an emulator of size
O(min{k?, (kn)'/?}) can be constructed in O(n) time,
which is optimal up to logarithmic factors.

A related structure, called a spanner, which preserves
the distances approximately up to additive or multi-
plicative errors, is relatively well-understood for gen-
eral graphs [9,32,44,49,51]. Spanners with stronger
guarantees exist for geometrically/topologically con-
strained graphs [4, 13,24, 38]. Similarly, distance or-
acles that answer distance queries exactly or approx-
imately are known to exist for planar and surface
graphs [1,5,16,28,36,37,42,47,48]. (See Ahmed et al. [3]
for a recent survey on distance sketching.)

Circular planar graphs. One of the central problems
in the theory of circular planar graphs considers the
following problem: Given measures of effective resis-
tances between all pairs of terminals, can we reconstruct

Hnterestingly, when the number of terminals is barely sublin-
ear (say n/220°2" ")) in an undirected unweighted graph, there
is a strictly sublinear-size emulator [8].
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a planar resistor network realizing the measures where
the terminals lie on the boundary? Colin de Verdiere
et al. [17,18] and Curtis et al. [21,22] showed that the
reconstruction problem can be solved precisely when the
effective resistance matrix is totally non-negative. The
problem sounds similar to ours in spirit; in fact, when
looking closer, the planar emulator problem is equiv-
alent to their reconstruction problem in the (min,+)-
semiring instead of the standard (4, x)-ring. The tech-
niques involved in proving their theorem rely crucially
on the fact that the weights are over a (4, x)-ring and
therefore do not apply to our problem.

1.2 Preliminaries

Monge properties. A matrix M satisfies the Monge
property if for any two rows ¢ < i’ and two columns
j < j’, one has

M[i, j] + M, j') < M[i', j] + M][i, j'].

Matrix M satisfies the anti-Monge property if the sign
of the above inequality flipped. We often reorder the
terms in the inequality to emphasize the monotonicity
on the entry differences:

M[i/aj,] - M[Zm?/] < M[Z/’]] - M[Z,]]

For the purpose of this paper we only consider dis-
tance matrices, where the diagonal entries are all ze-
ros, the entries are symmetric and satisfy the triangle
inequality. A distance matrix M is cyclic Monge? if
for any four indices 4, ', j, 7/ in cyclic order (that is,
i <i' < j < jafter some cyclic reordering of [¢, 4, 7, j']),
one has

Mli, ') + ML, ] < M{i, j] + MI[i', 5].

(Notice the inequality sign flipped comparing to the
standard Monge property.) Let M be a cyclic Monge
distance matrix and let A and B be two disjoint sub-
intervals of the index set of M. Then the submatrix of
M between A and B must be an (anti-)Monge matrix.

Planar emulators. Consider an undirected planar
graph G with edge weights and let G be the vertices
on the boundary of the outer face of G. We consider
the distance matrix M between vertices in 9G: for any
pair of vertices ¢ and j in 0G, we set M[i, j] to be the
distance between 7 and j in G.

It is not immediately clear that any cyclic Monge dis-
tance matrix M comes as a distance matrix generated
from some planar graph G. A planar emulator for a
distance matrix M is a graph G whose vertex set V(G)

2This is known as the Kalmanson matriz [23,34], which is
slightly more restricted than a triangular Monge matriz [12] or
the convex quadrangle inequality [27].
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contains the indices of M (and possibly others), and the
graph distance dg(u,v) between any pair of vertices u
and v in G is equal to M [u, v]. Planarity and the Jordan
curve theorem ensures that any distance matrix M of
a planar emulator must satisfy the cyclic Monge prop-
erty. Our main result shows that the converse is also
true: any cyclic Monge distance matriz admits a planar
emulator.

In Section 2 we describe the construction and prove
its correctness. We show that the size of the construc-
tion is optimal in Section 3, and conclude the paper in
Section 4.

2 Constructing a planar emulator

The goal of this section is to construct planar emulators
for arbitrary cyclic Monge distance matrices.

Theorem 1 Given any n x n cyclic Monge distance
matriz M, there is a planar emulator for M with (Z)
edges.

For any given positive integer n, we define a pla-
nar graph G™ as follows (see Figure 1). Let the ver-
tices of G™ be the set {v; ;}, where i ranges in [1 : n]
and j ranges in [1 : min{i,n — i + 1}|. Define termi-
nal p; to be v; min{in—i+1y- The edges of G™ consist
of horizontal edges and wvertical edges. A horizontal
edge e;’; lies between each v; j and v; 11 ; where j ranges
in [1: [n/2]] and ¢ ranges in [j : n — j]. A wvertical
edge e,i ; lies between each v; j and v; j41 where j ranges
in [1:min{i,n+1—4} — 1] and i ranges in [2: n — 1].

T
€39 €4,2
D2 V32 V4,2 Ps
<> <> <>
€272 €32 €42

(B

5

e e e
2 V2,1 2,1 V3,1, 3,1 V4,1 4.1 Us, 1 D6

< <> <> < <>
€11 €21 €31 €41 €51
Figure 1: Graph GS.

Consider a cyclic Monge distance matrix M and for
brevity denote M; ; := M[i, j|. We define the graph G7,
as an edge-weighted copy of G", where the weight of a
horizontal edge €7 is

1
wleiy) =g Mit1,j = Mij+ Min—ji1 = Mit1,n—j+1)
and the weight of a vertical edge eii’ ;18
w(e; ;) = 5(1‘/[1;.7 = Mi i1+ Min—j1 = Min—j+

Mjtin—j — Mjn_ji1)-
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Pit1

pi. M ey B Mirun g1
M;p—jo1 My Pr-jtl
Di
M; 1 i M
Qirl Pr—i
t I Mjr1n—j
ey .
D; M ") My jia
Mjp—jy1  Prn=gtl
. ) . . 1
Figure 2: Values used to assign weights to e;”; and ey ;.

(See Figure 2.) Henceforth, we will refer to the edge-
weighted graph G7), as the canonical realization of M.

For the rest of the section, we show that G' == G,
is a planar emulator of M. For this, it suffices to show
that de(pi,pj) = M|i, j] for all pairs of terminals p; and
pj. First, we derive some properties of G using the fact
that M is a cyclic Monge matrix.

Lemma 2 If M is a cyclic Monge matriz, then all edge
weights of G, are non-negative.

Proof. An edge of G}, is either horizontal or vertical.
For any horizontal edge e:}, the cyclic Monge property
states that M; ; + M1 n—j41 < Mig1j + Min_ji1,
and therefore 2(,0(6;_},]) = Mi-‘rl,j — Mi,j + Mi,n—j-i-l —

M1 pn—jy1 > 0.
T

For any vertical edge e; ;, the cyclic Monge property
states that (1) M; j41+ Mjn—j < M; ; + M1, and
(2) Mip—j + Mjpn—jy1 < Mjn_j+ M;pn_ji1. Com-
bining (1) and (2) gives 2w(e£j) = M,;; —
Mipn—jy1r — Mip—j + Mjt1n—j — Mjpn—jt1 2 0. O
It follows that the minimum-weight path from p; to p;
in G is simple.

Next, we show that there is at least one path from p;
to p; achieving the cost M[i, j]. For ¢ <i’, the path of
horizontal edges between v; ; and vy ; in G has weight

1
> wley)) = 3 > (Mapjaj—Maj+ My
z€lii’ —1]

- r+1,n—j+1)

1

=5 (Mirj — M j+ Mip—ji1— M n—j+1)

2

and for j < j/, the path of vertical edges between v; ;
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and v; ;- has weight

> owed)=5 ¥

yeE[j:j’—1]
- Mi,nfy + My+1,n*y -

(Mi,y - Mi,yﬂ + Mi,n*er

M,

1

1

7n*y+1)

= 5(Mij = Myjo + Migjir = My

+ Mjrnjrer = Mjpjir).

Consider two terminals p; and p; and assume that
min{i,n — ¢ + 1} > min{j,n — j + 1}. Let 7, be the
unique L-shaped (simple) path from p; to p; that con-
sists of a path 77 of horizontal edges followed by a
path 7T]$l of vertical edges (both paths might possibly
be empty). When min{i,n — i+ 1} > min{j,n —j+ 1}
we define 7 ; = m; ;.

Lemma 3 Let M be a cyclic Monge distance matrix.
The weight of mj; in Gy is M ;.

Proof. We assume that j < [n/2] (the other case is
symmetric). The vertex at the end of 7F; (and at the
start of 7'('}1) is v; ;. Let ¢’ :== min{¢,n — i+ 1}, then the
weight of m;; is

wma) = Y wleg)+ Yy, wieh,)
x€[j:i—1] y€Elgi’' —1]
1
= 5((Mm =M+ Mjn_ji1 — Min—ji1)+

(M — My 4+ M; 1 — M i g1+

Mt p—ir41 — Mj,n—j+1))
1

= Q(Mi,j + M — My — M p—ii1 + My piri1),
where either M; ; = 0 and M; ,,—yr41 = My y—ir41, OF
Mi,n—i’+1 = 0 and Miﬂ'/ = Mi’,n—i’+1§ SO w(ﬂ'j)i) =
Mi,j~ O

By Lemma 3 we have dg(p;, p;) < M; ;, so it remains
to show that de(pi,pj) > M, ;. Define the y-coordinate
of a horizontal edge e:’j as j, and the z-coordinate of a
vertical edge e; ; as i. We next show that G contains
a minimum-weight path from p; to p; whose horizontal
edges all have the same y-coordinate. It follows that
there is a minimum-weight path consisting of at most

one subpath of horizontal edges.

Lemma 4 Let M be a cyclic Monge distance matrix.
For any pair of terminals p and p’, G%; has a minimum-
weight path from p to p’ whose horizontal edges all have
the same y-coordinate.

Proof. For a path w, let o(7) be the sum of y-
»coordinates of its horizontal edges. Let a be a
minimum-weight path from p to p’ that minimizes o(«)
(over all minimum-weight paths from p to p’). We
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e
pj+l zzzzzzzzzzl 4,J+1 |; pn,]

Dy Pn—j+1

2w(ef ) + 2w(ef ) > 2w(ef

Figure 3: The sum of weights of e,

2w(e ) + 2w(el

Figure 4: The weight of the horizontal path from v; ;11 to vy j41 is at most the total weight of e;

horizontal path from v; ; to vy ;.

claim that all horizontal edges of « have the same y-
coordinate. Suppose not, then « contains a two-edge
subpath consisting of a vertical edge ef’j and a hori-

zontal edge €., or e;”; ;4. We consider only the

case where the subpath has edges e}’j and e;”; (the

other case is symmetric). Consider the path 3 obtained

from «a by replacing this subpath by e’ and e}-&-l,j'
Then o(f8) < o(a), so by assumption S cannot be a
minimum-weight path. However, Figure 3 shows that
the weight of 3 is at most that of «, contradicting that «

is a minimum-weight path that minimizes o. U

Finally, we show that there is a minimum-weight path
for which additionally, its vertical edges all have the
same x-coordinate. Together with the fact that all edge
weights are non-negative (Lemma 2), it follows that 7; ;
is a minimum-weight path between p; and p;.

Lemma 5 Let M be a cyclic Monge distance matriz.
For any pair of terminals p and p’, G%; has a minimum-
weight path from p to p’ whose horizontal edges all have
the same y-coordinate, and whose vertical edges all have
the same x-coordinate.

Proof. By Lemma 4, there is a minimum-weight path
from p to p’ whose horizontal edges all have the same y-
coordinate, and without loss of generality assume that
this y-coordinate is maximal over all such paths. Be-
cause all edges have nonnegative weights by Lemma 2,
we may assume that this path consists of a path of
vertical edges (with decreasing y-coordinates), followed
by a path of horizontal edges whose z-coordinates are
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- and e$

PRI G )y

Di pH—l

Dj+1 sp Pn—j

T
< ||€7 ;
C i+1,7
. Pn—j+1

o)+ 2w(el, )

+1,; is at most that of eij and €% 4.

............

( ,J+1)

I

i ¢l, ., and the

i’,5

increasing or decreasing, and finally a path of vertical
edges with increasing y-coordinates. Suppose that the
subpath of horizontal edges is surrounded by vertical

ij and ei/ ; with ¢ <4’ (the case i > ¢’ is sym-

metric). Let a be the path consisting of ei , the edges
e;'?j for i <a <, and e, ;; let B be the path of edges
€y iyr fori < < . Apply cyclic Monge property
twice, one can show that 2M;s ;4+2Mj 1 pn—j — M j11+
2M; oy — 2Mj pjy1 — My > My jp1 + My,
which implies that the weight of 8 is at most that of «,
so replacing « by S yields a shortest path whose hor-
izontal edges all have the same y-coordinate, but one
bigger than that of the horizontal edges of «, which is
a contradiction. (See Figure 4.) O

edges e

As an immediate corollary of Lemmas 2, 3, and 5,
every n X n cyclic Monge distance matrix has a planar
emulator of size (g), proving Theorem 1.

3 Lower bound on the size of planar emulators

In this section we show that some Monge distance ma-
trices requires ( ) edges in any of its planar emulator. A
similar result by Cossarini [20] says that any planar em-
ulator of some cyclic Monge matrix requires (g) edges.
Therefore, our canonical realization is worst-case opti-
mal in size.

Theorem 6 Some n xn Monge distance matrices have
no planar emulator with fewer than (g) edges.

Proof. Let M be a Monge distance matrix. The vec-
tor (M ;)ici € R(%) completely determines M since
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M;; =0 and M; ; = M;; as d is a graph metric on the
canonical realization of M. The set of such vectors over
all Monge distance matrices yields a convex polytope P,
as it is bounded only by the hyperplanes arising from the
linear inequalities of the triangle inequality and cyclic
Monge property. We show that P is (7)-dimensional.
For this, we define a family of (3) sets (Ee)cep(q) of
edges indexed by the edges of G7,. For each horizontal
edge e;%, let E. o= {ef*j | 7/ < j}. For each vertical
edge e}J, let E1 = {e iU Eep UEeq, .
edge e, define the welght functlon We as the character-
istic function of E.; in other words, let w, : E — {0,1},
with we(e') = 1ife’ € E,, and we(e’) = 0 otherwise. We
show that the (%) weight functions (we)eep(q) are lin-
early independent. For each horizontal edge €7, Wes,
sets only the weight of edge ef} to one, and all other
edges to zero. Similarly, for each horizontal edge e
with j > 1, e = wep (€) —wep, _ (€) sets only the weight

to one. Finally, for each vertical edge eli 0

, (€) sets only the weight

For each

of edge e
€W (e)pr - (€) — weg,

of edge e% to one. Since each of the (") edges can be
set to weight one while all other edges are set to zero,
the defined weight functions are linearly independent,
and moreover, any weight function can be obtained as
a linear combination of (we)ecp(a)-

Since the polytope P is (})-dimensional, there exists
a Monge distance matrix whose entries are in general
position: there is no indexed family S of fewer than (g)
real numbers such that each of the (;‘) distances can be
written as the sum of a subset of S. Since the length
of each shortest path in a nonnegatively edge-weighted
graph is the sum of a subset of its edge-weights, there
is a Monge distance matrix that does not have a planar
emulator with fewer than (g) edges. O

The argument of Theorem 6 relies on the fact that the
set of distances can be chosen to lie in general position.
We present a different, but slightly weaker lower bound
for the more general setting where the weights are inte-
gers up to [n/2]. A Monge matrix M is unit-Monge if
for all ¢ and 7,

M[Z+ ]-3.7} - M[Zvj] € {_17031}3 and

Theorem 7 Some n x n unit-Monge distance matrices
have no planar emulator with fewer than n?/8 + n/2
edges.

Proof. Let M be a distance matrix defined as fol-
lows. Consider a rectangular grid graph with vertex
set {0,...,w} x {0,...,h} and edges between vertices
at distance 1, so that vertex (z,y) has (unit-weight)
edges to (x = 1,y) and (x,y = 1). For all y and k, we
have d((0,y), (w,y £ k)) = w + k, and symmetrically
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d((z,0),(x+k,h)) = h+k for all x and k. Let M be the
distance matrix from the set of vertices {(z,0) }U{(0,vy)}
to the set of vertices {(z, h)} U{(w,y)}; distance matrix
M must be unit-Monge.

Consider an arbitrary planar emulator G of M. Let
dg denote the shortest-path metric on G. For vertices
1,7, k, ¢ in clockwise-order along the outer face, we have
de(i,0) + da(j, k) < dg(iyk) + dg(j,£). On the other
hand, for any pair of points p and ¢ where p is on a
shortest path from 7 to ¢ and ¢ on a shortest path from
Jj to k, we have dg(i,0)+da (4, k)+2de(p, q) > da(i, k)+
dg (]v 6)

Denote by 7" a shortest path in G between (0, y) and

(w,y), and by W% a shortest path in G between (z,0)

and (x,h). We will show that the paths T are disjoint
and have h edges each. Recall that dg(i,¢) +da(j, k) +
2dc(p, q) > dg(i, k) + da(j, ), so

Iy 1|+ [l el + 2de () k)
= 2w+ 2dg (7", 7%

> dG((an)’ (w,y + k)) + dG((Ovy + k)v (wa y))
=2(w + k),

and thus any pair of points p € m;” and ¢ € 7%, on
distinct paths have distance at least k > 1, so different
such paths are vertex-disjoint. Any path w% must cross
all the (vertex-disjoint) paths w§”,...7;”, and thus have
at least i edges (not shared with any path 7;”) of length
at least 1. Therefore, the paths 77% and 7,7 (over all z
and by symmetric argument y) contain at least (w +
1)h+ (h+1)w edges. We have n = 2(w + h); by taking
w = h = n/4, this yields a lower bound of

2(n/4+1)(n/4) =n*/8 +n/2
edges for any planar emulator of M. O

We remark that the argument of Theorem 7 depends
only on distances between opposite sides of the grid,
and can be made to depend only on the linearly many
distances d((0,v), (w, y+k)) and d((z,0), (x+k, h)) with
ke{-1,0,1}.

Cossarini [20] proved that any planar emulator for
some n X n cyclic unit-Monge matrix must have at least
(Z) edges. Our result, while slightly weaker in compari-
son, applies to general unit-Monge matrices, which can
be viewed as the directed version of the problem.

4 Discussion

In this paper we have shown that any cyclic Monge dis-
tance matrix admits a quadratic-size planar emulator.
Our construction is universal in the sense that the un-
derlying graph does not depend on the entries of the
matrix. And there are metrics for which each edge must
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be used by some shortest path. We also showed that al-
ready for planar emulators of unit-Monge distance ma-
trices (which can be represented in linear space), 2(n?)
edges are sometimes necessary.

The cyclic-Monge distance matrices considered in this
paper are closely connected to the set of intrinsic metrics
of topological disks. In particular, a given metric on
points in a circle can be realized as a metric intrinsic
to a topological disk bounded by that circle if and only
if the metric is a cyclic-Monge distance matrix. We
conclude with an open problem.

e Under what conditions do surfaces other than the
disk (such as the Mdobius strip, or a torus with
holes) realize a given metric between points on their
boundary? Do such surfaces also have a universal
emulator, and if so, one with at most (g) edges?
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Simultaneous Visibility Representations of Undirected Pairs of Graphs*

Ben Chugg’

Abstract

We consider the problem of determining if a pair of undi-
rected graphs (G, G)), which share the same vertex
set, has a representation using opaque geometric shapes
for vertices, and vertical/horizontal visibility between
shapes for edges. While such a simultaneous visibil-
ity representation of two graphs can be determined effi-
ciently if the direction of the required visibility for each
edge is provided (and the vertex shapes are sufficiently
simple), it was unclear if edge direction is critical for
efficiency. We show that the problem is NP-complete
without that information, even for graphs that are only
slightly more complex than paths. In addition, we char-
acterize which pairs of paths have simultaneous visi-
bility representations using fixed orientation L-shapes.
This narrows the range of possible graph families for
which determining simultaneous visibility representa-
tion is non-trivial yet not NP-hard.

1 Introduction

A wisibility representation T' of a graph G = (V, E) is
a set of disjoint geometric objects {I'(v) | v € V'} rep-
resenting vertices chosen from a family of allowed ob-
jects (e.g., axis-aligned rectangles in the plane) where
P(u) sees T'(v) if and only if wvo € E. Typically,
the meaning of “sees” is that there exists a line seg-
ment (perhaps axis-aligned, perhaps positive width)
from I'(u) to I'(v) that does not intersect I'(w) for any
other w € V; such a line segment is called a line-
of-sight. Many different classes of visibility represen-
tations may be defined by changing the family of al-
lowed objects and the meaning of “sees.” For exam-
ple, bar visibility representations (BVRs) use horizontal
line segments as vertices and vertical lines-of-sight for
edges [9, 11, 21, 20, 7, 14, 15]; rectangle visibility rep-
resentations (RVRs) use (solid) axis-aligned rectangles
and axis-aligned lines-of-sight [8, 22, 18, 2, 5, 16]; and
unit square visibility representations (USVRs) use axis-
aligned unit squares and axis-aligned lines-of-sight [4].
The popularity of this type of graph representation lies
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Figure 1: Left: A pair of graphs (G,,Gp) on the same
vertex set. Red (light) edges are those of G, while
blue (darker) are those of Gy. Right: A simultaneous
visibility representation of (G, G}) using rectangles.

in its potential applicability to problems in VLSI design
and the production of readable representations of pla-
nar and non-planar graphs. Determining which graphs
or families of graphs have visibility representations of a
particular type is a fascinating area of research.

Our focus in this work is on the simultaneous visibil-
ity representation of pairs of graphs that share the same
vertex set (see Fig. 1). A simultaneous visibility repre-
sentation (SVR) of G, = (V, E,) and G\, = (V, E}) is a
visibility representation I' that, using vertical lines-of-
sight, represents G, and, using horizontal lines-of-sight,
represents Gp. Streinu and Whitesides [19] describe a
beautiful connection between a pair of directed planar
graphs <8V, h) and their planar duals that determines
if the pair has a directed simultaneous visibility repre-
sentation using rectangles (a directed RSVR) I', where
an edge directed from u to v in G, or 8;1 is realized by
a low-to-high or left-to-right, respectively, line-of-sight
from I'(u) to I'(v). Evans et al. [13] extended this to the
family of geometric objects called L-shapes, which are
the union of two axis-aligned segments in the plane that
share a common endpoint and come in four orientations:
{L, 1,71, }. They gave a polynomial time algorithm for

determining if a pair of directed graphs (8\,, h) has a
directed simultaneous visibility representation using L-
shapes, I', in which the orientation of I'(v) is given by
OV — {,, "L} (a directed ®-LSVR).

The complexity of determining if a pair of undirected
graphs has a simultaneous visibility representation us-
ing L-shapes was stated as an open problem [13]. In
this paper, we show (Section 3) that the problem is NP-
complete. What is surprising about this result is the
simplicity of the graphs for which the problem is hard:
For L-shapes (and many other families of shapes includ-
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ing rectangles), one graph can be a set of disjoint paths
and the other a set of disjoint copies of a tree with 3
leaves connected to a root by paths of length 2 (i.e.

57) For unit squares (and for translates of any spec-
ified connected shape with positive width and height),
one graph can be a set of disjoint paths and the other a
set of disjoint claws (K7 3).

This limits the families of graphs for which we can
reasonably hope to efficiently determine a simultaneous
visibility representation. We describe a linear time algo-
rithm (Section 4) that determines if a pair of undirected
paths has a simultaneous visibility representation using
L-shapes, all with the same orientation {L_} (an LSVR).
The algorithm is quite simple but relies on characteriz-
ing those pairs of paths for which such a representation
is possible. The characterization of such pairs of paths
for representations using rectangles, unit squares, and
L-shapes with more than one orientation is easier.

Our work has aspects of both visibility representation
and simultaneous geometric graph embedding (SGE).
SGE is the problem of deciding, given a set of planar
graphs on the same set of vertices, whether the vertices
can be placed in the plane so that each graph has a
straight-line drawing on the placed vertices. As in our
problem, SGE, which is NP-hard [12], asks to represent
several specified graphs using one common vertex set
representation. However, the hardness result for SGE
does not directly imply hardness of deciding simulta-
neous visibility representation. Similarly, deciding if a
graph has an RVR [18] or a USVR [4] is NP-hard, but
since the input does not specify which edges should be
realized as vertical versus horizontal lines-of-sight, the
problems are quite different. Choosing how the graph
should be split into vertical and horizontal parts is an
additional opportunity (or burden) for deciding if these
representations exist.

Rather than requiring the visibility representation to
partition the edges of the graph in a prescribed man-
ner between vertical and horizontal visibilities, Biedl et
al. [1] require that the visibility edges (lines-of-sight)
obey the same embedding as a prescribed embedding of
the original graph, which may include edge crossings.
They can decide if such a restricted RVR exists in poly-
nomial time, and in linear time if the graph is 1-planar.
Di Giacomo et al. [10] show that deciding if a similarly
restricted ortho-polygon' visibility representation exists
for an embedded graph takes polynomial time as well.

2 Preliminaries

In this paper, we will assume that vertex shapes are con-
nected and closed (rather than open) sets in the plane,
and that lines-of-sight are 0-width (rather than positive-
width) and exist between two shapes if and only if the

1a polygon whose edges are axis-aligned.
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corresponding vertices are connected by an edge. This
implies that G, and G}, must have strong-visibility rep-
resentations [20] to have a simultaneous visibility rep-
resentation. For visibility graphs, these choices make a
difference since, for example, K5 4 can be represented if
lines-of-sight are positive-width (an e-visibility represen-
tation) but does not have a strong-visibility representa-
tion [20]. However, for our results, we could adopt either
model with only minor modifications to our proofs.

Let T be an SVR of (G, Gp). Given a subset S C V,
we let I'(S) = U,cg I'(v). For a vertex v € V, let Xr(v)
and Yr(v) be the orthogonal projections of I'(v) onto the
zr-axis and y-axis respectively. For a set of vertices S C
V, let Xr(S) = U,es Xr(v) and Yr(S) = U,cq Yr(v).
Set zp(v) = min Xp(v), Zr(v) = max Xr(v), y.(v) =
min Yr(v), and yp(v) = max Yr(v). We write Yr(u) <

Yr(v) if Yp(u) < yp(v) and Xp(u) < Xp(v) if Zr(u) <
zp(v). We also use the shorthand [n] for {1,2,...,n}.
We state three basic properties of any visibility rep-
resentation I' of a graph G = (V, E). For brevity, these
properties are stated for vertical visibility representa-
tions only but also hold for horizontal visibility repre-

sentations by symmetry. See Appendix A for proofs.

Property 1 For S;,S52 CV and xz € Xr(S1)NXr(S2),
there exists a path u = uy,...,ur = v in G for some
u €51 and v € Sy such that x € Xr(u;) for all i € [k].

Property 2 If an endpoint of Xr(w) is strictly con-
tained in Xr(u) N Xr(v) and y,(v) < yp(w) < y,(v)
for u,v,w € V, then there is a cycle in G.

Property 3 Let uy,...,us be the only path from uy to
ug in G. If T'(u;) and T'(ug) are both above or both
below T'(u;) for i < j < k, then Xr({u1,...,u;}) N
XF({’LLk, N ,ue}) = @

3 Hardness

In this section, we study the complexity of determin-
ing if a pair of undirected graphs has an SVR. We first
consider the problem of determining SVRs using unit
squares (Section 3.1). Then, we discuss how our results
can generalize to other connected shapes as well (Sec-
tion 3.2 and Appendix C). In the case of L-shapes, our
results settle an open question of Evans et al. [13].

To begin, we first state two lemmas that characterize
how the gadgets in our hardness proofs can be drawn.
See Appendix B for proofs and illustrations.

Lemma 1 Let G = (V,E) be a connected graph with
a (vertical) visibility representation I'. Ifu € V is a
cut vertex whose removal creates components Cq, . ..,Cy,
then X1 (C;) € Xr(u) for at most two components.
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V4 >

Voo

C1 () c3
(%1 >

U3

Figure 2: Left: G, (red) and Gy (blue) for Monotone
Not-All-Equal 3SAT instance ¢ = (v Vg Vos)(va VoV
va)(v3 Vg Vus). Right: A USSVR of (G, Gp) encoding
the truth assignment vy, vy =T and vy,v3 = F

Lemma 2 Let G = (V, E) be a graph with a (vertical)
visibility representation I'. If C1 and Co are components
in G, then either Xr(C1) > X1(C2)?, or vice versa.

3.1 USSVR recognition

We first prove that determining if a pair of undirected
graphs has a simultaneous visibility representation using
unit squares (USSVR) is NP-complete.

Theorem 3 Deciding if a pair of undirected graphs has
a USSVR is NP-complete.

For our proof, we reduce from the NP-complete prob-
lem of Monotone Not-All-Equal 3SAT [17]. This variant
of 3SAT stipulates that every clause has three positive
literals of which exactly one or two must be satisfied.

Construction. Let ¢ be an instance of Monotone Not-
All-Equal 3SAT with a set C of m clauses and a set V
of n < 3m variables. All clauses form a path in G, in
the order of their appearance in ; creating one clause
consistency gadget Gp(C). The same holds for all oc-
currences of literals representing the same variable; cre-
ating n wvariable consistency gadgets Gp(v) for v € V.
All occurrences of literals in a clause form a K; 3 in G|,
where the clause vertex is the central vertex; creating
m satisfiability gadgets G, (c) for ¢ € C. See Fig. 2 for
an example.

Intuitively, the satisfiability gadgets allow us to en-
code local constraints on the literals for each clause. We
use this to enforce “not-all-equal” satisfiability. By con-
trast, the consistency gadgets allow us to encode global
constraints that span multiple clauses; i.e., relating lit-
erals that correspond to the same variable. This com-
pletes our construction of (Gy,Ghy); see Fig. 2 for an
example.

Correctness. Lemmas 4 and 5 establish the correct-
ness of our reduction. Hence, since our construction
of (G, Gy) requires O(m) time, USSVR recognition is
NP-hard. Note that every USSVR can be redrawn on

2Xr(A) > Xp(B) means Xr(a) > Xr(b) foralla € A, b€ B

an O(n?) x O(n?) grid such that its visibilities are not
changed by preserving the order of the endpoints in the
x and y-projections of its unit squares [4]. This gives
a certificate using polynomially-many bits that can be
verified in polynomial time. Thus, USSVR recognition
is NP-complete.

Lemma 4 If (G,,Gy) has a USSVR, ¢ is satisfiable.

Proof. Let I" be a USSVR for (G, Gh). We construct
a truth assignment a: V — {T', F'} as follows. For every
variable v € V, we define

a(u) _ T if YF(Gh(U)) Z YF(Gh(C)),
F otherwise.

We claim that a satisfies . To see this, let us consider
any clause vertex c for a clause (£1 V 5V ¢3). Note that
we distinguish duplicate literals by their order in ¢ as in
Fig. 2. By construction, c is a cut vertex whose removal
from G, creates three components, each containing one
literal vertex ¢;. Then by Lemma 1, for at least one such
vertex, say fo, Xr(f2) C Xr(c). But in fact, since I is
a unit-square representation, we have Xr(¢3) = Xr(c).
Hence, for every k € {1,3}, Xr(fx) N Xr(f2) # 0. Ap-
plying Property 3, we see that I'(¢3) and T'(¢;) must not
be both above or both below I'(¢). Moreover, since every
consistency gadget in our construction is a component
of Gy, Lemma 2 implies that for all variables v € V,
either Yr(Gh(v)) > Yr(Gh(C)), or vice versa. There-
fore, either Yr(¢3) > Yr(c) > Yr(4x) for k € {1,3},
implying that o satisfies exactly one literal in ¢, or
Yr(lr) > Yr(c) > Yr(fs), implying that « satisfies ex-
actly two. By repeating this argument for all clauses in
C, we see that « satisfies ¢. O

Lemma 5 If ¢ is satisfiable, (G, Gh) has a USSVR.

Proof. Let a: V — {T, F'} be a truth assignment satis-
fying ¢. To construct a USSVR T for (G, Gy), we first
represent G and G}, as two sets of intervals on the x and
y-axes respectively. The construction of these intervals
is as follows.

For the ith clause ¢ = ({1 V €y V £3) € C, since «a
satisfies exactly one or two of its literals, there must be
one, say {2, that has a unique truth value. We represent
both ¢ and ¢ on the z-axis by the interval [3i+1, 3i+2].
Moreover, assuming ¢; and /3 are in order, we represent
their corresponding literal vertices on the z-axis as the
intervals [3¢,3i+ 1]+ € and [3i+ 2, 3i+ 3] — € respectively,
for some small € > 0.

Let p: VU{C} — {0,...,|V|} be a bijection satisfying
p(v) > p(C) if and only if a(v) =T for each v € V. For
each variable consistency gadget Gy, (v), we represent its
vertices on the y-axis by the interval [2p(v),2p(v) + 1].
We also represent the clause consistency gadget simi-
larly, replacing p(v) with p(C).
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Observe that each vertex in V' is represented by two
unit intervals, one on the z-axis and one on the y-axis.
Thus, for each u € V, we can define I'(u) to be the
Cartesian product of its two corresponding intervals. To
see that this gives a valid USSVR T for (G, Gh), we
make three observations.

1. Every gadget in G, (resp., Gi) occupies a contigu-
ous interval on the x-axis (resp., y-axis) that is dis-
joint from the intervals of other gadgets.

2. Every satisfiability gadget in G, for a clause ¢ =
(€1 V€3V l3) is drawn such that I'(c) blocks vertical
visibility between I'(¢3) and I'(¢y) for k € {1,3}
assuming /5 has the unique unique truth value of
literals in c.

3. Every consistency gadget in G}, is drawn as a hor-
izontal stack of unit squares (in order from left to
right) that share a y-projection.

The first observation implies that no two gadgets in
Gy (resp., Gy) share an (unwanted) visibility. The next
two observations mean that the implied visibilities for
each gadget in G, and G}, are realized exactly. 0

3.2 Generalizations

Notice that in the reduction given in Section 3.1, we
make only the assumption that the z-projection of every
allowable shape has the same size. Thus, we can adapt
this reduction to any family of translates of shapes
that share a fixed positive width. In Appendix C, we
also prove that SVR recognition using rectangles is NP-
complete. Again, we can adapt this reduction to any
family of translates of shapes for which at least two have
different widths; e.g., the family of L-shapes. These ob-
servations allow us to state the following.

Corollary 1 Deciding if a pair of undirected graphs has
an SVR using shapes from a family of translates of con-
nected shapes with positive width and height is NP-hard.

For families of translates of orthogonal polygonal
paths with constant complexity (e.g., L-shapes), SVR
recognition is also in NP; this follows by a similar argu-
ment to what we gave for USSVR recognition.

Corollary 2 Deciding if a pair of undirected graphs has
an SVR using shapes from a family of translates of or-
thogonal polygonal paths with constant complexity and
positive width and height is NP-complete.

4 Pairs of undirected paths

The hardness results of Section 3 utilize graphs that
are not significantly more structurally complicated than
paths. This motivates the question of whether pairs
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of (undirected) paths always admit SVRs and if not,
whether there exists a polynomial time algorithm to de-
cide when they do.

This question has an easy answer when the under-
lying shapes are rectangles. First, notice that given a
pair of paths (P, = (V,E,), P, = (V, Ey)) defined on
the same vertex set, if £, N E, # 0, then no RSVR or
USSVR can exist because both x and y-projections of
two rectangles or two squares cannot overlap unless the
shapes themselves overlap. Otherwise, if E, N E, = 0,
perform the following:

Algorithm A: For all v € V, place I'(v) in the
plane with its left corner at (4, j) where ¢ (resp.,
Jj) is v’s place along P, (resp., B,) from a fixed
reference endpoint of the path; and set the side
lengths of the rectangles to be 1+ ¢ for a small
€> 0.

It is easy to check that this satisfies all the visibilities.
We remark that this algorithm was presented by Brass
et al. [3] to compute a simultaneous embedding of two
paths. This leads to the following observation: There
exists an RSVR and USSVR of (P, B,) if and only if
E,NE, = 0.

In fact, the result holds for any shapes that inter-
sect if both of their x and y projections overlap. We
turn our attention, therefore, to shapes that do not obey
this property. Surprisingly, this question becomes sig-
nificantly more complicated even for L-shapes which are
simply the left and bottom sides of a rectangle. A simul-
taneous visibility representation using fixed orientation
L-shapes {L__} (an LSVR) of (G, Gh) is a pair (I',, ')
where T, is a BVR, T, is a BVR rotated 90° (with ver-
tical bars and horizontal visibility), and for all v € V,
yp(v) = zp(v) (ie., I'v(v) and I'n(v) share their respec-
tive bottom and left endpoints).

4.1 LSVR of two undirected paths

Let (P, P,) be two undirected paths defined on the
same set of vertices V' = [n]. By relabeling the vertices,
we may assume that P, is the path (1,2,...,n) and P,
is (mq, 72, ..., ) for a permutation 7 of [n]. While the
paths are undirected, the algorithm considers 1 and 7
to be the reference endpoints of B, and P,, respectively.
We write (7;, mi4+1) € Py but not (7,41, ;) € P, because
of this choice of reference endpoint. The intuition be-
hind the following result may be understood by consid-
ering the result of running Algorithm A using L-shapes:
I'(¢) and I'(i + 1) would intersect iff (i +1,7) € P,—see
Fig. 4. However, these intersecting L’s may be modi-
fied to “nest” and preserve their existing visibilities in
two circumstances (see Fig. 3). Notice that Algorithm
A can produce drawings with four different “orders” by
always using (¢,7), (—i,4), (i,—j) or (—i,—j) to place
I'(v). Each of these would produce different drawings in
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Figure 3: Two possible transformations to remove cross-
ings. To perform (a), no other shape can have a visibil-
ity with T'(i + 1) from below. To perform (b), no other
shape can have a visibility with I'() from the left.

which the right ends of bars in I', and the top ends of
bars in I'y are either “increasing” or “decreasing”. We
show that if (P,, B,) admits any LSVR then modifying
one of these four drawings to remove intersecting L’s by
nesting them will work. We also give four conditions,
each of which forces the modification of one of the four
drawings to fail.

In order to state the four conditions, we first need
to define four subsets of the vertices. We say a se-
quence S = (s1,82,...,8;) is increasing (decreasing)
in a sequence T' = (t1,ta,...,t,) if there exist indices
(j1,J2y---,Jk) that are strictly increasing (decreasing)
such that s; = t;, for all i € [k]. A sequence S is mono-
tonic in T if it is either increasing or decreasing in T
For example, (4,7,3) is monotonic in (1,3,2,7,5,6,4)
but (3,4,7) is not.

Definition 1 For B, = (1,2,...,n) and P, =
(m1, 72, ..., m) where ™ is a permutation of [n], let

1. Ar = (1,2,...,a) be the longest such sequence
monotonic in m,

2. By = (n,n—1,...,b) be the longest such sequence
monotonic in T,

3. Cr = (m1,m2,...,7.) be the longest such sequence
monotonic in [n], and

4. Dp = (Tp,Tn-1,...,mq) be the longest such se-
quence monotonic in [n].

For example, if P, = (1,3,2,7,5,6,4), then A, = (1,2),
B, = (7,6), Cr = (1,3), and D, = (4,6). We are now
ready to state the forbidden conditions. There exists ¢
such that

C(i+1,i)€P,i¢Crandi+1¢ Ay
F2. (i,i+1)€P,,i+1¢ Cy, and i ¢ By;
C(iyi+1)€P, i¢ Dy, and i+ 1¢ Ay
C(i+1,i)€ P, i+1¢ D, andi¢ B,.

The rest of Section 4.1 will focus on proving the fol-
lowing theorem.

Figure 4: Left: The result of running Algorithm A on
P, =(1,2,3,4,5,6,7) and P, = (4,3,5,7,2,1,6). Note
the intersection of I'(4),I'(3) and I'(2),I'(1). Right: The
intersections can be alleviated by stretching I'(3) and
r'(2).

Theorem 6 Let (P,, P,) be two paths defined on the
same set of n vertices. There exists an LSVR of (P,, P,)
if and only if at least one of conditions F1 through F
s not met. Moreover, in the positive case, the LSVR is
realizable in O(n) time on a grid of size O(n) x O(n).

Note that since each condition F1-F4 can be tested
in linear time, Theorem 6 yields a linear time algorithm
to determine if two given paths admit an LSVR. Be-
fore proceeding to the proof of Theorem 6, we present
a technical result which will be a useful tool in many
of the proofs to come. It demonstrates that once the
z-projection of a bar is contained in that of another,
this containment propagates for any representation of a
path. Fig. 7b provides an example.

Lemma 7 Let T' be a noncollinear BVR of a path
P = wvi,...,v,. If Xr(v;) C Xr(vg) for j < k,
then (i) Xr(v1) C Xr(ve) C --- C Xr(vy); and (i)
Yp(v1)s -, yp(vk) forms a strictly monotonic sequence.

4.1.1 Necessity

We first prove if an LSVR of (P,, B,) exists, then at
least one of conditions F1-F4 is not met. We begin
by examining the structure of the underlying BVRs.
For a path P = (v1,...,v,) and a BVR T of P, we
say ' is monotonically increasing (resp., decreasing) if
Zr(vj) < Zr(vj41) (rvesp., ZTr(vj) > ZTr(vj4q1)) for all
j € [n—1]. If T is monotonically increasing or de-
creasing we say it is monotone.> We say T is strictly
increasing (resp., decreasing) if T' is monotonically in-
creasing (resp., decreasing) and Xrp(vj) € Xp(vj41)
(resp.,Xr(vj41) € Xr(v;)) for all j € [n—1]. Fora BVR
rotated by 90°, the same definitions apply with gp(v)
replacing Tr(v). A visibility representation in which
no vertical or horizontal line contains the endpoints of
two shapes from different vertices is called noncollinear.
Finally, a BVR which is noncollinear and monotone is

3Note that monotonically increasing and decreasing are not
symmetric properties: They both depend on the right side of the
bars.
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called canonical, and an LSVR T" = (T'y, T'y) is canonical
if 'y and T'},, are both canonical.

We will apply the same definitions and notation to
subdrawings of an LSVR I'. That is, for a subset S C V,
we will say I'(.S) is monotone (or strictly increasing, etc)
if the conditions are satisfied for the realizations of the
vertices in S. The following two lemmas allows us to
concentrate only on canonical LSVRs.

Lemma 8 If(P,, F,) has an LSVR then it has a canon-
ical LSVR.

Observe that in the transformations depicted in
Fig. 3, Ty ({7,i+1}) and 'y ({4,i+1}) are altered from be-
ing strictly increasing to simply monotonically increas-
ing. In order to determine when two L-shapes can be
“uncrossed,” therefore, we first determine in which parts
of the drawing I'y, and T’y are required to be strictly in-
creasing or decreasing.

Lemma 9 Suppose I' is a canonical LSVR of (P,, P,)
and Ay, By,Cr and D, are as in Definition 1. If
Iy is monotonically increasing (resp., decreasing) then
Dy({me, Teq1y- .oy mnt) (resp., Dy({m1, ..., ma—1,m7a})) is
strictly increasing (resp., decreasing).  Similarly, if
Ty, is monotonically increasing (resp., decreasing) then
h({a,a + 1,...,n}) (resp., Th({1,...,b — 1,b})) is
strictly increasing (resp., decreasing), where a = |A,|,
b=n—|Bs|+1, c=1|Cr|, and d=n —|Dr| + 1.

We can now prove that if an LSVR of (R, B,) exists
then at least one of the conditions F1-F4 are not met,
which completes the proof of necessity.

By Lemma 8, we may assume that if an LSVR of
(P,, P,) exists then there is an LSVR T that is mono-
tone and noncollinear. We claim that F1 prevents the
existence of an LSVR T' in which T', and I'y, are both
monotonically increasing, F2 prevents I'' in which T, is
increasing and I', is decreasing, F3 prevents I' in which
Ty is decreasing and I'y, increasing, and F4 prevents I'
in which T’y and T}, are both decreasing. Since there
are the only four possibilities for a monotone LSVR, by
Lemma 8 if none of these four monotonic LSVRs exist,
then no LSVR of (P, P) exists. We provide the proof
for the case of F1 only, as the other cases are argued
similarly. Suppose I is an LSVR of (P,, F,) in which T,
and I'y are monotonically increasing and let ¢ be as in
condition F1: (i+1,i) € P, i ¢ Cr,andi+1 ¢ A,. Let
a =|Az|. By Lemma 9, I'y({a,a + 1,...,n}) is strictly
increasing. Thus, since i > a (because i + 1 ¢ A;),
yp()) < yp(i +1) < yp(i). By similar reasoning,
we obtain that T',({i + 1,4}) is strictly increasing, so
zr(i +1) < zp(i) < Zr(i + 1). However, this is an im-
possible configuration to realize without an intersection
between I'y(7) and I'y(i + 1). Therefore no such LSVR
exists.
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4.1.2 Sufficiency

In this section we present an algorithm which constructs
an LSVR for a pair of paths assuming that at least one
of conditions F1-F4 is not met. For the sake of clarity,
we will assume that F1 is not met. An explanation of
how to modify the algorithm and the proofs for other
conditions is in Appendix F.

LsvrPaths Algorithm. Let (P, = (71, 7m2,...,7), P =
(1,2,...,n)) be two paths defined on the same vertex
set [n]. We break the algorithm into three steps.

Step 1: For all ¢ = 1,...,n, draw I'(m;) such that
its corner is at (i,7;) and both bars have length 1 + e.
That is, zp(m;) = i, y.(m) = 7, Tr(m) =i+ 1+¢, and
yr(m;) = m + 1 + €. Note that this is Algorithm A.

Step 2: Let C = {my,...,me}. ffmy >m > - > m,
and there are crossings in I'(Cy), then for all m; € Cy,
stretch I'(m;) to the left such that zp(m;) =2 — 4.

Step 3: Let A, = {1,...,a}. If (1,2,...,a) is
decreasing in 7 and there are crossings in I'(A4), then
for all i € A, \ Cy, stretch I'(¢) downwards such that

yp(i) =2 —1i.

Observe that LsvrPaths requires linear time. Further-
more, the layout is contained in [2 — n,n] X [2 — n,n],
i.e., a grid of size O(n) x O(n). Hence, the following
lemma completes the proof of Theorem 6. The proof is
given in Appendix E.

Lemma 10 If (P,,B,) are two paths defined on the
same vertex set and condition F1 is not satisfied then
Algorithm LsvrPaths returns an LSVR of (P,, Py).
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A Omitted Proofs in Section 2

Let T" be a (vertical) visibility representation for a graph
G = (V, E). The following properties hold.

Property 1 For S1,S52 C V and z € Xr(S1) N Xr(S2),
there exists a path u = u1,...,ur = v in G for some u € Sy
and v € Sy such that x € Xr(u;) for all i € [k].

Proof. Consider the intersection of I' and the infinite ver-
tical line & X (—oo,+400). Since this line intersects both
I'(S1) and I'(S2), there must be two vertices v € S1 and
v € Sz such that I'(u) and I'(v) both intersect the line. Let
u = Uo, U1, -..,Ur = v be the sequence of vertices in V that
intersect the line in order along the line from I'(u) to I'(v).
I'(u;) and I'(ui41) have an unblocked vertical visibility seg-
ment between them for all 1 < i < k, which implies a path
between v and v that connects S; and S> in G. O

Property 2 If an endpoint of Xr(w) is strictly contained in
Xr(u) N Xr(v) and y (v) <y (w) <y, (v) foru,v,w €V,
then there is a cycle in G.

Proof. Since an endpoint of Xr(w) is strictly contained in
Xr(u)NXr(v), there exists z € Xr(w) and 2’ ¢ Xr(w) such
that x,2" € Xr(u) N Xr(v). By Property 1, there exists a
path from u to v (following the vertical line through ) that,
since y (u) < y.(w) < y.(v), contains w, and a path from
u to v (following the vertical line through z’) that does not
contain w. The union of these two paths contains a cycle. [
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Figure 5: Ilustrations of Lemma 1 and 2 (Fig. 5a and
5b respectively). Lemma 1 says that a cut vertex will
not nest* at most two components induced by its re-
moval. Lemma 2 states that disjoint subgraphs must
not overlap.

Property 3 Let ui,...,us be the only path from ui to ue
m G. If T'(u;) and T'(ug) are both above or both below T'(u;)
fori < j <k, then Xr({u1,...,ui}) N Xr({uk,...,ue}) = 0.

Proof. If z € Xr({u1,...,ui}) N Xr({uk,...,ur}), then by
Property 1, there exists a path from wu; to ux (following the
vertical line through x) that, since I'(u;) and I'(ug) are both
above or both below I'(u;), does not include u;, a contra-
diction. O

B Omitted Proofs in Section 3

Lemma 1 Let G = (V,E) be a connected graph with a
(vertical) visibility representation I'. If u € V is a cut
verter whose removal creates components Ci,...,Cy then
Xr(C;) € Xr(u) for at most two components.

Proof. Since G is connected, Xr(C;) intersects Xr(u) and
if in addition Xr(C;) € Xr(u), then since C; is connected,
Xr(C;) is a contiguous interval that strictly contains an end-
point of Xr(u). If three components have this property
then for two of them, say C; and Cj, Xr(C;) and Xr(Cj)
strictly contain the same endpoint and thus contain a point
z ¢ Xr(u). By Property 1, G contains a path (following the
vertical line through z) between C; and C; that does not
contain u, a contradiction. O

Lemma 2 Let G = (V, E) be a graph with a (vertical) visi-
bility representation I'. If C1 and Cy are components in G,
then either Xr(C1) > XF(C2)5, or vice versa.

Proof. Since each component C; is connected, its z-
projection Xr(C;) forms a contiguous interval. And yet
since C'i and C3 are disconnected in G, by Property 1,
Xr(C1) N Xr(C2) = 0. Thus either Xr(Cq) > Xr(Cs), or
vice versa. d

See Fig. 5 for illustrations of Lemma 1 and 2.

C Hardness of RSVR recognition

In this section, we prove that determining if a pair of undi-
rected graphs has a simultaneous visibility representation us-
ing rectangles (RSVR) is NP-complete. In contrast to the
proof given in Section 3.1, here, we reduce from the NP-
complete problem of 3SAT [6]. A new reduction is needed

4T(A) is nested in T'(B) if Xp(A) D Xp(B)
5Xr(A) > Xr(B) means Xr(a) > Xr(b) foralla € A, b€ B
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since every pair of edge-disjoint caterpillar forests (as pro-
duced for the reduction in Section 3.1) has an RSVR due to
Theorem 5 by Bose et al. [2].

Our modified construction is not much more complicated
than before: one graph remains a set of disjoint paths while
the other is a set of disjoint trees with 3 leaves connected to
a root by paths of length 2. This slight modification allows
us to prove the following theorem.

Theorem 11 Deciding if a pair of undirected graphs has an
RSVR is NP-complete.

Construction. Let ¢ be an instance of 3SAT with a set
C of m clauses and a set V of n < 3m variables.

We adapt the gadgets used in Section 3.1 to this setting
as follows. Each satisfiability gadget Gy(c) for ¢ € C is now

a 1-subdivision of Ki 3 (i.e. 57) where the central vertex is
the clause ¢, the subdivision vertices are the occurrences of
literals in the clause, and each leaf is an occurrence of the
negation of its parent. In addition to the variable consistency
gadget, we also construct a negated variable consistency gad-
get Gh(v) for each variable v € V that is the path of negated
occurrences of literals in the order of their appearance in ¢.
This completes our construction of (Gy, Gh); see Fig. 6 for
an example.

Correctness. Lemmas 12 and 13 establish the correct-
ness of our reduction. Thus, by a similar argument to the
one found in Section 3.1, RSVR recognition is NP-complete.

Lemma 12 If (Gy,Gh) has an RSVR, ¢ is satisfiable.

Proof. LetI' be an RSVR for (G, Gy). If, for some variable
v € V, we have Yr(Gh(0)) > Yr(Gn(v)) > Yr(Gn(C)), or
vice versa, we say that v is positively-arranged in I'. We
construct a truth assignment a: V — {T, F'} as follows. For
each variable v € V| we define
{T if v is positively-arranged in I,
a(v) = :

F otherwise.

We claim that « satisfies ¢. To see this, let us consider
any clause vertex c for a clause (¢1 V £2 V £3). By construc-
tion, ¢ is a cut vertex whose removal from G,(c) creates
three components, each containing one literal vertex and
its negated counterpart. Then by Lemma 1, for at least
one literal, say £, we have Xr({f2,f2}) C Xr(c). Hence,
XF(EQ) N XF(C) ;é 0.

Applying Property 3, we see that I'(f2) and T'(c) must not
be both above or both below I'(¢2). Moreover, since the con-
sistency gadgets in our construction are components of G,
Lemma 2 implies that their y-projections must form disjoint
intervals. Therefore, either Yr(f2) > Yr(¢2) > Yr(c), or vice
versa. Thus, if /2 is a positive literal then its variable is
positively-arranged in I'; otherwise, {2 is a negative literal
implying that its variable is not positively-arranged in I". In

either case, a satisfies c. By repeating this argument for all
clauses in C, we see that a satisfies ¢. O

Lemma 13 If ¢ is satisfiable, (Gv, Gn) has an RSVR.
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Figure 6: Left: G, (red) and Gy (blue) for 3SAT instance ¢ = (v3 V v1 V vg)(T1 VT2 V v1)(v2 V v1 V T3). Right: An
RSVR of (G, Gy) encoding the truth assignment vy,v3 =7 and vy = F.

Proof. Let a: V — {T, F'} be a truth assignment satisfying
¢. To construct an RSVR T for (G, Gp), we first represent
G, and G\ as two sets of intervals on the z and y-axes re-
spectively. The construction of these intervals is as follows.

For the ith clause ¢ = (¢1 V€2 V £3) € C, we represent ¢ on
the z-axis by the interval [7i+2, 7i + 5]. Next, for one of the
satisfied literals in ¢, say 2, we represent both f» and ¢ on
the x-axis by the interval [7i + 3, 7i + 4]. Finally, assuming
that ¢1 and ¢35 are in order, we represent ¢; and 71 on the
z-axis by the intervals [Ti + 1, 7i 4+ 2] + € and [7i,7i + 1] + 2¢
respectively, for some positive but small e. Similarly, we
represent £3 and f3 by the intervals [7i + 5,7i + 6] — € and
[7i + 6, 7i + 7] — 2¢ respectively.

For the jth variable v € V, if a(v) = T, we represent the
vertices in Gh(v) and Gh(T) on the y-axis by the intervals
[47,47 + 1] and [47 + 2,45 + 3]. Otherwise, if a(v) = F, we
simply swap the intervals and proceed as before. Finally, we
represent every vertex in Gn(C) on the y-axis by the interval
[0,1].

Observe that each vertex in V is represented by two
(nonempty) intervals, one on the z-axis and one on the y-
axis. Thus, for every uw € V, we can define I'(u) to be the
Cartesian product of its two corresponding intervals. To see
this gives a valid RSVR T for (Gy, Gn), we make three ob-
servations.

1. Every gadget in G, (resp., Gn) occupies a contiguous
interval on the z-axis (resp., y-axis) that is disjoint from
the intervals of other gadgets.

2. Every satisfiability gadget in G, for a clause ¢ = ({1 V
£3V{3) is drawn such that I'(¢2) blocks vertical visibility
between I'(c) and T'(f2). Moreover, Xr(c) intersects
Xt (£) but not Xt (£y) for k € {1,3}.

3. Every consistency gadget in G}, is drawn as a horizontal
stack of rectangles (in order from left to right) that
share a y-projection.

The first observation implies that no two gadgets in G,
(resp., Gh) share an (unwanted) visibility. The next two ob-
servations mean that the implied visibilities for each gadget
in Gy and G}, are realized exactly. Therefore, I' is indeed a
valid RSVR for (Gy, Gn). O
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I'(v) — ()
- T'(vj)
) - T

(a) (b)

Figure 7: Illustration of Property 2 and Lemma 7
(Fig. 7a and 7b respectively). The gray lines in (a) rep-
resent other bars which may or may not be in the BVR,
and the dotted (red) lines represent the two sequences
of vertical visibilities.

D Omitted Proofs for Section 4

Lemma 7 Let I' be a noncollinear BVR of a path P =
Vly ..., Un. [fXF('Uj) C X[‘(’Uk) fO’I‘j < k, then (Z) Xr(vl) C
Xr(v2) C -+ C Xr(vj); and (ii) y (v1),...,y.(vk) forms a
strictly monotonic sequence.

Proof. By assumption we have that Xr(v;) C Xr(vx), and
since I' is noncollinear, we may assume that y (vj) < gr(vk)
or y (v;) > y.(vk). Suppose it is the former; the argu-
ment is symmetric in the other case. Consider the largest
i < j such that either Xr(v;) ¢ Xr(vit1) or yr(vi) >
yp(vig1). If y (vi) > y (vit1), then T'(vi) and I'(vy) are
both above I'(viy1). By Property 3, Xr({vi,...,vi}) N
X[‘({Uk, ... ,Un}) =. However, since XI‘(Ui)ﬂXF(Ui+1) 7& 0
(they must share a visibility) and Xr(vi+1) C Xr(vk), it fol-
lows that Xr(v;) N Xr(vk) # 0, a contradiction. Otherwise,
if Xr(vi) ¢ Xr(vit1), then one of the endpoints of Xr(viy1)
is contained in Xr(v;) and Xr(vg). By Property 2, there is
a cycle, a contradiction. 0

Lemma 8 If (P, B) has an LSVR then it has a canonical
LSVR.

Proof. We begin by demonstrating that:

Claim 1 If (P,, P\) has an LSVR then it has a noncollinear
LSVR.
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Proof. We first show how to transform an LSVR I' of
(P,, B} into an LSVR I' such that Zr/ (i) # z(j) and
gr,(i) # Y () for all 4,5 € V. Suppose that zr(i) =
zr(j) = xo for some 4,5 € V. Let L={k €V : Tr(k) < zo}
and R = {k € V : z.(k) > xo} be the collection of shapes to
the left and right of zo respectively. Let § > 0. Construct
I as follows.

Shift I'(L) to the left by §, and I'(R) to the right by .
For all £ ¢ LUR (meaning that z.(¢) < zo < Tr(¢)), stretch
I'(¢) both left and right by § (so that z, (¢) = z(¢) — 6 and
T (€) = Zr(€) 4+ 6). Note that Zr/ (i) < zp/ (§).

We claim that IV is an LSVR of (P, Py). Since there was
no vertical displacement, the horizontal visibilities present in
T" were unaffected. Moreover, the structure of the drawing
to the right of (and including) zo in I" was unchanged in
I, Formally, IV N [xo + §,00) X (—00,00) is precisely T' N
[xg,00) X (—00,00) shifted by 4. Similarly for the structure
to the left of zo in T'. Since T'}(v) lies outside the region
M = (zog — 0,0 + §) X (—00,00) for all v € V, we introduce
no crossings. Therefore, it remains only to show that no
unwanted vertical visibilities are introduced in M. Notice
that any unwanted vertical visibilities in this region must
be among shapes not in I'(L U R) (i.e., those which were
stretched), since IV(LU R) N M = 0.

If T} (u) and T (v) share an unwanted vertical visibility
in M then, since the visibility was blocked by two horizon-
tal bars which shared a collinearity at z¢ in I'—say I'y(3')
and T (j')—Xr(u) and Xr(v) both strictly contain xo and
Ty (u) is above T (i') and T, (j') while T',(v) is below them.
However, this implies a cycle by Property 2, a contradic-
tion. This demonstrates that I is an LSVR of (P, B,). If
instead zp/ (¢) = Y (j), then we perform a similar surgery,
but the geometry is rotated by 7/2. Repeating this pro-
cess iteratively produces the desired LSVR of (P, B). We
now assume that I" is an LSVR such that Tr(¢) # z(j) and
Y. (1) # yp(j) for all 4,j € V, and show how to transform I'
into an LSVR I" such that y , (i) # y, (4), Jr (i) # G (5),
zr (1) # 2 (§), and ZTp/ (2) # T (f) for all ¢, j € V. Suppose
Tr(i) = ZTr(j) = o for some 4,5 € V (as above, the other
cases are symmetric) and choose 7 and j such that T'y(4) is
the highest such bar and I',(j) is the lowest. We construct
an LSVR I which removes this collinearity. By Property 2,
there cannot be a bar I'y(u) above I'y(7) and a bar T'y(v) be-
low I'y(j) that both strictly contain zo. If such a I'y(u) does
not exist, decrease Zr (i) by a small amount. This does not
introduce any new vertical visibility since T'y() is the high-
est bar with Zr(z) = zo. Similarly, decrease Zr(j) if such
a I'y(v) does not exist. Repeating this process iteratively
produces a noncollinear LSVR of (P,, P). O

We now proceed to the main proof of Lemma 8. By
Lemma 1, we may assume that I'" is noncollinear. Sup-
pose without loss of generality that I\({mi,...,mk_1}) is
monotone increasing for some k > 3. If Zr(mx) < Tr(mk-1),
we will show how to modify I' such that I'v({m1,...,m}) is
monotonically increasing or decreasing. We consider three
cases:

Case 1: T'y () and I'y (7x—2) are both above or both below
Dy(mk—1), and ZTr(mk—2) < zp(mk). There is no vertex u such
that Zr(m,) € Xr(u) as otherwise, by Property 1, there is
a path from u to m,—1 avoiding 7 and 7r—2, implying that

157

mr—1 has degree three in P,; a contradiction. Hence, we may
stretch I'y(m) to the right such that Zr(mx) > Zr(mk-1),
making I',({m1, ..., 7k }) monotonically increasing.

Case 2: T'y(m) and I'y(7x—2) are both above or both be-
low I'y(mk—1), and ZTr(mk) < zp(mk—2). Since I'y(mx) and
Iy (mk—1) must share a visibility, we have that zp(mr—1) <
zr(mr—2), hence Xr(mp—2) C Xr(mp—1) By Lemma 7(i),
Xr(m) C Xr(me) C -+ C Xrp(mk—1). Successively, for
j from k — 2 to 1, stretch I'y(w;) to the right such that
Tr(mj) > Tr(mj+1). Note that before each stretch, Tr(mj4+1)
is the rightmost point in I'y({m1,..., 7% }); otherwise, as in
Case 1, mj41 has degree three. Thus, the transformation in-
duces no unwanted vertical visibilities. Furthermore, it’s
clear that the horizontal visibilities are maintained since
there is no movement of any vertical bars. I',({m1,..., 7k })
is now monotonically decreasing, which completes the proof
of this case.

Case 3: If one of I'y(my) and I'y(mx—2) is below I (mx—1)
and the other above then, stretch I'y(7m) to the right such
that ZTr(mg) > Tr(mg—1). The argument that this induces
no unwanted visibilities is the same as in Case 1. This
completes the proof if T'v({m1,...,7k—1} is monotonically
increasing. If I'y({m1,...,mk—1}) is monotonically decreas-
ing, Property 2 (for 7y, mx—1, and m,_2) implies a cycle if

Tr(mg) > Tr(mg—1). Therefore, I'v({m1,...,7k}) is mono-
tonically decreasing. A similar and symmetric argument
may be applied to I'. O

Lemma 9 Suppose T' is a canonical LSVR of (P, P)
and Ar,Br,Cr and D; are as in Definition 1. If
Iy is monotonically increasing (resp., decreasing) then
IDv({me, Tet1y. - ymn})  (resp., Tuv({m1,...,ma—1,7a})) is
strictly increasing (resp., decreasing). Similarly, if T'n is
monotonically increasing (resp., decreasing) then I'n({a,a +
1,...,n}) (resp., Th({1,...,b — 1,b})) is strictly increas-
ing (resp., decreasing), where a = |Az|, b =n — |Bz| + 1,
¢=|Cx|, andd =n — |Dx| + 1.

Proof. Let I' be a canonical BVR of a path P = v1,...,v,.
We begin by showing:

Claim 2 If I'({vi,viy1}) is strictly increasing (resp., de-
creasing) then T'({vi,viy1,...,vn}) is strictly increasing
(resp., decreasing).

Proof. Suppose that I'({vs, vi+1}) is strictly increasing (the
case of strictly decreasing is similar) and let j > i be
minimal such that I'({v;,vj41}) is not. Since I' is mono-
tone and noncollinear, this implies z(vj4+1) < zp(v;) and
Xr(v;) C Xr(vj+1). Suppose that I'(v;_1) is above I'(v;);
the other case is argued similarly. If I'(vj4+1) is above I'(vj_1)
or below I'(v;), applying Property 2 to vj—1,v; and vj4+1
yields a contradiction. On the other hand, if I'(vj4+1) is be-
tween I'(vj—1) and T'(v;), then because Xr(v;) C Xr(vjt1),
I'(vj—1) and I'(v;) cannot share a visibility. This is a con-
tradiction. |

‘We now show that:

Claim 3 If T is a canonical LSVR of (P, P) and
Iy is monotonically increasing (resp., decreasing) then
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Iy (meq1)

D(me)

()

v (met1)

Ty (me)

D(my)

(c)

Figure 8: The cases in the proof of Lemma 9. (a) and
(b) correspond to the two subcases of Case 1; (b) and
(d) to the two subcases of Case 2.

Dv({me,me+1}) (resp., Tv({ma—1,ma})) is strictly increasing
(resp., decreasing). Similarly, if Tn is monotonically increas-
ing (resp., decreasing) then T'n({a,a + 1}) (resp., Th({b —
1,b})) is strictly increasing (resp., decreasing).

Proof. Consider I'y, the proof for I'y can be obtained by
a symmetric argument. We will assume that both I'y and
I'h are monotonically increasing. If I'y is decreasing then
the proofs pertaining to the two cases below are simply ex-
changed. Assume for contradiction that I'y({me, mcq1}) is
not strictly increasing, so xp(me+1) < zp(me). Notice that,
since I'y is monotonically increasing, Xr(m.) C Xr(meq1)-
Applying Lemma 7(i) we see that Xr(m) C Xr(miy1) for
i € [c]. We consider two cases based on the ordering of
(m1,...,7c) in B, (see Figure 8).

Case 1: Suppose m < w2 < -+ < me. Then yp(m) <
r(me) < < Yp(me) since (my,m2,...,m.) is increas-
ing in B, and I'y is monotonically increasing. By defini-
tion of Cr, Teq1 < e, hence Yp(mes1) < Yp(me). There-
fore, T'v(mc) is above I'(meq1) (ie., y.(me) > y(met1));
otherwise I'h(m.) would intersect I'y(mc41) (by the assump-
tion that zp(met1) < zp(me)). Hence, by Lemma 7(ii),
yp(m) >y (m2) > - >y (mcs1) thus demonstrating that
['(m;) is nested in I'(mit1) for all ¢ € [c — 1].

First, we claim that for all ¢ € {m,m + 1,...,7},
zr(i) € [zp(me), zp(m1)]. Suppose the claim is false and
choose the smallest ¢ € {mi,m + 1,...,7} such that ei-
ther 21 (i) < xp(me) or zp(i) > zp(m1). In the former case,
T'w(4) is blocked from sharing a visibility with T'n(i — 1) by
Th(me) (where we're using that yp(i — 1),7r(4) < yp(mwe),
and y (i — 1) >y (mc) to avoid I'n(i — 1) and I',(c) inter-
secting). In the latter case apply Property 2 to i, 71 and 7.
(using that g (mc) > Yr (i) > Yr(71)) to obtain a contradic-
tion. This proves the claim, which implies that m.4+1 < 71,
since mey1 < e and zp (eq1) € [zp(7e), Zp(m1)]. This, how-
ever, also yields a contradiction: Since Yr(m) C Yr(w.) and
zr(me) < zp(m), Lemma 7 implies that z(7) > zp(w.) for
all 4 < 1. By assumption however, y (mct1) <y (mc).

Case 2: Otherwise, m1 > w2 > -+ > 7. so yp(m) >
yp(me) > -+ > yp(me). Iy (meq1) < y.(mc), then we must

have ¢ = 1; otherwise apply Property 2 to m¢4+1, mc—1 and mc.
This, however, contradicts the definition of C as it will al-
ways have length at least two. Thus y, (mc) <y (mct1) and
again by Lemma 7(ii) we have y (m) < .-+ < y (7et1).
Again, however, this forces ¢ = 1. Otherwise, because
zr(me) < zp(m) and Yr(m) > Yr(re), Tn(m1) would in-
tersect I'y(m.). As above, ¢ = 1 is impossible.

This completes the proof if T'y is increasing. See Fig. 8
for an illustration of the different cases. If I'y is decreasing,
the argument is similar but considers instead the vertices
Td—1,Td,---,Tn. LThe same geometric arguments apply. 0O

Combining these two claims provide the proof of
Lemma 9. (]

E Correctness of LsvrPaths Algorithm

Here we prove Lemma 10. We break the proof into a se-
quence of lemmas.

Lemma 14 Let Ar ={1,...,a}. If (1,2,...,a) is decreas-
ing in m, then either Az \ Cr =0 or Az \ Cr ={1,...,d}
for some a’ < a.

Proof. Let i € Ar N Cx (if no such i exists, we are done)
and suppose that i + 1 € A,. Since 77'(3) > 77 1(i + 1),
we can write ¢ = w41 and ¢ + 1 = m; for some j, where
mj+1 € Cr. By definition, if 741 € Cr then 7; € Cr. We
can now choose the minimal ¢ € A, N Cr, and apply the
above argument inductively to complete the proof. O

Lemma 15 Let A = {1,...,a} and Cr = {m1,...,7c}.
After Step 1 there is a crossing among T'(Az) only if
(1,2,...,a) is decreasing in w and among I'(Cr) only if
T > T > -+ > Te.

Proof. If (1,2,...,a) is increasing in 7, then after Step 1
we have zp(mi) < zp(miy1) and y (i) < y. (@ + 1) for all
i < a, hence there are no crossings in I'(A,). The argument
for Cy is similar. O

Lemma 16 At the end of LsvrPaths, the required visibilities
are present in I' and no others.

Proof. We first prove the claim for horizontal visibilities.
By Lemma 14, write A \ Cr = {1,...,a’}. Consider the
vertices {a’,...,n}, whose vertical bars are not altered after
Step 1. By construction, for all i € {a’ +1,...,n}, Yr(i) =
[i,2 4+ 1+ ¢€]. Therefore, Yr(i)) NYr(i+ 1) =[i+ 1,0+ 1+ ¢
and Yr(j)N[i+1,i+1+¢ =0 for all j # 4,5+ 1 (even
if Step 3 is performed). Hence, T'n(i) and T'h(i + 1) share
a horizontal visibility for all i € {a’,...,n — 1}. Moreover,
Yr(i) NYr(j) = 0 for j ¢ {i — 1,i,i 4+ 1}, so there are no
unwanted visibilities among these shapes. If Step 3 is not
performed, then the same argument demonstrates that all
required horizontal visibilities are present among [n]. Sup-
pose, therefore, that Step 3 is performed. Fixi € {2,...,a}.
To complete the proof, it suffices to show that I'n(i) shares a
visibility with I'n(¢ — 1) and does not share a visibility with
I'n(j) for j <1i—2. By construction, Yr(i) = [2— 4,9+ 1+ ¢€]
for all i € [a']. Hence, Yr(i) D Yr(i — 1). Furthermore,
since Step 3 was performed, (1,2,...,a’) is decreasing in 7
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and so zp(1) > zp(2) > -+ > zp(a’) demonstrating that
Th(j) for j < a' cannot block the visibility between T'h(7)
and Th(i — 1). Moreover, y (j) > @’ +1 > i+ 1 for all
j > a’ + 1; hence, neither can T'h(j) for j > o' + 1. Fi-
nally, since Yr(i —1) D Yr(: —2) D --- D Yr(1), we see that
Yr(i—1) blocks I'h(4) from sharing a visibility with I'n(j) for
7 < i—2. The proof of vertical visibilities is almost identical,
except that the argument uses y-projections. g

Lemma 17 After Algorithm LsvrPaths is complete, there
are no crossings among any shapes.

Proof. First we observe that after Step 1 of the Algorithm,
there is a crossing between two shapes I'(é1) and I'(i2) iff
we can write i1 = 7 and 42 = i+ 2 and (i + 1,i) € R.
Consequently, we may write ¢ + 1 = m; and i = 741 for
some j. Since condition F1 is not met, in this case either
1€ Crori+1 e A,. First we consider the case when ¢ € C.
After Step 2 is carried out, we have 2. (1) =2—j—1 < 2—j =
z-(i+1) and since there was no vertical displacement of the
bars, this alleviates the crossing between I', () and I, (i — 1).
It remains to show that the transformation did not induce
any further crossings. Notice that even after Step 3, the only
shapes which share an z-coordinate with I'(¢) are I'(i — 1)
and I'(¢ + 1). This is because i > a’ where A; \ Cr = [d/],
hence the modifications to I'(A \ Cx) (if any) stretch the
shapes downwards and thus Yr (A \C=)NYr (i) is unaffected.
Furthermore, I'(i — 1) intersects I'(¢) iff they share a vertical
visibility, in which case we must have i — 1 = 742 (since
i+ 1= m;) and, by Lemma 16, I" contains only the correct
vertical visibilities. In this case, notice that 712 € C5 since
mi+1 € Cr and by Lemma 15, 711 > m2 > --- > 7. and
Tjt+2 =1 —1 < 7= m;41. This completes the proof if i € Cx.
Ifi+1 € A instead, the argument is similar, except we argue
about Step 3 and the vertical displacement of I'(¢ +1). O

F Modifying LsvrPaths

Here we describe how to modify LsvrPaths if it is condition
F2, F3, or F4 rather than F1 that is not met. Let A, B, Cx
and D be as in Definition 1. If F2 (resp., F3, F4) is not
met, we construct an LSVR I" in which I'y is monotonically
increasing (resp., decreasing, decreasing) and I'y is monoton-
ically decreasing (resp., increasing, decreasing). Thus, for all
i, we place I'(m;) such that its corner is at (¢,n+1—m;) (resp.,
(n+1l—d,m),(n+1l—din+1—m)).

The transformation in Step 2 is either performed on I'(C)
(as presented in LsvrPaths) or I'(D;). If performed on I'( D)
then I'(m;) is stretched backwards to ¢ — (n — 1) (recall that
it was originally placed at z-coordinate n + 1 — ). Step 2
is performed on I'(C) only if Ty is increasing (cases F1 and
F2). It is performed on I'(Dy) only if Ty is decreasing (cases
F3 and F4).

The transformation in Step 3 is either performed on
I'(Ax \ Z) (again, as presented) or I'( B, \ Z), where Z €
{Cx, Dz} is the relevant set in Step 2. If performed on
I'(Bx), then I'(i) is stretched downwards to y-coordinate
i —(n —1). Step 3 is performed on I'(A,) only if Ty is
increasing (cases F1 and F3). It is performed on I'(By) only
if T'y is decreasing (cases F2 and F4).
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Importantly, the transformations of Steps 2 and 3 are only
performed in certain circumstances to do with the ordering
between the two paths. Specifically:

1. If Ty is increasing and I' is decreasing, then Step 2
is performed if m < m < -+ < 7., and Step 3 if
(n,n—1,...,b) is decreasing in .

2. If Ty is decreasing and I'y increasing, then Step 2 is
performed if m, > w,—1 > .-+ > mwg and Step 3 if
(1,2,...,a) is increasing in .

3. If Ty and I', are both decreasing then Step 2 is per-
formed if 71, < M1 < < mq and Step 3 if
(n,n —1,...,b) is increasing in .

The proofs of correctness in these alternate cases are

largely symmetric to the one presented in the case of F1.
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Finding a Maximum Clique in a Grounded 1-Bend String Graph*

J. Mark Keil

Abstract

A grounded 1-bend string graph is an intersection graph
of a set of polygonal lines, each with one bend, such that
the lines lie above a common horizontal line ¢ and have
exactly one endpoint on ¢. We show that the prob-
lem of finding a maximum clique in a grounded 1-bend
string graph is APX-hard, even for strictly y-monotone
strings. For general 1-bend strings, the problem remains
APX-hard even if we restrict the position of the bends
and end-points to lie on at most three parallel horizon-
tal lines. We give fast algorithms to compute a maxi-
mum clique for different subclasses of grounded segment
graphs, which are formed by restricting the strings to
various forms of L-shapes.

1 Introduction

A geometric intersection graph consists of a set of ge-
ometric objects representing the nodes of the graph,
where two nodes are adjacent if and only if the cor-
responding objects intersect. Intersection graphs that
arise from the intersection of strings, i.e., simple curves
in R?, are called string graphs. A number of restric-
tions on the strings have been examined in the litera-
ture. Outerstring graphs and grounded string graphs
are two widely studied classes of graphs that resulted
from such restrictions. An outerstring graph is a string
graph, where the strings lie inside a disk, with one end-
point on the boundary of the disk. In a grounded string
graph, the strings lie above a common horizontal line £,
with one endpoint on ¢. The line ¢ is referred to as a
ground line.

Although the outerstring graphs and grounded string
graphs are the same for general strings, they can be
different when we put restrictions on the strings. For
example, if we restrict the strings to be straight line seg-
ments, the resulting grounded segment graph class is a
proper subclass of outersegment graph class [3]. Strings
are often modeled with polygonal chains, where a k-
bend string is a polygonal chain with at most k& bends
or (k+ 1) segments.
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While the maximum independent set problem is NP-
complete for string graphs (even when the strings are
straight line segments), it is polynomial-time solvable
for outerstring graphs with a given outerstring repre-
sentation of polynomial size [7]. Therefore, it is natural
to explore other common optimization problems for out-
erstring graphs. In this paper we explore the mazimum
clique problem, i.e., we seek a largest subset of pair-
wise intersecting strings. Cabello et al. [2] proved the
maximum clique problem to be NP-hard even for ray
intersection graphs. Since one can enclose a ray inter-
section graph inside a circle such that all the rays hit the
perimeter, their result implies NP-hardness for comput-
ing a maximum clique in an outersegment graph. There-
fore, an interesting question that arises in this context
is whether the maximum clique problem remains NP-
hard for grounded segment graphs. While the problem
remains open, in this paper, we show NP-hardness for
two subclasses of grounded 1-bend strings.

1.1 Related Research

The hardness of independent set and maximum clique
problems in general graphs inspired researchers to ex-
amine these problems for restricted intersection graph
classes. Both problems remain polynomial-time solvable
for circle graphs, i.e., the intersection of a set of chords
of a circle [11, 13]. However, both become NP-complete
in general segment intersection graphs [8].

A set of curves is k-intersecting if every pair of curves
have at most k£ points in common. A string graph
is k-intersecting if it is the intersection graph of a k-
intersecting set of curves. Fox and Pach [5] gave subex-
ponential time algorithms for computing a maximum
independent set for string graphs, as well as algorithms
for approximating independent set and maximum clique
in k-intersecting graphs.

Middendorf and Pfeiffer [10] showed the maximum
clique problem to be NP-hard for axis-aligned 1-bend
strings, even when the strings are of two types: 1
and L. They also showed the problem to be polynomial-
time solvable for two cases: (a) For the strings of type
Nand 71, and (b) for grounded segments when the
free endpoints of the segments lie on a fixed number of
horizontal lines.

Keil et al. [7] examined the maximum independent set
problem for outerstring graphs. Given an outerstring
representation, where each segment is represented as a
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polygonal chain, they showed how to compute a max-
imum independent set in O(s?) time, where s is the
total number of segments in the representation. Bose et
al. [1] gave an O(n?)-time algorithm when the strings
are y-monotone polygonal paths of constant length with
segments at integral coordinates. They also showed this
to be the best possible under strong exponential time
hypothesis.

A rich body of research examines the recognizability
of various classes of string graphs [9, 3, 12]. Throughout
this paper, whenever we examine an intersection model,
we assume that the input graph comes with a represen-
tation satisfying that intersection model.

1.2 Contributions

We first prove that the problem of computing a maxi-
mum clique in a grounded 1-bend string graph is APX-
hard, even for strictly y-monotone strings. We then
show that the problem remains NP-hard when the
bend and end points of the strings (not necessarily
y-monotone) are restricted to lie on three horizontal
lines. Finally, we give fast polynomial-time algorithms
for some restricted grounded 1-bend string graphs. In
particular, when the grounded 1-bend strings are 1- and
2-sided L-shapes, and 2-sided square L-shapes. The re-
sults are summarized in the following table. Note that
the class of 2-sided grounded L-shapes is known to be
a proper subclass of grounded segment graph class [6].
Therefore, the time complexity question for computing
a maximum clique in a grounded segment graph remains
open.

’ Graph Class \ Complexity \ Reference ‘
1-sided L-shape | O(n?loglogn) Sec. 5
2-sided square L | O(n?log”n) Sec. 4
2-sided L-shape O(n?) Sec. 3
1-bend string APX-hard Sec. 2

Throughout the paper, we use the term L-shape to
denote an axis-aligned 1-bend string. An L-shape in-
tersection representation is 1-sided (Figure 1(a)—(b)), if
the L-shapes in the representation all turn clockwise,
or all turn anticlockwise. Otherwise, the representation
is two-sided (Figure 1(d)). In a square L-shape repre-
sentation, the horizontal and vertical segments of every
L-shape are of the same length (Figure 1(c)).

2 APX-hardness

In this section we show that finding a maximum clique
in a grounded 1-bend string graph is an APX-hard prob-
lem, even when each string is strictly y-monotone. We
reduce the maximum independent set problem in 2k-
subdivisions of cubic graphs, which is APX-hard for any
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|1/

da  be ]:e' a dbc fe
() (d)
Figure 1: (a) A graph G. (b) An one-sided L-shape

representation. (¢) A square L-shape representation.
(d) A two-sided L-shape representation.

fixed k > 0 [4]. Here a t-subdivision of a graph is ob-
tained by replacing each edge (u,v) of G with a path
(u,dy,dsg,...,d,v) of t division vertices.

Let G be a 2-subdivision of a cubic graph. We first
compute the complement graph G and then show how
G can be represented as a strictly y-monotone grounded
1-bend string graph. Assume that there exists a (1 —
¢)-approximation algorithm A for the maximum clique
problem in grounded 1-bend string graphs. Let C be a
maximum clique obtained from G using A. Let I* and
C* be a maximum independent set and a maximum
clique in G and G, respectively. Then |C| > (1—¢)|C*|.
Note that an independent set in a graph corresponds to
a clique in its complement, and vice versa. Therefore,
we obtain an independent set of size at least (1—¢)|I*| in
G, which contradicts the APX-hardness for computing
a maximum independent set in G. Therefore, it now
suffices to give an algorithm that represents G using
strictly y-monotone grounded 1-bend strings.

2.1 Grounded 1-bend string representation with y-
monotone strings

Assume that G is the 2-subdivision of a cubic graph H
(Figure 2(a)). Let the z-axis be the ground line. While
constructing the representation for G, we will refer to
the strings corresponding to the vertices that originally
belong to H as the original strings, and the other strings
as the division strings.

Note that the original vertices form a clique in G. For
each vertex ¢ = 1...,n in H, we construct an original
string, which is a straight line segment with end-points
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(a)

Figure 2: Illustration for the (a) graph G, and (b) the construction of the original strings. (c) Construction of a

grounded 1-bend string representation for G.

(i,0) and (—3né,6n + 2). All these lines pass through
the point p = (0,2). Consequently, we obtain a set of
pairwise intersecting strings (Figure 2(b)).

We now describe the construction for the division
strings. Let ¢; be the vertical segment that starts at
(—3n2—1,6n+2) and hits the ground line (Figure 2(b)).
Then there are 6n horizontal lines (through integral co-
ordinates) between y = 3 and y = 6n + 6. This number
is larger than 3n, i.e., the number of division vertices in
G. We use these lines to create the division strings.

We number the edges of H from 1 to (3n/2). Let
(¢,d) be the jth edge in H and let s!,, s2, be the corre-
sponding division vertices in G. The vertex sid (resp.,
sgd) is adjacent to all the original vertices and division
vertices of G, except for ¢ (resp., d) and s?; (resp., sl;).
We now construct a pair of division strings that realize
these adjacencies.

Let ¢ and d be the tth and rth vertex of H. Assume
without loss of generality that the string of ¢ appears
to the left of the string of d on the ground line. The
division string for sid starts at the ground line, makes
a bend at ¢;, and then intersect all the original strings
that lie to the left of the string for c¢. In particular,
the string starts at (¢t — %,O)7 makes a right turn at
q = (—3n? —1,6n — j + 3) following the line y = (6n —
j +3), and stops as soon as it intersects all the strings
that appear before the string of ¢ on this line. The
division string for s2, starts at w = (r — £,0), makes a
right turn at the intersection point of the lines qw and
y = (6n—j+2), and continues until it intersects all the
strings that appear before the string of d (Figure 2(c)).

Since the permutation of the original strings on the
ground line is opposite to the permutation on the line
y = 6n+2, it is straightforward to verify that the string
for sid (resp., sid) intersects all the original strings ex-
cept the one for ¢ (resp., d).

By construction, the strings of s!, and s?; are disjoint
and intersect all the previously added division strings.
Otherwise, suppose for a contradiction that a previously
added division string z has not been intersected by the
string for s2;. Then z should appear to the left of s2,.

Thus the segment of z that touches the ground line will
be almost vertical. Therefore, z will have a negative
z-coordinate at the ground line, which contradicts the
property that every division string starts with a positive
z-coordinate. The argument is the same for s,.

This completes the grounded string representation for
G.

Since the coordinates explicitly described above are
polynomial in n, the intersection of the line segments
required to carry out the construction also have coor-
dinates of polynomial size. Hence one can compute the
string representation in polynomial time. Note that the
strings that we computed are y-monotone. To make the
strings strictly y-monotone, one can carry out the same
construction for division strings with a set of slanted
parallel lines of small positive slope, instead of horizon-
tal ones. We thus have the following theorem.

Theorem 1 The mazimum clique problem is APX-
hard for grounded 1-bend string graphs, even when the
strings are strictly y-monotone.

2.2 Grounded string representation on a few lines

Given a 1-bend string, we will refer to its two endpoints
as fired or free depending on whether they lie on the
ground line or not. Similarly, we call its segments fized
or free depending on whether the segment is adjacent
to the ground line or not.

We slightly modify the construction of the previ-
ous section such that the bends and end-points of the
strings lie on at most three lines (above the ground line):
01,05, 3, as illustrated in Figure 3. We omit the coordi-
nate details for this construction. It is straightforward
to use a very similar approach as in the previous sec-
tion to compute the representation with coordinates of
polynomial size.

We create the original strings such that bend-points
and free endpoints lie on ¢5 and ¢y, respectively. We
also ensure that the order of the free endpoints on /¢; is
opposite to the order of the fixed endpoints.
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Figure 3: Construction of a grounded string represen-
tation for GG on three lines.

Let ¢ be a point to the right of all the free endpoints
of the original strings on ¢;. A pair of division strings
start at the ground line near their corresponding orig-
inal strings (as in our earlier construction), but their
bends are placed on ¢5 and /3 such that the strings re-
main disjoint. We also ensure that fixed segments of
these strings lie to the right of q. Consider now a divi-
sion string z that starts at the ground line and reaches
ly or l3. If all the required intersections are realized
at its fixed segment, then we create the free segment
by connecting ¢ and its bend-point. If only a subset
of the required intersections is realized at its fixed seg-
ment, then the free segment is created by connecting
the bend-point to an appropriate point ¢’ to the left of
q on {1. Since the permutation of the fixed endpoints of
the original strings is the reverse of the permutation of
their free endpoints, such a point ¢’ must exist.

The division vertices are created in pairs and their
bend-points are placed to the right of all the previ-
ously created bend-points, as illustrated using the ver-
tical stripes in Figure 3. Note that every newly created
string z needs to reach either ¢ or to a point to the left of
q on {1. Therefore, we can choose the new bend-point of
z sufficiently far apart such that its free segment crosses
all the previously added division strings at their fixed
segments. This completes the required construction for
G. We thus have the following theorem.

Theorem 2 The maximum clique problem is APX-
hard for grounded 1-bend string graphs, even when the
bends and end-points are restricted to lie on three hori-
zontal lines.

3 Two-sided L-shapes

In this section we consider the case when the grounded
strings are two-sided L-shapes. We use dynamic pro-
gramming to compute a maximum clique on this class
of graphs, and give an O(n?)-time algorithm to compute
a maximum clique. We assume that all the L-shapes are
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in general position, i.e., no two segments in the intersec-
tion representation lie on the same horizontal or vertical
line.

Let G be an intersection graph of two-sided L-shapes,
and let @ be a maximum clique with at least two vertices
in G. Let a and b be the highest and second-highest L-
shape in @, respectively, and without loss of generality
assume that a appears to the left of b on the ground
line (Figure 4). Then any other L-shape ¢ in @) must be
below the line ¢ determined by the horizontal segment
of b. Furthermore, since ¢ intersects both a and b, its
endpoint on the ground line must be to the left of a or
to the right of b. In other words, the interval [a, ] on
the ground line acts as a forbidden interval for the other
vertices in the clique.

If ¢ is the next highest clique after b in @, then de-
pending on whether it lies to the left or right of the
interval [a,b], the forbidden region for the remaining
vertices in @ grows to either [c,b] or [a,c]. Without
loss of generality assume that c lies to the right of b,
and the new forbidden region is [a, ¢]. Then an L-shape
intersecting ¢ and a must also intersect b, where b al-
ready belongs to ). One can thus continue adding a
new L-shape that intersect the L-shapes representing
the current forbidden interval, without worrying about
the L-shapes which have been chosen already. We use
this idea to design the dynamic programming algorithm.

If G does not contain any edge, then the maximum
clique size is 1. Otherwise, let D(a,b) denote a maxi-
mum clique, where a,b, or b, a are the first and second
highest L-shapes, and a lies to the left of b. Let ¢ be
an L-shape that intersects both a and b, and for an L-
shape w, let w, be its x-coordinate on the ground line.
Then

2, if ¢ doesn’t exist
max {D(c,b)} +1

Dia,b) = max
max {D(a,c)} +1, otherwise.
Cqp>0g
14
.
a b c

Figure 4: Illustration for the dynamic programming for
two-sided L-shapes. The clique @ is shown in black.

We take the maximum over all pairs of L-shapes a,b
in the input. We can use a 2-dimensional table T'(a, b)
to store the solution of D(a,b). The size of the dynamic
programming table is O(n?), where n is the number of
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L-shapes. Computing each entry of the table requires
O(n) table look-up. Therefore, it is straightforward to
compute the maximum clique in O(n?) time.

The following theorem summarizes the result of this
section.

Theorem 3 Given a set of n grounded two-sided L-
shapes, one can compute a maximum clique in the cor-
responding intersection graph in O(n3) time.

4 Two-sided Square L-shapes

In this section, we consider two-sided square L-shapes,
and give an O(n?log? n)-time algorithm to compute a
maximum clique. We assume the L-shapes are in gen-
eral position.

Le Ly

1 2

ab c a.b’ c
(a) (b)

Figure 5: (a) A maximum clique in a two-sided square
L-shape representation. (b) Illustration for the proper-
ties of the clique.

We first discuss some geometric properties of a max-
imum clique, which will help us to design the dynamic
programming (Figure 5). Let a be the lowest L-shape
of a maximum clique @. Then all other L-shapes must
intersect the horizontal segment h of a. Let L., and L,,
be vertical lines through the left and right endpoints of
h. We now have the following observation.

Lemma 4 FEvery square L-shape that intersects h,
must intersect Ly, or Ly,.

Proof. Suppose for a contradiction that b is an L-shape
that intersects h but does not intersect L,, or L;,. Then
the length of the horizontal segment of b is at most the
length of h. Thus the maximum length for the vertical
segment of b is also bounded by the length of h. Since
the bend-point of b is above h, the vertical segment of
b cannot reach the ground line, which contradicts that
b is a grounded square L-shape. O

Let R be the region above h, bounded by L., and L,.
Since every L-shape intersecting h, also intersects either
L, or L,, (Lemma 4), the parts of these L-shapes in-
side R corresponds to the chords of a circle graph, where
the boundary of R corresponds to a part of the circle
perimeter. Since a maximum clique in a circle graph

can be obtained in O(nlog®n) time [13], we can find
the maximum clique containing a in the same time as-
suming the circle graph representation is precomputed.

Finally, we iterate the above process over all L-shapes
to find the maximum clique. Let S be the input L-
shapes. It is straightforward to precompute the circle
graph for every L shape in O(n?logn) time in total.
Hence the time complexity for computing maximum
clique is O(n*logn) +3° g O(nlog®n) € O(n?log*n),
where S is the set of L-shapes in the input.

The following theorem summarizes the result of this
section.

Theorem 5 Given a set of n grounded two-sided square
L-shapes, one can find the mazimum clique of the cor-
responding intersection graph in O(n? log2 n) time.

5 One-sided L-shapes

In this section, we consider one-sided L-shapes, and give
an O(n?loglogn)-time algorithm to compute a maxi-
mum clique. We assume the L-shapes are in general
position.

r——0— 00—
d c b a

Figure 6: Illustration for the dynamic programming for
one-sided L-shapes. The clique @ is shown in black.

Let S be the set of L-shapes in the input and let @
be a maximum clique. Let a be the highest L-shape in
Q. Then all the other L-shapes in () must intersect the
vertical segment of a (Figure 6). There may also exist
L-shapes (e.g., b) that do intersect the vertical segment
of a but does not belong to Q.

Let D(S) be the maximum clique in the intersection
graph of the set S of input L-shapes. For any L-shape
q € S, let N(q) be the subset of S such that every L-
shape in N (q) intersects the vertical segment of g. Then
D(S) can be defined as follows.

D(8) = max(D(N(g)) + 1)

To compute the maximum clique efficiently, we do
some preprocessing. We first compute the intersec-
tion graph G of S in O(n?) time. We then compute
a sorted list S, consisting of the fixed endpoints (on
the grounded line) of all the L-shapes. We next com-
pute another sorted list S;, of the heights of the L-
shapes (Figure 7). Both these lists can be computed
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Figure 7: Hlustration for .S, and Sj,.

in O(nlogn) time. Hence the total preprocessing takes
O(n?) 4+ O(nlogn) € O(n?) time.

For each g € S, we now compute the maximum clique
in N(q). First note that N(g) corresponds to a permu-
tation graph, where the edges are determined by the
intersection of the L-shapes in N(gq). We first find two
ordered lists for the L-shapes of N(g), one list corre-
sponds to the order they appear on the ground line, and
the other list corresponds to the order they appear on
the vertical segment of g. We then use an O(nloglogn)-
time algorithm [14] for computing a maximum clique in
a permutation graph to compute the maximum clique
in N(q).

To list the L-shapes of N(g) in the order they ap-
pear on the ground line, we scan S, from left to right
and create a new ordered list S/ with the L-shapes
that intersect the vertical segment of q. We then scan
Sy, and create a new ordered list S} that contains the
L-shapes intersecting the vertical segment of q. Con-
structing S, and S}, takes O(n) time. Hence comput-
ing N(¢) and finding a maximum clique in N(q) takes
O(n)+O(nloglogn) time. Thus the total running time
is

Z O(n) + O(nloglogn) € O(n*loglogn).
q€s

The following theorem summarizes the result of this
section.

Theorem 6 Given a set of n grounded one-sided
square L-shapes, one can find the mazimum clique of
the corresponding intersection graph in O(n?loglogn)
time.

6 Conclusion

In this paper we have examined the maximum clique
problem for the grounded 1-bend string graphs. We
show the problem to be hard for y-monotone strings.
We also show that the problem remains hard when we
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relax monotonicity, but restrict the bends and free end-
points of the strings to lie on three horizontal lines.
The most intriguing open problem is to settle the
time complexity for grounded segment graphs. How-
ever, there are various questions worth investigating for
1-bend strings where the bends and endpoints lie on
a few lines. If we allow only one horizontal line, then
the resulting y-monotone strings become segments and
the corresponding intersection graph is a permutation
graph, where one can find a maximum clique in poly-
nomial time. For a fixed number of lines the problem
is polynomial-time solvable for segments [10]. There-
fore, it would be interesting to examine whether the
problem becomes polynomial-time solvable for two hor-
izontal lines, where we can explore 1-bend strings. We
think such restriction on the number of lines would be
non-trivial even for strictly y-monotone 1-bend strings.
We have developed polynomial-time algorithms to
find maximum clique for various types of L-shapes. A
natural question is whether the running times of these
algorithms can be improved. It would also be interesting
to find non-trivial lower bounds on the time complexity.
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Testing Balanced Splitting Cycles in Complete Triangulations*

Vincent Desprét

Abstract

Let T be a triangulation of an orientable surface ¥ of
genus g. A cycle C of T is splitting if it cuts ¥ into two
noncontractible parts 1 and Yo, with respective genus
0 < g1 < go. The splitting cycle C is called balanced
if g1 > go — 1. We define a new notion of splitting cy-
cle approximation allowing us to show that one can rule
out in polynomial time the existence of a balanced split-
ting cycle when the triangulation is far enough to have
one. Implementing a randomized algorithm based on
the same ideas, we show that large Ringel and Youngs
triangulations (for instance on 22.363 vertices) have no
balanced splitting cycle, the only limitation being the
size of the input rather than the computation time.

1 Introduction

Let ¥ be a surface and G be a graph embedded on
3 such that each face of the graph is an open disk. A
splitting cycle on a surface X of genus at least 2 is a sim-
ple cycle (without repeated vertices) that allows to cut
Y into two parts non-homeomorphic to disks (see Fig-
ure 1). If G has genus at least 2 it may or may not have
a splitting cycle and the problem is NP-complete [3, 2].
However, splitting cycles can be found certainly when
G has some additional properties.

Conjecture 1 (Barnette (1982) [13, p. 166]) IfG
is triangulation without loops or multiple edges of a sur-
face of genus at least 2, then it has a splitting cycle.

For now on, we consider only triangulations without
loops or multiple edges. This conjecture is known to be
true only in the case of the double torus [9]. It is formu-
lated for triangulations but has been also investigated
for G with sufficient face-width (the minimum number
of faces crossed by a non-contractible curve). It is easy
to build an embedded graph of face-width 2 without
splitting cycles. Zha and Zhao [18] conjectured that a
face-width of 3 is sufficient to obtain a splitting cycle
and proved that 6 is actually enough. Triangulations

*The first author was partially supported by the grant ANR-
17-CE40-0033 of the French National Research Agency ANR
(project SoS)

TUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy,
France

iLIP, CNRS - ENS de Lyon
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Michaél Raot

Stéphan Thomassét

Figure 1: C1 is contractible, C2 is a splitting cycle and
C3 is non-separating.

are a particular case of this second conjecture since any
triangulation has face-width at least 3.

We say that a triangulation T is irreducible if none of
its edges can be contracted without violating the condi-
tion of simplicity. It is easy to see that if T has a split-
ting cycle and is obtained by contracting an edge from
some T” then T also has a splitting cycle. Thus, it is
sufficient to consider irreducible triangulations. Observe
also that irreducible triangulations have face-width ex-
actly 3. The number of irreducible triangulations of
a given genus being finite [1, 14, 10], it is theoretically
possible to check the conjecture for fixed genus. Sulanke
gave an algorithm to compute the set of irreducible tri-
angulations of a fixed genus [16] and used it to prove
the conjecture for genus 2 with a computer assisted ap-
proach [17]. Unfortunately, the number of irreducible
triangulations with respect to the genus grows too fast
to hope for a brute force proof, even for genus 3.

A splitting cycle C' cuts ¥ into two parts of respective
genus g1, g2, where g1 < go and g1 < go = g. We call g1
the type of C, and C'is called balanced if g1 > go — 1 (if
such a cycle exists for T', we also say that T is balanced).
It was independently conjectured by Zha and Zhao [18]
and Mohar and Thomassen [13, p. 167] that a trian-
gulation (or an embedded graph of face-width at least
3) have all the possible types of splitting cycles. How-
ever, Despré and Lazarus [4] disproved this by showing
that some triangulations of complete graphs do not have
all the possible types of splitting cycles. More precisely
they show that some triangulations of K19, the complete
graph on 19 vertices or K43 have no balanced splitting
cycle. However, the algorithm they use could not rule
out the existence of balanced large complete triangula-
tions which still could be ”smoother” than small ones
and allow all types of splitting cycles. The key-result of
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this paper is first to show that existence of balanced cy-
cle in a complete triangulation T of K,, can be property
tested, and then to provide an efficient implementation
of this algorithm to test large complete triangulations.

Every splitting cycle C' of a triangulation T' partitions
the edges into three classes (R, L,C), where C are the
edges of the cycle, R the edges to the right of C, and
L the one to the left. Moreover, in the cyclic order o,
induced by T around the edges incident to each vertex
v, the order of the types of edges is (R,C,L,C). In
particular, we never have the cyclic pattern R, L, R, L.
This allows a relaxation of the notion of splitting cycle.
Precisely, for every € > 0, an e-cycle of T is a partition
of the edges into three classes (R, L, U) such that:

e No vertex v have the cyclic pattern R, L, R, L in
Oyp-

e All but en of the vertices v of T are typical, i.e.
every cyclic interval of o, of length en contains an
edge R or an edge L.

We say that an e-cycle (R',L’,U) approximates a
splitting cycle (R,L,C) if R" C R and L' C L (here
C C U where U stands for unknown). Our main result
is the following;:

Theorem 2 There is a randomized algorithm running
in time f(e) - poly(|T|) which takes as input a complete
triangulation T and returns w.h.p. a set X of e-cycles
such that every splitting cycle of T is approximated by
some element of X. Moreover, the size of X only de-
pends on €.

Note that if T has a balanced cycle C, then the pre-
vious algorithm will find w.h.p. a balanced e-cycle (in a
sense to be defined later). Let us say that T is e-far to
be balanced if it does not have a balanced e-cycle. We
have the following corollary:

Corollary 3 There is a randomized algorithm running
in time f(e) - poly(|T|) which takes as input a complete
triangulation T which is either balanced or e-far to be
balanced and returns w.h.p. either a balanced e-cycle,
or a certificate that no balanced cycle exists.

The previous algorithms are based on sampling a
good set of vertices and can indeed be derandomized.
However, even in the randomized version, the size of the
family X is too large to allow any practical use. Luckily,
when restricted to finding a set X approximating every
balanced splitting cycle (hence cutting branches leading
to unbalanced cycles), it turns out that a mix of random
sampling and greedy choices can be implemented in a
more efficient way. We could use this implementation
in order to rule out the existence of balanced cycles in
large complete triangulations. It remains to build ex-
plicit complete triangulations.
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The problem of constructing triangulations of com-
plete graphs is a very classical one, raised by Heawood
in 1890 [8]. The original aim was to find an optimal
proper coloring of a graph embedded on a surface of
genus g > 0. Apart from the case of the sphere (or
the plane) and the Klein bottle, the Euler formula al-
ready gives the exact upper bound of y(g) = | TA+289 V12+489J
colors. Hence, to prove the tightness of the bound, it
was necessary to produce a graph of genus g with chro-
matic number y(g). This has been achieved by Ringel
and Youngs [15, 7] using complete graphs. The embed-
dings they provided are minimal in the sense that each
complete graph cannot be embedded on a smaller genus
surface and some of them are triangulations. Actually,
there are many different triangulations of a given com-
plete graph [12, 11, 6, 5]. For the experiments in this
paper we will focus on the triangulations given by Ringel
and Youngs for n = 7[12].

The major difficulty here is that the size of the sample
which gives the certificate is too large to allow compu-
tation based on a one-step guess. We instead adopt a
randomized greedy strategy in order to iteratively con-
struct the sample. The algorithm is described in details
in Section 4. This algorithm is extremely efficient and
allow to address huge triangulations. Actually, it may
be used as soon as the size of the triangulation can be
stored on the computer. It has been implemented inde-
pendently by Vincent Despré and Michaél Rao and they
were able to reach very huge complete triangulations.
Using those implementations we were able to show that
the complete triangulation with 22.363 vertices (and
250.040.703 edges) given by Ringel and Youngs has no
balanced splitting cycle.

Our algorithm is a new tool to deal with splitting cy-
cles and may be useful in a larger spectrum. Indeed,
when it fails to prove that the input triangulation has
no balanced splitting cycles, it gives hints to find possi-
ble ones since it outputs balanced e-cycles which can be
the seed of some new investigation. The most appealing
open question left by the paper is: Given a balanced &-
cycle, how to decide if it can be extended or not into a
balanced (or near balanced) cycle. If one could design
an efficient algorithm in order to find balanced split-
ting cycles, it would lead to efficient divide and conquer
algorithms on complete triangulations.

We first give some properties of the splitting cycles
in Section 2. Then, we prove Theorem 2 in Section 3.
Section 4 is devoted to the description of the practical
algorithm and the implementations details along with
the different results are developed in Section 5.
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2 Properties of Splitting Cycles of Complete Trian-
gulations

We begin by fixing some notations. Let T, be a tri-
angulation of the complete graph K,. We denote by
(vo,...,v, — 1) the vertices of K,. Around the vertex
v;, the ordering of its neighbors is a permutation o; of
{0,...,n — 1} \ i. We will need to split the neighbor-
hood of the vertices into parts as follows: if v; is a vertex
we denote by (evg, evy, evs); a partition of the vertices
around v; such that each set ev; contains consecutive
vertices with respect to o;. We call a local configuration
a couple (i, ¢), where i corresponds to the part ev; and
c is a color and a configuration a list of local configura-
tions.

Lemma 4 Let v; be a vertex of T, (evo,evy,evs); be
any partition of the edges in the neighborhood of v; and
(R,L,C) be a splitting cycle of T,,. At least one of the
ev; is entirely colored L or R.

Proof. C may reach at most two of evg, ev; and evq
since it is a simple cycle. It implies that one of the
ev; has to be colored entirely L or R for any splitting
cycle. O

The following lemma is a direct consequence of the pre-
vious one.

Lemma 5 There is at least one configuration
((20,€0)wgs - s (fk—1, Ck—1)uvy,_, ) Tealized by each splitting
cycle (R,L,C).

Let us now consider the particular properties of bal-
anced splitting cycles of complete triangulations. In-
deed, as we will prove in the next lemma, a balanced
splitting cycle cannot be too short in a complete graph
because of the Euler characteristic x(T,) =n—e+ f =
2 — 2g where e is the number of edges of T,, and f its
number of triangles.

Lemma 6 Let C = (R, L,C) be a balanced splitting cy-
cle of T,,. Then,

5++/2n2 — 14n + 25
C| >
01> |/ EE T

2_ 44/2n2 — 14 2
min(|L|, |R|) > ’Vn ™+ 8 + ; n n 4+ 5-‘

Proof. Since we consider complete graphs, it is not pos-
sible that two vertices be colored entirely R for one and
entirely L for the other one. Hence, after cutting along
C, there is a graph embedding with one boundary and
no interior vertex of genus at least [§]. Let k = |C]|
and T” be the triangulation without interior vertices ob-
tained after cutting along C. T’ has genus at least | €|

169

andso x(1") <2-2[¢]|-1<2—(9—-1)-1=2—g. M’

has k vertices, e < @ edges and f faces. The dou-

ble counting of the number of edges gives 3f = 2e — k

because all the edges are on exactly 2 faces except the

—_ ko _

k on the ]looku?dary. So Xz(T’) =k—-e+25 -3 =

2’“3_6 > 4 7é ) 5kgk . By putting together the

5k—k?
6

two inequalities we obtain: 2 — g > leading to
k* —5k+6—-69 >0. A =25—-4(6—6g) =1+ 24g
and SO k _ ‘Cl > 5“1’\/@ _ 5+ 1+2(”_3)(”_4) _

= > > = i’ =
5+v/2n?—14n+25

2
Let us look back at the Euler formula for T".
We have, x(T") = 2k=¢ < 2 — g It implies

that e > 2k +3g —6 > 5+ v2n2—14n+25 +

3(n—3)(n—4) 6 (n—3)(n—4)+4v2n2—14n+25—4
12 4 -
n?—Tn+844+/2n%—14n125 0
) .

It is interesting to notice that erfrms = 1-0(%)
for balanced splitting cycles in complete triangulations

and thus minE(n) = %2 —O(n).

3 Approximations of splitting cycles

Our goal is to prove Theorem 2, which shows that we
can efficiently find a set X of e-cycles approximating all
splitting cycles.

Lemma 7 For every orientable triangulation T, of K,
and every € > 0, there is a set X of size f(g) consist-
ing of e-cycles such that every splitting cycle of T}, is
approzimated by some element of X.

Proof. Pick some large constant ¢ > 4/¢2. We implic-
itly assume here that n is much larger than € and ¢, oth-
erwise X simply exists by enumeration. Pick uniformly
at random a sample S of ¢ different vertices of T,,. For
each v; € S, divide the cyclic order o; into ¢ cyclic in-
tervals Iy, ..., I. of approximately the same length (i.e.
size |(n —1)/c] or [(n—1)/c]). We now construct our
e-cycles (R, L,U). We first decide for each v; € S an
R,L,U (right, left, unknown) coloring of the intervals
I; in such a way that two (possibly identical) intervals
are U and these two U intervals separates the R inter-
vals and the L intervals. Note that when the U intervals
are identical or adjacent, the remaining intervals are all
colored R or all colored L. The total number of such
choices for a given v; € S is ¢? + ¢, and we then have
(c® + ¢)¢ possible ways of coloring the edges adjacent
to S according to this local rule. Among these coloring,
some of then are inconsistent in the sense that they give
both colors R and L at the two endpoints of some edge
between two elements of S. We reject these colorings.
It can also happen that an edge receives both colors U
and R (or U and L) in which case the edge keeps the
color different from U. We then color U all edges which
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were not incident to vertices of S. We reject all color-
ings which contain the forbidden pattern (R, L, R, L) in
some ;. The set of surviving (R, L,U) colorings is de-
noted by Xg, and this is our candidate for X. Note that
the size of Xg only depends on ¢ and hence on ¢, and
that the total number of U edges incident to vertices of
S is at most ¢ - 2n/c.

The key-observation is that every splitting cycle C' of
T, is approximated by some element of Xg. Indeed, for
each vertex v; € S one can define the two U intervals of
o; as these containing an edge of C, and the R and L
intervals are the one which are entirely R or L according
to cycle C'. So to reach our conclusion, we just have to
show that every element of Xg is an e-cycle.

We claim that this happens if we are lucky enough
with our sampling S. Let us say that a vertex v; is good
if S'is well distributed in o; i.e. if for every cyclic interval
of o; of size at least en, the number of elements of S is
at least ec/2. Observe that the probability that a vertex
is good tends to 1, when € is fixed and ¢ goes to infinity.
By Markov, we can fix ¢ large enough such that with
high probability, our sampling S will be such that all
vertices save an arbitrarily small proportion are good.
We now claim that in this case, all (R, L,U) partitions
of Xg are e-cycles.

Assume for contradiction that this is not the case.
Then there are more than en non typical vertices v; for
which ¢; contains an interval Ij; of size at least en with
no RU L edge. Since we can neglect these vertices v;
which are either in S or are not good, each of these
intervals Ij; contains ec/2 vertices of S, and none of
them have created an R U L edge with v;. So the total
number of U edges incident to vertices of S is at least
en.ec/2, which is contradicting the fact that there are
at most c.2n/c of them since ¢ > 4/¢2. O

This concludes the proof of Theorem 2, the algorithm
simply returning Xg for some large enough sample S.
The main drawback of this approach is the size of the
sampling, which makes it very difficult to implement for
some practicle use. Since our goal is to look for balanced
splitting cycles, we will only focus on e-cycles which can
be approximations of balanced cycles. Let us denote
by minE(n) the minimum size of R (or equivalently of
L) in a balanced cycle (R, L,C) of an orientable trian-
gulation of K,. Note that minE(n) = n%/4 — O(n),
but a more precise value will be given later when we
will discuss the implementation. Thus if some e-cycle
(R',L',U) approximates (R, L,C), it must have poten-
tially at least minE(n) many R’ or L' edges. Let us
properly define this. The right-potential r(v;) of some
vertex v; is defined as:

e When v; is incident to some edges of R’ and L/,

r(v;) is the size of the longest cyclic interval of o;
with a point in R’ and no point in L/, minus 2.
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e When v; is only incident to edges of R’, we have
r(v;)) =n— 1.

e When v; is only incident to edges of L', r(v;) is the
size of the longest cyclic interval of o; with no point
in L', minus 2.

The same definition applies for left potential I(v;).
The right-potential r(R', L', U) is the sum of the right
potential of all the vertices (same for left-potential
I(R',L’,U)). Note that r(R',L’,U) > 2|R| and
I(R',L',U) > 2|L| when (R',L',U) approximates
(R, L,C) (the factor 2 in the inequality stands for the
fact that we are doubly counting edges in the potential).
Let us then say that an e-cycle (R', L', U) is unbalanced
if r(R',L',U) < 2minE(n) or I(R',L',U) < 2minE(n)
(otherwise it is balanced). A triangulation T, is e-far to
be balanced if it has no balanced e-cycle.

Proof. [Proof of Corollary 3] Now let us prove that we
can efficiently separate triangulations which are either
balanced or e-far to be balanced. For this, we compute
a set Xg of e-cycles which approximates all splitting
cycles of T;,. Note that if T,, admits a balanced cy-
cle (R, L,C), then it is approximated by some e-cycle
(R',L',U) in Xg which hence must be balanced and
thus a certificate of separation. Now if T}, does not ad-
mit a balanced cycle (R, L,C), we compute a set Xg
coming w.h.p. from a lucky sample S. The key point is
that we can indeed check if S is a good sample or not,
just by checking if it is well-distributed in nearly all o;.
Hence the set Xg probably approximate all splitting cy-
cles of T},, and if we satisfy the separation hypothesis of
Theorem 3, none of the e-cycles are balanced. Therefore
Xg is a certificate of the fact that T}, has no balanced
splitting cycle. ([l

The nice feature of this property testing algorithm is
that if we try to check if a given T, has a balanced cy-
cle, we may be lucky and get a NO-certificate. This is
basically what happens so far for all Ringel and Youngs
triangulations on which the algorithm terminates. How-
ever, in the present form, the size of Xg is way too large
to be implemented, and we will use a mix of random
sampling and greedy choices for S. Also the fact that
we divide o; into c¢ intervals is convenient for the proof
but not for the algorithm, which will only cut into 3
parts.

Another exciting direction of research is when we get
a set Xg of e-cycles, some of which are balanced. There
is possibly a way to investigate if a given balanced &-
cycle can be completed into a balanced (or near bal-
anced) cycle. For instance, if some ¢; contains the pat-
tern (R,U, R, L), then the U edge can be turned into
an R edge (possibly creating forbidden patterns leading
to reduction of Xg). These closure operations (together
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with a (L, U, L, R) rule) can greatly densify our candi-
date e-cycle making it easier to complete or not into a
splitting cycle.

4 Practicle algorithm

Sketch

We choose at random a set of k vertices (vg, - - -, vp—1) of
T, and (evp, evi, eve); a balanced partition of the edges
around v, for all 0 < j < k. We have 3 - 6%~ different
configurations on the chosen vertices since each vertex
has 3 possible ev and 2 possible colors for each case. We
say that a configuration is valid if it is compatible with
the existence of a balance splitting cycle. We want to
show that no configuration is valid and thus conclude
that no balanced splitting cycle exists. By considering
the other vertices of the graph, we obtain two tools to
show that the configuration is not valid:

e There is a vertex with an alternated sequence of
edges labeled (L, R, L, R).

e The biggest number of edges colored R (or L) that
the graph can admit is less than minE(n) (see
Lemma 6).

It is natural to see the 3 - 6*~1 as the leaves of a
tree where each layer i adds the local configuration of
v;. We can remark that, if a partial configuration on a
node is already invalid then all the corresponding sub-
tree is invalid. It implies a natural breadth is the tree
of configuration considered as a search tree.

Data structure

To be able to correctly describe our algorithm and ana-
lyze its complexity, it is necessary to describe a bit the
data structure we use. It is mainly a half-edge data
structure which consists in coding T}, by a set of half-
edges each having a handle to the opposite half-edge
(represented by an involution «g) and to the next half-
edge in the local permutation o; (we can think of it as a
global permutation o whose cycles are the ;). At this
point, we can notice that the size of the map is actually
2e- < size of an half-edge >= O(e). An edge is an orbit
of the action of ag on the set of half-edges and can be
stored as one element in the orbit. Similarly, the orbits
of o are the vertices, it is again sufficient to store one
half-edge for each vertex. We need to store on each ver-
tex a "reverse” dictionary Rev; that associate to every
vertex v; for j # 4 its position around v; (each vertex is
associated to a unique half-edge around v;). The Rev
dictionaries are not a general feature in the half-edge
data structure but is required by our algorithm. Finally,
the faces can be construct by alternatively applying ag
and o and storing a half-edge for each corresponding or-
bit. Here, computing the faces is mainly useful to check
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that T, is a correct triangulation. The construction of
the map is considered as a precomputation and is done
using O(e) operations.

Algorithm

INPUT: A complete triangulation.

e Let C be an empty vector of configurations. We
initialize RandV with a random vertex v; and a
random partition of the neighborhood of v; into
three consecutive parts (evg, evy, evs);. We put the
configuration (v;, (evg, evy, evs);,0, L) in C.

e We add a list L; on each vector v; that stores the
position of the vertices already colored. At this
stage, it means that for all v; € evy we call Rev;(7)
to know the position of v; around v; and we put
(Rev;(i),L) in L;. Notice that the L;s must be
sorted during the algorithm.

e While C' is non-empty we do:

1. We test if C' is valid. This implies two tests:

— We look at all the L; to see if there
is no cyclic subsequence of the form
(L,R,L,R).

— We sum the biggest interval that can be
colored L (resp. R) in all the L;s and we
compare the result to the one of Lemma 6.

2. If one of the test fails we update C in the
following way:

— If the last element of C is of the form
(--+,2, R) then we discard it and we up-
date C' again.

— Else we consider the next con-
figuration using the order:
(0,L),(1,L),(2,L),(0,R),(1,R) and
(2,R).

We update each L; to make it coherent with
the new configuration and the go back to step
1.

3. We compute a new random vertex v; not al-
ready used by C with a partition of its neigh-
borhood and we add (v;, (evo, ev, eva);,0, L)
at the end of C. We then update the L; and
go back to 1.

Analysis of the algorithm

Proposition 8 If the algorithm terminates then the in-
put triangulation does not have a balanced splitting cy-
cle.
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Proof. If the algorithm terminates then C has de-
scribed a search tree 7 rooted at the empty configura-
tion. All the leaves of T corresponds to configurations
that are invalid in step 1. Now, if all the children of a
given node are invalid, it implies that the configuration
of the node is invalid. So, by induction, all configura-
tions in T are invalid and this includes its root. If the
empty set is invalid, it implies that the input triangula-
tion has no balanced splitting cycle. (|

Proposition 9 The algorithm described above requires
O(t-d-n)=0(t-d-+/e) operations where t is the size
of the search tree T and d its depth.

Proof. Each node of T corresponds to one iteration of
the while loop. Step 1 requires reading all the lists L;.
There are n such lists and their size is bounded by the
size of C' which is less than the depth of 7. It implies
that this step requires O(d - n) operations. Step 2 and
3 may require an insertion or a deletion in one third of
the L; which is done in O(d - n) operations. Since we
consider t configurations, we obtain a total of O(t-d-n)
operations. O

5 Implementation details and experimental results

The algorithm can be made parallel by having a mas-
ter thread assigning different subtrees of the search tree
to different threads. There are no difficulty here and
no significant risk of bug since each thread has its own
copy of the data structure. The implementation has
been realized in C++ using OPENMPI for paralleliza-
tion and can be downloaded at http://vdespre.free.
fr/Splitting.tar.gz. The tests have been launched
on the cluster Grid’5000'. We denote by m be the num-
ber of threads for given experiment.

We first give results to show the efficiency of the algo-
rithm. Notice that the limit is set by the RAM on each
node and so the number of threads is set to not break
the memory limit. The time column shows the average
on 10 tries.

s n e time (s.)
833 | 10 003 | 50 025 003 425
1863 | 22 363 | 250 040 703 2990

m | nodes t CPU time

180 45 2 000 000 21h15m

45 45 1700 000 | 37h22m

It is interesting to notice that the time of the tests
highly depends on the exact value of n. It means that
the size of the research tree is not smooth with respect

IExperiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
grid5000.fr).
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to n. It is pretty surprising and we have no hint of the
reason by now. The following experiments have been
done using 720 threads on 45 nodes.

S n time (s.) | s.d. (s.) | do t

100 | 1207 18 1 7 | 1800 000
101 | 1219 62 15 7 | 2100 000
102 | 1231 945 224 9 | 41 000 000
103 | 1243 970 178 9 | 42 000 000
104 | 1255 17 1 7 | 1800 000
105 | 1267 | fails (7200) 10

106 | 1279 35 8 7 | 1900 000
107 | 1291 42 4 7 | 1900 000
108 | 1303 220 45 7 | 8200 000
109 | 1315 17 1 7 | 1800000
110 | 1327 18 1 7 | 1800 000

6 Conclusion

The structure of the splitting cycles in triangulations of
complete graphs remains quite mysterious. Even for the
case of Ringel and Youngs embeddings restricted to n =
12s + 7, we do not understand what exactly happens.
Our new experimental results give some information on
the absence of balanced splittings. In this specific case,
we can imagine to make tests on bigger triangulations
by storing the embedding using O(n) memory. This can
be done using the extreme symmetry of the embeddings
but is not likely to be generalized.

We can also want to explore other triangulations of
complete graphs. A very simple question remains open
on this subject:

Question 10 Is there an unbounded sequence of trian-
gulations of complete graphs admitting balanced splitting
cycles?

The question is of intrinsic interest and it is difficult to
have an intuition about it. The constructions of trian-
gulations of complete graphs are pretty intricate and it
is not clear if one can be modified to ensure the exis-
tence of a balanced splitting. In addition, we always
look for an easy proof that some triangulation does not
have a splitting cycle. We think that Lemma 7 is the
kind of idea that can lead to such a proof. However, it is
not clear how much the properties of a specific embed-
ding must be used. If there exists huge triangulations
of complete graphs with balanced splittings, it would be
necessary to use an explicit embedding. If not, we can
imagine proving the non-existence of balanced splitting
in complete triangulations without considering a spe-
cific embedding which is very convenient, in particular
for probabilistic arguments.
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A Linear-Time Algorithm for Discrete Radius Optimally Augmenting Paths
in a Metric Space

Haitao Wang *

Abstract

Let P be a path graph of n vertices embedded in a
metric space. We consider the problem of adding a new
edge to P so that the radius of the resulting graph is
minimized, where any center is constrained to be one of
the vertices of P. Previously, the “continuous” version
of the problem where a center may be a point in the
interior of an edge of the graph was studied and a linear-
time algorithm was known. Our “discrete” version of
the problem has not been studied before. We present a
linear-time algorithm for the problem.

1 Introduction

Let P be a path graph of n vertices embedded in a met-
ric space. We wish to add a new edge to P so that the
radius of the resulting graph is minimized, where any
center of the graph is constrained to be one of the ver-
tices of P. The problem is formally defined as follows.

Let {vy,vg,...,v,} be the set of vertices of P along P.
For each ¢ € [1,n — 1], let e(v;,v;+1) denote the edge
connecting v; and v;41. We assume that P is embedded
in a metric space and |v;v;| is the distance between two
vertices v; and vj;, such that the following properties
hold: (1) |vivj| = 0 if and only if i = 7; (2) |vv;] =
[vjvi] > 05 (3) |vivk|+|vkvj| > |viv,] for any vy, (ie., the
triangle inequality). Note that the length of each edge
e(vi, viy1) for i € [1,n —1] in P is equal to |v;v,41]. We
assume that the distance |v;v;| can be obtained in O(1)
time for any two vertices v; and v; of P.

Let P U {e(v;,v;)} denote the resulting graph (also
called augmenting path) after adding a new edge e(v;, v;)
connecting two vertices (i.e., v; and v;) of P. A vertex
c of P is called a center of the new graph PU{e(v;,v;)}
if it minimizes the maximum length of the shortest
paths from c¢ to all vertices in the graph, and the
maximum shortest path length is called the radius of
P U {e(v;,v;)}. The problem is to add a new edge
e(v;,v;) such that the radius of P U {e(v;,v;)} is mini-
mized, among all vertex pairs (v;,v;) with 1 <4 < j <
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n. We call it discrete radius optimally augmenting path
problem (or discrete-ROAP for short).

To the best of our knowledge, the problem has not
been studied before in the literature. In this paper, we
present an O(n) time algorithm for the problem.

1.1 Related work

Johnson and Wang [12] studied a “continuous” version
of the problem in which a center may be in the interior
of an edge of the graph. In contrast, in our problem
any center has to be a vertex of the graph, and thus our
problem may be considered a “discrete” version. John-
son and Wang [12] gave a linear time algorithm for their
continuous problem.

A similar problem that is to minimize the diameter
of the augmenting path has also been studied. Grofle
et al. [9] first gave an O(nlog®n) time algorithm; later
Wang [16] improved the algorithm to O(nlogn) time.
Variations of the diameter problem (i.e., add a new edge
to P to minimize the diameter of the resulting graph)
were also considered. If the path P is embedded in
the Euclidean space R? for a given constant d, Grofie
et al. [9] proposed an algorithm that can compute a
(1 + €)-approximate solution for the diameter problem
in O(n + %) time, for any € > 0. If P is embedded
in the Euclidean plane R?, De Carufel et al. [5] de-
rived a linear-time algorithm for the continuous version
of the diameter problem (i.e., the diameter is defined
with respect to all points of the graph, including the
points in the interior of the graph edges, not just ver-
tices). For a geometric tree T' of n vertices embedded
in the Euclidean plane R? De Carufel et al. [6] de-
signed an O(nlogn)-time algorithm for adding a new
edge to T' to minimize the continuous diameter in the
new graph. If T is a tree embedded in a metric space,
GroBe et al. [10] solved the discrete diameter problem
in O(n?logn) time; Bilo [3] improved the algorithm to
O(nlogn) time. Oh and Ahn [14] considered the diame-
ter problem on a general tree (not necessarily embedded
in a metric space) and developed O(n?log® n) time algo-
rithms for both the discrete and the continuous versions
of the diameter problem; later Bilo [3] gave an improved
O(n?) time algorithm for the discrete diameter problem.

A more general problem is to add k edges to a gen-
eral graph G such that the diameter of the new graph
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is minimized. This problem is NP-hard [15] and some
variants are even W([2]-hard [7,8]. Various approxima-
tion algorithms are known [4,7,13]. The problem of
bounding the diameters of the augmenting graphs have
also been studied [1,11]. In a geometric setting, given
a circle in the plane, Bae et al. [2] considered the prob-
lem of inserting k shortcuts (i.e., chords) to the circle
to minimize the diameter of the resulting graph.

As a motivation of our problem, we borrow an exam-
ple from [12]. Suppose there is a highway that connects
several cities and we want to build a facility along the
highway to provide certain service for all these cities; it
is required that the facility be located in one of the cities
along the highway. To reduce the transportation time,
one option is to construct a new highway connecting
two cities such that the radius (the maximum distance
from the facility to all cities) is as small as possible.

1.2 Our approach

Note that the radius of PU{e(v;,v;)} may not be equal
to its diameter divided by 2. For example, suppose P U
{e(v;,v;)} isa cycle (i.e., i = 1 and j = n) and all edges
of the cycle have the same length; then one can verify
that the radius of the graph is equal to its diameter.

To solve our problem, a natural idea is to see whether
the algorithm [12] for the continuous problem can be
used. To this end, two basic questions arise. First, for
an augmenting graph P U {e(v;,v;)}, how far a contin-
uous center can be from the discrete center? For exam-
ple, is it the case that if a continuous center lies in the
interior of an edge e, then one of the two vertices of e
must be a discrete center? Second, is it the case that an
optimal solution (i.e., the new edge to be added) in the
continuous version must also be an optimal solution for
the discrete version?

In order to answer these questions, we illustrate two
examples.

Figure 1 shows an example in which the path P with
10 vertices is embedded in the Euclidean plane, with
|v;vig1| = 1 for all 1 < 4 < 9. Suppose a new edge
e(vs,vs) is added. It is possible to draw the figure such
that |vgvg| = 4. One can verify that the only continuous
center is the middle point of e(vs,vs) (whose farthest
vertices are {v1,vs,v6,v10}) and the continuous radius
is 4. Either vs or vg can be a discrete center (vs has
only one farthest vertex vy and vg has only one farthest
vertex v1) and the discrete radius is 5. This example
shows that the discrete center and the continuous center
could be “far from” each other. Therefore, it is not
obvious to us whether/how a continuous center can be
used to find a discrete center.

Figure 2 shows an example in which the path P with
10 vertices is embedded in the Euclidean plane, with
|v;vir1| =1 for all 1 <4 < 9. It is possible to draw the
figure such that |vgvs| = 4, |vavr| > 2, Jvsvig] > |v106),
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Gl ‘Uivi+1| =11=1,2,...,9

|vgvg| = 4

v7

U5 on
Figure 1: Illustrating the difference between the con-
tinuous center and the discrete center. The continuous
center is the middle point of the new edge e(vs,vg). Ei-
ther vs or vg can be a discrete center.

and 4 < |vjvg] < 5. For the continuous problem,
an optimal solution is to add the edge e(vs,vs), after
which the continuous center of the new graph is the
middle point of e(vz,vg) (which has four farthest ver-
tices {v1,vs,v6,v10}) and the continuous radius is 4.
For the discrete problem, an optimal solution is to add
the edge e(vy,vg), after which the discrete center of the
new graph is vg (which has only one farthest vertex v;)
and the discrete radius is equal to |e(vy,vg)|, which is
larger than 4. Note that e(vs,v10) is not an optimal
solution due to |vsvig| > |v1vg|. This example shows
that optimal solutions of the two versions of the prob-
lem could be very different. Therefore, it is not obvious
to us whether/how a continuous optimal solution can
be used to find a discrete optimal solution.

livig1| = 1,4 =1,2,...,9  [vsvi0| > [v10g]
U1 4 < |U1’U6| <d

VU7 > 2
\\ |47|

|vgvg| = 4

Figure 2: Illustrating the difference between an optimal
solution of the continuous problem and that of the dis-
crete problem. For the continuous problem, an optimal
solution is to add the edge e(vs,vg). For the discrete
problem, an optimal solution is to add e(vy, vg).

The above examples demonstrate that using the algo-
rithm in [12] directly to solve the discrete problem seems
not possible. Instead, we design a new algorithm. Our
algorithm still share some similarities with that in [12]
in the following sense. In the continuous case, any cen-
ter must have two different farthest vertices in the aug-
menting graph. Based on the location of the center, the
locations of the two farthest vertices, and the shortest
paths from the center to the two farthest vertices in
an optimal solution, the algorithm in [12] considers a
constant number of configurations, and in each configu-
ration the algorithm computes a candidate solution such
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that if an optimal solution conforms to the configura-
tion, then the candidate solution is an optimal solution.
In our discrete case, we also consider a constant number
of configurations and process the configurations in the
same way as above. However, the major difference is
that the definitions of the configurations in our prob-
lem are quite different from those in [12]. Indeed, in
our problem, a center may have only one farthest ver-
tex. Therefore, the configurations in our problem are
defined with respect to the locations of the center and a
single farthest vertex, as well as their shortest path. In
addition, unlike those in [12], we do not need to consider
the configurations where the center is in the interior of
the new added edge. For this reason, we have much
fewer configurations than those in [12].

In the following, Section 2 introduces notation and
definitions. Our algorithm is described in Section 3.

2 Preliminaries

Unless otherwise stated, for any index pair (i, j) or ver-
tex pair (v;,v;) used in our discussion, we assume that
1 <i < j < n. For any two vertices v; and v; of the
path P, we use P(v;,v;) to refer to the subpath of P
from v; to v; inclusively.

Define G(i,5) = P U {e(vi,v;)}, i.e., the new graph
after a new edge e(v;, v;) is added to the path P. Note
that if j =4 or j = i+ 1, then G(i,5) is P. Define
C(i,7) = P(v;,v;)Ue(v;, v;), which is a cycle formed by
a new edge e(v;,v;) and the subpath P(v;,v;).

For any graph G used in our discussion (e.g., G is
G(i,j), C(i,j), or P) and any two vertices v and v’ of
G, we use dg(v,v’) to denote the length of any shortest
path from v to v’ in G and we also refer to dg(v,v’)
as the distance from v to v/ in G. Following this defi-
nition, dp(v;,v;) is the length of the subpath P(v;,v;)
and d¢(; j)(v,v") is the distance between v to v’ in the
cycle C(i, 7). For any path 7 in G, we use || to denote
the length of 7. We also use |C(4, )| to denote the total
length of all edges of the cycle C(i, 7).

Our algorithm will frequently compute dp(v;,v;) for
any index pair (4, 7). This can be done in constant time
after O(n) time preprocessing, e.g., compute the prefix
sum dp(vy,vg) for all 1 <k <n.

For any vertex v of any graph G used in our discus-
sion, a vertex v’ of G is called a farthest vertex of v if it
maximizes dg(v,v’). A vertex v, of G is called a center
if its distance to its farthest vertex is minimized, and
the distance from v, to its farthest vertex is called the
radius of G. Therefore, our problem is to find an index
pair (4, ) such that the radius of G(4,J) is minimized.

Let (i*, j*) denote an optimal solution (with ¢* < j*),
ie., e(v»,v;+) is the new edge to be added. Let ¢* de-
note the index of a center of G(i*,j*), r* the radius
of G(i*,5*), a* the index of a farthest vertex of v - in

G(i*,j*), and 7* a shortest path from v. to v,+ in
G(i*,j*). Note that the center of G(i*,j*) may not be
unique, in which case we use ¢* to refer to an arbitrary
one, but once ¢* is fixed we will never change it through-
out the paper. So as a* and 7*. Note that ¢* # a* since
otherwise the graph would have only one vertex.

3 The Algorithm

As discussed in Section 1.2, we consider a constant num-
ber of configurations for the optimal solution G(i*,j*).
For each configuration, we compute in O(n) time a can-
didate solution (consisting of an index pair (', j'), a can-
didate center ¢’ and a candidate radius r’) such that if
the optimal solution conforms to the configuration, then
our candidate solution is an optimal one, i.e., r* = 7’.
On the other hand, the candidate solution is a feasible
one, i.e., the distances from ¢’ to all vertices in G(7', j')
are at most 7.

In the following, we first give an overview of all con-
figurations and then present algorithms to compute can-
didate solutions for them.

3.1 Configuration overview

The configurations are defined with respect to the lo-
cations of v,« and v.+ as well as whether the path 7*
contains the new edge e(v;«,vj«).

Depending on whether ¢* € (i*,5*), there are two
main cases.

Case 1: ¢* ¢ (i*,7*). In this case, ¢* is either in [1,7*]
or in [j*,n]. Hence, there are two subcases.
Case 1.1: ¢* €[1,i*]. See Fig. 3.

Case 1.2: ¢* € [j*,n].
This case is symmetric to Case 1.1.

Case 2: ¢* € (i*,j*). Notice that a* cannot be in
[2,i*] U [j*,n — 1]. Hence, there are three subcases
a* =1, a* = n, and a* € (i*,%).

Case 2.1: a* = 1.
This case further has two subcases depending
on whether the new edge e(v;, v}) is contained
in the path 7*.
Case 2.1.1: e(v]
Case 2.1.2: e(v]

Case 2.2: a* = n.
Case 2.1.

Case 2.3: a* € (i*, j*).

*

v;‘) C 7*. See Fig. 5.
,v7) € m*. See Fig. 7.

This case is symmetric to

NS

In fact, we will only compute candidate solutions for
Cases 1.1 and 1.2. We will show that other cases can be
reduced to these two cases (i.e., if any case other than
Case 1.1 and Case 1.2 has an optimal solution, then one
of Case 1.1 and Case 1.2 must have an optimal solution).
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3.2 Computing candidate solutions

We are now in a position to describe our algorithms for
computing candidate solutions.

Case 1: ¢* & (i*,5%).

Depending on whether ¢* € [1,i*] or ¢* € [j*,n], there
are two subcases.

Case 1.1: ¢* € [1,3*].

Figure 3: Illustrating Case 1.1: ¢* € [1,i*].

Refer to Fig. 3. In this case, either a* = 1 or a* €
[i*,n] and thus the radius r* is equal to

max{dp(vl, Vex ), dp(’UC* y Vg ) +kI€I[1ﬁXn] dG(i*,j*) (U@* s Uk)}.

Definition 1 For each i € [1,n — 1], define
)\i = i d i, 15 )
JSiin By doa (v )

j; = arg min  max dqg;. ;) (v, V),
s gj€[i,n]ke[i’n] G( 7])( % k)

r; = krn[ilnl max{dp (v, vg), dp(vk,v;) + Ai
el

c; = arg krn[iln_] max{dp(v1,vg), dp(vg,v;) + A}
cll,2

The values \; and j; were also used for solving the
continuous problem in [12], where an algorithm was

given that can compute \; and j; forall: =1,2,... , n—1
in O(n) time. For our discrete problem, we also need
to compute r; and ¢; for all i = 1,2,...,n — 1. To this

end, we propose an O(n)-time algorithm in Lemma 1.

Lemma 1 The valuesr; and c; foralli =1,2,... , n—1
can be computed in O(n) time.

Proof. We first compute \; foralli=1,2,...,n—1in
O(n) time [12]. Note that once ¢; foralli =1,2,...,n—
1 are known, all r; can be computed in additional O(n)
time because r; = max{dp(v1,vc,;),dp(ve;,vi) + Ai)}.
Hence, we will focus on computing ¢; below.

For each i € [1,n — 1], define k; as the largest index
k € [1,4] such that dp(vy,vr) < dp(vk, vi) + \i.

We claim that for each ¢ € [1,n — 1], ¢; is either k; or
k;+1. Indeed, as k changes [1,1], the value dp(vy,vg) is
monotonically increasing while the value dp(vk, v;) + A;
is monotonically decreasing. By the definition of ¢; and
k;, the claim follows.
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In light of the claim, once k; is known, ¢; can be
determined in additional O(1) time. In the follow-
ing, we describe an algorithm to compute k; for all
i=1,2,...,n—11in O(n) time.

We first prove a critical monotonicity property: k; <
iy for all i € [1,n —2]. To this end, it suffices to show
that dp(’Ul, Uki,) < dP(rUk,,,vi+1) 4+ Air1. We claim that
Ai < dp(vi,vit1) + Aig1. Before proving the claim, we
use the claim to prove the monotonicity property:

dp(vi,vr,) < dp(vk,,vi) + A
= dp(Vk,;, Viy1) — dp(vi, vig1) + N
< dp(Vk;, vig1) + Nit1-

The first inequaltiy is due to the definition of k; while
the last inequality is due to the above claim. This proves
the monotonicity property. In the following we prove
the claim. The proof involves two graphs G(i, j;11) and
G(i+1,jit1), e.g., see Fig. 4.

U1 Un

................................................................ Vg1
UVi41

Figure 4: Illustrating the two graphs G(i,7;4+1) (top)
and G(i + 1, ji+1) (bottom).

By definition, \; < maxge(in] da(i i) (Vi,Vk). De-
fine k' = argmaxye(in) da(i j,,.) (Vi k). Hence, A; <
de(ijie)(is o). It s not difficult to see that ei-
ther ¥ = n or k' € (i,ji+1). Below we prove \; <
dp(vi,vi+1) + Aip1 for each case.

If ¥ = n, then due to the triangle inequal-
ity, dG(i7ji+1)(vi7vk') = |Uivji+1| + dP(vji+1’vn)'
Also due to the triangle inequality, |vv;,,| <
dp (v, vit1) + |vis10j0, ] and de(it i) (Vig1, vn) =
[Vig1vj,, |+ dp(vj.,,vn). In addition, ac-
cording to the definition of A; 11, we have

Niv1 = MAXpefir1,n) dG(i+1,5ien) Wik, k) >
da(i+1,ji51) Vit 1, Vn)- Combining all above, we
can derive

i < da(igi) Wi V) = dagig) (Vi Vn)
= |vivj, . | + dp(vj, ., vn)
< dp(vi,vig1) + [vig1vj, | +Fdp(vj ., vn)
= dp(vi,Viy1) + dG(it1,5,11) (Vig1, Vn)

< dp(v;,v; + max dg(is1q, Vit1,V
> P( iy H—l) kElit1n] G(Z+1,]Z+1)( i+1 k)

= dp(vi, Vit1) + Aig1-
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We proceed to the case k&' € (4, ji+1). Consider the
graph G(i + 1, jiy1). dG(i+1,j,~+1)(Ui+1avk’) is equal to
either dp(viy1,vpr) or |Vig105,, | + dp(vpr,vj,, ).

In the former case, we have

i < dg(i7ji+1)(vi,vk/) < dp(vi,vi)
= dP(Ui7vi+1) + dP(Ui+1,Uk’)
=dp(vi,viy1) + dG(i+1,ji+1)(Ui+17Uk')

( )
< dp(vi,vip1) + ker[fllf?n] A1) (Vig1, Vi)
( )

=dp(vi, Vig1) + Aig1.
In the latter case, similarly we can derive

Ai < dG i,jit1) (U“Uk/) < |’Ul’UJz+1| + dP(Uk’ UJ1+1)

< dp(vi,vig1) + ‘vz+1v]1+1‘ +dp(vp, UJH—l)

(i
(

=dp(vi,vit1) + dG(i+l7ji+1)(Ui+17 Vgr)
( keli4+1,n]

(

<dp(vi,vig1) + max daiti,ji,,) Vit k)
= dp(vi,vir1) + Nit1-

This proves the claim and thus the monotonicity prop-
erty of k;’s.

Using the monotonicity property of k;’s, we can easily
compute all k;’s in O(n) time as follows. Starting from
i = 1, the algorithm incrementally computes k; for all
i =1,2,...,n — 1. The algorithm maintains an index
k. Initially, k = ¢ = 1 and k; = k. Consider a general
step where k; has just been computed and k = k;. Next
we compute k; 1 as follows. As long as dp(vi,vp41) <
dp(Vg+1,vi41) + Air1, we increment k by one. After
that, we set k;;1 = k. The monotonicity property of
k;’s guarantees the correctness of the algorithm. The
running time is O(n).

The lemma is thus proved. O

We obtain a candidate solution for this configura-
tion as follows. We first compute \; and j; for all
i =1,2,...,n—1in O(n) time [12]. We then use
Lemma 1 to compute r; and ¢; forall i =1,2,...,n—1.
Let i/ = arg minze[lm_” r;. Let ' = ry and j' = jir.
We return (¢, 5"), ¢/, and r" as a candidate solution for
this configuration. Notice that the candidate solution is
a feasible solution, i.e., the distances from v to all ver-
tices in G(v;r,vj/) are at most r’. The following lemma
establishes the correctness of our candidate solution.

Lemma 2 ' = r*.

Proof. First of all, as the candidate solution is a feasi-
ble one, by the definition of 7*, r* < r’ holds. It remains
to prove v’ < r*.

Recall that r* = max{dp(ver,v1),dp(vex,vix) +
mane[i*m] dG(i*,j*)(”i*:”k)}' By the definition of )\i,
it holds that \j« < maxge(i n) da(ix,j+) (Vi< vx). Thus,
r* > max{dp(ves,v1),dp(Ver, v+ ) + Aix}. We claim

that 7* = max{dp(vex,v1),dp(Ver,vix) + A=} In-
deed, the value max{dp(ver,v1),dp(Ver, Vi) + Ajx} is
equal to the distance from vertex c* to its farthest ver-
tex in the graph G(i*,j;«). By the definition of r*,
r* < max{dp(ver,v1),dp(Vex, Vi) + A« }. The claim
thus follows.

The claim and the definition of r;« together lead to
rg+ < r*. Further, by the definition of the index 7/, we
have ' = r;; < r;» < r*. The lemma thus follows. O

Case 1.2: ¢* € [j*,n].

This case is symmetric to Case 1.1 and we use a similar
algorithm to compute a candidate solution. The details
are omitted but can be found in the full paper [17].

Case 2: ¢* € (i*,j%).

We now consider the case ¢* € (i*,j*). In this case, it
is easy to see that dg(;« j«)(vVer, V) < dg(ix o) (Ver, V1)
for any k& € (1,7*] and similarly dg« j«)(ves,vx) <
de(ix j*)(Ver,vn) for any k € [j*,n). Hence, a* can-
not be in (1,4*] U [j*,n). Thus, a* = 1, a*
a* € (i*,j%).

= n, or

Case 2.1: o* =

Depending on whether the new added edge e(v;«, vj+) is
contained in the path 7*, there are two cases.

Case 2.1.1: e(v;-,v;-) C 7*.

Ug* = V1 }
Ui vy
Ve

Figure 5: Illustrating the configuration for Case 2.1.1,
where ¢* € (i*,j*), a* = 1, and e(v;+,vj+) C 7*. The
thick (red) path is 7*.

In this case, ¢* € (i*,5%), a* = 1, and e(v;+, v;+)
m*. This implies that 7* = P(ver,vj+) U e(v;+, v5+)
P(v1,v;+); e.g., see Fig. 5.

-
U

Lemma 3 The index pair (i*,c*) is an optimal solution
and c¢* is a center of the graph G(i*,c*).

Proof. We show that the distances from c¢* to all ver-
tices in the graph G(i*,c¢*) are at most r* (e.g., see
Fig. 6). This implies that the radius of G(i*,c*) is at
most * and thus proves the lemma.

Let k be any index in [1,n]. Our goal is to prove
da(is ey (Ver, vp) < 7%

If k € [1,i*], then dg(i*7c*)(’l)c*,'l}k) < le(vix, vex)
dp(vg,vi+). By the triangle inequality, |e(v;r,vex)| <
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Figure 6: Illustrating Lemma 3: The distances from c¢*
to all vertices in G(i*,c¢*) are at most r*.

le(vir,vj+)| + dp(ves,v,+) holds. Hence, r*
[ = le(vi=, vj-) P(ves,v5+) + dp(v1,vi-)
|e(vx, ver) (v1,vi) > |e(vic, ves )| + dp(vk, vix)
dG(i*,c*)(vc*avk)~

If k € [c¢*,n], then dg(i» cx)(Ver, vk) < dp(ver, Vi)
dp(ver,v,). As 7* is a shortest path in G(i*, j*) and 7*
contains P(ves, vj«), P(ve+,vy) must be a shortest path
from v.+ to v, in G(i*,5*), implying that dp(ver,v,) <
r*. Therefore, dg(;» c+)(ver, vg) < 7 holds.

If ¥ € (i*,¢*), then both v, and vy are in
the cycle C(i*,j*) of the graph G(i*,;7*) and are
also in the cycle C(i*,c¢*) of the graph G(i*,c*).
Hence, dg(i= j+)(Ver,v6) = dege j)(Ves,vr) and
daie,ey (Ve ,vk) = deonen) (Ver, Uk)- Due to
the triangle inequality, |C(i*,c*)] < (e*, 7%)]-
Hence,  dg(i=,c*)(ver, Vk) < deir,jr) (Ve vk).
As dg- joy(ver,vx) < T, we can now ob-
tain dG(i* ,c*) (Uc* s ’Uk) = dC’(i*,c*) (Uc* N ’Uk) S
de(ix ) (Ves, Vk) = daix jo) (Ve vp) < 7% O

VIVl

IN

Because (i*,c¢*) is an optimal solution with ¢* as a
center in the graph G(i*,c*), it is a configuration of
Case 1.2. Hence, the candidate solution found by our
algorithm for Case 1.2 is also an optimal solution. Thus,
it is not necessary to compute a candidate solution for
this case any more, i.e., this case is reduced to Case 1.2.

Case 2.1.2: e(vj,v;-) € 7*.

Vg = U] Up,

Figure 7: Illustrating the configuration for Case 2.1.2,
where ¢* € (i*,5%), a* = 1, and e(v-,v;-) € 7*. The
thick (red) path is 7*.

Refer to Fig. 7. In this case, ¢* € (i* ,] ), a* =1,
and e(v;«,vj+) € m*. This implies that 7* = (vl,vc*)
The following lemma reduces this case to Case 1.1.
Lemma 4 The index pair (¢*, j*) is an optimal solution

and c¢* is a center of the graph G(c*,j*).
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Proof. Some proof techniques are similar to Lemma 3.
It suffices to show that the distances from ¢* to all ver-
tices in G(c*, j*) are at most r*. Let k be any index in
[1,n]. Our goal is to prove dg(c= j=)(Ver, vg) < 7.

Note that dp(ver,v1) = r*, for 7" = P(v1, vex).

If £ € [I,C*}7 then dg(c*,j*)(vc*,vk) S dp(vc*,’l)k)
dp(ver,v1) =717,

If & € [j%n], then dg(= ) (ver,vr)
de(er j*)(Ver, vn). Below we prove dg(ex j=)(Ver, vn)
dg(i= j*)(Ver, vy ), which is at most r*. Note that
dais joy(Ver,vn) = min{dp(ves,vn), dp(ves,vix) +
le(vi=, vj+) (vj=,vn)}. I dge jo) (Ve vn)
dp(ver,vp), then we have dg(er j+)(ver,vn)
dp(vc* , Un) = dG’(i",j*) (Uc* s Un)~ If d(;(i*ﬂ-*)(vc* 3 ’Un)
dp(Ver,vix) + |e(vix, vj+) (vj=,vpn), then by the
triangle inequality, dg(cx j=)(Ver,vn) < le(ver,vjx)
dp(vje,vn) < dp(vee, vi=) + |e(vix, vj+) (vje,0n) =
dG(i*,j*) (’Uc* y ’Un).

If k € (¢*,5*), then both v+ and v are in the cycle
C(i*,5*) of the graph G(i*, j*) and are also in the cycle
C(c*,j*) of the graph G(c*,j*). By a similar analysis
as that for Lemma 3, we can obtain dg(c- j+)(ver, vp) <
dg(l*d*)(vc* vk) S ’r’ D

IN

<
<

Al

Case 2.2: a* = n.

This case is symmetric to Case 2.1 and we omit the
details.

Case 2.3: a* € (i*,5%).

In this case, both a* and ¢* are in (i*, j*). Without loss
of generality, we assume that ¢* < a*. The following
lemma reduces this case to Case 1.1. Due to the space
limit, the proof is omitted but can be found in the full
paper [17].

Lemma 5 The index pair (c*, j*) is an optimal solution
and c* is a center of the graph G(c*,j*).

Summary. We have computed a candidate solution for
each of Case 1.1 and Case 1.2. Each candidate solution
is also a feasible one. We have proved that if an optimal
solution belongs to one of the two cases, then the cor-
responding candidate solution must also be an optimal
solution. On the other hand, we have shown that other
cases can be reduced to the two cases. Therefore, one of
the two candidate solutions must be an optimal one. As
a final step of our algorithm, among the two candidate
solutions, we return the one with smaller candidate ra-
dius as our optimal solution. The running time of the
entire algorithm is O(n).

Theorem 6 The discrete-ROAP problem can be solved
in linear time.
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Topological and geometric methods for graph analysis

Yusu Wang*

In recent years, topological and geometric data analysis (TGDA) has emerged as a new and promising field for
processing, analyzing and understanding complex data. Indeed, geometry and topology form natural platforms for
data analysis, with geometry describing the “shape” and “structure” behind data; and topology characterizing /
summarizing both the domain where data are sampled from, as well as functions and maps associated to them.

In this talk, I will show how topological and geometric ideas can be used to analyze graph data, which occurs
ubiquitously across science and engineering. Graphs could be geometric in nature, such as road networks in GIS, or
relational and abstract. I will particularly focus on the reconstruction of hidden geometric graphs from noisy data,
as well as graph matching and classification. I will discuss the motivating applications, algorithm development, and
theoretical guarantees for these methods. Through these topics, I aim to illustrate the important role that geometric
and topological ideas can play in data analysis.

*University of California, San Diego, yusuwang@ucsd.edu
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Computing the Carathéodory Number of a Point

Sergey Bereg*

Abstract

Carathéodory’s theorem says that any point in the con-
vex hull of a set P in R? is in the convex hull of a
subset P’ of P such that |P’| < d 4+ 1. For some sets
P, the upper bound d + 1 can be improved. The best
upper bound for P is known as the Carathéodory num-
ber [2, 15, 17]. In this paper, we study a computational
problem of finding the smallest set P’ for a given set
P and a point p. We call the size of this set P’, the
Carathéodory number of a point p or CNP. We show
that the problem of deciding the Carathéodory number
of a point is NP-hard. Furthermore, we show that the
problem is k-LDT-hard. We present two algorithms for
computing a smallest set P’, if CNP= 2, 3.

Bérdny [1] generalized Carathéodory’s theorem by us-
ing d+ 1 sets (colored sets) such that their convex hulls
intersect. We introduce a Colorful Carathéodory num-
ber of a point or CCNP which can be smaller than d+1.
Then we extend our results for CNP to CCNP.

1 Introduction

The well-known Carathéodory’s theorem deals with the
convex hull of a set P, denoted by conv(P).

Theorem 1 (Carathéodory’s theorem [8, 13])

Let P be a set of points in R? and p be a point in
conv(P). Then there is a subset P’ of P consisting of
at most d + 1 points such that p € conv(P’).

Sometimes there is a set P’ of smaller size such that
p € conv(P’), see Figure 1 for an example. We define a
Carathéodory number of a point.

Definition 2 For a set of points P C R? and a point
p € conv(P), Carathéodory number of p with respect
to P, denoted by C(P,p), is the smallest integer k such
that p € conv(P’) for a subset P' C P of size k.

Carathéodory’s theorem guarantees that for every set
of points P C R? and p € conv(P), C(P,p) is well-
defined and C(P,p) < d + 1. This is related to the
well-known concept of the Carathéodory number of a set
that is the smallest integer k& such that, for any point
p € conv(P), there is a subset P’ of P consisting of at

*University of Texas at Dallas, Richardson, TX 75080, USA.
{besp,Mohammadreza.Haghpanah}@utdallas.edu

Mohammadreza Haghpanah*

most k points such that p € conv(P’). Equivalently, it
can be defined using C(P,p) as follows.

conv(P)

Figure 1: Point p € conv(P) with C(P,p) = 2.

Definition 3 For a set of points P C RY,
Carathéodory number of P, denoted by C(P), is the
largest integer k where there exists a point p € conv(P)
such that C(P,p) = k.

The Carathéodory number of a set is being studied
for more than 90 years [15, 17], in a more general set-
ting. The Carathéodory number of any set P C R?¢
is at most d + 1 by Carathéodory’s theorem. For a
compactum P C R? Bérdny and Karasev [2] found
sufficient conditions to have Carathéodory number less
than d + 1. Kay and Womble [22] showed a relation
between the Carathéodory, Helly, and Radon numbers.
Recently, Ito and Lourengo [19] showed an upper bound
for the Carathéodory number of a set. Much research
has been done on the Carathéodory number for some
specific sets. Sierksma [27] studied the Carathéodory
number for convex-product-structures, Naldi [25] for
Hilbert cones of quadratic forms and binary forms. Bui
and Karasev [7] showed the Carathéodory number for
arbitrary gauge set K in R? is greater than d — 1. Also,
the Carathéodory number for several graph convexities
is studied in graph theory [4, 11, 12].

In this paper, we are interested in computing the
Carathéodory number of a point. We found the fol-
lowing characterization of the Carathéodory number of
a set in R?. This characterization of the Carathéodory
number could be known but we were not able to find it®.
Recall that the affine hull of a set S' is the smallest affine

IWe found that the upper bound of the Carathéodory number
of a set follows from Proposition 1.15(ii) [28], see the proof in
Section 2.
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set containing S (a set A is affine if, for any a,b € A,
the line passing through a and b is also contained in A).
We denote it by aff(S). The dimension of an affine set
S, denoted by dim(S) is the dimension of its underlying
linear subspace.

Proposition 4 The Carathéodory number of any non-
empty set P C R? is equal to dim(aff(P)) + 1.

The Carathéodory number of a finite set in R? can be
computed using Proposition 4. In this paper, we study
the computational problem of finding the Carathéodory
number of a point with respect to a finite set.

Problem 5 (CoMPUTINGCNP)

Given a set of points P in R and a point p €
conv(P).

Compute a subset P’ of P such that (i) p €
conv(P') and (ii) the size of P’ is minimized.

We show that the decision version of COMPUT-
INGCNP is NP-hard if the dimension d is part of the
input. Furthermore, we show that the problem is k-
LDT-hard if dimension d is fixed. We present two algo-
rithms for COMPUTINGCNP when C(P,p) = 2, 3.

Bérdny [1] generalized Carathéodory’s theorem by us-
ing d+ 1 sets (colored sets) such that their convex hulls
intersect. As in [24], we call these sets color classes and
we call a set of d+ 1 elements, one from each color class,
a colorful choice.

Theorem 6 (Colorful Carathéodory theorem [1])
Let P = {P,P,..., Pyi1} be a collection of
sets of points in RY and p be a point such that
p € Ntlconv(P;). Then there is a colorful choice P’

1=

such that p € conv(P’).

It is known that the number of color classes in The-
orem 6 cannot be reduced. One may ask whether the
number of colors in set P’ can be reduced. Sometimes
there is a set P’ of size smaller than d + 1 such that
p € conv(P’), see Figure 2 for an example. In this paper,
we define a Colorful Carathéodory number of a point.
We call a set of at most d + 1 elements, one from color
class, a rainbow, i.e. a rainbow is a subset of a colorful
choice for P. We use notation [k] = {1,2,...,k}.

Definition 7 Let P = {P1,P2,..., Piy1} be a col-
lection of sets of points in R? and p be a point such
that p € ﬂfillconv(Pi). The Colorful Carathéodory
number of p with respect to P, denoted by CC(P,p),
is the smallest size of a rainbow P’ for P such that

p € conv(P’).

The colorful Carathéodory theorem guarantees that
CC(P,p) < d+ 1. In this paper, we also propose to
study a new problem of computing CC (P, p).
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Figure 2: Three sets capturing p in the plane. There
is a 2-colorful choice using one red point and one blue
point.

Problem 8 (CoMPUTINGCCNP)

Given a collection P = {Py, Pa,- -+ , Piy1} of sets
of points in R? and a point p € ﬁfillconv(Pi).

Compute a rainbow P’ of the smallest size such
that p € conv(P’).

Related work. Bérdny and Onn [3] describe an ap-
proximation algorithm to find a colorful set P’ such that
point p has distance at most € from conv(P’). Bar-
man [6] showed that a rainbow P’ of size O(v?/e?) for
v = max;ep ||z| such that the distance between p and
conv(P’) is at most e. Mulzer and Stein [24] studied
a different approximation using m-colorful sets. A set
P’ is m-colorful if P; N P’ < m for each color set P;.
Mulzer and Stein [24] give a polynomial algorithm to
find a [ed]-colorful choice P’ such that p € conv(P’)
for some fixed € > 0. Meunier et al. [23] show that the
problem of finding a colorful choice is PPAD and PLS.

CoMPUTINGCNP is related to the sparse linear re-
gression problem [18, 26] where a d x n matrix M and a
vector ¢ € R? are given and the task is to find a k-sparse
vector 7 minimizing ||¢ — M 7||2. Natarajan [26] proved
NP-hardness of this problem. Har-Peled, Indyk and Ma-
habadi [18] presented an algorithm with n¥=1S(n,d, ¢)
space and n*~'Tg(n,d,e) query time where S(n,d, )
denotes the preprocessing time and space used by a (1+
€)-ANN (approximate nearest-neighbor) data-structure,
and Tg(n,d,e) denotes the query time. Recently, Car-
dinal and Ooms [9] studied the sparse regression prob-
lem and found a O(n*~'log? *™2n)-time randomized
(1 + e)-approximation algorithm for this problem with
d and € constant.

Our results can be summarized as follows.

e We characterize the Carathéodory number of a fi-
nite set of distinct points in R? (Proposition 4).

e We introduce new problems COMPUTINGCNP and
CoMPUTINGCCNP for computing C(P,p) and
CC(P,p). We show that DECIDINGCNP, the de-
cision version of COMPUTINGCNP, is
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— NP-hard (Theorem 10) if the dimension d is
part of the input,

— is k-LDT-hard if dimension d is fixed (Theo-
rem 13).

e We present two algorithms in Section 4 for CoOM-
PUTINGCNP when C(P,p) = 2, 3.

e Then we extend our results for COMPUTINGCNP
to CoMPUTINGCCNP in Section 5.

2 Proof of Proposition 4

Let P be a finite set of distinct points in R?. Theorem
4 states that

C(P) = dim(aff(P)) + 1.

Let d’' = dim(aff(P)).

First, we will prove that C(P) > d'+1. There exists a
set @ of d’+1 points of P which are affinely independent.
Then S = conv(Q) is the (d’ + 1)-dimensional simplex.
Consider the set A defined as

a= U

P'CP,|P'|=d

aff(P').

Set A is the union of (;L,) sets each of dimension smaller
than d’. Therefore ANS # S. For any point p € S\ A,
we have C'(P,p) > d’ + 1. Therefore C(P) > d' + 1.

Second, we show that C(P) < d’' + 1. This follows
from Proposition 1.15(ii) [28] if we write n points of P
as a d X n matrix X.

Proposition. Let X € R and z € R?. If z €
conv(X), then x € conv(X’) holds for a subset X’ C X
of at most rank(y) = dim(conv(X)) + 1 vectors in X.

3 Hardness of COMPUTINGCNP

First, we state the decision problem corresponding to
COMPUTINGCNP.

Problem 9 (DECIDINGCNP)

Given a set of points P C R, a point p € conv(P)
and an integer k < |P|.

Decide whether C(P,p) < k.

Observe that DECIDINGCNP can be solved in poly-
nomial time if dimension d is a constant. We show that
it is NP-hard if d is part of the input.

Theorem 10 DECIDINGCNP is NP-hard.

Proof. We reduce the following problem to DECID-
INGCNP.

Problem 11 (EXACTCOVERBY3-SETS)

Given a set X = {1,2,3,...,m} such that 3
is a divisor of m and a collection § =
{Th,Ts,...,T,} where T, C X and |T;| = 3,
for1 <i<n.

Decide whether there exists a subset S’ of S such
that 8’ is a partition of X, i.e. sets in S’ are
disjoint and their union is X.

Problem EXACTCOVERBY3-SETS is a variant of EX-
ACTCOVER [21]. This problem is also known to be NP-
complete [20].

For an instance of EXACTCOVERBY3-SETS, a set
X = {1,2,3,...,m} such that 3 is a divisor of m
and a collection § = {T1,7T5,...,T,} where T; C X
and |T;] = 3 for 1 < ¢ < n, we construct an in-

stance of DECIDINGCNP as follows. Set k = m/3,
p=(1,1,...,1) € R™ and P = {p1,pa2,...,pn} where
pi = (Pi1;Pi2s -+ Piym) € R™ and
[k itjem,
Pig = 0 otherwise.

We show that there exists an exact cover for set X if
and only if there exists a subset P’ C P of size k where
p € conv(P’).

= ) Suppose that &’ is a partition for X. Then for
every j € X there exists unique T; € S’ with j € T;.
Set P’ as the set of all points p; such that T; € §’. For
any j € [m], there is exactly one point p; € P’ with
pi,j = k and p;; = 0 for all other points p;y € P’
Therefore the j-th coordinate of Zpie pr Di is equal to k
and Zpiep, p; = kp. Hence, p € conv(P).

<= ) Suppose that p € conv(P’), i.e. > cp Aipi =
p. Then each \; < %, otherwise some coordinate of
ZpiEP' Aip; is greater than 1. We have ZpieP/ No=1
and each A; > 0. Since |P’| = k, each A\; must be equal
to 1/k. Let &’ be the set of all T; such that p; € P’.
Then, &' is a partition of X. O

Now, suppose that the dimension d is fixed. We show
that DECIDINGCNP is k-LDT-hard.

Problem 12 (k-LDT)

Given a set of A C R and a k-variate linear func-
. k
tion ¢(x1,x2,...,2) = oo+ Y, ;x; where
g, 1, .. ., 0 € R.

Decide whether there exists x = (x1,Z2,...,2k) €

AF where x is a root of ¢.

k-LDT-hardness implies k-SUM-hardness and many
problems are known to be k-SUM-hard, see for example
[5, 16]. Erickson [14] proved any algorithm in r-linear
decision tree model for k-LDT problem has Q(nl21)
time complexity.
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Theorem 13 DECIDINGCNP for a fixed dimension d
is k-LDT-hard.

Proof. We show a linear-time reduction of k-LDT to
DECIDINGCNP. Let A = {aj,a2,...,a,} be a set of
real numbers and linear function ¢(x1,xa,...,25) =
0404'22:0 a;x; be an instance of k-LDT problem. An in-
stance of DECIDINGCNP must contain a set P, a point
p, and an integer k' (it could be different from k in k-
LDT). We construct an instance of DECIDINGCNP. We
choose k' = k + 1. We construct set P as follows.

Let {e1,ea,...,er41} be the standard basis of RF*L,
ie. e, = (ei,l,ei,g,..., ei’k+1) where €i,j = 1 lfj =1
and e; ; = 0 otherwise. For every z; € A, 1 < i < n,
we construct k points in RFF! Yij, for 1 < 7 < k, as
follows

Yij = €j T QjTiCki1.

We also define p = (—agegy1 + Zle ei)/k.

= ) Suppose there is k integer iy,1s,...,4; where
1<i; <nforl<j<ksuchthat ¢(x;,,xiy,...,Ti) =
0. Consider set P’ of k points yi, 1,¥ip.2, - - Yip k- 1t

implies that Z?Zl Ayi;j = p where A = % Therefore,

p € conv(P’) and C(P,p) < k.

<= ) Suppose there exist k pairs of integers
(ilajl)7(i25j2)7"'7(7;k:7jk7) where 1 < it <n, 1< jt <
k, for 1 < t < k, such that p € conv(pi,po,...,Dk)
where P1 = Yiyj1rP2 = Yig,gos- -+ PkYir,ji- Therefore7
there exists Ay, for 1 <t < k, such that 0 < \; < 1, for
Ogtﬁkandezl)\tzl and

k
Z Atpt = p. (1)
t=1

We claim that for every pair of integers t; and to
where 1 < t1 < to < k, ji, # Ji,, otherwise there
exists an integer m such that 1 < m < k and m &
{41,792, -+, Jrt- Then the m-th coordinate of all points
P1,P2,-..,Pk is zero. Then p, = 0 contradicting the
choice of p. Therefore, ji,js,...,jr iS a permutation
of 1,2,..., k. By reordering points pi,ps,...,Dr We as-
sume that j; =t for 1 <t < k.

By taking mth coordinate, 1 < m < k, Equation (1)
implies

k
Z)‘tpt,m = )\mpm,m =Ap = 1//€

t=1

Now take (k 4 1)th coordinate in Equation (1)

il k1 k1 —a
5/\ :§, zgfa'a:':—o.
2 tDt k+1 2 kpt,k+1 2 L Qe L

Hence, ag + Zle gz, = 0 which is the solution for
k-LDT. O
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4 Algorithms for CoMPUTINGCNP

We present two algorithms for COMPUTINGCNP when
C(P,p) =2,3.

41 C(Pp)=2inRd

One can easily decide in O(n) time whether C'(P,p) =
1. In this section we discuss the problem of deciding
whether C(P,p) = 2. We assume that dimension d > 2
is a constant.

Theorem 14 Let P be a set of n points in R® and p
be a point in R, where d > 2 is fixzed. One can de-
cide whether C(P,p) = 2 and find the corresponding set
P’ in O(nlogn) time which is optimal in the algebraic
decision tree model.

Proof. The task is to compute a subset P’ C P such
that |P’'| < 2 and p € conv(P’) if it exists. We will
describe an algorithm and prove the lower bound.

Algorithm. First, we decide whether C'(P,p) =1 in
O(n) time by searching p in P. Assume that C'(P,p) >
2, i.e. p; # p for all p; € P. Compute normalized
vectors p} = nii:iu- We sort points pj,p5,...,p), lex-
icographically and assume that they are in the lexico-
graphic order, i.e. p] <X ph < 2 ph.

Since C(P,p) # 1, C(P,p) = 2 if and only if there
exist two points p;, p; € P such that p = ap; + (1 —a)p;
for some 1 < i < j <nand 0 < a < 1 (Clearly, if
a=0or a=1then C(P,p) =1). This equation can be
written as

0=a(p; —p)+ (1 —a)(p; —p) (2)
a(pi —p) = (a—1)(p; —p) (3)
alip; = (a — 1)l;pj, (4)

where l; = |[p; — p|| and I; = ||p; — p||. Since p; and pj;
are unit vectors, we have |al;| = |(¢ — 1)I;|. Note that
al; > 0 and (a—1)l; < 0. Equation (4) implies that p} =
—pj;. Conversely, if p; = —p then p = ap; + (1 — a)p;
for a = lj/(ll + lj)

The algorithm performs binary search of —p) in the
sorted sequence p,ph, ..., pl,, for each i € [n]. If —p/ is
found then —p; = p; for some p’. Note that j must be
not equal to i since —p), = p; would mean that p; = 0 but
lpi|] = 1. The time complexity of the above algorithm
is O(nlogn) where n = |P)|.

Proof of the lower bound. We now prove that the
lower bound on the time complexity for the problem of
deciding C(P,p) = 2 is Q(nlogn). We use the 2-SUM
problem: Given n numbers, do any two of them sum
to zero? Chan, Gasarch and Kruskal [10] proved that
solving 2-SUM in algebraic decision tree model takes
Q(nlogn) time. Let X = {z1,22,...,2,} be set of
integers in an instance of 2-SUM.
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We construct a set P of n points in R?. If d > 3, we
can use a 2-dimensional plane in R? for the points in P.
Assign point p = (0,0). Consider the map p : R — R?
defined as p(z) := (sgn(x), x) where

sgn(z) = {x/|x| if x #0,

0 otherwise.

Find set P = p(X) in O(n) time, ie. P = {p; | pi =
w(x;),i € [n]}. To show that the reduction is correct,
we prove the following claim. There are distinct integers
i,7 such that z; +x; = 0 if and only if there are two
points p;,p; € P for which p € conv({p;,p;}).

Suppose that x; +z; = 0 for some integers 7, j. Then
either z; = z; = 0 or @;2; < 0. If ; = x; = 0 then
pi = (0,0) € P, so p € conv({p;}). If z;z; <0, then we
can assume x; < 0 < x;. Then 0 € conv({p;,p;}) since
bi = —Pj-

Now suppose that there exists a subset P’ C P such
that |P’| =2 and p € conv(P’). If p € P/, then 0 € X.
Ifp ¢ P’ and P’ = {p;, p;}, then z; and z; have opposite
signs (since p, = 0). Then the convex combination p =
ap; + (1 —a)p; must have a = 1 —a (using z-coordinates
inp=ap;+(1—a)p;, 0 =a-sgn(z;)+ (1 —a)-sgn(x;)).
Then a = 1/2 and z; = —x; (using y-coordinates in
p=ap;+ (1 —a)p;). O

42 C(Pp)=3inR>

Theorem 15 Let P be a set of n points in R® and p be
a point in R®. One can decide whether C(P,p) = 3 and
find the corresponding set P’ in O(n?logn) time.

Let P = {p1,...,pn} C R®. We denote by a;;
the angle between vectors pp; and @, ie. cosa;; =
PP PP}

W and 0 < oy ; < m. Let k be an integer in
i||-||pPj

{1,2,...,n}. Consider the plane m; passing through
point p with gﬂ) is its normal vector. Let ¢; be the pro-
jection of p; on mg, see Fig. 3. We apply the following
algorithm.

Input: p € R® and P = {py, ..
p € conv(P).

Output: Decide if C(P,p) = 3. If C(P,p) = 3, com-
pute a subset S C P such that |S| = 3 and p € conv(S).

.,Pn} C R? such that

1. Check if C(P,p) =1 or C(P,p) = 2 from Section
4.1. Stop if C(P,p) < 2.

2. For each point p; € P do the following;:

3. Compute plane 7 (it can be computed since p #
pi; otherwise C'(P,p) = 1). Compute points ¢; for
all i € {1,2,...,n},i # k, see Fig. 3.

4. Compute set Py, as follows. Initialize P, = P\{px},
then prune Py by repeating the following step.

Figure 3: Plane 7 is orthogonal to vector m . Point
qi,1 = 1,2,3 is the projection of point p; onto the plane
Tk.

5. The pruning step. Remove a point p; from Py,
if there exists another point p; in P} such that

(a) Vectors pq; and p_qj> have same direction and

(b) ik < oy (if a4k = a;  remove either p; or
p; from Py).

6. Compute Qx = {q; | p; € Pr}. For each point ¢; €
@k, use the binary search for —g; in Qf as in the
algorithm from Section 4.1. Suppose C(Qg,p) = 2
and a set Q" = {¢;,q;} is found such that p €
conv(g;, q;). Check if p € conv({p;, p;,pr}) in O(1)
time. If p € conv({p;, p;,px}) then output the so-

lution P" = {p;,p;,pc}. If p & conv({pi,pj,pr}),
check next point ¢; in the loop.

7. If a solution is not found in Step 6, then there is no
solution for C(P,p) = 3, so C(P,p) = 4.

First, we justify the pruning step.

Lemma 16 Suppose p € conv({p;,p;,pr}) for some
points p;,p;,pr € R3. If p; or p; is removed in the
pruning step for py then there ewist py,pj € Pj such
that p € conv({pi’,p;’, Pr})-

Proof. It suffices to prove the lemma if only one point
from {p;,p,} is removed in the pruning step. If both of
them are removed, the argument can be used twice, see
Fig. 4(b) for an example.

Suppose that point p; is removed in the pruning step
for px. Then there exists another point p;; in P such
that

1. Vectors ﬁ and m have same direction and
2. app < Qi g

Then points p,p;,p;, px are coplanar. Without loss
of generality we can assume p;, pi/, pj, Pk € R2, py is on
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(b) Dk

Pie

Do Ps

D3
p7

Figure 4: (a) The pruning step. Vectors pe,i=1,2,3
have the same direction d;. Points p; and py will be
pruned based on «-angles. Vectors @,i = 4,5,6,7
have the same direction do = —d;. Points p;,i =
4,5,6 will be pruned based on a-angles. (b) Point
p € conv({px,p2,ps}) before the pruning for p; and it
is in conv({px, p3,pr}) after the pruning for py.

the y-axis and p is at the origin. We can assume that
x(pi), z(pir) > 0 and z(p;) < 0. The necessary and suffi-
cient condition for p € conv({p;,p;, px}) is a; k + K >
m. Since oy ) < oy, we have oy 4o, > m. Therefore
p € conv({py,pj,pr}) and the lemma follows. O

Time Complexity. Plane 7 is computed in O(1)
time. Projection of P onto 7 takes O(n) time. The
pruning step can be done in O(nlogn) time by main-
taining the sorted order of points g; by the direction.
Finally, Step 6 takes O(nlogn) time since binary search
takes O(logn) time and it is done for every point in Q.
Therefore, the processing of p, takes O(nlogn) time
and the total time is O(n?logn).
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5 Hardness and Algorithms for CoMPUTINGCCNP

In this section we show that our results for CoOMPUT-
INGCNP can be extended directly to COMPUTINGC-
CNP.

5.1 Hardness

We show that DECIDINGCCNP (i.e.  deciding if
CC(P,p) < k), the decision version of COMPUTINGC-
CNP, is NP-hard. There is a natural reduction from
DECIDINGCNP problem to DECIDINGCCNP problem.
Consider an instance of DECIDINGCNP, i.e. a set of
points P in R?, a point p € conv(P) and an integer k.
We construct an instance of DECIDINGCCNP by taking
d + 1 copies of P, the color classes P = {Py,...,Piy1}
and by using the same point p and integer k. Clearly,
this reduction can be computed in polynomial time.
It remains to prove that C(P,p) < k if and only if
CC(P,p) < k. If C(P,p) < k then there exists a subset
P’ = {p1,p2,...,pr} of P such that p € conv(P’). Then
CC(P,p) < k by selecting p; from color set P; (i.e. P’
is a rainbow for P). Similarly, CC(P,p) < k implies
C(P,p) < k. Therefore DECIDINGCCNP is NP-hard.

Similarly, one can prove that DECIDINGCCNP is k-
LDT-hard if dimension d is fixed (we omit details due
to lack of space).

52 CC(P,p)=2inR¢

We show that the algorithm from Section 4.1 can be
modified for deciding if CC(P,p) = 2 in R? and com-
puting the corresponding rainbow. In this problem, we
have d + 1 color classes, and they can be processed as
follows. We normalize the vectors (of all colors) again,
but this time there could be equal normal vectors of dif-
ferent colors. We store one vector for them and the list
of their colors. Then the binary search is modified to
select a vector of different color from the list.

The time complexity of this algorithm is O(nlogn)
where n = Z?:ll | ;).

53 CC(P,p)=3inR?

We briefly (due to lack of space) show that the algo-
rithm from Section 4.2 can be modified for deciding if
CC(P,p) = 3 in R and computing the corresponding
rainbow. In step 2, we select pi from UP;. In step 3, we
use the same colors for projected points. In the pruning
step, if there are more than two points ¢; and ¢; with
distinct colors with the same direction of m and p_q; , We
store the two with the largest a-angles. In steps 6, we
apply the algorithm for deciding CC(P,p) = 2 instead
of deciding C(P,p) = 2. The total time complexity of
the algorithm is O(n?logn) where n = Zfill | P;].
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Characterization and Computation of Feasible Trajectories for an
Articulated Probe with a Variable-Length End Segment

Ovidiu Daescu*

Abstract

We consider an extension of the articulated probe tra-
jectory planning problem introduced in [11], where the
length r of the end segment can be customized. We
prove that, for n line segment obstacles, the smallest
length r for which there exists a feasible probe trajec-
tory can be found in O(n**¢) time using O(n?*¢) space,
for any constant ¢ > 0. Furthermore, we prove that all
values r for which a feasible probe trajectory exists form
O(n?) intervals, and can be computed in O(n°/?) time
using O(n?"¢) space. We also show that, for a given
r, the feasible trajectory space of the articulated probe
can be characterized by a simple arrangement of com-
plexity O(n?), which can be constructed in O(n?) time.
To obtain our solutions, we design efficient data struc-
tures for a number of interesting variants of geometric
intersection and emptiness query problems.

1 Introduction

The articulated probe trajectory planning problem was
introduced in [11] with the following setup. We are
given a two-dimensional workspace containing a set P
of simple polygonal obstacles with a total of n vertices,
and a target point ¢ in the free space, all enclosed by
a circle S of radius R centered at ¢t. An articulated
probe is modeled in R? as two line segments, ab and
be, connected at point b. The length of ab is greater
than or equal to R, whereas bc is of some small length
r € (0, R]. The probe is initially located outside S, as-
suming an unarticulated configuration, in which ab and
be are collinear, and b € ac. A feasible probe trajectory
consists of an initial insertion (sliding) of straight line
segment abc into S, possibly followed by a rotation of
bc around b up to 7/2 radians in either direction, such
that ¢ coincides with t, while avoiding the obstacles in
the process. If a rotation is performed, then we have an
articulated final configuration of the probe. The goal is
to determine if a feasible probe trajectory exists and, if
so, to report one such trajectory.

It has been argued in [11] that the polygonal obstacles
can be treated by considering only their bounding line

*Department of Computer Science, University — of
Texas at Dallas, Richardson, TX, USA. {ovidiu.daescu,
ka.teo}@utdallas.edu
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Figure 1: In order to reach the target point ¢, a straight
insertion of line segment abc may be followed by a ro-
tation of be from its intermediate position (dashed line)
to its final position (solid line).

segments. Thus, for simplicity, assume that P consists
of n non-crossing line segment obstacles (Figure 1). We
further assume that S is not visible from ¢, since other-
wise the problem reduces to computing visibility from
t to infinity, which takes O(nlogn) time [11]. Thus, in
order to reach t, the probe has to rotate bc around b.

After inserting segment abc, point a is located on or
outside S. Let C be the circle of radius r centered at
t. Observe that, since bc may only rotate as far as m/2
radians in either direction after the initial insertion of
segment abc, ab intersects C only once and at b (i.e.,
b € C). When bec rotates around b, the area swept by
be is a sector of a circle of radius r centered at b. For
conciseness, the center of the circle on which a circular
sector is based is called the center of the circular sector.

In this paper, we develop efficient algorithms for com-
puting i) the minimum value r > 0 for which a feasible
articulated trajectory exists, including reporting at least
one such trajectory, ii) all values r > 0 for which a fea-
sible articulated trajectory exists (i.e., feasible domain
of r), and iii) the feasible trajectory space (i.e., set of
all feasible trajectories) for a given value r.

Related work. The two-dimensional articulated probe
trajectory planning problem (with a constant length r)
was originally introduced by Teo, Daescu, and Fox [11],
who presented a geometric-combinatorial algorithm for
computing so-called extremal feasible probe trajectories
in O(n?logn) time using O(nlogn) space. In an ex-
tremal probe trajectory, one or two obstacle endpoints
always lie tangent to the probe. The solution approach
proposed in [11] can be extended to the case of polyg-
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onal obstacles. For h polygonal obstacles with a total
of n vertices, an extremal feasible probe trajectory can
be determined in O(n? + h?log h) time using O(nlogn)
space. When a clearance ¢ from the polygonal obstacles
is required, a feasible probe trajectory can be obtained
in O(n? + h%logh) time using O(n?) space.

In addition, Daescu and Teo [4] developed an algo-
rithm for solving the articulated probe trajectory plan-
ning problem in three dimensions for a given r. It was
shown that a feasible probe trajectory among n tri-
angular obstacles can be found in O(n**¢) time using
O(n**¢) space, for any constant ¢ > 0.

Motivation. Besides its general relevance in robotics,
the proposed problem arises specifically in some medi-
cal applications. In minimally invasive surgeries, a rigid
needle-like instrument is typically inserted through a
small incision to reach a given target, after which it may
perform operations such as tissue resection and biopsy.
Some newer designs allow for a joint to be incorporated
for moving the acting end (tip); after inserting the in-
strument in a straight path, the surgeon may rotate the
tip around the joint to reach the target [9].

Due to the rapid advances in three dimensional print-
ing techniques, such robotic probes can even be cus-
tomized for a given patient [3]. Rather than using a
one-size-fits-all instrument, based on the patient-specific
requirement and constraints, a robotic probe with a
tailored-sized tip can be customarily built on-demand
using three dimensional printing.

Despite its importance and relevance, as well as its
rich combinatorial and geometric properties, only a
handful of results have been reported [4, 11] for this
trajectory planning problem.

Results and contributions. Recall our assumption
that there is no feasible unarticulated probe trajectory
(i.e., t cannot see to infinity). We begin in Section 2 by
addressing our first problem of interest:

Problem 1 Find the minimum length r > 0 of segment
bc such that a feasible articulated probe trajectory exists,
if any, and report (at least) one such trajectory.

For brevity, a feasible articulated trajectory with the
minimum length r is referred to as a feasible min-r ar-
ticulated trajectory. Our approach to solving Problem
1 is as follows: i) We show that a feasible min-r articu-
lated trajectory, if one exists, can always be perturbed,
while remaining feasible, into one of a finite number of
“extremal” feasible trajectories, which can be enumer-
ated using an algebraic-geometric method (see Lemma
1 for a detailed definition of the extremal trajectories).
This leads to a simple O(n3logn) time, O(n**€) space
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algorithm, for any constant € > 0, based on enumerat-
ing and verifying the extremal trajectories for feasibil-
ity (see the full version of the paper for details). ii) We
then derive an O(n**€) time and space algorithm by
partially waiving the notion of computing and check-
ing the extremal trajectories for feasibility. Specifically,
the algorithm searches for a feasible min-r articulated
trajectory, if any, by performing a finite sequence of
perturbations and feasibility tests on certain O(n?) ex-
tremal trajectories (whose segment ab is tangent to two
obstacle endpoints). With a proper algorithmic exten-
sion to our process of finding the minimum feasible r,
we can compute, in O(n®/?) time using O(n>*¢) space,
the set of r-intervals for which feasible articulated tra-
jectories exist, together with an implicit representation
of feasible solutions for those values of 7.

In the process of deriving our solution to Problem 1,
we encounter and solve a number of fundamental prob-
lems (or their special cases) that could be of theoret-
ical interest in computational geometry. For instance,
we provide an efficient data structure with logarithmic
query time for solving a special instance of the circular
sector emptiness query problem (i.e., for a query circu-
lar sector with a fixed arc endpoint ).

In Section 3, we address our second problem:

Problem 2 For a given length v of segment bc, com-
pute the feasible trajectory space (i.e., set of all feasible
trajectories) of the articulated probe.

We describe a geometric combinatorial approach for
characterizing and computing the feasible trajectory
space of the articulated probe. The feasible configura-
tion space has a worst-case complexity of O(n?) and can
be described by an arrangement of simple curves. Us-
ing topological sweep [2], the arrangement can be con-
structed in O(nlogn + k) time using O(n + k) working
storage, where k = O(n?) is the number of vertices of
the arrangement. By simply traversing the cells of the
arrangement, we can find a feasible probe trajectory in
O(n?) time — a logarithmic factor improvement com-
pared to the algorithm in [11].

2 Computing feasible min-r articulated trajectories

Recall that, for a given r, C' is the circle of radius r
centered at t. Using the rationale of [11, Lemma 2.1],
we can immediately claim the following observation.

Observation 1 Given a feasible min-r articulated tra-
jectory, there exists an extremal feasible min-r articu-
lated trajectory such that the probe assumes an articu-
lated final configuration that passes through an obstacle
endpoint outside C and another obstacle endpoint inside
or outside C.
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We will later show in Lemma 1 that an extremal fea-
sible min-r articulated trajectory is always tangent to
two obstacle endpoints outside C.

For ease of discussion, unless noted otherwise, we use
bc and bt to denote line segment be of the probe in its
intermediate (right after the initial insertion of segment
abc) and final configurations, respectively. Let Zcbt be
the angle of rotation of segment bc to reach t, and let
opet b€ the circular sector swept by segment bc in order
to reach t. Let 7. denote the circular arc of op.;. Let
V' denote the set of endpoints of the line segments of P.

Lemma 1 Given a feasible min-r articulated trajec-
tory, there exists an extremal feasible min-r articulated
trajectory such that, in its final configuration, ab passes
through two obstacle endpoints and at least one of the
following holds: 1) Zcbt = /2 radians, II) be inter-
sects an obstacle line segment at ¢, III) 7o intersects
an obstacle endpoint or is tangent to an obstacle line
segment, IV) one of the obstacle endpoints intersected
by ab coincides with b, and Zcbt < w/2 radians, or V)
bt passes through an obstacle endpoint.

The full proof of Lemma 1 is given in Appendix A.

Solution approach. We begin by emphasizing that, as
stated in Lemma 1, an extremal feasible min-r articu-
lated trajectory passes through two obstacle endpoints,
neither of which is inside C.

Consider the following solution approach. For each
point v € V, compute the set R, of rays with the fol-
lowing properties: i) Each ray originates at v and passes
through a point w € V' \ {v}. ii) Segment vby does not
intersect any line segment of P, where bg is the point of
tangency between the supporting line of the ray and the
circle C centered at ¢t (Figure 2A). iii) If the ray passes
through by, then the reversal of the ray does not inter-
sect any line segment of P; otherwise, the ray itself does
not intersect any line segment of P. R, can be obtained
in O(nlogn) time by computing the visibility polygon
from v [1, 7, 10]. Since |V| = O(n), the worst-case run-
ning time for finding the set of rays R = U,cv R, is
O(n?logn).

Note that each ray of R is associated with a trajectory
T that has an obstacle-free segment ab passing through
two obstacle endpoints. Without loss of generality, as-
sume that ab of T passes through a pair of obstacle
endpoints u,v € V, where u # v, in the way depicted
in Figure 2A. Assume that bc of T rotates clockwise to
reach ¢ (the other case is symmetrical). Let by be the
position of b when Zcbt = 7/2 radians, and ¢y be the
position of ¢ when b = by. In order to find a feasible
min-r articulated trajectory, we perform the following
sequence of steps.

Al. Check if the articulated trajectory T with Zcbt =
m/2 radians is feasible. Specifically, check if the
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Figure 2: Illustrations of steps (A) Al and A2, (B) A3
and A4, (C) A5 and A6, and (D) AT7.

quarter circular sector bounded by bygcgy, bot, and
circular arc 7y, (centered at by and emanating
counter-clockwise from ¢ to ¢p) is free of obstacles
(Figure 2A). If it is, then T is a feasible min-r ar-
ticulated trajectory whose ab passes through v and
v. Otherwise, proceed with step A2.

A2. Check if bot is intersected by any obstacle (Figure
2A). If it is, then a feasible min-r articulated tra-
jectory whose ab passes through u and v does not
exist. Otherwise, proceed with steps A3 and A4.
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Table 1: Summary of query data structures used in steps A1-A7. The size, preprocessing time, and query time of a
data structure are denoted by S(n), P(n), and Q(n), respectively.

Step Query data structure S(n) P(n) Q(n)
A1, A6 | Circular sector emptiness queries O(n%te) O(n?te) O(logn)
A2, A4 | Radius intersection queries O(n) O(nlogn) O(logn)
A3 Ray shooting queries [8] O(n?) O(n?) O(logn)
A5 Radius shooting queries O(n?/log?n) | O(n?/log®n) | O(log®n)
AT Arc shooting queries O(n?*¢) O(n?*e) O(logn)

A3. Find the closest point ¢’ € bycy to ¢ such that byc’
does not intersect any obstacle (Figure 2B). Com-
pute the center b’ of the circular arc v.; emanating
counter-clockwise from t to ¢, where b’ € vbyg.

A4. Check if b't is intersected by any obstacle (Figure
2B). If it is, then a feasible min-r articulated tra-
jectory whose ab passes through v and v does not
exist. Otherwise, proceed with steps A5 and A6.

A5. Find the closest point b € vb’ to b’ such that bt
intersects an obstacle endpoint (Figure 2C). Com-
pute the corresponding point ¢” (i.e., the intersec-
tion between byc’ and the circle of radius |b”t| cen-
tered at ). Note that the triangle bounded by b't,
b''t, and b'b” is free of obstacles.

A6. Check if the “sector” bounded by b'c¢”, b't, and
circular arc 7. (centered at b” and emanating
counter-clockwise from ¢ to ¢”) intersects any ob-
stacle (Figure 2C). Note that it is equivalent to
checking if the circular sector bounded by b"”¢”,
b"t, and ~..; intersects any obstacle. If it does,
then a feasible min-r articulated trajectory whose
ab passes through u and v does not exist. Other-
wise, proceed with step A7.

A7. At this point, observe that the articulated tra-
jectory with the intermediate configuration repre-
sented by ab’c” is feasible. Find the closest point
b € V' to b such that circular arc ey (cen-
tered at b and emanating counter-clockwise from
t to ¢”") intersects an obstacle endpoint or is tan-
gent to an obstacle line segment (Figure 2D). Note
that the “sector” bounded by b’ ¢, b't, and circular
arc . is free of obstacles. The articulated trajec-
tory with the intermediate configuration indicated
by ab”’ " is a feasible min-r articulated trajectory
whose ab passes through u and v.

By simply performing an O(n)-check (i.e., check
against each of the O(n) obstacles) in each of the
steps above, we can obtain an O(n?)-time “brute-force”
method to find a feasible min-r articulated trajectory,
if one exists. Alternatively, we can address these steps
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using efficient data structures, which require geometric
constructs such as lower envelopes and half-space de-
composition schemes. Refer to Table 1 for a summary
of the query data structures, whose details are deferred
to the full version of the paper. O(n?) queries are to be
processed in the worst case, resulting in a total query
time bounded by O(n? log? n). Since the preprocessing
time of the query data structures is dominant overall,
we have the following final result.

Theorem 2 A feasible min-r articulated probe trajec-
tory, if one exists, can be determined in O(n?7¢) time
using O(n**€) space, for any constant € > 0.

The solution approach just described can be extended
to find all feasible values of r. The details of the algo-
rithmic extension will be presented in the full publica-
tion, and the corresponding result is summarized in the
following theorem.

Theorem 3 All values of v for which at least one feasi-
ble trajectory exists can be determined in O(n°/?) time
using O(n**€) space, for any constant € > 0.

3 Characterizing feasible trajectory space

In this section, we describe our solution to Problem 2.
We begin by explicitly characterizing the following for
a given length r: i) the final configuration space, ii) the
forbidden final configuration space, and iii) the infeasi-
ble final configuration space.

3.1 Final configuration space

In a final configuration of the articulated probe, point
a can be assumed to be on S, and point b lies on the
circle C' of radius r centered at ¢ (Figure 1). Let 6g
and 6o be the angles of line segments ta and tb mea-
sured counter-clockwise from the z-axis, where fg,0¢c €
[0,27). Since bc may rotate around b as far as /2
radians in either direction, for any given fg, we have
Oc € [#s —cos™' 17/R,0s + cos™' r/R]. We call this the
unforbidden range of O¢. A final configuration of the ar-
ticulated probe can be specified by (fgs, 0¢), depending
on the locations of points a and b on circles S and C,
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respectively (Figure 3). The final configuration space
Y tin of the probe can be computed in O(1) time.

Oc
-
CcOs i
0
0 s
—1lr
— COSs R

(B)

Figure 3: Final configurations of the articulated probe.
(A) Each value of g is associated with an unforbid-
den range of ¢ spanning from g — cos™'r/R to 05 +
cos™17/R. (B) The unshaded region of the (fs,0c)-
plot represents the unforbidden final configuration space
when S is obstacle-free.

3.2 Forbidden final configuration space

A final configuration is called forbidden if the final con-
figuration (represented by ab and bt) intersects one or
more of the obstacle line segments. Let s be an obstacle
line segment of P. We have two different cases, depend-
ing on whether s is located 1) outside or 2) inside C.

Case 1. Obstacle line segment s outside C. Let
angles 0;, where i = 1,...,6, be defined in the manner
depicted in Figure 4A. Briefly, each 6; corresponds to an
angle fg at which point a tangent line i) between C' and
s or ii) from ¢ to s, intersects S. As g increases from
6, to 03, the upper bound of the unforbidden range of
f¢c decreases as a continuous function of fg. Similarly,
when 0g varies from 6, to g, the lower bound of the un-
forbidden range of ¢ decreases as a continuous function
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of . For 03 < 05 < 64, there exists no unforbidden
final configuration at any o (Figure 4B). For concise-
ness, the upper (resp. lower) bound of the unforbidden
range of O is referred to as the upper (resp. lower)
bound of < hereafter.

0 05 b4 0

Q él Oy 03 046564

(B)

Figure 4: Forbidden final configurations due to an ob-
stacle line segment s outside C'.

Case 2. Obstacle line segment s inside C. We
can similarly compute the forbidden final configuration
space for an obstacle line segment s inside C'. Note in
Figure 5A that angles 6;, where i = 1,...,6, are defined
differently from case 1. For 6; < 65 < 64, the upper
bound of f¢ is equivalent to 6. For 03 < 0g < g, the
lower bound of 6¢ equals to 05 (Figure 5B).

We can find the forbidden final configuration space
for an obstacle line segment in O(1) time. Thus, for
n obstacle line segments, it takes O(n) time to com-
pute the corresponding set of forbidden final configu-
rations. The union of these configurations forms the
forbidden final configuration space X fip, fory Of the ar-
ticulated probe. The free final configuration space of
the articulated probe is L i, free = Zfin \ Zfin, forb-
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Figure 5: Forbidden final configurations due to an ob-
stacle line segment s inside C'.

3.3 Infeasible final configuration space

The feasible trajectory space of the articulated probe
can be characterized as a subset of Xy rree. A final
configuration is called infeasible if the circular sector as-
sociated with the final configuration (i.e., the area swept
by segment bc to reach t) intersects any obstacle line
segment. We denote the infeasible final configuration
space as Xfininf. 1he analytical details of the char-
acterization of Xy ins are presented in Appendix B.
Based on the analysis, we conclude that the infeasible
final configuration space associated with any obstacle
line segment can be found in O(1) time. As a result, it
takes O(n) time to determine the infeasible final config-
uration space for n obstacle line segments.

3.4 Complexity and construction of feasible trajec-
tory space

The feasible trajectory space of the articulated probe
is represented by Xfin \ (Zfin, forb U Xfining). Three
sets of lower- and upper-bound curves, denoted as o iy,
Ofin,forb, a0d O fin inf, Were obtained from characteriz-
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ing the final, forbidden final, and infeasible final config-
uration spaces, respectively. Each of these curves is a
function of fg — that is, 6c(0g).

As illustrated in Figure 3, o4, contains two linearly
increasing curves, ¢ = 05 — cos™'r/R and 0o =
s + cos~'r/R, which are defined over fs € [0,27).
Each curve in o in, fory is partially defined, continuous,
and monotone in fg. Specifically, as shown in Figures 4
& 5, the curves in case 1 are monotonically decreasing
with respect to fg, and the curves in case 2 are horizon-
tal lines parallel to the fg-axis (i.e., of some constant
values of §¢). Furthermore, any two curves in case 1 can
intersect at most once. Likewise, a curve in o, iny is
bounded and monotonically increasing with respect to
fs (Figures 9 & 11 in Appendix B), and can intersect
with another at most once.

From the observations above, it can be easily deduced
that the number of intersections between any two curves
in o= 0fin U0 fin,forb U Tfin,inf is at most one. For a
set o of O(n) x-monotone Jordan arcs, with at most ¢
intersections per pair of arcs, where c¢ is a constant, the
maximum combinatorial complexity of the arrangement
A(o) is O(n?) [6].

An incremental construction approach, as detailed in
[5], can be used to construct the arrangement A(c) in
O(n?a(n)) time using O(n?) space, where a(n) is the in-
verse Ackermann function. By using topological sweep
[2] in computing the intersections for a collection of well-
behaved curves such as those described above, the time
and space complexities can be improved to O(n log n+k)
and O(n+ k), respectively. Note that we can find a fea-
sible probe trajectory by simply traversing the cells of
the arrangement A(c) in O(n?) time. This implies an
O(logn) improvement over the previous result reported
n [11]. We thus conclude with the following theorem.

Theorem 4 For a positive value r, the feasible trajec-
tory space of the corresponding articulated probe can
be represented as a simple arrangement of maximum
combinatorial complexity k = O(n?), which can be con-
structed in O(nlogn+ k) time using O(n+ k) space. A
feasible probe trajectory, if one exists, can be determined
in O(n?) time using O(n?) space.

4 Open questions

1) Our solution to Problem 1 relies on efficient data
structures to address some rather specific geometric in-
tersection and emptiness query problems. Can we im-
prove upon those query data structures? 2) Do our tech-
niques extend well to the variant in which a clearance is
required from the obstacles? 3) Can we generalize our
solution approaches to three dimensions?
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Appendices
A  Proof of Lemma 1

We proceed by considering the two possible scenarios implied
by Observation 1.

Scenario A. A feasible min-r articulated probe trajectory
exists such that ab of the trajectory passes through two ob-
stacles endpoints u,v € V, where u # v. Obviously, ab does
not intersect the interior of any line segment of P. Without
loss of generality, assume that segment bc of the probe is
rotated clockwise around b to reach ¢ (the other case can be
handled symmetrically), and ab passes through u and v in
the way depicted in Figure 6.

Figure 6: Finding the extremal feasible min-r articu-
lated probe trajectory in Scenario A.

Let hqp denote the supporting line of ab. Let bot be the
perpendicular line segment dropped from ¢ to line hqp. It is
easy to observe that the minimum possible value of r for an
articulated trajectory is given by the length of bot — that is,
when b = by and Zcbt is equal to w/2 radians. Let T' denote
the corresponding trajectory. If T is free of obstacles, then
T is a feasible min-r articulated trajectory (case I of the
lemma).

Otherwise, the minimum feasible value of r is attained at
some point b* on line segment vbg, where b* is the closest
point to bg on wby for which the corresponding articulated
trajectory is feasible. In order to find b*, we increase r by
moving b away from bo on vby until the trajectory becomes
feasible. Observe that, if bt intersects an obstacle line seg-
ment at any given time during the process of increasing r,
then the trajectory would never become feasible thereafter
(illustrated by the blue and green trajectories in Figure 6).

The observations above imply that, if b = bg is not feasi-
ble, then bc or 7. of T' must be intersected by an obstacle
line segment, or oper of T must contain an obstacle line seg-
ment. By moving b away from by on vby, we may rid the
trajectory of obstacle line segments that intersect bc, vet, or
are contained within opc:. Suppose that we increase r until
either bt becomes tangent to an obstacle line segment or b
reaches v. Let b; denote the final position of b. Observe that
b* must lie somewhere between by and b;. In fact, as we in-
crease r, b = b" when bc intersects an obstacle line segment
at ¢, or 7. intersects an obstacle endpoint or is tangent to
an obstacle line segment (cases II and III of the lemma).
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Remark. Let r,, 7o+, and 7, be the lengths of bc when
b = bo, b = b*, and b = b1, respectively, where 75, < 75+ <
ry, . Observe that [ry«, 73, ] is a feasible contiguous subset of
[rbg,Tv, |- Indeed, based on the observations made thus far,
it is easy to figure that, in Scenario A, there exists at most
one contiguous feasible subset of [ry,, 74, ].

Scenario B. A feasible min-r articulated probe trajectory
exists such that ab of the trajectory passes through an ob-
stacle endpoint u, and bt of the trajectory passes through an
obstacle endpoint v, where u,v € V and u # v. Recall that
Zcbt of the trajectory is less than or equal to 7/2 radians.
Without loss of generality, assume that segment bc of the
probe is rotated clockwise around b to reach t, as in Figure
7 (the other case is symmetrical).

Figure 7: Finding the extremal feasible min-r articu-
lated probe trajectory in Scenario B.

In this case, the minimum value of r for a feasible trajec-
tory occurs when b = v. Let by denote that location of b, and
T be the corresponding trajectory. If T is free of obstacles,
then T is a feasible min-r articulated trajectory (case IV of
the lemma).

We now assume otherwise. Let py, denote the reversal
(i.e., opposite in direction) of the ray emanating from bo
passing through ¢. We increase r by moving b away from
bo along ps,, while maintaining the intersection of ab with
u and that of bt with v, until the trajectory becomes fea-
sible. Observe the following: i) If oper of T intersects any
obstacle line segment, then for certain there is no feasible ar-
ticulated trajectory that intersects v outside C' and v inside
C. So, gpet of T must be empty of obstacle line segments.
ii) If bt, be, or 7.+ intersects an obstacle line segment at any
given moment during the process of increasing r, then the
trajectory would never become feasible thereafter.

These observations imply that, when b = bg, ab of T' must
be intersected by some obstacle line segment. By increasing
r, we may rid the trajectory of obstacle line segments that
intersect ab. Let b* denote the closest point to by on ps, for
which the corresponding articulated trajectory is feasible.
Note that ab, at the moment, intersects an obstacle endpoint
(case V of the lemma), as illustrated by the red trajectory
in Figure 7.

Remark. Observe that we can continue to increase r,
while still having a feasible articulated trajectory, until
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b reaches some point b1, at which either i) ab, be, or ~e
collides with an obstacle line segment, or ii) Zcbt = 7 /2. Let
Tbys To+, and rp, be the lengths of be when b = bo, b = b”,
and b = b1, respectively, where rp, < rp+ < 1y, . In addition,
let 7,/ be the length of bc when Zcbt = 7/2. According
to our earlier arguments, [ry=,7,] is a feasible contiguous
subset of [ry,,7r/2]. In fact, there could exist multiple
(disjoint) contiguous feasible subsets of [ryy,7,/2], given
that ab may enter and leave intersections with multiple
obstacle line segments during the process of increasing 7,
while ope¢ remains free of obstacle line segments (refer to
the blue and green trajectories in Figure 7 for an instance).

This concludes the proof of Lemma 1.

B Characterizing infeasible final configuration space

Let C’ be the circle centered at t and of radius v2r. A
circular sector associated with a final configuration can only
intersect an obstacle line segment lying inside C’. Instead
of characterizing the lower and upper bounds of ¢ as 0s
varies from 0 to 27 (as in Section 3.2), here we perform the
characterization the other way around. For conciseness, we
only present arguments for the negative half of the fs-range,
which is [f¢c —cos™! /R, O¢]; similar arguments apply to the
other half due to symmetry. We have two cases, depending
on whether an obstacle line segment s lies 1) inside C' or 2)
outside C' and inside C’.

Case 1. Obstacle line segment s inside C. TFor
brevity, the quarter circular sector associated with a point
b (i.e., the maximum possible area swept by segment bc to
reach t), where the angle of tb (relative to the z-axis) is 0¢,
is referred to as the quart-sector of Oc.

We define ¢1, ¢2, and ¢3 as follows (Figure 8A). ¢4 is the
smallest angle ¢ at which the circular arc of the quart-sector
of f¢ intersects s (at one of its endpoints or interior points).
¢2 is the smallest angle ¢ at which bt of the quart-sector
of O¢ intersects s (at one of its endpoints). ¢3 is the largest
angle O¢c at which bt of the quart-sector of ¢ intersects s
(at one of its endpoints). Observe that, as ¢ varies from 0
to 2w, ¢1 and ¢3 are the angles ¢ at which the quart-sector
of f¢ first and last intersects s, respectively.

We are only concerned with finding the lower bound of
05 for ¢ € [¢1, P2], since the entire negative half of the 05-
range (i.e., [dc —cos™' /R, 0c]) is feasible for 6c € [0, ¢p1]U
[¢3,27), and is infeasible for ¢ € [¢2, @3] due to intersection
of bt with s (Figure 8A).

For ¢ € [¢1, p2], the lower bound of fs can be repre-
sented by a piecewise continuous curve, which consists of at
most two pieces, corresponding to two intervals [¢1, o] and
[, p2], where « is the angle O of the intersection point be-
tween C' and the supporting line of s. If ¢1 < «, then the
curve has two pieces; otherwise, the curve is of one single
piece.

For O¢ € [¢1, a], the lower bound of 05 is indicated by the
endpoint a of line segment abc’, where ¢’ is the intersection
point between s and the circular arc centered at b (Figure
8B). If no intersection occurs between s and the circular arc,
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Figure 8: Infeasible final configurations due to an obstacle line segment s inside C'. Illustrations of fg-lower bounds
for (A) O¢ € [p1, 2], (B) ¢1 <O < a, (C) c =, and (D) a < 0o < ¢o.

s

Figure 9: Infeasible final configuration space due to an
obstacle line segment s inside C.

then the lower bound of 65 is given by the endpoint a of line
segment abc’, where bc’ intersects an endpoint of s.

For Oc € [a, ¢2], the lower bound of fs is indicated by
the endpoint a of line segment abc’, where bc’ intersects an
endpoint of s (Figure 8D). The lower bound of 6s is equal to
Oc when Oc = ¢2. See Figure 9 for a sketch of the infeasible
final configuration space.
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Case 2. Obstacle line segment s outside C' and in-
side C’. As depicted in Figure 10, we only need to worry
about computing the lower bound of fs for 6c € [¢p1, P2],
given that the entire negative half of the Og-range (i.e.,
[0c — cos™'r/R,0c]) is feasible for Oc € [0, ¢1] U [¢2, 27).
The analysis is similar to case 1 and thus omitted herein.
A sketch of the corresponding infeasible final configuration
space is shown in Figure 11.

Observe that any of the curves just described for charac-
terizing the lower or upper bound of s can be computed in
constant time. Thus, given an obstacle line segment s, the
associated infeasible final configuration space can be found
in O(1) time. As a result, it takes O(n) time to determine
the infeasible final configuration space for n obstacle line
segments.
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Figure 10: Infeasible final configurations due to an obstacle line segment s outside C' and inside C”. Illustrations of
Os-lower bounds for (A) O¢ € [¢1, P2, (B) ¢1 < 0c < a, (C) ¢ = e, and (D) o < O < ¢a.

Figure 11: Infeasible final configuration space due to a line segment s outside C' and inside C”.
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Dynamic Products of Ranks

David Eppstein*

Abstract

We describe a data structure that can maintain a dy-
namic set of points given by their Cartesian coordinates,
and maintain the point whose product of ranks within
the two coordinate orderings is minimum or maximum,

in time O(y/nlogn) per update.

1 Introduction

The rank of an element in a collection of elements is
its position in a list of all elements, sorted by some as-
sociated numerical value. If elements have a multidi-
mensional vector of values associated with them, then
each of these values gives rise to a different rank, and
we may wish to aggregate these multiple ranks into a
single combined score. One common method of aggre-
gating ranks is to use the geometric mean or equiva-
lently the product of ranks as the combined score. This
method is used in applications ranging from finding dif-
ferentially regulated genes in DNA microarray data [2],
choosing winners in multi-discipline sports events [7],
and measuring the scholarly output of economists [10]
to image recognition [8] and spam filtering in web search
engines [6].

In many of these applications, it is natural for the
elements in the collection and their associated numeri-
cal values to change dynamically, and when they do the
whole system of ranks for other elements may change.
For instance, inserting one new element, with a low nu-
merical value, will increase the ranks of all elements
with larger values. This raises the question: how can
we update the elements and their numerical values, and
maintain information about the product of ranks?

We can model this as a geometry problem, in which
the elements in the collection are modeled as points in
the Cartesian plane, with the z- and y-coordinates of
these points representing their associated numerical val-
ues. In this model, we would like to maintain a dynamic
set of pairs of real numbers, subject to point insertion
and point deletion, and as we do so, maintain dynami-
cally the point whose product of ranks in the two coor-
dinate orderings is minimum or maximum.

In this work we provide a solution to this dynamic
product of ranks problem. We solve the dynamic prod-

*Computer Science Department, University of California,
Irvine, eppstein@uci.edu. This work was supported in part by
the US National Science Foundation under grant CCF-1616248.
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uct of ranks problem, in the special case when there are
two rankings being combined, in time O(y/nlogn) per
update.

There are three main ideas to our method:

e We partition the points into rigid subsets: sets
of points whose ranks all change in lockstep with
each operation (that is, without changing the dif-
ference between the ranks of any two elements in
the set). Our partition will have the property that
each update will rebuild rigid subsets of total size
O(y/nlogn) and search for the point with minimum
or maximum product of ranks within O(y/n/logn)
of these subsets.

e We provide two solutions to the dynamic product of
ranks problem within each rigid subset. One solu-
tion applies a lifting transformation (to the pairs of
ranks of the points, not their given coordinates) to
turn it into a problem of querying a (static) three-
dimensional convex hull. Dually, the other solution
uses analogues of the classical Voronoi diagram and
farthest-point Voronoi diagram, minimization and
maximization diagrams with convex-polygon cells.

e We provide linear-time constructions for the lifted
convex hull in the minimization version of the prob-
lem, and for the maximization diagram in the max-
imization version of the problem, adapted from two
different algorithms for linear-time construction of
Voronoi diagrams of points in convex position.

Our method can be generalized to larger numbers of
rankings, but with a quadratic blowup in the dimen-
sion of the lifting transformation that (together with the
high complexity of higher-dimensional extreme point
queries) leads to a running time per update that is only
slightly smaller than the trivial naive algorithm of up-
dating all rankings and recomputing all products in lin-
ear time per update. For this reason, we restrict our
attention to maintaining information about the prod-
uct of two rankings.

2 Rigid subsets

2.1 Lifted hull

We say that a subset S of elements in our product of
ranks problem is rigid, through a sequence of updates,
if none of the updates performs an insertion or deletion



32" Canadian Conference on Computational Geometry, 2020

of an element of S, or of another element whose position
in either of the two rankings lies between two elements
of S. Equivalently, the difference in ranks of any two
elements of S remains invariant throughout the given
sequence of updates.

Lemma 1 Let S be any subset of elements in the
product of ranks problem, of size m. Then in time
O(mlogm) we can build a data structure for S such
that, throughout any sequence of updates for which S is
rigid, we can compute the elements of S with the min-
imum or mazimum product of ranks in time O(logm)
per update.

Proof. Let (z;,y;) be the ranks of the elements of S
prior to the sequence of updates for which S is rigid. We
construct the three-dimensional convex hull of the lifted
points (z;, y;, ;y;), and a Dobkin—Kirkpatrick hierarchy
allowing us to perform linear optimization queries (find-
ing the extreme point on the resulting hull of a given
linear function) in time O(logm) per query [5]. The
hull takes O(nlogn) time to construct and its Dobkin—
Kirkpatrick hierarchy takes an additional O(n) time.
For each element, let z; = x;y; denote its third coordi-
nate in this lifted point set.

After a sequence of updates that have changed the
ranks by subtracting the same offset a from each rank
x; and the same offset b from each rank y; within S, the
updated products of ranks are

(zi —a)(y; — b) = ab — ay; — bx; + 2,

a linear function of the three coordinates of the lifted
points, so the elements with the minimum and maxi-
mum product of ranks can be found by a linear opti-
mization query. O

This method is closely analogous to the classical
lifting transformation of two-dimensional closest-point
problems to three-dimensional extreme-point prob-
lems [3], which in its most commonly used form maps
pairs (x;,7;) to triples (z;,y;, 22 + y?); however, we use
a different quadratic function for the third coordinate.
Note that we will only query this structure for pairs
(a,b) with @ < x; and b < y;, because the differences
x; —a and y; — b represent ranks and are therefore non-
negative.

2.2 Linear time construction

To construct the lifted hull more quickly, it is helpful to
reduce the set of points to a subset whose projection to
the plane is convex.

Lemma 2 Let S be a set of points, let (a,b) be a pair
of numbers with a less than or equal to all x-coordinates
i S and b less than or equal to all y-coordinates in S.
Let (x;,y;) be the point in S minimizing (x; —a)(y; —b).
Then (x;,y;) lies on the convex hull of S.
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Figure 1: The minimizer of (z; — a)(y; — b) must be
a convex hull vertex, because the region below line L,
the tangent to the hyperbola through (z;,y;), must be
disjoint from S (Lemma 2). Analogously, the maximizer
of (z; —a)(y; —b) must be a maximal point of .S, because
the region above and to its left (yellow) must be disjoint
from S (Lemma 5).

Proof. The locus of points (x,y) with (z —a)(y —b) =
(z; — a)(y; — b) is a hyperbola, asymptotic to the lines
x = a and y = b, with (x;,y;) on its positive branch. Let
L be the line tangent to this hyperbola at (x;,y;); see
Figure 1. Then the halfplane below L must be disjoint
from S, for any point (z;,y;) between L and the other
branch of the hyperbola would have a smaller value of
(x; —a)(y; —b) and by the assumptions on a and b there
are no points of S on the other side of the other branch
of the hyperbola. O

Aggarwal et al. [1] showed that, for 3d points whose
two-dimensional projection is convex, the 3d convex hull
can be constructed in linear time. In the next lemma
we apply this result to the lifted hull of Lemma 1.

Lemma 3 Let S be any subset of elements in the prod-
uct of ranks problem, of size m, for which the sorted
order by x-coordinate is known. Then in time O(m) we
can build a data structure for S such that, throughout
any sequence of updates for which S is rigid, we can
compute the elements of S with the minimum product
of ranks in time O(logm) per update.

Proof. We use Graham scan to compute the 2d convex
hull from the sorted order of points in linear time, and
the algorithm of Aggarwal et al. [1] to compute the 3d
convex hull from the 2d convex hull in linear time. The
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Figure 2: The bisector between two sites in the mini-
mization diagram is the line through the other two cor-
ners of their bounding box.

Dobkin—Kirkpatrick hierarchy construction time is also
linear. O

2.3 Maximization diagram

Instead of lifting the points (x;,y;) to the convex hull
of three-dimensional points (x;, y;, 2;y;), an alternative
representation for each rigid subset would be to repre-
sent it by the minimization diagram or maximization
diagram of the functions f;(a,b) = (z; — a)(y; — b) =
ab — ay; — bx; + z;. Then, the minimum or maximum
product of ranks for the rigid subset with rank offsets
a and b could be obtained by performing a point loca-
tion query in this diagram, rather than by performing
an extreme-point query on a three-dimensional polyhe-
dron.

Because the quadratic term ab in the definition of the
function f;(a,b) does not depend on the point (x;,y;),
and is equal for all points, it does not affect the min-
imization or maximization: we obtain the same mini-
mization or maximization diagrams for the linear func-
tions g;(a,b) = —ay; — bx; + z;. As the minimization
or maximization diagram of linear functions, these dia-
grams have convex polygon cells, separated by bisector
lines, the lines consisting of the points (a,b) at which
two of these functions are equal.

Lemma 4 The bisector of any two given points (sites)
(xi,yi) and (xj,y;) in the minimization or mazimiza-
tion diagram described above is a line that passes
through the other two corners (z;,y;) and (x;,y;) of the
bounding box of the two points (Figure 2).

Proof. When the bounding box is a square, this fol-
lows by symmetry: a reflection through the line de-
scribed in the lemma maps the two given points to each
other, swapping the two Cartesian coordinates, so for
any point (a,b) on the line described in the lemma, the
coordinate differences between (a,b) and the two given
points are equal but reversed. That is, |z; —a| = |y; —b|
and |z; — a| = |y; — b|. Since the quantity being mini-
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Figure 3: The maximization diagram for a given set of
maximal points. Although this diagram is well-defined
over the whole plane, we will only query it within the
bottom-left quadrant, below and to the left of all the
given points.

mized is the product of these coordinate differences, it
is equal for the two given points along this line.

For any other two points, not both on the same verti-
cal or horizontal line, we may apply a linear transforma-
tion to one of the coordinates that makes the bounding
box a square; this transformation affects both of the
functions g; and g; in the same way, so the bisector of
the transformed points (the diagonal of the square) is
the transformation of the bisector, which must there-
fore be the diagonal of the original bounding box. The
remaining case, that the points are on a horizontal or
vertical line, follows by continuity. ]

Figure 3 depicts an example of the maximization di-
agram described above.

2.4 Expected linear time construction

These diagrams can be constructed in O(nlogn) time,
either by interpreting them as a lower or upper envelope
of three-dimensional planes (the graphs of the functions
they minimize or maximize) or by using algorithms for
abstract Voronoi diagrams with bisectors determined as
in Lemma 4 [9]. However, as we now show, they can be
constructed in expected linear time.

Our construction begins with the following analogue
of Lemma 2. We observe that, in constructing the maxi-
mization diagram for a collection of points, we need only
include the points (x;,y;) that are maximal (meaning
that there is no other point (z;,y;) with z; > x; and
y; > yi), for those are the only ones that can produce
the maximum of the function values at any point (a,b).
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Lemma 5 Let S be a set of points, let (a,b) be a pair
of numbers with a less than or equal to all x-coordinates
in S and b less than or equal to all y-coordinates in S.
Let (x;,y;) be the point in S mazimizing (x; —a)(y; —b).
Then (z;,y;) is one of the mazximal points of S, meaning
that there is no other point (z;,y;) in S with ; > x;
and y; > yi.

Proof. Any such point (z;,y;) would have a larger
value of (x; — a)(y; — b). O

The quarter-plane of points with larger z- and y-
coordinates than (x;,y;), and their relation to the hy-
perbola of points with equal query values to (z;,¥;), is
shown in Figure 1.

To construct the maximization diagram in expected
linear time we adapt an algorithm by Paul Chew for
Voronoi diagrams of convex polygons [4].

Lemma 6 Let S be a set of points, all of which are
maximal in S, indexed in sorted order by their x-
coordinates, and let (x;,y;) and (x;y1,yi+1) be consec-
utive points in this ordering. Then in the mazimization
diagram for (x;—a)(y;—b), the cells for these two points
share an edge.

Proof. Within the bounding rectangle of (x;,y;) and
(Zit1,Yit1), the point (z;,y;) has a larger query value
than all points of S with smaller index, and the point
(i41,¥i+1) has a larger query value than all points of S
with larger index, so the maximization diagram within
the rectangle consists only of points in the cells for these
two points. By Lemma 4 the cells meet within the rect-
angle along the bisector of these two points, which is
the diagonal of the rectangle. O

The shared edge is not in a part of the diagram that
we will query in our data structure for products of ranks,
but its location is unimportant for the use we will make
of it in the following lemma.

Lemma 7 Let S be any subset of elements in the prod-
uct of ranks problem, of size m, for which the sorted
order by x-coordinate is known. Then in randomized
expected time O(m) we can build a data structure for S
such that, throughout any sequence of updates for which
S is rigid, we can compute the elements of S with the
maximum product of ranks in time O(logm) per update.

Proof. The maximal points in S can be found in linear
time from the sorted order by z-coordinates, using a
stack algorithm closely related to Graham scan.

We construct the maximization diagram by a ran-
domized incremental algorithm in which we randomly
permute the points and add them to the diagram one
at a time in that random order. By the analysis of
Chew [4], this can be done in expected constant time
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per point as long as we know the identity of a neighbor-
ing cell in the diagram of the points added so far. We
can form a random permutation with this additional
information about neighboring cells by starting with a
doubly linked list of all of the points, in z-coordinate
order, deleting randomly chosen points from the linked
list until none are left, and then reversing the order of
the deletions. By Lemma 6, the neighbors of a point
(24,9;) in the linked list at the time of its deletion will
form neighboring cells in the maximization diagram at
the time of its insertion.

Because it is the maximization diagram of a set of
linear functions, we can interpret this diagram as a
three-dimensional intersection of halfspaces, and con-
struct a Dobkin—Kirkpatrick hierarchy from it in linear
time, suitable for performing point location queries in
logarithmic time. (Alternatively, the history DAG of a
vertical decomposition of the randomized incremental
maximization diagram construction can be used as a
point location data structure with logarithmic expected
time per query.) |

3 Partitioned data structure

3.1 One-dimensional partition

To partition our given elements into rigid subsets,
we first consider a one-dimensional partition method,
which we will apply separately to the two rankings of
the elements.

Lemma 8 Let f be any positive concave function of
a single argument. Then for any sequence S of or-
dered values undergoing insertions and deletions, we can
maintain a partition of S into an ordered sequence of
O(n/f(n)) contiguous subsets, with O(f(n)) elements
in each subset, changing O(1) subsets per update, using
a data structure with time O(logn) per update, where n
denotes the current size of S.

Proof. We use binary search trees to keep track of the
sequence of elements and the sequence of subsets. As
keys for the binary search tree of subsets, we use the
values of their first elements. In this way we can find
the subset containing the updated element, after any
update, and determine the new size of this subset. We
also keep track of the sizes of each subset and main-
tain priority queues for the largest subsets and for the
smallest consecutive pairs of subsets.

We maintain as an invariant the requirements that
the sizes of all subsets in the partition are at most
2[f(n)] + 2, and that no two consecutive subsets both
have size less than [ f(n)]—1. We say that our structure
is growing if, for the most recent update having a dif-
ferent value of [f(n)], that value was smaller than the
current value, and shrinking otherwise. If the structure
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is growing, we require that all subsets have size at most
2[f(n)], and if it is shrinking, we require that no two
consecutive subsets both have size less than [ f(n)].

On each update, if the structure is growing, we select
an arbitrary pair of consecutive subsets of size [ f(n)]—1
(if such a pair exists) and merge them into a single sub-
set. If the structure is shrinking, we select an arbitrary
subset of size greater than 2[ f(n)] (if such a subset ex-
ists) and split it into two subsets of size as close to equal
as possible. We claim that this is sufficient to maintain
our invariants. Clearly, it does so at the updates for
which [ f(n)] does not change, so we need only consider
the steps at which it does change.

In the case that [ f(n)] changes in such a way that the
structure was growing before the update and is shrink-
ing after the update, the invariants are automatically
maintained, because the ranges of sizes of subsets and
consecutive pairs of subsets that are allowed remain
unchanged. The same is true when the structure was
shrinking before the update and growing after the up-
date.

When [f(n)] increases twice in a row (so that it was
growing both before and after the second increase), let
ng be the value of n at the first increase. Then at
that time, there must be at most ng/f(ng) consecutive
pairs of small subsets, and (by concavity of f) at least
no/ f(no) steps between the two increases. It only takes
no/2f(ng) steps to eliminate all of the consecutive pairs
of small subsets. So by the time that the second increase
happens, all of the consecutive pairs of small subsets will
have been eliminated, maintaining the invariant.

Similarly, when [f(n)] decreases twice in a row (so
that it was shrinking both before and after the sec-
ond decrease), let ng be the value of n at the first
decrease. Then at that time, there must be at most
ng/2f(ng) large subsets, and (by concavity of f) at least
no/ f(no) steps between the two decreases. It only takes
ng/2f(no) steps to eliminate all of the large subsets. So
by the time that the second decrease happens, all of the
consecutive pairs of large subsets will have been elimi-
nated, maintaining the invariant. O

3.2 Two-dimensional partition

We now use our one-dimensional rank partition to par-
tition the given elements into subsets, most of which
remain rigid in each update. If the ranks of each ele-
ment are (z;,y;), we will maintain one rank partition on
the ranks x;, and a second rank partition on the ranks
yi, each with parameter f(n) = y/nlogn. Then each
subset Sj of our two-dimensional partition will consist
of elements that are grouped together both in the parti-
tion on the z-ranks and in the partition on the y-ranks.

Lemma 9 The partition into subsets Sy described
above has the following properties:
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e There are O(n/logn) subsets.

e FEach update to the data causes O(y/n/logn) of the
subsets, with total size O(+/nlogn), to be non-rigid.

e FEach update to the data causes O(1/n/logn) of the
subsets, with total size O(y/nlogn), to be replaced
by new subsets due to the change in the underlying
one-dimensional partitions.

Proof. It follows from Lemma 8 and our choice of
the function f that each one-dimensional partition has
O(y/n/logn) subsets, of size O(y/nlogn), and that
each update causes O(1) changes to the one-dimensional
partition. Because each subset in the two-dimensional
partition is determined by a pair of subsets in the two
one-dimensional partitions, there are O(n/logn) sub-
sets in the two-dimensional partition.

In any update, only one subset of each one-
dimensional partition contains non-rigid subsets of the
two-dimensional partition. Therefore, the total num-
ber of non-rigid subsets is at most twice the number of
two-dimensional subsets that can be contained in a sin-
gle one-dimensional subset, O(y/n/logn), and the total
size of the non-rigid subsets is at most twice the size of
a one-dimensional subset, O(y/nlogn). The analysis of
the number of subsets that are replaced with new sub-
sets and their total size is similar: each change to a
one-dimensional subset causes changes to O(y/n/logn)
two-dimensional subsets having a total of O(y/nlogn)
elements, so the bounds on replaced subsets follow from
the fact that each update causes O(1) changes to the
one-dimensional partitions. O

4 Which subsets to query?

We introduced Lemma 2 and Lemma 5 to aid in the
efficient construction of rigid subsets, but they can also
be used to reduce the number of rigid subsets that we
must query after any update. As these two lemmas
show, the point with the smallest product of ranks must
be minimal in the coordinate ordering of the points,
and the point with the largest product of ranks must be
maximal. The two-dimensional partition of Lemma 9
partitions the points in a grid pattern, and we need
only query the rigid subsets for cells in this grid that
can contain minimal or maximal points.

Lemma 10 Let a given set of points be partitioned by k
axis-parallel lines into a grid of cells, represented in such
a way that in constant time we can find the neighboring
cell in any direction from any given cell and find the
lowest nonempty cell in any column of the grid. Then
in time O(k) we can identify a subset of O(k) of the grid
cells that contain all of the minimal points in the set.
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Figure 4: A grid partition of a point set, and a path
(yellow shading) through the cells of the grid, such that
the cells of the path contain all minimal points of the
set (shown as red).

Proof. As we describe below, we select cells in the grid
along a path from top left to bottom right, such that
every unselected cell below the path is also below the
lowest nonempty cell in its column, and every unselected
cell above the path has a nonempty selected cell below
and to the left of it. In this way, every minimal point of
the given point set belongs to a selected cell, for there
can be no points below and to the left of the path, and
all points above and to the right are not minimal. Fig-
ure 4 shows an example.

To find this path of grid cells, we begin at the top left
cell of the grid. Then we repeatedly step to a neighbor-
ing cell, according to the following rules:

e If the current cell is the bottom right cell of the
grid, we terminate the path.

e If the current cell is not the lowest nonempty cell in
its column, or if it belongs to the rightmost column,
we step to the next cell down.

e Otherwise, we step to the next cell to the right.

The path must extend across all columns, for it can
only stop in the rightmost column. If a cell is below
the path, it must also be below the lowest nonempty
cell in its column, or we would have stepped downward
to it when the path crossed its column; therefore, all
cells below the path are empty. If a cell is above the
path, then the path must have stepped below it in some
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column to the left of it, which can only happen when
the lowest nonempty cell in that column is below and
to the left of the given cell. Therefore, all cells above
the path have a nonempty cell below and to the left of
them. O

A similar method, with the ability to find the highest
nonempty cell in each column, can find a path of grid
cells containing all maximal points.

5 Overall data structure

Our overall data structure consists of:

e Two binary search trees on the two coordinate val-
ues of the elements, augmented to allow the rank
of any element at any step of the update sequence
to be looked up in logarithmic time per query.

e Two one-dimensional partitions of the elements,
one for each of the two rankings of the elements,
according to Lemma 8, with the parameter choice
specified for Lemma 9.

e The two-dimensional partition of the elements into
rigid subsets Sy defined from these one-dimensional
partitions, according to Lemma 9.

e A graph describing the relation between neighbor-
ing cells in this two-dimensional partition, and the
lowest or highest nonempty cell in each column of
cells, suitable for use in Lemma 10.

e A sorted list of points in each partition set, sorted
by their z-coordinates.

e A data structure for maintaining the extreme
points for the product of ranks of each subset S,
through updates for which it is rigid, according to
Lemma 1.

Theorem 11 The data structure described above can
maintain the minimum or mazximum product of ranks
in time O(y/nlogn) per update for the minimimum, or
the same time bound in expectation for the mazimum.

Proof. By Lemma 9, each update causes changes to
subsets S, of total size O(y/nlogn); by Lemma 3 and
Lemma 7, reconstructing the extreme-point data struc-
tures for these subsets takes the stated time per update.
After each update, we may use Lemma 10 to find a sub-
set of O(y/n/logn) subsets to query, use the binary
search trees to determine the offsets in rank for each of
these selected subsets, and then query the extreme point
within each subset in time O(logn) by Lemma 1. The
total time for these queries is again the stated time per
update. Maintaining the binary search trees and one-
dimensional partitions takes an amount of time that is
negligible with respect to this total time bound. O
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Closest-Pair Queries and Minimum-Weight Queries are Equivalent for
Squares

Abrar Kazi*

Abstract

Let S be a set of n weighted points in the plane and let
R be a query range in the plane. In the range closest
pair problem, we want to report the closest pair in the
set RN S. In the range minimum weight problem, we
want to report the minimum weight of any point in the
set RN.S. We show that these two query problems are
equivalent for query ranges that are squares, for data
structures having Q(logn) query times. As a result, we
obtain new data structures for range closest pair queries
with squares.

1 Introduction

Let S be a set of n points in the plane. In the range
closest pair problem, we want to store S in a data struc-
ture, such that for any axes-parallel query rectangle R,
the closest pair in the point set R NS can be reported.
This problem has received considerable attention; see
[1,2,3,6,7,9, 10, 11, 12]. The best known result is by
Xue et al. [12], who obtained a query time of O(log® n)
using a data structure of size O(nlog?n). For the spe-
cial case when the query range R is a square (or, more
generally, a fat rectangle), Bae and Smid [2] showed that
a query time of O(logn) is possible, using O(nlogn)
space.

Assume that each point p of S has a real weight
w(p). In the range minimum weight problem, we want
to store S in a data structure, such that for any axes-
parallel query rectangle R, the minimum weight of any
point in RN S can be reported. Using a standard
range tree of size O(nlogn), such queries can be an-
swered in O(log?n) time; see, e.g., de Berg et al. [5].
Chazelle [4] showed the following results for such queries
on a RAM: (i) for every € > 0, O(log"*° n) query time
using O(n) space, (ii) O(log nloglogn) query time using
O(nloglogn) space, and (iii) for every € > 0, O(logn)
query time using O(nlog® n) space. We are not aware
of better solutions for query squares.

*School of Computer Science, Carleton University, Ottawa,
Canada, AbrarKazi@cmail.carleton.ca. Research supported by
an NSERC Undergraduate Student Research Award.

tSchool of Computer Science, Carleton University, Ottawa,
Canada, michiel@scs.carleton.ca. Research supported by
NSERC.

Michiel Smidt

1.1 Our Results

We show that the range closest pair problem and the
range minimum weight problem are equivalent for query
squares®, for data structures having Q(logn) query
times. We say that a function f is smooth, if f(O(n)) =

O(f(n)). Our main results are as follows:

Theorem 1 Let M and @ be smooth functions such
that M(n) > n and Q(n) = Q(logn). Assume there
exists a data structure of size M(n) thalt answers a
range minimum weight query, for any query square, in
Q(n) time. Then there exists a data structure of size
O(M(n)) that answers a range closest pair query, for
any query square, in O(Q(n)) time.

Theorem 2 Let M and Q be smooth functions such
that M(n) > n and Q(n) = Qlogn). Assume there
exists a data structure of size M (n) that answers a range
closest pair query, for any query square, in Q(n) time.
Then there ezists a data structure of size O(M(n)) that
answers a range minimum weight query, for any query
square, in O(Q(n)) time.

Theorem 1, together with the above mentioned results
of Chagzelle, imply the following:

Corollary 3 Let S be a set of n points in the plane.
Range closest pair queries, for any query square, can be
answered

1. in O(log" ™ n) time using O(n) space,
2. in O(log nloglogn) time using O(nloglogn) space,
3. in O(logn) time using O(nlog®n) space.

Observe that the third result in Corollary 3 improves
the space bound in Bae and Smid [2] from O(nlogn) to
O(nlog® n).

Our proofs of Theorems 1 and 2 are based on the ap-
proach of Bae and Smid [2] for range closest pair queries
with squares. Their solution uses data structures for
(i) deciding whether a query square contains at most ¢
points of S, for some fixed constant ¢, (ii) computing the
smallest square that has a query point as its bottom-left
corner and contains ¢’ points of S, for some fixed con-
stant ¢/, and (iii) range minimum weight queries with

Lthroughout this paper, squares are always axes-parallel
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squares. They showed that the queries in (i) and (ii) can
be answered in O(log n) time using O(n log n) space. We
will improve the space bound for both these queries to
O(n).

If p is a point in the plane, then we denote its z- and
y-coordinates by p, and p,, respectively. The north-east
quadrant of p is defined as NE(p) = [pg, 00) X [py, 00).
Similarly, the south-west quadrant of p is defined as
SW(p) = (—00,pz] X (—00,py]. The Manhattan dis-
tance between two points p and ¢ is given by d1(p, q) =
Pz — @z| + [Py — qy|. Observe that, for ¢ € NE(p),
dl(pv Q) = (Qm + Qy) - (p$ +py)~

Definition 1 Let S be a set of n points in the plane,
let ¢ be an integer with 1 < ¢ < n, and let p be a point
in the plane.

1. Assume that [NE(p)NS| > c. We define closest.(p)
to be the set of the ¢ points in NE(p) NS that are
closest (with respect to dy) to p.

2. Assume that |[NE(p)NS| < c¢. We define closest.(p)
to be NE(p)N S.

The set closest.(p) can equivalently be described as
follows. Consider a line with slope —1 through p. We
move this line to the right until it has encountered c
points of NE(p) N S or it has encountered all points in
NE(p) NS, whichever occurs first. The set closest.(p)
is the subset of NE(p) N S that are encountered during
this process.

We will see in Section 3 that data structures answer-
ing the queries in (i) and (ii) above in O(logn) time,
while using O(n) space, can be obtained from the fol-
lowing result:

Theorem 4 Let S be a set of n points in the plane and
let ¢ be an integer with 1 < ¢ < n. There exists a data
structure of size O(c?n) such that for any query point p,
the set closest.(p) can be computed in O(logn+-c) time.

The proof of Theorem 4 will be given in Section 2.
In Section 4, we will reduce range closest pair queries
with squares, to range minimum weight queries, again
with squares, and the queries of Section 3. Finally, in
Section 5, we will present our reduction in the other
direction.

2 Answering closest.(p) Queries

In this section, we will prove Theorem 4. Throughout
this section, S denotes a set of n points in the plane and
¢ denotes an integer with 1 < ¢ < n. We assume for
simplicity that no two points in S are (i) on a vertical
line, (ii) on a horizontal line, and (iii) on a line with
slope —1. We will use the notion of a staircase polygon,
as illustrated in Figure 1.
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Figure 1: Staircase polygons.

.

Figure 2: Illustrating Observation 1. Each thick edge is
divided into two new edges.

Definition 2 (Staircase polygon) A staircase poly-
gon consists of (i) a horizontal edge AB, where A is to
the left of B, (ii) a vertical edge CB where C is below
B, and (i) a polygonal path consisting of alternating
vertical and horizontal edges, where the leftmost edge is
vertical with top endpoint A and the rightmost edge is
horizontal with right endpoint C.

In the first two staircase polygons in Figure 1, the ver-
tices A, B, and C have finite x- and y-coordinates. In
the third staircase polygon, the vertex A can be thought
of having an z-coordinate of —oco and the left-most edge
as being infinitely far off to the left. Similarly, the ver-
tex C has a y-coordinate of —oo and the bottom-most
edge is infinitely far off in the downward direction. The
vertex B may have z- and y- coordinates of co. In par-
ticular, the entire plane is considered a staircase poly-
gon.

The following observation is illustrated in Figure 2.

Observation 1 Let P be a staircase polygon.

1. If L is a horizontal or vertical line that intersects
P, then L divides P into two staircase polygons,
P, and P,. The total number of edges of P1 and
Py (counting shared edges only once) is at most 3
more than the number of edges belonging to P.



208

CCCG 2020, Saskatoon, Canada, August 5—7, 2020

2. Let p be a point in the interior of P. The boundary
of SW (p) divides P into two staircase polygons, Py
and Py. The total number of edges of P, and Ps
(counting shared edges only once) is at most 4 more
than the number of edges belonging to P.

2.1 Constructing the Data Structure

We order the points p in S by their p,+p, values and use
p*) to denote the k" point in this ordering. Observe
that this is the order in which the points of .S are visited
when moving a line with slope —1 from left to right.

We iteratively construct a subdivision of the plane
into staircase polygons. We will refer to each such poly-
gon as a cell. The 0" subdivision SD© consists of one
single cell, the plane itself.

In the k' iteration, we add the point p*) to the
(k — 1)*" subdivision SD* =Y. From the point p*, we
extend a ray horizontally to the left until it has en-
countered ¢ vertical edges of SD*=Y or reaches —00,
whichever occurs first. For ¢ = 1,...,¢ — 1, the part
of the ray between the i*" and (i + 1)** vertical edges
divides a cell of SD*~Y into two cells. We also ex-
tend a ray from p®) vertically downward until it has
encountered ¢ horizontal edges of SD*=1) or reaches
—o0, whichever occurs first. For ¢ = 1,...,¢c — 1, the
part of the ray between the i'* and (i + 1)*" horizontal
edges divides a cell of SD* =1 into two cells. Finally,
the boundary of SW (p*)) divides the cell of SD*~1
that contains p*) into two cells. The resulting subdivi-
sion is SD™). The entire construction is illustrated in

Figure 3.
6 6 6
4 4 4
7 J 7
2 2 |2
3 3 3
5 5 5
1 . 1 . 1
1
6 6 6
4 4 4
7 T 7
| 2 |2 |2
3 3 3
5 5 5
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7 7
3 3
5 5
I 1 ‘ [
i I

Figure 3: Constructing the sequence of subdivisions for

n="7and c=2.

The following lemma follows, by induction on k, from
Observation 1.

Lemma 5 For every k with 0 < k < n, every cell of
the subdivision SD®) is a staircase polygon.

Consider the final subdivision SD™. With each
cell C of this subdivision, we store the set S.(C) :=
closest.(z), where z is the top-right vertex of C. Fi-
nally, we build a point location data structure for the
subdivision SD™; see Kirkpatrick [8]. This completes
the description of the data structure.

Definition 3 Let C be a cell in SD*).  The north-
east closure of C, NEC(C), consists of its interior, the
topmost edge of C (without its leftmost point), and the
rightmost edge of C (without its lowest point).

For the query algorithm, consider a query point p.
We first locate p in the subdivision SD™  and find the
(unique) cell C such that p € NEC(C). The query
algorithm returns the set S.(C).

The following lemma proves the correctness of this
query algorithm.

Lemma 6 For any query point p in the plane, let C' be
the cell of SD™ that is returned by the point location
query. Then S.(C) = closest.(p).

A proof of Lemma 6 can be found in the Appendix.

2.2 Space Requirement and Query Time

We start by bounding the number of cells of the final
subdivision SD™. Clearly, SD© consists of only one
cell. For each k, during the construction of the subdivi-
sion D™ from S’D(k_l)7 at most 2c—1 cells are divided
into two new cells and, thus, the total number of cells
increases by at most 2c¢ — 1. It follows that the number
of cells in SD™ is at most 1 +n(2c — 1) = O(cn).

Each cell C of SD™ stores a set S.(C) of size at
most ¢. Therefore, the total size of all these sets S.(C)
is O(c?n).

Next, we bound the number of edges of SD™ . The
initial subdivision DS is the entire plane, which we re-
gard to be an infinite rectangle consisting of four edges.
By Lemma 5, each cell in each subdivision SD®) s a
staircase polygon. Thus, by Observation 1, at most 4
new edges are added when such a cell is divided. There-
fore, the number of edges increases by at most 4(2¢—1)
when constructing SD® from SD*~Y . Thus, the to-
tal number of edges in the final subdivision SD™ s at
most 4+n-4(2¢—1) = O(cn). It follows that the point
location data structure uses O(cn) space.

We have shown that the space used by the entire data
structure is O(c?n).
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Figure 4: T transforms NNE(p) into NE(T(p)).

The query algorithm, with query point p, first per-
forms point location, which takes O(log(cn)) = O(log n)
time, because ¢ < n. Reporting the set closest.(p) takes
O(c) time. Thus, the total query time is O(logn + ¢).

This completes the proof of Theorem 4.

3 Some Related Queries

In this section, we use the data structure of Theorem 4
to solve several related query problems.

Definition 4 Let p be a point in the plane and consider
the line with slope 1 through p. This line divides NE(p)
into two cones, each one having an angle of 45°. We
denote the upper cone by NNE(p) and the lower cone by
ENE(p).

Lemma 7 Let S be a set of n points in the plane and
let ¢ be an integer with 1 < ¢ < n. There exists a data
structure of size O(c?n) which can perform the following
query in O(logn + ¢) time: Given a query point p, find
the smallest square that has p as its bottom-left corner
and contains ¢ points of S.

Proof. Assume we know the set L; consisting of the ¢
lowest points of NNE(p) NS and the set Lo consisting
of the ¢ leftmost points of ENE(p)N.S. Then we obtain
the answer to the query in O(c) time by selecting the c¢t®
smallest element in the sequence dw(p, q), ¢ € L1 U Lo,
where doo (p, q) = max{|p; — ga|, |py - qu|}

We will describe how the data structure of Theorem 4
can be used to find the set L; in O(logn + ¢) time.
Finding the set Ly can be done in a symmetric way.

Consider the transformation 7' that maps any point
q = (¢x, qy) to the point T(q) = (¢x, ¢y — ¢=). We com-
pute the set S' = {T'(q) : ¢ € S} and construct the data
structure of Theorem 4 for S’

Observe that p' € NNE(p) if and only if T(p')
NE(T(p)); refer to Figure 4. Furthermore, if
p' € NNE(p), then di(T(p),T(p")) = di((pz.py —
Pa)s (P Py —12)) = 0+ (P —P2)) — (P + (Py —1a)) =
p; — py. Thus, p’ is one of the ¢ lowest points in
NNE(p) N S if and only if T(p’) is one of the ¢ points

m
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in NE(T(p)) NS’ that is closest (with respect to dy) to
T(p).

Thus, for a given query point p, by querying the data
structure for S’ with T'(p), we obtain the set L;. By
Theorem 4, the amount of space used is O(c?n) and the
query time is O(logn + c). O

Lemma 8 Let S be a set of n points in the plane and
let ¢ be an integer with 0 < ¢ < n — 1. There exists
a data structure of size O(c?>n) which can perform the
following query in O(logn + ¢) time: Given a query
square R, decide whether |RN S| < ¢, and if so, report
the points of RN S.

Proof. We store the set S in the data structure of
Lemma 7, with ¢ replaced by ¢ + 1.

Let p be the bottom-left corner of the query square
R. By querying the data structure, we obtain the small-
est square R’ that has p as its bottom-left corner and
contains ¢ 4+ 1 points of S. It is clear that one of these
¢+ 1 points is on the top or right edge of R’; let this
point be p’.

If p’ € R then R is properly contained in R’ and, thus,
|[RN S| < e In this case, since RNS C (R' N S), the
points of RN S can be reported in O(c) time.

If p € R then |[RN S| > ¢. This fact is reported. O

4 From Minimum Weight Queries to Closest-Pair
Queries

In this section, we prove Theorem 1. Let S be a set of
n points in the plane.

We assume that, for any set V' of m weighted points in
the plane, we can construct a data structure DS prpw (V)
that can report, for any query square R, the minimum
weight of any point in RN'V. We denote the space and
query time of this data structure by M(m) and Q(m),
respectively. We assume that both functions M and @
are smooth, M(m) > m, and Q(m) = Q(logm).

We will show that DS and the results from the
previous sections can be used to obtain a data structure
that supports range closest pair queries on S for ranges
that are squares.

Let R be a query square. Bae and Smid [2] have
shown that, in order to obtain the closest pair in RN.S,
the following steps are sufficient:

1. Decide if |[RN S| < 16. If this is the case, report
the points in RN S.

Thus, we store the points of S in the data structure
of Lemma 8, where ¢ = 16. This uses O(n) space
and supports this query in O(logn) time.

2. Let p be the bottom-left corner of R. Find the
smallest square that has p as its bottom-left corner
and contains 5 points of S.
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Thus, we store the points of S in the data structure
of Lemma 7, where ¢ = 5. This uses O(n) space and
supports this query in O(logn) time.

3. Three queries that are symmetric to 2., with p being
the bottom-right, top-right, and top-left corner of
R, respectively.

Thus, we store the points of .S in each of these three
variants of the data structure of Lemma 7, where
¢ = 5. This uses O(n) space and supports these
three queries in O(logn) time.

4. During preprocessing, we obtain four subsets
S1,...,54 of S; these subsets may overlap. For
each k = 1,2,3,4, each point of S; has a positive
weight.

To answer the closest pair query for R, the previous
three steps give four squares By, ..., By. For each
k=1,...,4, we find the minimum weight of any
point in Bi N Sk.

Thus, for each k£ = 1,...,4, we store the weighted
point set Sy in the data structure DS pw (Sk).
Since Sj has size at most n, this uses O(M(n))
space and supports these four queries in O(Q(n))

time.
5. The previous four steps give four squares
C1,...,Cy, each containing at most 5 points of S.

For each k =1,...,4, we find the points of C}x; N S.

Thus, we store the points of S in the data structure
of Lemma 8, where ¢ = 5. This uses O(n) space and
supports this query in O(logn) time.

6. The results of the queries in these five steps give us
sufficient information to compute the closest pair
in RNS in O(1) time.

To conclude, the total amount of space used is
O(M(n) +n) = O(M(n)) and the total query time is
0(Q(n) +logn) = O(Q(n)). This proves Theorem 1.

5 From Closest-Pair Queries to Minimum Weight
Queries

In this final section, we prove Theorem 2. Let S be a
set of n weighted points in the plane. For each point p
in S, we denote its weight by w(p).

We assume that, for any set V of m points in the
plane, we can construct a data structure DS cp (V) that
can report, for any query square R, the closest pair in
RNV. We denote the space and query time of this data
structure by M (m) and Q(m), respectively. We assume
that both functions M and @ are smooth, M (m) > m,
and Q(m) = Q(logm).

We will show that DS¢cp and the data structure of
Lemma 8 can be used to obtain a data structure that

supports range minimum weight queries on .S for ranges
that are squares.

We may assume, without loss of generality, that all
weights w(p) are positive, pairwise distinct, and strictly
less than 1. (If this is not the case, then we sort the se-
quence of weights, breaking ties arbitrarily, and replace
each weight by 1/(2n) times its position in the sorted
order.)

Let 0 be the closest pair distance in the set S. For
each point p in .S, define the points

pt = (ps+-w(p)/3,py)

and
P~ =(pa—0-w(p)/3,py),
and let S’ = {p*t:pe S}U{p~ :pe S}
Our data structure for minimum weight queries con-
sists of the following:

1. We store the points of S in the data structure of
Lemma 8, where ¢ = 1.

2. We store the points of S U S’ in the data structure
DSep(SUS.

The query algorithm is as follows. Let R be a query
square. First, we decide whether |[R N S| < 1. If this is
the case, then we obtain the set RNS. If this set contains
one point, say p, then we return w(p); otherwise, we
return the fact that RN S is empty.

Assume that |[RN S| > 2. Then we query DS ¢p(S U
S’ for the closest pair in RN (SUS’). Let (p,a) be this
closest pair. In Lemma 11, we will prove that p € RN.S
and a € RN {pT,p~}. We return w(p).

Since |S| = n and |S’| = 2n, the total amount of space
used by the data structure is O(n)+ M (3n) = O(M(n))
and the total query time is O(logn)+Q(3n) = O(Q(n)).

To complete the proof of Theorem 2, it remains to
prove the correctness of the query algorithm. We will
present this proof in the next subsection.

5.1 Correctness of the Query Algorithm

We denote the Euclidean distance between two points a
and b by d(a,b). We start with two preliminary lemmas.

Lemma 9 Let R be a square such that [RN S| > 2.
Then for each point p in RNS, at least one of the points
pT and p~ is in R.

Proof. Let £ be the side length of R. The distance
between any two distinct points of RN S is at least §
and at most £-+/2. It follows that § < £-+/2.

Let p be an arbitrary point in RNS. We may assume,
without loss of generality, that p is in the left half of R,
i.e., the distance between p and the right boundary of
R is at least £/2. Since w(p) < 1,

d(p,p*) =6 w(p)/3<8/3<(/2
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and, thus, the point p™ is in R. O

Lemma 10 Letp and q be two distinct points in S, and
leta € {pT,p~} and b € {qT,q~}. Then the following
inequalities hold:

1. Both d(p,a) and d(q,b) are less than 6/3.

2. d(p,q) > 9.

3. Both d(p,b) and d(a,q) are larger than 25/3.
4. d(a,b) >4/3.

Proof. Recall that the weights of all points in .S are less
than 1. Since d(p,a) = - w(p)/3 < 6/3 and d(g,b) =
d-w(q)/3 < &/3, the first claim holds. The second claim
follows from the definition of §. The third claim holds
because

6 < d(p,q) < d(p,b) + d(b,q) < d(p,b) + /3
and
0 <d(p,q) <d(p,a)+d(a,q) < d/3+d(a,q).

The fourth claim holds because

§ < d(p,q) < d(p,a)+d(a,b)+d(b,q) < §/3+d(a,b)+5/3.

O

The next lemma states that the output of the query
in DScp(SUS’) consists of one point p in .S and one

point in {p*,p~}.

Lemma 11 Let R be a square such that |[RN S| > 2.
The closest pair distance in RN (S'US’) is attained by
a pair (p,a), for somep € RNS anda € RN {p*,p~}.

Proof. We consider the three possible cases, depending
on whether the closest pair distance in RN (S U S’) is
attained by two points of S (Case 1), two points of S’
(Case 2), or one point of S and one point of S’ (Case 3).
As we will see, neither of the first two cases can happen.

Case 1: The closest pair distance in RN (S U S') is
attained by a pair (p,q), where p and ¢ are distinct
points in RN S.

By Lemma 9, there exist points a € {p*,p~} and b €
{q",q"}, such that both a and b are in R. Therefore,
the closest pair distance in RN (S U S’) is at most the
closest pair distance in {p, q, a, b}, which, by Lemma 10,
is less than d(p,q). This is a contradiction. Thus, this
case cannot happen.

Case 2: The closest pair distance in RN (S U YS’) is
attained by a pair (a,b), where a and b are distinct
points in RN S".

Let p and ¢ be the points in S such that a € {p*,p~}
and b € {qT, ¢ }. Note that p or ¢ may be outside R.
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First assume that p = q. Then, {a,b} = {p*,p~}
and, thus, p € R. But then d(p,a) < d(a,b), which is a
contradiction.

Thus, p # ¢q. By Lemma 10, d(a,b) > 6/3. Let r
be the point in R NS whose weight is minimum. By
Lemma 9, there exists a point ¢ € {r*,r~}, such that
¢ is in R, and, by Lemma 10, d(r,c) < §/3. It follows
that d(r,c¢) < d(a,b), which is a contradiction. Thus,
Case 2 cannot happen.

Case 3: The closest pair distance in RN (S U S’) is
attained by a pair (a,q), where a is a point in RN S’
and ¢ is a point in RN S.

Let p be the point in S such that a € {p*,p~}. The
claim in the lemma follows if we can show that p = q.

Assume that p # ¢g. By Lemma 9, there exists a
point b € {qT,q "}, such that b is in R. We obtain a
contradiction, because, by Lemma 10, d(g,b) < §/3 and
d(a,q) > 2§/3.

The next lemma will complete the correctness proof
of our query algorithm.

Lemma 12 Let R be a square such that |RNS| > 2. Let
p be a point in RN .S and let a be a point in {pT,p~},
such that the closest pair distance in RN (S US’) is
attained by (p,a). (By Lemma 11, p and a exist.) Then
the minimum weight of any point in RN .S is equal to

w(p).

Proof. Let g be the point in RN.S whose weight is min-
imum. By Lemma 9, there exists a point b € {¢*, ¢},
such that b is in R. If ¢ # p, then

d(q,b) =0 -w(q)/3 < d-w(p)/3 =d(p,a),

which is a contradiction. Thus, ¢ = p. O
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Appendix

We state a few definitions and observations in prepara-
tion for proving Lemma 6. As in Section 2.1, S is a set
of n points ordered by their p, + p, values, pF) is the
k" point in this ordering, and 1 < ¢ < n.

Definition 5 S is the set of the first k points of S,
that is, S® = {pM ... p"}. Note that S = S.

Definition 6 For any cell C € SD(k), the depth of that
cell is depth(C) = |NE(z) N S®)|, where z is the top-
right vertex of the cell.
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Figure 5: Constructing the sequence of subdivisions for
n =7 and ¢ = 2, with the depth of each cell displayed
inside it.

The following observation is illustrated in Figure 5.

Observation 2 For all k with 0 < k < n, there is
exactly one cell of depth 0 in SD(k), and p*) belongs
to the cell of depth 0 in Sp*=1), If L is a horizontal
or vertical ray starting at p*®) and moving left or down
respectively, the first ¢ cells encountered by L in Sp+—1
have depths of 0,1,...,c— 1, and every cell afterwards
has a depth of at least c. In particular, if 1 < c; <c—1,
the unique cell of depth c1 that intersects L will be split
into two cells of SD*) by the part of the L between the
cth and (c1 + 1) edges encountered.

Definition 7 Let p be a point in the plane.

1. Assume that |[NE(p) N S| > c.  We define
closest™ (p) to be the set of the ¢ points in NE(p)nN
S®) that are closest (with respect to dy) to p.
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2. Assume that |[NE(p) N S®)| < ec.
closest™ (p) to be NE(p) N S®).

We define

3. IfCis a cell in SD™ | then Sﬁk)(C) := closest™ (z)
where z is the top-right vertex of C.

Observation 3 If p is any point in the plane and
p@. pl) € NE(p), where i < j, then since pg(f) —&—p@(f) <
p&j) +p?(,j), we have dy (p,p) < di(p,p?)). Thus, the
set of ¢ points closest to p in S*) N NE(p) in the
definition of closest™ (p) is the same as the set of ¢
points of lowest order in S® N NE(p). It also fol-
lows that if NE(p') n S*) = NE(p?) n S*2) then

closestgkl)(pl) = ClOSeStEkQ)(P%

Lemma 13 Let k be any integer with 0 < k < n and
let p* and p? be any points in the plane which belong
to the northeast closure of the same cell in SD®)  and
|S+=1) N NE(p')| < ¢. Then p*) € NE(p') if and only
if p*) € NE(p?).

Proof. Note that p! and p? must have belonged to the
northeast closure of the same cell in SD(k_l), so there
exists a cell C € SD*~Y such that p',p? € NEC(C).
Let z be the top-right vertex of C. Then since NE(z) C
NE(p'), we have S*~1 N NE(z) C S*+=1 0 NE(p'), so
depth(C) = |S*~V N NE(2)| < c.

We prove that p*) € NE(p') implies p(*) € NE(p?).
The converse is symmetric.

Let p*) € NE(p') and suppose p*) ¢ NE(p?).

If depth(C) = 0, then since p' € SW(p*)) and p? ¢
SW(p*)), p' and p? will be in the northeast closure
of different cells in SD(k), contradicting the fact that
pl,p? € NEC(O).

Now suppose 1 < depth(C) < ¢ — 1. Since p*) ¢
NE(p?), pi¥) is strictly below or strictly to the left of p?;
without loss of generality, we assume the former. Since
p®*) e NE(p'), p¥) is above or at the same height as
p*. Thus, the horizontal ray starting at p*) and moving
left will encounter C, and since 1 < depth(C) < ¢ —1,
by Observation 2, C' will be split into two new cells
of SDW), p' will be in the northeast closure of the
lower cell and p? will be in the northeast closure of the
upper cell, again contradicting the fact that p',p? €
NEC(C). O

The following lemma implies Lemma 6 when k = n.

Lemma 14 For any k with 0 < k < n and for any
point p in the plane, let C' be the cell of SD®) such that
p € NEC(C). Then Sgk)(C’) = closest®) (p).

Proof. We use induction on k.

When k& = 0, S© =, so the claim clearly holds.
Now let £ > 1 and suppose that for all points p, if
p € NEC(C) where C € SD*~V | then Sﬁk_l)(C) =
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closestgk_l)(p). Let p be any point in the plane, let
C be the cell in SD™ such that p € NEC(C), and
let z be the top-right vertex of C. We must show
closest P (z) = Sgk)(C) = closest")(p). Note that
z € NEC(C) and so p and z must have belonged to the
northeast closure of the same cell in SD*~Y. Thus, by
hypothesis, closest =V (p) = closestF =V (2).

We consider two cases based on the cardinality of
SkE=1' N NE(p)

For the first case, suppose |S*~1) N NE(p)| > c.

Then closest*V(p) = {pliv) ... plic} =
closest ™V (z). 1f p*) ¢ NE(p), then S N NE(p) =
Sk=1) N NE(p), so closestH) (p) = closest™V(p). If
p*®) € NE(p), then since iy, ...,i. < k, pt1), ... plie)
are still the ¢ points of lowest order in S®*) N NE(p), so
again, closest™ (p) = closest" 1) (p). Similarly, it can
be shown that closest®)(z) = closest* "V (z). Thus,
closest™ (p) = closest® V(p) = closest"V(z) =
closest™ (z2).

For the second case, suppose |S**~1) N NE(p)| < c.

Since p and z belong to the northeast closure of the
same cell in SD™®, by Lemma 13, p(® € NE(p) if and
only if p*) € NE(z). If p®) € NE(p), then p®) €
NE(z) and so {p*}NNE(p) = {pM} = {(pM}NNE(2).
If p*) ¢ NE(p), then p*¥) ¢ NE(z) and so {p®} N
NE(p) = 0 = {p®} N NE(z). Thus, {p®} N NE(p) =
{p™} N NE(2).

Now since |S*=D N NE(p)| < ¢, closest* Y (p) =
S*k=1 NE(p). Since closest" ™V (p) = closest "V (2),
|closest*"D(2)| < ¢ so it must be that [S*-D N
NE(z)| < ¢ and closest* =V (z) = S*=DANE(z). Then
S® NANE(p) = (S =Y N NE(p)) U ({pM} N NE(p)) =
(closestF =D (p)U({p™INNE(p)) = (closest V) (2))
({p™INNE(2)) = (S*VNNE(2))U({p™ }NNE(2)) =
S*) N NE(z). Thus, by Observation 3, closest™ (p) =
closest™ ().

O
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Parallel Topological Sweep

Ming Ouyang*

Abstract

On input of a line arrangement, topological sweep out-
puts the line intersections in a topological order. The
intersection of two lines is ready if all intersections to the
left on these two lines have been processed. The classi-
cal algorithm processes the ready intersections one at a
time. This article describes the first attempt to process
the ready intersections in parallel. It is proved that, at
the beginning of the sweep of a random arrangement,
the expected number of ready intersections is a constant
fraction of the number of lines. After the first batch, em-
pirical data show that many intersections become ready
batch after batch. Two new implementations are de-
scribed. On arrangements of 300,000 lines, a new se-
rial implementation is 3.92 times the speed of a serial
implementation in the literature, and the first parallel
implementation is 4.2 times the speed of the new one.

1 Introduction

Topological sweep [3] is a classical algorithm in com-
putational geometry. The input is an arrangement of
n lines in the plane. The intersection of two lines is a
verter. An arrangement is simple if any two lines in-
tersect at a vertex, but no three do so. The algorithm
sweeps the arrangement — reporting the vertices — us-
ing O(n?) time, which is asymptotically optimal. It is
used in efficient algorithms for applications, such as data
depth [4, 5, 7, 8, 9]. The algorithm is implemented in
C by Rosenberger [3, 12] and in C++ using the LEDA
library by Miller et al. [8]. It is extended to handle
non-simple arrangements by Rafalin et al. [11] — they
implement the extended method in C++ without using
any standard libraries. The algorithm and implementa-
tions are serial in nature. Parallel topological sweep is
needed for two reasons. First, in the past five decades,
the performance of computers has more or less doubled
every 18 months. This so-called Moore’s Law, however,
is showing signs of plateauing. Second, experimental
scientists, enabled by technology, are collecting more
and larger data sets than ever. Analysis of large data
sets, such as finding the Tukey median [8], is difficult
without parallelization. The author is unaware of any
prior attempt at parallelizing topological sweep.
Section 2 reviews the line-point duality and the clas-
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sical algorithm. Section 3 examines how to parallelize
it. Section 4 studies the expected concurrency in ran-
dom arrangements. It is proved that Q(n) intersections
are ready at the beginning of the sweep. Empirical data
show that, on average, a constant fraction of the lines
are engaged in ready pairs throughout the sweep. Sec-
tion 5 describes a new serial implementation in C and
the first parallel implementation in C and OpenMP. The
new serial code is 3.92 times the speed of the Rafalin
code [11]. The parallel code is 4.2 times the speed of
the new serial code and more than 16 times that of the
Rafalin code. Section 6 concludes with discussion.

2 Serial Topological Sweep

The description of the classical algorithm is expanded
beyond that of [3] to include the dual space of point ar-
rangement, which makes easy a proof in Section 4. Let
A be a simple arrangement of n lines. As in [3], it is
assumed that none of the lines is vertical. Some appli-
cations, such as data depth [5, 8], need to process the
vertices of A in some order. They require that the ver-
tices on the same line be listed monotonically — vertices
on different lines may come in any order. Topological
sweep produces such a topological sort of the vertices.
The line-point duality maps a line y = ¢z + ¢
to the point (e1,¢p), and a point (c¢1,¢9) to the line
y = —c1x + ¢o. Fig. 1(a) shows two lines and their
intersection. Fig. 1(b) is the dual arrangement. The du-
ality preserves incidence — the dual line of the intersec-
tion point is incident upon the dual points of the lines.
Sweeping a line can be construed as walking along its
upper and lower sides to detect whether the line comes
to an intersection as the upper or lower line. Fig. 1(c)
shows walking the lines of Fig. 1(a) from left to right.
For the upper line, y = —4x — 3, its lower sidewalk is
blocked by the lower line, but its upper sidewalk over-
passes the intersection and continues to the right. For
the lower line, y = —x + 2, its upper sidewalk is blocked
by the upper line, but its lower sidewalk underpasses
the intersection and continues to the right. The duals
of the upper and lower sidewalks are, metaphorically,
the left and right halves, respectively, of the dual point.
Imagine the dual point as a clock. The dual of the upper
sidewalk — moving from negative infinity to infinity —
is a hand, the lower hand, that rotates from six o’clock
to twelve o’clock, whereas the dual of the lower side-
walk is the upper hand that rotates from twelve o’clock
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Figure 1: Line-point duality.

to six o’clock. During such a rotation, a hand must
make a stop and point at any other point. When the
upper hand of one point lines up with the lower hand of
another point, the two hands merge and form the line
dual of the primal vertex. As shown in Fig. 1(d), the
upper hand of (—4, —3) rotates from twelve o’clock until
it points at (—1,2). The lower hand of (—1,2) rotates
from six o’clock until it points at (—4, —3). Not shown
in Fig. 1(d), both the lower hand of (—4,—3) and the
upper hand of (—1,2) make a half-circle rotation.

The lines in the arrangement are sorted by their
slopes. A topological sweep line — a cut — is monotonic
in the y-direction, intersects each of the n lines once,
and does not pass through any vertices. Fig. 2(a) shows
the first cut of an arrangement of five lines, Ly, ..., Ls.
The first cut walks the lines from left to right and stops
before the vertices. An array, cut[], stores the order of
the lines along the cut. Initially, cut[1] is L;, cut[2]
is Lo, and so on. When the cut advances over a ver-
tex, the two intersecting lines, which must have been
adjacent in the cut, will swap their places.

The upper and lower horizon trees — UHT and LHT
— are the main data structures. The solid lines in
Fig. 2(b) and (c) are the initial UHT and LHT, respec-
tively. The exposition of [3] illustrates the algorithm
with the UHT. This article uses the LHT. When two
lines meet in the LHT, the upper line has higher prece-
dence — it continues to the right and blocks the lower
line from proceeding. The precedence in the UHT is
reversed. The trees are stored in two arrays, uht [] and
1ht [], where each element is the entity that blocks the
line from proceeding. For example, in the LHT, Lo, L3,
and L, are blocked by L;. Each line L; has two obsta-
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(a) The initial cut.
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(d) Set-intersection of horizon
trees.

/new cut \ /new cut

(e) Processing (L4, Ls) and up- (f) Processing (L4, Ls) and up-
dating the UHT. dating the LHT.

Figure 2: An arrangement of five lines.

cles, uht [7] and 1ht[i]. The obstacle that is closer to
the cut is stored in closer[i]. This array closer[]
is a succinct representation of the set-intersection of
the UHT and LHT (Fig. 2(d)). The crucial observa-
tion is that, when closer[cut[:]] is cut[i+1] and
closer [cut [i+1]] is cut [¢], the intersection of cut [i]
and cut [i+1] is ready for the sweep line to cross. In
Fig. 2(d), (L1, L2) is a ready pair, so is (L4, Ls). Table 1
lists the initial values of the data structures. These data
structures are simplified from those in [3], which store
both the left and right endpoints of the UHT and LHT.
Herein only the right endpoints are kept. The simplified
version is sufficient to produce a topological sort of the
vertices and conducive to fast implementation.

The ready pairs are stored in an array ready[]. A
pair is represented by the rank in the cut of its first
member. In Table 1, ready[1] is 1 and ready[2] is
4. During the sweep, one ready pair is removed from
ready[], and up to two new pairs may be added back
to it. This array ready[] can be managed either as a
queue or a stack, because the pairs can be processed in
any order. Herein lies the source of concurrency.

The upper and lower horizon trees correspond to the
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Table 1: The initial data structures for the arrangement
in Fig. 2

i | cutl[i] uht[i] 1ht[i] closer[il

1 1 2 00 2 ready
2 2 5 1 1

3 3 5 1 5

4 4 5 1 5 ready
5 5 o0 4 4

lower and upper sidewalks, respectively, which in turn
correspond to the upper and lower hands, respectively,
in the dual space. For example, in the LHT, L; goes
all the way to the right, so its lower hand in the dual
space rotates nonstop from six o’clock to twelve o’clock.
The lower hands of Ly, L3, and L4 stop at the dual
of L1, and that of Ly stops at the dual of Ly. This
correspondence will be used in Section 4.

lht [1] = oo //initialize LHT
with Ly
for ¢ from 2 to n //insert L; into LHT
j = cut[i — 1]
currentX = oo
memo = oo
while (j>1 and j < o) //traverse the bay
nextX = x—coord of intersection of L;, L;
if (nextX < currentX)
currentX = nextX
memo = j
j = lht [j] //mew L; blocks old Lj
else
break //break out the while loop
lht [i] = memo
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Listing 1: Pseudo-code of constructing the initial LHT

Listing 1 is the pseudo-code for constructing the ini-
tial LHT, which is initialized with L; by setting 1ht [1]
to infinity. The major step is the clockwise traversal of
the bay. Consider the scenario when L3 enters the scene
after Ly and Ly are already in place (Fig. 2(c)). The bay
here consists of, clockwise, Lo and L; — see Fig. 3(a) for
a more complicated example, where Bays consists of Ls,
Ly, L3, and Li. The while loop on lines 6-13 performs
the bay traversal and finds the next intersection of Lg,
which is with L,. Before Lj is inserted, the bay consists
of Lo and Lq. After Ls is inserted, Lo drops below the
horizon, and the bay consists of L3 and L;. Ls is no
longer visible to subsequent L;’s. The same situation
of dropping below the horizon happens to L3 after Ly
is inserted. The time of constructing the LHT is O(n)
because the while loop will iterate at most 3(n — 1)
times, accounted for in three categories. First, there is
one iteration per L; as the first iteration of the loop, for
n — 1 iterations in total. Second, there is one iteration
every time when the if condition (line 8) is true, for at
most n — 1 iterations in total. When this happens, a
previous line drops below the horizon. This can happen
at most once for every line. Third, there is one iteration
every time when the if condition (line 8) is false, for at
most n — 1 iterations in total. When this happens, the
loop terminates via the break statement.
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When the cut advances beyond a ready pair, the al-
gorithm needs to update the horizon trees. This is il-
lustrated with the ready pair (L4, Ls) in Fig. 2(d). The
new UHT is shown in Fig. 2(e). The right endpoint of
Ls remains the same. As for L4, the bay beyond Lj
is empty, so uht [4] is set to infinity. The new LHT is
shown in Fig. 2(f). The right endpoint of L, remains
the same. As for Ls, the bay beyond L, — consisting of
Ly and L3 — becomes visible. Thus, Ls has to traverse
the bay clockwise to find its new endpoint. Listing 2
is the pseudo-code for updating the LHT. The second
member of the pair — the lower line — is designated as
L;. The bay traversal is performed by the while loop
on lines 7-15. This traversal is similar to the one in the
initial construction of the LHT. The complication is the
if statement on lines 10-12. When the if condition is
true, L; is located to the right of the cut, and its inter-
section with L; is duly considered. When it is false, the
intersection of L; and L; is to the left of the cut and
has already been processed, so the if statement has no
else part. After the UHT and LHT are updated, the
intersecting lines swap their places in the array cut[]
and may be engaged in up to two new ready pairs.

//update LHT for ready pair (cut[r], cut[r+1])
i = cut[r 4+ 1]

memo = oo
if (r—1>1)

j = cut[r — 1]

currentX = oo

while (j>1 and j<oo) //traverse the bay

nextX = x—coord of intersection of L;, L;
if (nextX < currentX)
if (nextX is to the right of the cut)

currentX = nextX
memo = j
j = 1ht[j]
else
break //break out the while loop
lht [¢] = memo

Listing 2: Pseudo-code of updating the LHT

The time for processing one ready pair is O(n). The
total time for the complete sweep would be O(n?) but is
only O(n?) via amortized analysis. Recall that the lines
in the arrangement are sorted by increasing slopes. L;
will participate in n — ¢ pairs as the upper line and will
perform traversal of the UHT. It will participate in i —1
pairs as the lower line and will perform traversal of the
LHT. Consider a fixed L;. Aggregating over all of the
bay traversals of the UHT and LHT, the while loops
will iterate at most 3(n — 1) times in total. Thus, the
time for processing the intersections on one line is O(n),
for a total time of O(n?) for the sweep.

3 Parallel Topological Sweep

Multiple ready pairs can be processed in parallel. The
task is to keep the horizon trees consistent. Fig. 3(a)
is an LHT with three ready pairs: (Li,Ls), (L4, Ls),
and (Lg,L7). Recall that in updating the LHT, the
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right endpoints of the upper lines — Li, L4, and Lg
— remain unchanged. The lower lines need to traverse
the bays beyond their partners to find new endpoints.
When Ly crosses beyond L1, it will proceed to infinity.
When Lj crosses beyond Ly, it will meet Ls. Even if
L3 is absent from the arrangement, Ls can not inter-
cept Lo before Lo intersects with L;. Otherwise, Lo
would not be a ready partner with L;. Similarly, when
L7 crosses beyond Lg, it can not intercept Ls nor Ls.
Thus, the lines coming from below — Lo, L5, and Ly
— may simultaneously traverse their bays for new in-
tersections. These simultaneous traversals entail con-
current read of 1ht[] by multiple processors, which is
innocuous. What is critical is that after a processor has
finished its traversal, it must hold off updating its local
region of 1ht [] until all traversals are done. Otherwise,
there will be a race condition, as illustrated in the fol-
lowing scenario. Assume that Ls finishes its traversal
of Bays and updates 1ht [5] to L3 right away. At that
moment, if L; has already moved from L5 to L4, no
harm is done. If, however, 1ht[5] is overwritten be-
fore L; finishes with Ls, then L; will follow the new
1ht [5] to L3 rather than L,. This would break the al-
gorithm. Thus, the processors must synchronize before
they write to 1ht [1. When they do write, they write to
different parts of 1ht [] — there is no risk of concurrent
write. Note that if (Lg, L7) is sequentially processed af-
ter (Ly, Ls), then L; will visit only L4 and Ls. With
parallel processing, L; will visit L5 in addition to L4
and L3. This is a source of parallel overhead.

parFor r from 1 to numReady private (memoL,memoU)
//ready pair (cut[ready[r]], cut[ready[r]+1])

3| memoL = new endpoint of L_{cut[ready[r]+1]} in LHT

memoU = new endpoint of L_{cut[ready[r]]} in UHT
synchronize

lht [ cut[ ready[r] + 1 ] ] = memoL

uht[ cut[ ready[r] ] ] = memoU

//update closer [ready[r]] & closer[ready[r]+1]
//swap cut[ready[r]] and cut[ready[r]+1]
synchronize

//find new ready pairs; update ready & numReady

Listing 3: Pseudo-code of parallel topological sweep

Let the variable numReady be the number of ready
pairs stored in the array ready[1..numReady]. List-
ing 3 describes how to process all ready pairs in paral-
lel. The parFor loop on line 1 is executed by numReady
processors simultaneously. Each processor works on one
pair. The clause private() on line 1 reserves two pri-
vate variables for every processor that can be read and
written without contention with other processors. The
imperative synchronize on lines 5 and 10 stipulates
that all processors must finish the proceeding steps be-
fore any of them proceed further. At line 11, each pro-
cessor looks above and below to see if its two lines will
be engaged in new ready pairs. Care must be taken
that a new pair is identified exactly once. For exam-
ple, assume two processors work on two adjacent pairs

(Lcut[i} y Lcut[i+1]) and (L011t[i+2] ) Lcut[i+3])~ If Lcut[i] and
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width 4/n

(b) A pair of ready points in
the dual arrangement.

(a) Parallel processing of
ready pairs.

Figure 3: Parallel processing of ready pairs.

Leut[i+3), which will have become Leyg[i11) and Leyg[i42),
form a new pair, only one processor should add it to
ready[]. After peeking at each other’s data, the first
processor leaves this task to the second processor. Fur-
thermore, the new ready pairs must be collated and
saved consecutively at the front of ready[]. Because
there may be zero, one, or two new pairs per existing
one, the processors do not know in advance where to
write in the array ready[]. This can be solved with
prefix sum. For example, let this sequence [1 010 1
0] be the numbers of new pairs found by six processors.
The exclusive prefix sum of this sequence is [0 1 1 2 2
3], which can be computed in [log, 6] steps using the
parallel prefix sum algorithm [6]. Adding one to the
exclusive prefix sum, the sequence [1 2 2 3 3 4] is the
locations in the array ready[] where the processors can
write down their ready pairs in parallel.

The computation in Listing 3 constitutes one stage
of parallel topological sweep that processes one batch
of ready pairs and produces the next batch. The algo-
rithm repeats stage after stage until all (%) pairs are pro-
cessed. Although parallelization incurs some overhead,
the overall time remains O(n?) if the parallel compu-
tation is serialized. Parallelization does not change the
observation that the while loops for bay traversals will
iterate at most 3(n — 1) times on behalf of each line.

4 Expected Concurrency

This section studies the expected number of ready pairs
at the first stage. The lines are generated via the dual.
The dual points are uniformly distributed in the interior
of the unit circle, excluding the origin. For each point,
its polar angle is a uniform random number between 0
and 27. Its distance to the origin is the square root of
a uniform random number in the open interval (0, 1).
Square root is taken because the area is proportional to
the square of the distance. The polar coordinates are
converted to the Cartesian coordinates, which become
the coefficients of the lines in the primal arrangement.
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This section, however, works with the dual.

Let x1,...,z, be the sorted x-coordinates of the
points Pi,..., P,. The x;’s are distinct because iden-
tical ones would result in parallel lines in the primal
arrangement, which is assumed to be simple. The n
vertical lines, x = x;, shred the unit circle into n+1 ver-
tical strips. At least [n/2] strips have widths less than
4/n. Otherwise, the strips would be wider than the unit
circle. Fig. 3(b) shows such a strip. Recall that walk-
ing a line from left to right corresponds to rotating two
hands around the dual point. The UHT corresponds to
the upper hands that start at twelve o’clock. The LHT
corresponds to the lower hands that start at six o’clock.
They rotate clockwise and stop at other points. The set-
intersection of the UHT and LHT is to take the smaller
rotation of the two hands. For example, if the upper
hand has rotated to two o’clock and the lower hand to
seven o’clock, the smaller rotation is 7 /6. In Fig. 3(b),
if the duals of P; and P;4; form a ready pair at the first
stage, their four hands have the following configuration.
First, the upper hand of P; has rotated to P; 1, and the
antipodal image of its lower hand has rotated beyond
P; 1. Second, the lower hand of P;;; has rotated to F;,
and the antipodal image of its upper hand has rotated
beyond P;. If the pair is not ready, at least one of their
hands has stopped at a third point that resides in one
of the shaded pies below P; and above P;;.

Lemma 1 Assume P; and P;y1 are in the bottom and
top quarters, respectively, of their vertical lines. If the
strip between P; and P11 has a width less than 4/n, the
area of the shaded pie above Piy1 is at most 1/n. So is
the area of the shaded pie below P;.

Proof. When P;; is in the top quarter of its vertical
line, the length of the vertical side of the shaded pie
above P, i is at most 1/2. The horizontal span of the
arc is at most the width of the strip, 4/n. Thus, the pie
fits inside the right-angled triangle with an area of 1/n.
So is the pie below P;. d

Let X;,i=1,...,n—1, be the indicator that the duals
of P; and P;;; are a ready pair. Let X be the random
variable of the number of ready pairs at the first stage.

Theorem 2 If the n dual points are uniformly dis-
tributed in the unit circle, the expected number of ready
pairs at the first stage is Q(n).

Proof. The probability P; and P;1; are in the bottom
and top quarters, respectively, of their vertical lines is
1/4-1/4 = 1/16. If the strip has a width less than
4/n, the probability a point is in a shaded pie below
P; or above P;;q is less than (2/n)/m = 2/(7n). The
probability the duals of P; and P;;; are a ready pair is

Although at least [n/2] strips have widths less than
4/n, the leftmost and rightmost strips must be excluded.
Both of them are demarcated by only one point.
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By the theorem, the expected number of ready pairs
is at least 0.01n. Empirical data suggest there are more
than that. Fig. 4(a) shows the boxplots of the num-
bers of ready pairs at the first stage for n from 10,000
to 200,000. For each n, 100 random arrangements are
generated, and their ready pairs at the first stage are
counted. In the boxplots, the numbers of pairs are di-
vided by n and become fractions. The central mark of
a box indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles,
respectively. The medians are at least 0.297n for all n.

The author does not know the expected number of
ready pairs after the first stage. Fig. 4(b) shows the
boxplots of the average numbers of ready pairs per stage
for n from 20,000 to 400,000. For each n, ten random
arrangements are generated. For each arrangement, the
number () is divided by the number of stages, resulting
in the average number of ready pairs per stage, which is
then divided by n and becomes a fraction. The medians
are at least 0.153n. If the expected number of ready
pairs per stage is Q(n), parallel topological sweep will
run in O(n) time using |n/2] processors. Empirical data
suggest that there are 3.3n stages on average.

5 Implementations

There are three implementations in the literature. The
Rosenberger code [3, 12] is difficult to locate. The Miller
code [8] has a broken URL. The Rafalin code [11] is
downloaded from the Tufts University website [10]. It
is slightly revised and brought up to the latest lan-
guage standard. Two new implementations are devel-
oped. A new serial code is implemented in C. The
first parallel code is implemented in C and OpenMP.
The two new implementations are available on GitHub,
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github.com/mingouyang/parTopoSwp. The code is
compiled with the Intel C compiler (icc and icpc
19.0.5.281) with the optimization flags -03 -xHost
-ipo. The computation is performed on a CentOS 7
server with two Intel Xeon 6150 Skylake 2.70 GHz 18-
core CPUs and 384GB DDR4 2,666 MHz RAM.

Fig. 4(c) compares the performance of the three im-
plementations. For each implementation at each value
of n, the average runtime of ten random arrangements
is plotted. The Rafalin code solves n = 100, 000 in 692.2
second. The new serial code solves n = 200, 000 in 742.8
second. On average, the new serial code is 3.92 times
faster than the Rafalin code. The parallel code is exe-
cuted with 64 OpenMP threads. It solves n = 400,000
in 678.3 second. It is more than 16 times faster than
the Rafalin code for large n.

Fig. 4(d) shows the speedup curve of the parallel code
using 2, 4, 8, 16, 32, and 64 threads when n is fixed at
300,000. The baseline is the new serial code — it uses
one thread. Speedup is calculated as the serial runtime
divided by the parallel runtime. When the number of
threads is two and four, the parallel code runs slower
than the serial code. This comes from the parallel over-
head described in Section 3 as well as the penalty of
thread synchronization. At each synchronization point,
some threads will be waiting for the others to finish
their work. Their idling is another form of parallel over-
head. With 64 threads, the parallel code is 4.2 times
faster than the serial code. The server has 36 physi-
cal cores. The hyper-threading technology of Intel al-
lows two threads to share a physical core. Thus, the
hardware may support up to 72 threads. When sharing
cores, however, the threads rarely run as fast as when
each thread occupies a physical core exclusively. It is
likely that if there are 64 physical cores, the parallel
code may reach higher performance.

6 Discussion

Topological sweep [3] is a building block of some efficient
algorithms. The present work is the first to parallelize
it. The classical algorithm processes the ready pairs one
at a time. Herein it is shown that ready pairs can be
processed in parallel. For random arrangements, it is
proved that the expected number of ready pairs at the
beginning is Q(n). Empirical data suggest that the av-
erage number of ready pairs for the rest of the parallel
stages is also Q(n). If this is proved, topological sweep
can be done in expected linear time using |n/2| proces-
sors. Arrangements that constrict concurrency can be
constructed. The number of parallel stages is the max-
imal monotone path length, which is Q(n?=°M) [1, 2].

Three implementations are compared. The code by
Rafalin et al. [11] is designed to handle degenerate ar-
rangements. A new serial code for simple arrangements
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Figure 4: Empirical results.

is implemented that runs as fast as the author can make
it. It will underreport the vertices of degenerate ar-
rangements. When compiled with the same compiler
and executed on the same hardware, the new serial code
is 3.92 times the speed of the Rafalin code. The speedup
is attained by ignoring degeneracy as well as by stream-
lined computation. Based on the new serial code, the
first parallel code is implemented in C and OpenMP.
When executed with 64 threads, it is 4.2 times the speed
of the serial code and more than 16 times that of the
Rafalin code. Both new implementations are available
on GitHub. The parallel code is merely a proof of con-
cept. For future work, the code can be sped up with
advanced techniques of parallel programming, such as
dynamic load balancing and non-uniform memory ac-
cess tuning.

Graphics processing units have thousands of vec-
tor processors. They are designed for massive single-
instruction-multiple-data (SIMD) computation. The
parallel traversals of the horizon trees loosely fit the
SIMD paradigm. The complication is that the bays to
be explored have different sizes. Some processors may
finish their work before the others. This divergence in
computation is a source of SIMD overhead. It is an in-
teresting problem to reorganize the traversals so that
such overhead is reduced.
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One Hop Greedy Permutations®

Donald R. Sheehy'

Abstract

We adapt and generalize a heuristic for k-center clus-
tering to the permutation case, where every prefix of
the ordering is a guaranteed approximate solution. The
one-hop greedy permutations work by choosing at each
step the farthest unchosen point and then looking in
its local neighborhood for a point that covers the most
points at a certain scale. This balances the compet-
ing demands of reducing the coverage radius and also
covering as many points as possible. This idea first ap-
peared in the work of Garcia-Diaz et al. [6] and their
algorithm required O(n?logn) time for a fixed k (i.e.
not the whole permutation). We show how to use geo-
metric data structures to approximate the entire permu-
tation in O(nlog A) time for metrics sets with spread A.
Notably, this running time is asymptotically the same
as the running time for computing the ordinary greedy
permutation.

1 Introduction

Greedy permutations of points in a metric space are use-
ful for many standard computations, such as proximity
search data structures, sampling, and k-center cluster-
ing. They were developed independently by Gonzalez [7]
and also Dyer and Frieze [1] in 1985 for k-center cluster-
ing. Starting from any point the next point in a greedy
permutation is chosen to be the farthest remaining point
from the previously chosen points. Greedy permuta-
tions are effective for so many tasks because every pre-
fix of the ordering gives a good, mostly uniform sample,
keeping points as far apart as possible while (approx-
imately) minimizing the maximum distance from any
point to the sample.

The coverage radius of a subset S C P is the min-
imum r such that P C (J,.gball(x,r). The metric
k-center problem is a search for k points that minimize
the coverage radius. The first k points of a greedy per-
mutation provide a 2-approximate k-center, i.e. the cov-
erage radius is at most twice the optimal solution. This
is known to be the best possible unless P = N P. How-
ever, there are several heuristics that have been shown
to produce better solutions in practice. One such heuris-
tic developed by Garcia-Diaz et al.[0] achieves a worse

*This work was partially supported under grant CCF-1652218.
TDepartment of Computer Science, North Carolina State Uni-
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theoretical guarantee, but consistently outperforms the
greedy approach on benchmarks. That approach works
for a fixed r by choosing at each step, not the farthest
point, but instead a point within distance r of the far-
thest point that covers the most previously uncovered
points in its radius r ball. Then the algorithm binary
searches for a good value of r. We call this the one-hop
k-center algorithm.

Given that the greedy permutation is widely used be-
cause of its ability to provide a sequence of good covers,
it makes sense to import these efficient heuristics from
the setting with fixed r and k into the permutation set-
ting. In this paper, we will generalize this approach
to give a permutation of one-hop k-centers and show
how to relate it to approximate greedy permutations.
We call these one-hop greedy permutations. We will
then show how to compute a one-hop greedy permu-
tation in O(nlog A) time, where A is the spread of the
input (the ratio of the largest to smallest pairwise dis-
tances). As (almost) always with such an analysis, the
true worst case is O(n?), but would require point sets
with exponential spread to achieve. In theory, this can
be brought down to O(nlogn) using elaborate theoreti-
cal techniques [8]; however, given that our interest is in
the practical performance, we describe our algorithm in
terms of a standard practical approach. In theory, the
greedy approach is optimal anyways. In practice, it is
very rare to find inputs with super-polynomial spread.
A proof of concept implementation was used to generate
some examples visualized in Section 5.

2 Background

2.1 Metrics<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>