
Proceedings of the 32nd Canadian
Conference on Computational Geometry

(CCCG 2020)

August 5-7, 2020
University of Saskatchewan
Saskatoon, Saskatchewan

Canada

Logo designed by the Visualization, Geometry, and Algorithms Lab at the University of Saskatchewan

Compilation copyright © 2020 Mark Keil and Debajyoti Mondal

Copyright of individual papers retained by authors

Preface

This volume contains the proceedings of the 32nd Canadian Conference on Computational Geometry
(CCCG 2020), which was organized on August 5-7, 2020 at University of Saskatchewan, Saskatoon,
Saskatchewan and hosted online. These papers are also available electronically at CCCG 2020
website: http://vga.usask.ca/cccg2020/.

We are grateful to the Program Committee, and external reviewers, who thoroughly examined
all submissions and provided excellent feedback. Each submission was reviewed by an average of
three program committee members. Out of 68 papers submitted, the committee decided to accept
47 papers. We thank the authors of all submitted papers, all those who have registered, and in
particular the invited speakers Erik Demaine (Paul Erdős Memorial Lecture), Jeff Erickson (Ferran
Hurtado Memorial Lecture), and Yusu Wang (Godfried Toussaint Memorial Lecture). Many thanks
go out to the local arrangements committee for their organizational assistance.

We gratefully acknowledge financial support from the Pacific Institute for the Mathematical Sci-
ences (PIMS), Elsevier, the Fields Institute for Research in Mathematical Sciences, and University
of Saskatchewan.

Mark Keil
Debajyoti Mondal
CCCG 2020 Program Committee Co-Chairs

i

http://vga.usask.ca/cccg2020/

Sponsored by

ii

Invited Speakers

Erik Demaine Massachusetts Institute of Technology, USA
Jeff Erickson University of Illinois at Urbana-Champaign, USA
Yusu Wang Ohio State University, USA

Program Committee

Esther M. Arkin Stony Brook University, USA
Therese Biedl University of Waterloo, Canada
Ahmad Biniaz University of Windsor, Canada
Sergio Cabello University of Ljubljana, Slovenia
Jean Cardinal University Libre de Bruxelles, Belgium
Erin W. Chambers Saint Louis University, USA
Guilherme D. da Fonseca Aix-Marseille University, France
Mirela Damian Villanova University, USA
Vida Dujmović University of Ottawa, Canada
Stephane Durocher University of Manitoba, Canada
William Evans University of British Columbia, Canada
Mark Keil (co-chair) University of Saskatchewan, Canada
Irina Kostitsyna Eindhoven University of Technology, Netherlands
Anna Lubiw University of Waterloo, Canada
Victor Milenkovic University of Miami, USA
Tillmann Miltzow Utrecht University, Netherlands
Debajyoti Mondal (co-chair) University of Saskatchewan, Canada
Pat Morin Carleton University, Canada
Amir Nayyeri Oregon State University, USA
Joseph O’Rourke Smith College, USA
Rodrigo I. Silveira University Politècnica de Catalunya, Spain
Csaba D. Tóth California State University Northridge, USA
Ryuhei Uehara JAIST, Japan
Norbert Zeh Dalhousie University, Canada

iii

Additional Reviewers

Mikkel Abrahamsen, Hugo Akitaya, Andrei Asinowski, Aritra Banik, Aaron Becker, Mitchell Black,
Kaustav Bose, Kyle Fox, Yan Gerard, Adam Hesterberg, Michael Hoffmann, David Kirkpatrick,
Marc Van Kreveld, Jason S. Ku, Hung Le, Maarten Löffler, William Maxwell, Nabil Mustafa,
Anurag Murty Naredla, Parthiban Natarajan, Rahnuma Islam Nishat, Benjamin Raichel, André van
Renssen, Toshiki Saitoh, Noushin Saeedi, Carlos Seara, Frank Staals, Giovanni Viglietta, Kunihiro
Wasa, Hamid Zarrabi-Zadeh

Local Organizers

Mohammad Rakib Hasan Ehsan Moradi Sakib Mostafa
Mark Keil (Co-chair) Debajyoti Mondal (Co-chair)

(All at University of Saskatchewan)

iv

Table of Contents

Wednesday, August 5

Paul Erdős Memorial Lecture

Tribute to Godfried Toussaint . 1

Erik Demaine

Session 1A

Minimum Ply Covering of Points with Convex Shapes . 2

Ahmad Biniaz and Zhikai Lin

Convex Hull Complexity of Uncertain Points . 6

Hongyao Huang and Benjamin Raichel

Sparse Convex Hull Coverage. 15

Georgiy Klimenko, Benjamin Raichel and Gregory Van Buskirk

Fair Covering of Points by Balls . 26

Daniel Lokshtanov, Chinmay Sonar, Subhash Suri and Jie Xue

Covering Points with Pairs of Concentric Disks . 33

Anil Maheshwari, Saeed Mehrabi, Sasanka Roy and Michiel Smid

Hardness of Approximation for Red-Blue Covering . 39

Sima Hajiaghaei Shanjani

Session 1B

Relocating Units in Robot Swarms with Uniform Control Signals is PSPACE-Complete 49

David Caballero, Angel A. Cantu, Timothy Gomez, Austin Luchsinger, Robert Schweller
and Tim Wylie

Building Patterned Shapes in Robot Swarms with Uniform Control Signals 56

David Caballero, Angel A. Cantu, Timothy Gomez, Austin Luchsinger, Robert Schweller
and Tim Wylie

New Results in Sona Drawing: Hardness and TSP Separation . 63

Man-Kwun Chiu, Erik D. Demaine, Yevhenii Diomidov, David Eppstein, Robert A.
Hearn, Adam Hesterberg, Matias Korman, Irene Parada and Mikhail Rudoy

Minimizing The Maximum Distance Traveled To Form Patterns With Systems of Mobile
Robots . 73

Jared Coleman, Evangelos Kranakis, Oscar Morales-Ponce, Jaroslav Opatrny, Jorge
Urrutia and Birgit Vogtenhuber

Path Planning in a Weighted Planar Subdivision Under the Manhattan Metric 80

Mansoor Davoodi, Hosein Enamzadeh and Ashkan Safari

v

Scheduling Three Trains is NP-Complete . 87

Christian Scheffer

Thursday, August 6

Ferran Hurtado Memorial Lecture

Chasing Puppies . 94

Jeff Erickson

Session 2A

Folding Small Polyominoes into a Unit Cube . 95

Kingston Yao Czajkowski, Erik D. Demaine, Martin L. Demaine, Kim Eppling, Robby
Kraft, Klara Mundilova and Levi Smith

Some Polycubes Have No Edge Zipper Unfolding . 101

Erik D. Demaine, Martin L. Demaine, David Eppstein and Joseph O’Rourke

Acutely Triangulated, Stacked, and Very Ununfoldable Polyhedra. 106

Erik D. Demaine, Martin L. Demaine and David Eppstein

Nets of higher-dimensional cubes . 114

Kristin DeSplinter, Satyan Devadoss, Jordan Readyhough and Bryce Wimberly

Efficient Folding Algorithms for Regular Polyhedra . 121

Tonan Kamata, Akira Kadoguchi, Takashi Horiyama and Ryuhei Uehara

Vertex-Transplants on a Convex Polyhedron . 128

Joseph O’Rourke

Session 2B

Fitting a Graph to One-Dimensional Data . 134

Siu-Wing Cheng, Otfried Cheong and Taegyoung Lee

Planar Emulators for Monge Matrices . 141

Hsien-Chih Chang and Tim Ophelders

Simultaneous Visibility Representations of Undirected Pairs of Graphs . 148

Ben Chugg, William S. Evans and Kelvin Wong

Finding a Maximum Clique in a Grounded 1-Bend String Graph . 160

Mark Keil, Debajyoti Mondal and Ehsan Moradi

Testing Balanced Splitting Cycles in Complete Triangulations . 167

Vincent Despré, Michaël Rao and Stéphan Thomassé

A Linear-Time Algorithm for Discrete Radius Optimally Augmenting Paths in a Metric Space 174

Haitao Wang and Yiming Zhao

vi

Thursday, August 7

Godfried Toussaint Memorial Lecture

Topological and geometric methods for graph analysis . 181

Yusu Wang

Session 3A

Computing the Caratheodory Number of a Point . 182

Sergey Bereg and Mohammadreza Haghpanah

Characterization and Computation of Feasible Trajectories for an Articulated Probe with a
Variable-Length End Segment . 189

Ovidiu Daescu and Ka Yaw Teo

Dynamic Products of Ranks . 199

David Eppstein

Closest-Pair Queries and Minimum-Weight Queries are Equivalent for Squares 206

Abrar Kazi and Michiel Smid

Parallel topological sweep . 214

Ming Ouyang

One Hop Greedy Permutations . 221

Don R. Sheehy

Session 3B

A Degree 3 Plane 5.19-Spanner for Points in Convex Position . 226

Davood Bakhshesh and Mohammad Farshi

Non-Crossing Matching of Online Points . 233

Prosenjit Bose, Paz Carmi, Stephane Durocher, Shahin Kamali and Arezoo Sajadpour

Restricted-Weight Minimum-Dilation Spanners on Three Points . 240

Kevin Buchin, Herman Haverkort and Hidde Koerts

Fréchet Distance Between Two Point Sets . 249

Maike Buchin and Bernhard Kilgus

Realizing m-uniform four-chromatic hypergraphs with disks . 258

Gábor Damásdi and Dömötör Pálvölgyi

Red-Blue Point Separation for Points on a Circle . 266

Neeldhara Misra, Harshil M. and Aditi Sethia

vii

Session 4A

A lower bound on the number of colours needed to nicely colour a sphere . 273

Péter Ágoston

2048 Without Merging . 285

Hugo Akitaya, Erik D. Demaine, Jason S. Ku, Jayson Lynch and Csaba D. Tóth

External Exploration of a Convex Polygon. 292

Kyle Clarkson and Will Evans

City Guarding with Limited Field of View. 300

Ovidiu Daescu and Hemant Malik

Blind Voronoi Game . 312

Omid Gheibi and Hamid Zarrabi-Zadeh

Line Segment Visibility: Theoretical and Experimental Results . 317

Jonathan Lenchner and Eli Packer

Session 4B

Some Geometric Applications of Anti-Chains . 326

Sariel Har-Peled and Mitchell Jones

Discrete Helly type theorems . 332

Frederik Jensen, Aadi Joshi and Saurabh Ray

If You Must Choose Among Your Children, Pick the Right One . 336

Brittany Terese Fasy, Benjamin Holmgren, Bradley McCoy and David L. Millman

A Simple Algorithm for kNN Sampling in General Metrics . 345

Kirk P. Gardner and Don R. Sheehy

Social Distancing is Good for Points too! . 352

Alejandro Flores-Velazco

viii

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Tribute to Godfried Toussaint

Erik Demaine*

Over three decades ago, Godfried Toussaint (1944-2019) cofounded the Canadian Conference on Computational
Geometry. As a father to the conference and the field in general, his impact and influence was immense. In his
honor, I will talk about some of my favorite research that he and I did together, including several past CCCG
papers. Possible topics include:

� Godfried’s only paper with a counterexample to his own work

� Geometry of musical rhythm, with connections to Euclid’s GCD algorithm

� Geometry of sand drawing (ethnomathematics), with some new updates presented here at CCCG 2020

� Machine learning through Voronoi diagrams

� Untangling linkages

� Classic computational geometry, such as guarding polyhedra and polyhedronizing point sets

� Godfried’s supercollaborative model of doing research

*Massachusetts Institute of Technology, USA, edemaine@mit.edu

1

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Minimum Ply Covering of Points with Convex Shapes

Ahmad Biniaz∗ Zhikai Lin†

Abstract

Introduced by Biedl, Biniaz, and Lubiw (CCCG 2019),
the minimum ply covering of a point set P with a set
S of geometric objects in the plane asks for a subset
S′ of S that covers all points of P while minimizing
the maximum number of overlapping objects at any
point in the plane (not only at points of P). This prob-
lem is NP-hard and cannot be approximated by a fac-
tor better than 2. Biedl et al. studied this problem
for objects that are unit squares or unit disks. They
present 2-approximation algorithms that run in polyno-
mial time when the optimum objective value is bounded
by a constant. We generalize this result and obtain
a 2-approximation algorithm for any fixed-size convex
shape. The new algorithm also runs in polynomial time
if the optimum objective value is bounded.

1 Introduction

The problem of covering clients with antennas has been
well studied in wireless networks [1, 3, 4, 5, 7, 9, 11].
Covering clients by placing new antennas can cause in-
terference (this happens when more than one antenna
cover the same region). Covering clients and—at the
same time—reducing interference is a big challenge in
wireless networks. In this paper we study a geometric
problem that addresses this issue.

S ′

Figure 1: The ply of S′ (shown in red) is 3.

Let P be a set of points and S be a set of geometric
objects, both in the plane; each element of P represents
a client and each object in S represents a coverage re-
gion of an antenna. We want to find a subset S′ of S

∗School of Computer Science, University of Windsor,
ahmad.biniaz@gmail.com
†School of Computer Science, University of Windsor,

lin12v@uwinsdor.ca

that covers all points in P and minimizes the maximum
number of overlapping objects at any point in the plane.
The ply of S′ is the maximum number of overlapping
objects of S′ over all points of the plane. In other words,

ply(S′) = max
p∈R2

|{O ∈ S′ : p ∈ O}|.

See Figure 1 for an illustration. The term ply was used
earlier by Eppstein and Goodrich [6]. With this def-
inition, our goal is to find a subset of S, with mini-
mum ply, that covers P . This problem is introduced by
Biedl et al. [2], and it is known as the minimum ply
covering (MPC). We denote an instance of the MPC
problem by (P, S). The MPC problem has the same
flavor as the geometric minimum membership set cover
(MMSC) problem which asks for a subset S′ of S that
covers all points of P and minimizes the maximum num-
ber of overlapping objects only at points of P . Notice
that the MPC problem minimizes the maximum number
of overlapping objects over all points of the plane.

Erlebach and van Leeuwen [7] showed that the geo-
metric MMSC problem is NP-hard for axis-aligned unit
squares and unit disks, and it cannot be approximated
by a factor better than 2 in polynomial time. According
to Biedl et al. [2] the MPC problem is also NP-hard for
axis-aligned unit squares and unit disk, and it cannot
be approximated by a ratio better than 2. They pre-
sented factor-2 approximation algorithms for the MPC
problem with unit squares and unit disks. Their algo-
rithms run in linear time if the optimal ply is bounded
by a constant.

In this paper we study the MPC problem for general
convex shapes. Let C be an arbitrary convex polygon
in the plane. The objects in S are translations of C. We
present an algorithm that finds a subset S′ of S, with ply
at most 2`, that covers all points of P , where ` is the op-
timal ply. In other word, we present a 2-approximation
algorithm for the problem instance (P, S). The follow-
ing theorem summarizes our result.

Theorem 1 There exists a 2-approximation algorithm
for the minimum ply covering of points with fixed-size
convex polygons that runs in polynomial-time when the
optimal objective value is bounded by a constant.

Our algorithm is a generalization of the algorithm
of Biedl et al. [2]. We first give an overview of their
algorithm, and then we show how to extend it to work
for any convex shape.

2

32nd Canadian Conference on Computational Geometry, 2020

2 Algorithm of Biedl, Biniaz, and Lubiw

We describe their 2-approximation algorithm for unit
squares. The main idea of their unit disks algorithm
is similar to that of unit squares. Let S be a set of
axis-aligned squares of side length 1. Recall that P is a
set of points in the plane. To solve the instance (P, S),
the algorithm partitions the plane into horizontal slabs
of height 2. Let H1, H2, . . . denote these slabs from
bottom to top. Let Pj be the points of P in Hj and let
Sj be the squares of S that intersect Hj , as in Figure 2.
Every square intersects at most two (neighboring) slabs
and thus it can appear in at most two sets Sj . The
idea is to first solve the MPC problem for each slab Hj

optimally, i.e., to solve (Pj , Sj) instances. Let S′j be
an optimal solution for slab Hj . Then take S′ as the
union of all solutions S′j . The set S′ is a 2-approximate
solution for the original problem because every square
can appear in at most two S′j .

2

Hj

Hj+1

Hj−1

Figure 2: Partitioning the plane into slabs. Red points
belong to Pj and red squares belong to Sj .

Assume that the optimal ply is at most `. To solve
the (Pj , Sj) instance, partition Hj into vertical strips by
vertical lines through the leftmost and rightmost points
of all squares.1 Let t1, t2, . . . , tk denote these strips
from left to right. The following observation plays an
important role in the design of the algorithm: if S∗j
is a solution of (Pj , Sj) with ply at most `, then each
strip ti is intersected by at most 3` squares of S∗j .2 This
observation is used to construct a directed acyclic graph
G such that any path from the source to the destination
in G corresponds to a solution of (Pj , Sj). The graph G
is constructed as follows.

For every strip ti, define a vertex set Vi as follows.
Consider every subset Q ⊆ Sj containing at most 3`
squares that intersect ti. Add a vertex vi(Q) to Vi if (i)
the ply of Q is at most `, and (ii) the squares in Q cover
all points of Pj that lie in ti. Notice that no square
intersects the strips t1 and tk. Thus the set V1 has
exactly one vertex v1(∅) which is called the “source”,
and the set Vk has exactly one vertex vk(∅) which is
called the “sink”. The vertex set of G is the union of
all vertex sets Vi.

1In case of squares, the vertical line through the leftmost (resp.
rightmost) point is essentially the line through the left (resp.
right) side of square.

2This number is at most 8` for unit disks [2].

The edges of G are defined base on the following ob-
servation. Imagine we scan an optimal solution S∗j from
left to right. While moving from a strip ti to ti+1 either
one square stops at their boundary, or one square starts
at their boundary, or the squares that intersect ti+1 are
the same as those intersect ti. Based on this, we add
a directed edge from every vertex vi(Q) in Vi to every
vertex vi+1(Q′) in Vi+1 if one of the following conditions
hold

1. Q′ = Q as in Figure 3(a), or

2. Q′ = Q\{q}, where q is the square whose right side
is on the left boundary of ti+1 as in Figure 3(b), or

3. Q′ = Q∪ {q}, where q is the square whose left side
is on the left boundary of ti+1 as in Figure 3(c).

ti ti+1 ti ti+1

q

ti ti+1

q

s1

s2

s3

s1

s2

s1

s2

(a) (b) (c)

Figure 3: Constructing edges of G where (a) Q = Q′ =
{s1, s2, s3} (b) Q = {s1, s2, q} and Q′ = {s1, s2} (c)
Q = {s1, s2} and Q′ = {s1, s2, q}.

Let δ be any path from the source v1(∅) to the sink
vk(∅). The union of all sets Q corresponding to the ver-
tices of δ is a solution of (Pj , Sj). The running time of
this algorithm for one slabHj is O

(
(`+ |Pj |) · |Sj |3`+1

)
,

and for all slabs is O
(
(`+ n) · (2m)3`+1

)
where n = |P |

and m = |S|; see section 3.1 for more details. If ` is
bounded by a constant then the running time is poly-
nomial. The main ingredient to achieve this running
time is the fact that the number of squares of any op-
timal solution S∗j that intersect any strip ti is bounded
by a constant multiple of `. We are going to obtain a
similar fact for all convex shapes, and then extend the
algorithm to work for any convex shape.

3 Minimum ply covering with convex shapes

Let P be a set of n points in the plane, and let S be a
set of m objects that are translations of the same convex
polygon C, as in Figure 1. We show how to find a subset
S′ of S, with ply at most 2`, that covers all points of P ,
where ` is the optimal ply. In other words, we present
a 2-approximation algorithm for the problem instance

3

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

(P, S). The algorithm takes polynomial time when ` is
a constant.

Before proceeding to the algorithm we introduce some
terminology. A pair of rectangles (r,R) is called homo-
thetic if they are parallel and have the same aspect ratio
(r and R need not be axis-parallel). A homothetic pair
(r,R) is an approximating pair for C if r ⊆ C ⊆ R,
that is, r is enclosed in C and C is enclosed in R; see
Figure 4. Let λ(r,R) be the smallest ratio of the length
of R to the length of r, over all convex shapes. Pólya
and Szegö [12] showed that for every convex shape there
exists an approximating pair (r,R) with λ(r,R) 6 3.
Schwarzkopf et al. [13] and Lassak [10] improved this
upper bound to 2.3 For any convex polygon C, an ap-
proximating pair of ratio at most 2, can be computed
in O(log2 |C|) time if the vertices of C are given as a
sorted array [13]. The upper bound 2 for λ(r,R) is the
best possible because for a triangle the length of small-
est enclosing rectangle is at least 2 times the length of
its largest enclosed homothetic rectangle.

Let (r,R) be an approximating pair for our convex
polygon C such that λ(r,R) 6 2. For simplicity we as-
sume that λ(r,R) = 2 (this can be achieved by enlarging
R or by shrinking r). After a suitable rotation and scal-
ing assume that the longer side of R is vertical and its
length is 1. Let α denote the length of the smaller side
of R after scaling, as in Figure 4. In this setting the side
lengths of r are 1/2 and α/2.

As before, we partition the plane into horizontal slabs
of height 2, and then for every slabHj we solve the prob-
lem instance (Pj , Sj) optimally. To solve this instance
we partition Hj into vertical strips t1, . . . , tk by verti-
cal lines through the leftmost and the rightmost points
of every object in Sj . To construct the corresponding
directed acyclic graph G we use the following lemma.
This lemma, which is our main technical result, uses
the concept of approximating pair of rectangles.

Lemma 2 Let S∗j ⊆ Sj be any solution with ply at most
` for the problem instance (Pj , Sj). Then any strip ti is
intersected by at most 12` objects in S∗j .

Proof. After a suitable translation assume that Hj has
y-range [0, 2], and that the y-axis lies in ti, as in Fig-
ure 4. Consider any object C in Sj , and let (r,R) be its
approximating pair. We refer to the bottom-left corner
of r as the representative point of C, and denote it by c.
Let h and w be the distances from c to the bottom and
left sides of R, respectively. Then the distances from c
to the top and right sides of R are 1− h and α− w, as
in Figure 4. Consider the rectangle F with bottom-left
corner (w − α, h − 1) and top-right corner (w, 2 + h).
The length of F is 3 and its width is α. Cover F by 12
instances of r, say r1, r2, . . . , r12. Denote the top-right

3A similar ratio is also obtained for pairs of ellipses that ap-
proximate convex shapes [8].

2

w α−w

h

1−h

α−w

1−h

R

r

C

F
y

x

w

h

α

3 Hj
c

rk

pk

Figure 4: Illustration of the proof of Lemma 2.

corner of each rk by pk; these corners are marked by
green points in Figure 4.

Assume that C intersects the strip ti. Then C inter-
sects the y-axis because vertical strips are defined by
vertical lines through leftmost and rightmost points of
objects in Sj . In this setting, our definition of h, w, and
F imply that the representative c of C must lie in rect-
angle F . Since F is covered by instances of r, the point
c must lie in one of these instances, say rk. In this case
the enclosed rectangle r of C contains pk, and so does
C. Thus, each object in Sj that intersects ti contains
at least one of the points p1, . . . , p12. Since S∗j has ply
at most `, each point pk lies in at most ` objects of S∗j .
Therefore, at most 12` objects of S∗j intersect ti. �

We use Lemma 2 to construct a directed acyclic graph
G, analogous to that of [2]. The main difference between
the two constructions is in the definition for vertex set
Vi of each strip ti: for every subset Q of at most 12`
squares that intersect ti we introduce a vertex vi(Q) if
(i) the ply of Q is at most `, and (ii) its squares cover
all points in ti. The edges of G are defined as before.
Any path from the source to the sink in G corresponds
to a solution of (Pj , Sj)—this claim, which is proved in
[2] for squares and circles, holds for any convex shape
and in particular for C. This is the end of the algorithm
and its correctness proof.

3.1 Time complexity

The running time analysis is analogous to that of [2] for
squares, and thus we keep it short. Set nj = |Pj | and
mj = |Sj |. Then the number of strips is k = 2mj +
1. The number of vertices in every set Vi is O

(
m12`

j

)
.

Therefore the total number of vertices of G is at most k ·
O
(
m12`

j

)
= O

(
m12`+1

j

)
. Since every vertex has at most

three outgoing edges, the number of edges of G is also

4

32nd Canadian Conference on Computational Geometry, 2020

O
(
m12`+1

j

)
. By an initial sorting of the points of Pj and

the objects of Sj with respect to the y-axis, conditions
(i) and (ii) can be verified in O (|C| · (`+ nj)) time for
each subset Q, where |C| is the number of vertices of
C. Therefore, it takes O(|C| · (`+ nj) ·m12`+1

j) time to
constructG. A path from the source to the sink inG can
be found in time linear in the size of G. Thus, the total
running time to solve the problem instance (Pj , Sj) is
O(|C| · (`+nj) ·m12`+1

j). Since every point of P belongs
to one slab and every object of S belongs to at most two
slabs, the running time of the entire algorithm—for all
slabs—is O(|C| ·(`+n) ·(2m)12`+1), which is polynomial
when ` is bounded by a constant.

4 Conclusion

We generalized the 2-approximation algorithm of Biedl
et al. [2] for the MPC problem to work for any con-
vex shape. A natural question is to verify if there are
polynomial-time O(1)-approximation algorithms for the
MPC problem when the objective value is not necessar-
ily a constant.

References

[1] M. Basappa, R. Acharyya, and G. K. Das. Unit disk
cover problem in 2D. Journal of Discrete Algorithms,
33:193–201, 2015.

[2] T. Biedl, A. Biniaz, and A. Lubiw. Minimum ply cov-
ering of points with disks and squares. In Proceedings
of the 31st Canadian Conference on Computational Ge-
ometry (CCCG), pages 226–235, 2019.

[3] A. Biniaz, P. Liu, A. Maheshwari, and M. H. M. Smid.
Approximation algorithms for the unit disk cover prob-
lem in 2D and 3D. Comput. Geom., 60:8–18, 2017. Also
in CCCG’15.

[4] P. Carmi, M. J. Katz, and N. Lev-Tov. Covering points
by unit disks of fixed location. In Proceedings of the 18th
International Symposium on Algorithms and Computa-
tion (ISAAC), pages 644–655, 2007.

[5] G. K. Das, R. Fraser, A. López-Ortiz, and B. G. Nick-
erson. On the discrete unit disk cover problem. Int. J.
Comput. Geometry Appl., 22(5):407–420, 2012. Also in
WALCOM’11.

[6] D. Eppstein and M. T. Goodrich. Studying (non-
planar) road networks through an algorithmic lens. In
Proceedings of the 16th ACM SIGSPATIAL Interna-
tional Symposium on Advances in Geographic Informa-
tion Systems, ACM-GIS, 2008.

[7] T. Erlebach and E. J. van Leeuwen. Approximating
geometric coverage problems. In Proceedings of the
19th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1267–1276, 2008.

[8] F. John. Extremum problems with inequalities as sub-
sidiary conditions. Studies and Essays Presented to R.
Courant on his 60th Birthday, January 8, 1948, Inter-
science, New York, pages 187–204, 1948.

[9] F. Kuhn, P. von Rickenbach, R. Wattenhofer, E. Welzl,
and A. Zollinger. Interference in cellular networks: The
minimum membership set cover problem. In Proceed-
ings of the 11th International Computing and Combi-
natorics Conference (COCOON), pages 188–198, 2005.

[10] M. Lassak. Approximation of convex bodies by rectan-
gles. Geometriae Dedicata, 47:111–117, 1993.

[11] N. H. Mustafa and S. Ray. Improved results on geo-
metric hitting set problems. Discrete & Computational
Geometry, 44(4):883–895, 2010.

[12] G. Pólya and G. Szegő. Isoperimetric Inequalities in
Mathematical Physics. Annals of Mathematics Studies
27, Princeton University Press, 1951.

[13] O. Schwarzkopf, U. Fuchs, G. Rote, and E. Welzl. Ap-
proximation of convex figures by pairs of rectangles.
Comput. Geom., 10(2):77–87, 1998. Also in STACS’90.

5

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Convex Hull Complexity of Uncertain Points

Hongyao Huang∗ Benjamin Raichel∗

Abstract

An uncertain point set U is a collection of compact re-
gions in the plane, and a realization of U is any point
set determined by selecting one point from each set in
U . Here we consider the problem of determining the
realization whose convex hull has the minimum number
of vertices possible. We prove that when U is a set of
n parallel line segments then the problem can be solved
in O(n3) time, but when the line segments can have ar-
bitrary orientations then the problem is NP-Complete.

1 Introduction

Uncertainty in computational problems has received sig-
nificant attention in recent years, as many real world
inputs are inherently noisy. Such problems have been
particularly well studied within computational geome-
try, as uncertainty naturally arises when for example
collecting locational data from the physical world.

In this paper we consider the complexity of the convex
hull, one of the most fundamental geometric structures,
in the context of uncertainty. Specifically, given an un-
certain point set U = {u1, . . . , un}, where each ui is a
compact region in the plane, a realization of U is any
point set P = {p1, . . . , pn} such that pi ∈ ui for all
i. Here we consider finding the realization of U whose
convex hull has the minimum number of vertices.

To the best of our knowledge, our paper is the first to
consider the minimum complexity of the convex hull in
such uncertain settings when measured by the number
of vertices. Previous papers have considered the prob-
lem when complexity is measured by perimeter or area.
Rappaport [20] computed the minimum perimeter con-
vex hull for line segments with a constant number of
orientations in near linear time. Mukhopadhyay et al.
[19] computed the minimum area convex hull for parallel
lines in near linear time. Subsequently, Löffler and van
Kreveld [18] did an extensive study on finding the real-
ization which either minimized or maximized the area
or perimeter of the convex hull, where different algo-
rithmic or hardness results were given depending on the
shape of the uncertain regions.

Various other geometric structures have also been
considered in uncertain settings, such as bounding boxes

∗Department of Computer Science, University of Texas at Dal-
las, {hhuang, benjamin.raichel}@utdallas.edu. Partially sup-
ported by a NSF CAREER Award 1750780.

[17], Delaunay triangulations [3, 16], Voronoi diagrams
[5, 7, 12, 15], terrains [6, 9], and more. When the uncer-
tain points have associated probabilities, the expected
complexity of the convex hull was previously studied
(see [11] and references therein). Related questions con-
cerning the convex hull have also been considered, such
as computing the probability a given query point is con-
tained in the convex hull [1], or computing the most
likely convex hull of probabilistic points [21]. More gen-
erally, Jørgensen et al. [13] considered the distributions
of various geometric quantities in probabilistic settings.

Our problem also relates to the traversal problem,
where given a set of convex regions in the plane, one
seeks a polygonal chain with some property which stabs
all the regions. When the regions are disjoint and or-
dered, Guibas et al. [10] gave efficient algorithms to
compute the minimum link polygonal chain stabbing
the objects in order. When the objects are parallel line
segments, Goodrich and Snoeyink [8] gave a near linear
time algorithm to compute a convex stabber if it exists,
that is a selection of a single point from each segment
such that the resulting set is in convex position. For
line segments with general orientations, Arkin et al. [2]
proved that determining the existence of such a convex
stabber is NP-hard. More recently, for the case when
the line segments have a constant number of orienta-
tions, Keikha et al. [14] gave a polynomial time algo-
rithm to determine if there is a convex stabber which
stabs at least k segments.

Our Contribution. Our main result is an O(n3) time
algorithm to compute the realization whose convex hull
has the fewest vertices when the uncertain regions are
parallel line segments. Without loss of generality, for
this case we can assume the segments are all verti-
cal. The behavior of our minimization problem differs
from the previously studied minimization problems for
perimeter or area [19, 20], and instead behaves more
similarly to the problem of maximizing the area, for
which Löffler and van Kreveld [18] gave an O(n3) time
algorithm. There the authors argued one can assume
each segment is realized either at its top or bottom end-
point. This is no longer true for our problem, however,
we can argue that other than the leftmost and rightmost
segment, one can assume all segments defining vertices
of the convex hull are realized either at their top or bot-
tom endpoint. The differences between these two state-

6

32nd Canadian Conference on Computational Geometry, 2020

ments, makes achieving the same O(n3) running time
for our problem more challenging, particularly when it
comes to determining the leftmost and rightmost points.
Related challenges arise in the problem of maximizing
the number of stabbed segments in a convex traversal,
considered by Keikha et al. [14], for which the authors
give an O(n6) time algorithm. The O(n3) running time
of our algorithm thus compares favorably, though such
a comparison is limited as the problems differ.

We complement our algorithmic result for parallel line
segments, by proving that the problem is NP-Complete
when the line segments can have arbitrary orientations.
Our reduction is inspired by the NP-hardness proof
in [18]. However, as our problem is a minimization
problem and theirs a maximization problem, additional
points must be added to keep the gadgets from collaps-
ing inwards to a trivial solution.

1.1 Preliminaries

We follow the uncertain point model of previous pa-
pers such as [18], where an uncertain point is mod-
eled by an uncertain region u, which is any compact
subset of the plane. For a set of uncertain regions
U = {u1, u2, ..., un}, a realization of U is any point set
P = {p1, . . . , pn} such that pi ∈ ui for all i. Let Real(U)
denote the set of all possible realizations of U .

Given a point set P , let CH(P) denote the convex
hull of P , and let |CH(P)| denote the number of vertices
of the convex hull, where a vertex of CH(P) is any point
q ∈ P such that q /∈ CH(P \ {q}).

Problem 1 Given a set U = {u1, u2, ..., un} of uncer-
tain regions, compute arg minP∈Real(U) |CH(P)|.

Throughout we will use the following basic polygonal
chain definitions.

Definition 2 A polygonal chain is an ordered sequence
of points in the plane P = {p1, . . . , pn}. P is monotone
(resp. reverse monotone) if for all 1 ≤ i < n, pi+1

has larger (resp. smaller) x-coordinate than pi. P is
convex if for all 1 < i < n, pi−1, pi, pi+1 defines a right
turn, that is pi+1 lies to the right of the line segment
pi−1pi when directed from pi−1 to pi. If P is convex
and monotone (resp. reverse monotone) then it is called
a top chain (resp. bottom chain). P is simple if for all
i < j, pipi+1 and pjpj+1 do not intersect, except at pi+1

when j = i+ 1. (Bottom and top chains are simple.)
Let Q be a point set, and let pl and pr respectively

be the leftmost and rightmost points in Q. CH(Q) is
described by a simple closed convex polygonal chain of
its vertices, which is composed of a top chain from pl to
pr followed by a bottom chain from pr to pl.

For a point p in the plane, let p.x and p.y denote its
x and y coordinate, respectively. Let P = {p1, . . . , pn}

be a monotone polygonal chain, and let q be any point
in the plane such that p1.x ≤ q.x ≤ pn.x. Let i be the
index such that the vertical line through q intersects the
segment pipi+1. Then we say q lies below (resp. above)
the monotone chain P if it lies below (resp. above) or
on the segment pipi+1.

2 Vertical Line Segments

In this section, we give a polynomial time algorithm for
Problem 1, when U is a set of vertical line segments S.
More generally, the algorithm works for any set of paral-
lel line segments, as rotation does not change |CH(P)|.
Throughout we let S = {s1, . . . , sn} denote a set of ver-
tical line segments, where for simplicity we assume no
two segments lie on the same vertical line, and the seg-
ments are ordered such that for i < j segment si lies to
the left of sj . For a segment si, we use s+i to denote its
top endpoint, and s−i to denote its bottom endpoint.

Definition 3 Call a monotone polygonal chain P =
{p1, . . . , pm} a positive chain with respect to S if, p1 ∈
s1, pm ∈ sn, and for all 1 < i < m, pi = s+j for some
j. Similarly, define negative chains.

Lemma 4 When U is a set of vertical line segments S,
there is an optimal solution to Problem 1, such that the
top chain of the convex hull is a positive chain and the
bottom chain is a negative chain.

Proof. Consider any set R ∈ Real(S), and let T =
{t1, . . . , tm} be the top chain of CH(R). Let ti ∈ T
be any vertex of the top chain other than t1 and tm,
and let t+i be the upper endpoint of the segment which
generated ti. Let Hold = CH(R) and Hnew = CH((R \
ti)∪ t+i). We now argue that |Hnew| ≤ |Hold|. This will
prove the lemma, as one can then iteratively move each
vertex remaining on the top chain to its upper segment
endpoint until all top chain vertices are at their upper
segment endpoints, without ever increasing the number
of top chain vertices. A symmetric argument applies to
the bottom chain.

Observe that Hold and Hnew are convex hulls of the
same set of points except where ti has been exchanged
for t+i . This implies that if we can argue that Hold ⊆
Hnew then any vertex of Hnew (other than t+i) must be a
vertex of Hold and thus |Hnew| ≤ |Hold| as desired. Note
that CH(R \ ti) ⊆ Hnew, thus to argue Hold ⊆ Hnew,
it suffices to argue ti ∈ Hnew. To this end, note that
ti−1 and ti+1 exist as 1 < i < m. So let z be the point
on ti−1ti+1 lying directly below ti, i.e. with the same x
coordinate, and note that z is well defined as ti−1, ti,
and ti+1 are consecutive on the upper chain T (which
is convex monotone). Moreover, z ∈ Hnew as Hnew

contains both ti−1 and ti+1. As t+i lies directly above

ti and z, we have that ti ∈ z t+i ⊆ Hnew, proving the
lemma. �

7

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

The above lemma suggests a natural dynamic pro-
gramming strategy. Process the segments in S from left
to right, where at each segment if we decide it corre-
sponds to a hull vertex then we take its top or bottom
endpoint. If it does not correspond to a hull vertex,
then by mainitaining appropriate information about the
previously selected hull vertices, we will enforce that the
segment intersects the final hull, implying its realization
can be inside the hull.

Intuitively the structure we wish to maintain is the
top and bottom chains of the optimal convex hull. First,
observe that these chains cannot be computed indepen-
dently as selecting a vertex for the top chain affects
whether it can or needs to be selected for the bottom
chain. Thus as we go from left to right we will remem-
ber the last vertex selected from both the top and the
bottom chains. Enforcing convexity, however, would re-
quire remembering the previous edge not the previous
vertex, which would be more expensive. Thus instead
we look for positive and negative chains with the fewest
vertices, which may not be convex but must satisfy cer-
tain properties implied by convexity, and then we use
the lemma below to argue these properties are sufficient.
(Ultimately one can argue minimal such chains are in
fact top and bottom chains, though it is not necessary.)

Definition 5 Call a pair P+, P− of positive and neg-
ative chains, a valid chain pair if the first and last ver-
tices of P+ are the same as those of P−, and for all
1 < i < n (i) if s+i ∈ P+ then s−i /∈ P− and if s−i ∈ P−
then s+i /∈ P+, (ii) s−i lies below P+, and (iii) s+i lies
above P−.

The proof of the following is in Appendix A.2.

Lemma 6 Let P+, P− be a valid chain pair. Then
CH(P+ ∪ P−) intersects all segments in S.

By Lemma 4 we know that there is an optimal solu-
tion to Problem 1 such that the top chain of the convex
hull is a positive chain P̂+ and the bottom chain is a
negative chain P̂−. Note that all points in this optimal
realization of S lie below the top chain and above the
bottom chain of the convex hull. This implies that for all
1 < i < n, s−i lies below P̂+ and s+i lies above P̂−, and

therefore P̂+, P̂− is a valid chain pair. So let P+, P− be
a valid chain pair minimizing |P+|+ |P−|. By Lemma 6
CH(P+ ∪ P−) intersects all segments in S, and thus
there is a realization of S whose convex hull vertices all
lie in P+ ∪ P−. As clearly |P+|+ |P−| ≤ |P̂+|+ |P̂−|,
we have the following.

Corollary 7 Let P+, P− be a valid chain pair which
minimizes |P+|+ |P−| over all valid chain pairs. Then
P+∪P− are the vertices of an optimal solution to Prob-
lem 1 on S.

By the above it thus suffices to compute the min-
imum sized valid chain pair, which can easily be ac-
complished using a standard dynamic programming ap-
proach. Specifically, the recursive Algorithm 1 main-
tains the previous vertex selected on the positive chain,
s+i , and the previous vertex selected on the negative
chain, s−j , and then tries all possible choices for the
next vertex to the right (of both si and sj), which if
on segment sk could be either s+k or s−k . Specifically, in
order for s+k to be considered as a possible next vertex
on the positive chain, by Definition 5, we must require
that for all i < x < k that s−x lies below the segment

s+i s
+
k . Assume we have a function Positive(i) that

computes all such indices. For k to be a valid next in-
dex we also require k > max{i, j}. Thus if P denotes
the set of all possible next positive chain vertex indices,
then P = Positive(i) ∩ {max{i, j} < k < n}. Simi-
larly define the set of possible next negative chain ver-
tices N = Negative(j) ∩ {max{i, j} < k < n}, where
Negative(j) is defined analogously to Positive(i). Fi-
nally, define EndRight(i, j) as the function which re-
turns true if we can extend the current chains directly
to the rightmost segment sn, namely does there exist a

point r ∈ sn such that s−x lies below the segment s+i r

for i < x < n and s+x lies above the segment s−j r for
j < x < n.

Algorithm 1 Recursive Algorithm for Problem 1

Output: Min number of remaining valid chain pair
vertices or ∞ if no solution, given the previous pos-
itive and negative chain vertices were s+i and s−j .

1: function MinCH(i, j)
2: P ← Positive(i) ∩ {max{i, j} < k < n}
3: N ← Negative(j) ∩ {max{i, j} < k < n}
4: value←∞
5: for k ∈ P do
6: value← min{value, 1 + MinCH(k, j)}
7: for k ∈ N do
8: value← min{value, 1 + MinCH(i, k)}
9: if EndRight(i, j) then

10: value = 1
11: return value

First we argue that when the leftmost segment s1 is
a single point (or equivalently we know the point to
select on segment s1), then Algorithm 1 can be used to
to solve Problem 1 in cubic time. Afterwards, we argue
how to remove this assumption on s1 while maintaining
the same running time.

Theorem 8 For a set S = {s1, . . . , sn} of vertical seg-
ments, where the leftmost segment s1 is a single point,
Problem 1 can be solved in O(n3) time.

Proof. Assuming that Positive(i), Negative(j),
and EndRight(i, j) all work as described

8

32nd Canadian Conference on Computational Geometry, 2020

above then Algorithm 1 sets MinCH(i, j) =
1 + min{mink∈P MinCH(k, j),mink∈N MinCH(i, k)}
or 1 if we can connect directly to the rightmost
segment, where P and N are respectively the sets of
all possible next positive and negative chain vertices.
Thus MinCH(1, 1) + 1 computes the size of a minimum
cardinality valid chain pair, which by Corollary 7
corresponds to an optimal solution to Problem 1. Note
because s1 is a single point, s1 = s+1 = s−1 , thus all
subroutine calls are well defined, and MinCH(1, 1)
will start the valid chain pairs on the same point as
required, where this point is counted by the +1.

As i and j both range over O(n) possible values,
this recursive algorithm can be turned into a dynamic
program with a table of total size O(n2). Assuming
Positive(i), Negative(j), and EndRight(i, j) all run
in O(n) time, then each table entry takes O(n) time to
compute as outside those subroutines the code consists
of constant time operations and two disjoint for loops
going over P and N . This then gives an O(n3) run-
ning time overall as claimed. Thus what remains is to
describe how to implement Positive(i), Negative(j),
and EndRight(i, j) in linear time.

First, we describe how to compute P ′ = Positive(i)
in linear time, from which one can then easily compute
P = P ′ ∩ {max{i, j} ≤ k < n}. Fix an index k > i,
and let X = {x | i < x < k}. Consider the ray from
s+i pointing vertically downwards. Each point s−x for
x ∈ X determines an angle with this ray, when rotat-
ing the ray counterclockwise. Let s−max be the point
with the largest such angle from the index set X. If

s+k lies above the line supporting the segment s+i s
−
max,

then s−max and hence all s−x for x ∈ X lie below s+i s
+
k

as required for k to be in P ′. Conversely, if s+k lies be-

low the line supporting the segment s+i s
−
max, then s−max

would not lie below the line s+i s
+
k and so k /∈ P ′. Thus if

our algorithm maintains s−max as we increment k then in
constant time we can check if k ∈ P ′, an moreover s−max

can be updated in constant time per iteration by com-
paring the new bottom endpoint with the previous s−max.
Thus P ′ = Positive(i) can be computed in linear time,
as shown in Algorithm 2, in Appendix A.1. A similar
argument allows us to compute N ′ = Negative(j) in
linear time as is also shown in Algorithm 2.

Now we describe how to compute EndRight(i, j) in
linear time. Specifically, we seek to determine if there
exists a point r = (r.x, r.y) on sn such that for all

i < x < n, s−x lies below s+i r, and for all j < x < n,

s+x lies above s−j r. Note that since sn is a vertical
segment, r.x is fixed, and thus all of these constraints
can be written as linear constraints in the one variable
r.y. In particular, restricting r to lie on sn means that
s−n .y ≤ r.y ≤ s+n .y. All other constraints can be written
as satisfying a right or a left turn check, each of which

is expressible by checking the sign of the determinant
of a matrix whose three rows are of the form (1, s+i),
(1, r), and (1, s−x). (Note the cross terms in the deter-
minant are linear in the only variable r.y.) Thus we
are doing a feasibility check of a linear program with
O(n) constraints and one variable. This is easily solved
in O(n) time by checking whether the tightest lower
bound constraint on r.y lies to the left on the real line
of the tightest upper bound constraint on r.y. �

Now we remove the assumption that s1 is a single
point. In Appendix A.3 we remark how the optimal
starting point must lie in a set of O(n2) canonical points
on s1, thus leading to an easy O(n5) time solution by
trying our above O(n3) algorithm on all such points.

Instead of reducing to the single point case, we de-
scribe an alternative approach which still runs in O(n3)
time. First, for now assume that the top and bot-
tom chains both have at least one interior vertex (i.e.
a vertex not on s1 or sn). While we cannot compute
MinCH(i, j) if either i = 1 or j = 1, we can com-
pute MinCH(i, j) for all 1 < i, j < n in O(n3) time
by the approach of Theorem 8. Let StartLeft(i, j)
be defined similarly to EndRight(i, j) above, except
that it checks in linear time if there is a point l on s1
such that s−x lies below the segment ls+i for 1 < x < i

and s+x lies above the segment ls−j for 1 < x < j. Let
T = {1 < i, j < n | StartLeft(i, j) = True}, then
3 + min(i,j)∈T MinCH(i, j) would find the minimum so-
lution over all 1 < i, j < n pairs that can connect di-
rectly to the leftmost edge s1 (where the +3 counts s+i ,
s−j , and the vertex on s1). Unfortunately, this does not
count all possible cases as initially there may be sev-
eral hull vertices on the top chain interior before the
first bottom chain interior vertex, and MinCH(i, j) as-
sumes s+i and s−j are consecutive in the left to right
order of vertices on the hull (i.e. we miss cases of the
form MinCH(1, j) and MinCH(i, 1)). However, there
is a simple way to overcome this issue. Rather than try-
ing to directly connect to the left edge, just compute the
minimal chains to the left and then append them to the
minimal chains we computed on the right. Specifically,
let MinCHLeft(i, j) be the same as MinCH(i, j) ex-
cept that it computes the minimal valid chain pairs to
the left (instead of the right) when the previous vertex
on the positive chain was s+i and the previous on the
negative chain was s−j . Note MinCHLeft(i, j) uses
StartLeft(i, j) instead of EndRight(i, j), and sim-
ilarly modifies Positive(i) and Negative(j). There-
fore we return

2 + min
1<i,j<n

{MinCHLeft(i, j) + MinCH(i, j)},

where the +2 counts the vertices s+i and s−j . It is im-
portant to note here that MinCHLeft(i, j) only selects
vertices to the left of min{i, j} and MinCH(i, j) to the

9

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

right of max{i, j}. That is, both assume there are no
hull vertices on segments with indices between min{i, j}
and max{i, j}, and thus the above approach only works
if there exists an index pair i, j from the optimal so-
lution such that s+i and s−j are consecutive in the left
to right order of vertices on the hull, i.e. there are no
hull vertices on segments with indices between min{i, j}
and max{i, j}. However, it is easy to see this holds by
our assumption that there is at least one interior ver-
tex on both the top and bottom chains. As for the
running time, observe we can independently precom-
pute all MinCHLeft(i, j) values in O(n3) time and all
MinCH(i, j) values in O(n3) time, and this dominates
the time to compute the above minimum over all index
pairs.

So what remains is to handle the case when the opti-
mal solution may not have an interior vertex on either
the top or bottom chain. We have the following lemma
for the case when the top chain has no interior vertex,
the bottom chain case is handled symmetrically. Due
to space the proof is in Appendix A.2.

Lemma 9 For a set S of n vertical segments, the op-
timal solution to Problem 1 where the top chain of the
convex hull is not allowed to have interior vertices can
be solved in O(n3) time.

By running all cases for whether the bottom or top
chain interiors are empty and taking the minimum we
thus have the following.

Theorem 10 For a set S of n vertical segments, Prob-
lem 1 can be solved in O(n3) time.

In Appendix A.3 we briefly remark how our approach
can be extended to ordered axis-aligned rectangles.

3 NP-Hardness for General Segments

We now argue that when the segments in S are not re-
quired to be vertical, then Problem 1 is NP-hard. The
proof is by reduction from the standard NP-hard prob-
lem CNF-SAT. Our reduction closely follows the ap-
proach of the NP-hardness proof in [18] for maximizing
the area of the convex hull for uncertain line segments.
However, our construction requires additional points in
the clause and variable gadgets, in large part since our
problem involves minimization and theirs maximization.

Let the given instance of CNF-SAT have n variables
and m clauses. Call an uncertain segment a certain
point if its two endpoints are the same. Consider a cir-
cle in the plane, and evenly place a set of certain points,
B = {b1, . . . , bn+m}, along this circle. Call these our
base points. Observe that if we conceptually remove
CH(B) then we are left with a set of disjoint circular
caps, c1, . . . , cn+m, each bounded some segment bibi+1

and corresponding circular arc from bi to bi+1, see Fig-
ure B.1 in Appendix B. We have one cap for each vari-
able and one for each clause. All remaining uncertain
segments we construct will have both their endpoints in
the same cap, or in two different caps when those caps
correspond to a variable and a clause that contains it.
Note that since all segment endpoints will lie in the cir-
cle, all base points are always vertices of the convex hull
in any realization. This conceptually separates the caps,
in the sense if you added a point in one of the caps, the
area it adds to the convex hull is confined to that cap.
The way we then connect a variable and clause cap is
by adding an uncertain segment between them.

First, consider the cap for a given clause L. We create
one uncertain segment for each literal in L. All these
segments share a common endpoint at the center of the
clause cap, the other endpoints are in the caps of the
respective variables. Let this common endpoint be de-
noted e and let b and b′ be the base points of the clause
cap for L. We add a convex chain of z certain points
from b to b′ such that all these points are contained in
CH({e, b, b′}). Here z an integer value, to be determined
shortly, but intuitively we require z be set large enough
so that one of the segments adjacent to e, must select e
as its realization to cover these z points. See Figure 3.1.

b′b

e

Figure 3.1: Clause cap with common endpoint e. Con-
vex chain of z certain points shown as squares.

Now consider the cap c for some variable x, with cor-
responding base points b and b′. Within c we add a seg-
ment tf above and parallel to the segment bb′, where
ultimately selecting t or f will correspond to setting the
variable to True or False, respectively. Let l be the max-
imum over all variables of the maximum of the number
of times that variable appears as a positive literal or ap-
pears as a negative literal. For the variable x we create
a convex chain of l “positive” vertices, P , and a convex
chain of l “negative” vertices, N . Specifically, we require
(i) every point of P is a vertex of CH(P ∪ {b, b′, f})
(ii) every point of N is a vertex of CH(N ∪ {b, b′, t})
(iii) N ⊂ CH({b, b′, f}), (iv) P ⊂ CH({b, b′, t}), and
(v) for any point v ∈ tf if CH({b, b′, v}) contains a point
of P (resp. N) it does not contain a point of N (resp. P).
See Figure 3.2. Recall that for each literal occurrence of
x we created an uncertain segment with one end fixed
at the corresponding clause. We now make the other
end of the uncertain segment a unique point in P or
N , depending on whether it appeared as a positive or

10

32nd Canadian Conference on Computational Geometry, 2020

negative literal in the clause. We place a certain point
at any unused points in P or N . Finally, for each point
u in either P or N , we create a small convex chain of z
certain points Ru just below it, such that all the points
in Ru are contained in CH({b, b′, u}) and none are con-
tained CH({b, b′, u′}) for any other point u′ in either P
or N .

t f

b′b
P N

Figure 3.2: Variable cap. Convex chains of z certain
points below points in P and N , as well as uncertain
segments adjacent to P and N , are not shown.

To argue correctness of the reduction, first suppose
there is satisfying assignment to the given CNF-SAT
instance. In this case we argue there is a realization of
our uncertain segments with ≤ 2m+(l+2)n vertices on
the convex hull. Specifically, for each variable x, if x =
True then in the cap for x we select t for the segment tf ,
for each segment adjacent to a point u ∈ N we select u,
and for each segment adjacent to a point in P we select
the opposite (i.e. clause) endpoint of the segment. Note
that by construction CH(N ∪ {b, b′, t}) contains both P
and all the convex chains Ru that we added for each u in
P or N , and thus in this case only t and the l points in N
are vertices of the convex hull within this cap. Similarly,
if x = False, we select f for the segment tf , for each
segment adjacent to a point u ∈ P we select u, and
for each segment adjacent to a point in N we select the
opposite (i.e. clause) endpoint of the segment. Again, in
this case only f and the l points in P are vertices of the
convex hull within this cap. On the other hand, for the
clause caps, observe that because this was a satisfying
assignment for the CNF-SAT instance, we must have
selected the common end point in each clause cap for at
least one of its adjacent segments. Since for each clause,
with common endpoint e and base points b and b′, the
convex chain of certain points in its cap is contained in
CH({e, b, b′}), the number of vertices on the convex hull
from this cap is just 1. Thus the total contribution from
all clause and variable caps is m + (l + 1)n, and since
the n + m base points are always on the hull, we thus
have ≤ 2m+ (l + 2)n vertices as claimed.

Now suppose there is no satisfying assignment for the
given CNF-SAT instance. In this case we argue that
by setting the parameter z to be large enough,the con-
vex hull of any realization has > 2m+ (l+ 2)n vertices.
Specifically, if z = 2m+ (l+ 2)n+ 1, then clearly if any
one of the chains with z certain points is entirely on the
hull then the realization has > 2m + (l + 2)n vertices.
Define E as the set of all uncertain segments adjacent

to points in P or N from any variable cap, but realized
outside the corresponding variable cap. Consider one
of the chains with z certain points in some clause cap
with common end point e. In order for this chain to not
entirely appear on the hull, at least one of the uncertain
segments adjacent to e must be in E, and in particular
must have its realization somewhere on the e side of the
chain. In a minimal solution it can be assumed to be
at the point e itself, since as discussed above placing
it at e means this clause cap only contributes one ver-
tex, and clearly this cap must contribute at least one
vertex in any realization. Now consider a variable cap
with base points b and b′. By condition (v) from above,
for any point v ∈ tf if CH({b, b′, v}) contains a point
of P (resp. N) it does not contain a point of N (resp.
P). Thus in a minimal solution we can assume tf is
realized at either t or f . Suppose it is realized at t
(the f case is symmetric), and recall that N is not in
CH({t, b, b′}). Thus by the same argument as for the
clause caps, for every uncertain segment adjacent to a
point u ∈ N , a minimal solution can be assumed to
select u as the realization, as the chain of z points Ru

must be covered. (Recall if u has no adjacent segment
we already placed a certain point there.) More gener-
ally, in order for a solution to have < z vertices on the
convex hull, for any variable v, all uncertain segments
that it contributes to E are either all adjacent to points
in P (when t is selected) or all adjacent to points in N
(when f is selected). So consider the collection of all t
and f endpoints chosen for all variable caps in a min-
imal solution, which thus determines which uncertain
segments can fall in E. This collection can be viewed as
a variable assignment for the given CNF-SAT instance,
and as this instance is not satisfyable, some clause in
this assignment evaluates to false. However, this im-
plies that for some common endpoint e in some clause
cap, there are no segments adjacent to e that are in E,
and hence the number of vertices on the hull is at least
z = 2m+ (l + 2)n+ 1.

Thus if we can decide whether there is a realization
with ≤ 2m+ (l + 2)n convex hull vertices, then we can
decide the corresponding CNF-SAT instance. Also, it
is easy to see that the above uncertain segments can be
constructed such that all endpoints are rational points
of polynomial complexity (see [18]). Thus we have the
following theorem for the decision version of Problem 1.

Theorem 11 Given a set S of n uncertain segments
and an integer k, the problem of determining whether
there is a realization of S with ≤ k vertices on the convex
hull is NP-Complete.

11

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] P. K. Agarwal, S. Har-Peled, S. Suri, H. Yildiz,
and W. Zhang. Convex hulls under uncertainty.
Algorithmica, 79(2):340–367, 2017.

[2] E. M. Arkin, C. Dieckmann, C. Knauer, J. S. B.
Mitchell, V. Polishchuk, L. Schlipf, and S. Yang.
Convex transversals. Comput. Geom., 47(2):224–
239, 2014.

[3] K. Buchin, M. Löffler, P. Morin, and W. Mulzer.
Preprocessing imprecise points for delaunay trian-
gulation: Simplified and extended. Algorithmica,
61(3):674–693, 2011.

[4] M. de Berg, O. Cheong, M. J. van Kreveld, and
M. H. Overmars. Computational geometry: al-
gorithms and applications, 3rd Edition. Springer,
2008.

[5] A. Driemel, S. Har-Peled, and B. Raichel. On the
expected complexity of voronoi diagrams on ter-
rains. ACM Trans. Algorithms, 12(3):37:1–37:20,
2016.

[6] A. Driemel, H. Haverkort, M. Löffler, and R. Sil-
veira. Flow computations on imprecise ter-
rains. Journal of Computation Geometry (JoCG),
4(1):38–78, 2013.

[7] R. Dwyer. Higher-dimensional Voronoi diagrams
in linear expected time. pages 326–333, 1989.

[8] M. T. Goodrich and J. Snoeyink. Stabbing parallel
segments with a convex polygon. Computer Vi-
sion, Graphics, and Image Processing, 49(2):152–
170, 1990.

[9] C. Gray, F. Kammer, M. Löffler, and R. Silveira.
Removing local extrema from imprecise terrains.
Comput. Geom., 45(7):334–349, 2012.

[10] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and
J. Snoeyink. Approximating polygons and subdi-
visions with minimum link paths. Int. J. Comput.
Geometry Appl., 3(4):383–415, 1993.

[11] S. Har-Peled. On the expected complexity of ran-
dom convex hulls. CoRR, abs/1111.5340, 2011.

[12] S. Har-Peled and B. Raichel. On the complexity
of randomly weighted multiplicative voronoi dia-
grams. Discret. Comput. Geom., 53(3):547–568,
2015.

[13] A. Jørgensen, M. Löffler, and J. M. Phillips. Geo-
metric computations on indecisive points. In Work-
shop on Algorithms and Data Structures (WADS),
pages 536–547, 2011.

[14] V. Keikha, M. van de Kerkhof, M. J. van Kreveld,
I. Kostitsyna, M. Löffler, F. Staals, J. Urhausen,
J. L. Vermeulen, and L. Wiratma. Convex par-
tial transversals of planar regions. In Interna-
tional Symposium on Algorithms and Computation
(ISAAC), pages 52:1–52:12, 2018.

[15] N. Kumar, B. Raichel, S. Suri, and K. Verbeek.
Most likely voronoi diagrams in higher dimensions.
In Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), volume 65
of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[16] M. Löffler and J. Snoeyink. Delaunay triangula-
tions of imprecise points in linear time after pre-
processing. In Proc. of 24th ACM Symp. on Comp.
Geom. (SoCG), pages 298–304, 2008.

[17] M. Löffler and M. J. van Kreveld. Largest bounding
box, smallest diameter, and related problems on
imprecise points. In Workshop on Algorithms and
Data Structures (WADS), pages 446–457, 2007.

[18] M. Löffler and M. J. van Kreveld. Largest and
smallest convex hulls for imprecise points. Algo-
rithmica, 56(2):235–269, 2010.

[19] A. Mukhopadhyay, C. Kumar, E. Greene, and
B. K. Bhattacharya. On intersecting a set of paral-
lel line segments with a convex polygon of minimum
area. Inf. Process. Lett., 105(2):58–64, 2008.

[20] D. Rappaport. Minimum polygon transversals of
line segments. Int. J. Comput. Geometry Appl.,
5(3):243–256, 1995.

[21] S. Suri, K. Verbeek, and H. Yildiz. On the most
likely convex hull of uncertain points. In European
Symposium on Algorithms (ESA), pages 791–802,
2013.

12

32nd Canadian Conference on Computational Geometry, 2020

A Vertical Line Segments

A.1 Missing Algorithm

The following algorithm is used as a subroutine in Al-
gorithm 1, and is described in detail in the proof of
Theorem 8.

Algorithm 2 Computes the set of valid positive or neg-
ative chain vertices
1: function Positive(i)
2: P ← ∅
3: s−max ← s−i+1

4: for k ← i+ 1 to n− 1 do
5: if s+k above line through s+i and s−max

then P ← P ∪ {k}
6: if s−k above line through s+i and s−max

then s−max ← s−k
7: return P
8: function Negative(j)
9: N ← ∅

10: s+min ← s+j+1

11: for k ← j + 1 to n− 1 do
12: if s−k below line through s−j and s+min

then N ← N ∪ {k}
13: if s+k below line through s−j and s+min

then s+min ← s+k
14: return N

A.2 Missing Proofs

Lemma 6. Let P+, P− be a valid chain pair. Then
CH(P+ ∪ P−) intersects all segments in S.

Proof. Note that P+ and P− both start on the same
point on s1 and end on the same point on sn, and thus
clearly CH(P+ ∪ P−) intersects s1 and sn. So fix some
segment s = si, for 1 < i < n. From the lemma state-
ment, there exists a point p from the chain P+ which
lies directly above s− (p may be a vertex or an interior
edge point). Similarly, define q as the point from P−

which lies directly below s+. Thus we have q.y ≤ s+.y
and s−.y ≤ p.y. If s+.y ≤ p.y then q.y ≤ s+.y ≤ p.y
and hence s+ ∈ pq = CH({p, q}) ⊆ CH(P+ ∪ P−).
So assume otherwise, that s+.y > p.y, which combined
with our known inequality we have s+.y > p.y ≥ s−.y.
That is, p lies on the segment s, and hence p ∩ s = p ∈
CH(P+ ∪ P−). �

Lemma 9. For a set S of n vertical segments, the
optimal solution to Problem 1 where the top chain of
the convex hull is not allowed to have interior vertices
can be solved in O(n3) time.

Proof. First consider the case when the bottom chain
also has no interior vertices. Then we are looking for a
single segment lr such that l ∈ s1, r ∈ s2, and which
intersects all segments in S. Thus we are checking the
feasibility of a linear program with O(n) constraints in
two variables, l.y and r.y, which can be solved in O(n2)
time by standard techniques (see [4]).

So now suppose the bottom chain has at least one
interior vertex. First we precompute for every possi-
ble starting and ending index pair the minimal length
negative subchain which could be in a valid chain pair.
Specifically, for any pair of indices 1 < i ≤ j < n, let
MinNeg(i, j) be the minimum number of vertices of a
negative chain from s−i to s−j such that s+x lies above the
chain for all i < x < j. Observe that we can easily com-
pute MinNeg(i, j) for all pairs 1 < i ≤ j < n in O(n3)
time using a similar but simpler dynamic programming
approach as was done for MinCH(i, j) in Algorithm 1.
Namely, the algorithm follows by the recursive relation
MinNeg(i, j) = 1 + mink∈N MinNeg(k, j) where N is
the set of indices i < k ≤ j, such that for all i < x < k,

s+x lies above the segment s−i s
−
k . (N can be computed

in linear time, similar to Negative(j) in Algorithm 2.)

By Corollary 7, we know the optimal solution is
2 + min(i,j)∈V MinNeg(i, j), where V is the set of all
index pairs such that the minimal subchain computed
by MinNeg(i, j) can be extended into a valid chain pair
(such that the positive chain has no interior vertices).
Specifically, V is the set of index pairs 1 < i ≤ j < n
where there exists points l ∈ s1 and r ∈ sn such that

1) s+x lies above ls−i for all 1 < x < i, 2) s+x lies

above s−j r for all j < x < n, and 3) s−x lies below lr
for all 1 < x < n. Consider the first condition. Let
top = min1<x<i Int(s

+
x , s
−
i).y, where Int(s+x , s

−
i) de-

notes the point of intersection of the line supporting

s+x s
−
i with the vertical line supporting s1. Then con-

dition 1) is equivalent to requiring that l.y ≤ top, and
so this condition can be encoded by simply replacing
the upper endpoint of s1 with the point (s+1 .x, top) (if
top < s−1 .y then (i, j) /∈ V). Similarly, we can update
the lower endpoint of sn to handle condition 2) from
above. Updating the endpoints in this manner takes
O(n) time for any given pair (i, j).

Thus all that remains is to handle condition 3). Here
we require lr lies above s−x for all 1 < x < n, where
l ∈ s1 and r ∈ sn. Let E denote the set of all relevant
endpoints, i.e. s+1 , s−1 , s+n , s−n and all s−x for 1 < x < n.
If such a segment lr exists, then we can translate it ver-
tically downwards until it hits a point in E, and then
rotate about that point until it hits a second endpoint in
E, and it will still be a valid solution. Thus it suffices
to limit our search to the set of all segments passing
through two points in E. Now there are a few cases.
First, suppose one of these two points is s−1 . Consider
the ray with base point s−1 and pointing vertically up-

13

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

ward. Let s−k be the first point hit in the set of all s−x for
1 < x < n, when rotating this ray clockwise. Clearly lr
must pass above s−k and if it does then it passes above
all s−x for 1 < x < n. Thus in this case a valid lr ex-

ists if and only if the line supporting s−1 s
−
k passes below

s+n . Thus we can check all cases when one of the two
points is s−1 in O(n) time, as this is how long it takes
to compute s−k . A similar argument works for the cases
when one of the two points is s+1 , s+n , or s−n . So now
suppose lr passes through two points s−g and s−h , such

that 1 < g < h < n. Observe that for lr to lie above
s−x for all 1 < x < n, this is equivalent to requiring
lr to lie above the top chain of the convex hull of all

such s−x . In other words, s−g s−h must define an edge of
the top chain of the convex hull. There are only O(n)
such edges, all of which can be computed globally once
in O(n log n) time (i.e. they do not need to be recom-
puted for each MinNeg(i, j)). For each such edge in
constant time we can check whether the line supporting
it intersects s1 and sn. Thus in O(n) time (ignoring the
global O(n log n) top chain computation) we can check
all cases where lr passes through two points s−g and s−h ,
such that 1 < g < h < n. So overall, for any pair (i, j)
we can check in O(n) time whether it lies in V , and
thus by checking all pairs we can compute V in O(n3)
time. �

A.3 Missing Remarks

Remark 12 The case when s1 is a vertical segment can
be directly reduced to the single point case in Theorem 8,
but the run time degrades. Imagine sliding a point p
down the segment s1. As we slide this point the behavior
of MinCH(1, 1) from Algorithm 1 only changes when
either the set P or N change, and specifically as we slide
p downwards the set P gets smaller and N larger. So
fix an index k which initially is in P , and consider the
moment when k leaves the set P . At this moment, for
some 1 < x < k, p must be the intersection of s1 with

the line supporting s−x s+k , namely if p went any lower

on s1 then s−x would lie above ps+k . A similar statement
holds for changes in the set N . Thus consider the set of
all O(n2) intersection points of the segment s1 with lines
supporting segments of the form s+i s

−
j for all pairs i, j.

As all possible values for P,N are realizable by starting
from some point in this canonical set of points, we can
obtain the optimal solution to Problem 1 by calling the
algorithm of Theorem 8 for each one of these points. As
the running time of each call is O(n3), this would give
an O(n5) time solution.

Remark 13 It is not hard to see that the approach in
Section 2 also gives a polynomial time algorithm for
Problem 1 when U is a set of axis-aligned rectangles that
can be appropriately ordered. Specifically, suppose you

are given the points l, r, t, b representing the leftmost,
rightmost, topmost, and bottommost vertices of the op-
timal convex hull. Similar to Lemma 4, one can argue
that there is an optimal solution where all the vertices
on the top chain between l and t are realized at the up-
per left corner of their rectangle, and similar statements
hold for the other corners. To use dynamic program-
ming, however, we need to be given an ordering, such
as the left to right order of the realizations of the rect-
angles. This would occur if, for example, the rectangles
are separated by vertical lines, i.e. rectangles R1, . . . Rn

such that for any i < j, Ri lies entirely to the left of
Rj. Note there are only a polynomial number of pos-
sibilities for l, r, t, b as their rectangles can be guessed,
and there are only a polynomial number of canonical po-
sitions that to need be considered for their realization in
each rectangle (similar to Remark 12). Thus this gives a
polynomial time algorithm when we have such an order-
ing, though the constant would be high without similar
optimizations as in the vertical segment case.

B NP-Hardness for General Segments

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

Figure B.1: Certain points b1, . . . b5, and caps c1, . . . , c5.

14

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Sparse Convex Hull Coverage

Georgiy Klimenko∗ Benjamin Raichel∗ Gregory Van Buskirk∗

Abstract

Given a set P of n data points and an integer k, a fun-
damental computational task is to find a smaller subset
Q ⊆ P of only k points which approximately preserves
the geometry of P . Here we consider the problem of
finding the subset Q of k points which best captures
the convex hull of P , where our error measure is the
sum of the distances of the points in P to the convex
hull of Q. We generalize the problem to allow the set R
that we must select Q from to differ from P , as well as
to allow more general functions of the distances of the
uncovered points of P , such as other norms or weighted
distance functions.

We prove that approximating the convex hull in this
manner in the plane can be solved by either a simple
graph based or dynamic programming based algorithm
in polynomial time. Complementing this result we show
that in dimensions 3 and higher the problem is NP-hard.
Moreover, we give an algorithm which in 3 dimensions
selectsO(k log(n/ε)) points to get a solution whose error
is at most 1 + ε times the optimal k point error. This
generalizes to O(kbd/2c log(n/ε)) points for any constant
dimension d.

1 Introduction

Given a point set P ⊂ Rd, the convex hull of P , de-
noted CH(P), is a fundamental geometric structure, in-
tuitively capturing the region covered by P . Here we
consider the problem of covering P as best as possible
by the convex hull of a subset of only k points from P ,
in effect sparsely approximating CH(P). This natural
problem relates to the problem of approximating convex
sets by polytopes, for which countless papers have been
written (see the extensive survey [5]). Much of this pre-
vious work has focused on the objective of minimizing
the maximum distance of an uncovered point from the
hull of the selected points (i.e. Hausdorff distance), or
approximating the volume in the case of smooth con-
vex bodies. Here we instead study approximating the
convex hull of a discrete point set under the objective
of minimizing the sum of the distances of the uncovered
points, an objective which when compared to the max

∗Department of Computer Science, University of Texas
at Dallas, {gik140030, benjamin.raichel, greg.vanbuskirk}
@utdallas.edu. Work on this paper was partially supported by a
NSF CAREER Award 1750780.

objective is more robust to outliers as the error is no
longer determined solely by the single furthest point.
Our framework also allows for much more general cost
functions of the distances, and in particular allows for
any `p norm or weighted distance functions. We further
generalize the problem such that the selected k points
defining our hull are required to come from a set R that
can differ from P , thus capturing scenarios where the
covering objects differ from the covered ones. This is
natural from a feature selection standpoint, where R
represents a set of known possible features which we
wish to represent a set of observed objects P . For such
problems the convex hull is a particularly relevant struc-
ture as it represents the set of all weighted averages of
the selected points. Moreover, the Carathéodory theo-
rem states that any point in the convex hull of the cho-
sen subset can be represented as a convex combination
of d + 1 of the chosen points, yielding a sparse repre-
sentation in low dimensions. (In higher dimensions one
can use the approximate Carathéodory theorem [2].)

More generally, given a set P ⊂ Rd of n points, finding
a smaller set of only k points which approximately cap-
tures the geometry of P under some measure is a ubiqui-
tous computational task. Two standard such problems
of interest are k-clustering and subspace fitting. In k-
clustering the objective is to select a subset of k center
points so as to minimize some norm of the vector of dis-
tances from each point in P to its nearest center. For
example, k-means seeks to minimize the `2 norm [1],
where it is known that even planar k-means is NP-hard
[11]. For subspace fitting the objective is to select the
k-dimensional subspace minimizing some norm of the
distances to the linear subspace, e.g. the solution under
the `2 norm is known to be the top k singular vectors
when viewing P as a matrix. If one restricts the se-
lected k points to come from P , then the clustering and
subspace fitting problems become the standard discrete
k-clustering and CUR-decomposition [4] problems.

Our problem of approximating the convex hull can be
viewed as naturally lying between clustering and sub-
space fitting, when restricting the selected subset to
come from a set R. Specifically, viewing the selected
subset of k points Q ⊆ R as a basis, the problems are
defined by how we allow each point in P to be repre-
sented by Q. In subspace fitting, any linear combination
is allowed, in convex hull coverage only convex combi-
nations are allowed (i.e. non-negative and summing to
1), and in clustering not only are the combinations con-

15

32nd Canadian Conference on Computational Geometry, 2020

vex but are all zero except for a single 1 (i.e. the nearest
center). That is, one can define an entire spectrum of
problems based on how one restricts reconstruction from
the basis, and convex hull coverage is a natural set point
on this spectrum. In this sense, other standard prob-
lems such as non-negative matrix factorization (NMF),
which is known to NP-hard [15], can be seen as another
set point on this spectrum. (NMF typically restricts
the basis to non-negative vectors, though restricting to
input points is also commonly studied [10].)

Another related topic is coresets, which are small sub-
sets of the input which can be used as a proxy for the full
set. There are numerous coresets results (see chapter 48
in [13]). Relevant to the current paper, it is known that
for any point set P contained in the unit ball,1 there
is a subset S ⊆ P of O(1/ε(d−1)/2) points such that
all of P is with distance ε from CH(S). Worst case
point sets require such an exponential dependence on d,
and thus [3] considered coresets whose size is measured
relative to the given instance, showing that if some k
points achieves ε error, then a greedy algorithm select-
ing O(k/ε2/3) points achieves O(ε1/3) error. This result
was later extended by [14] to get analogous results for
approximating the conic hull, which consists of all non-
negative combinations, and thus relates to NMF.

Our Contribution. For point sets R,P ⊂ Rd of m and
n points, respectively, we initiate the rigorous study of
the convex hull coverage problem, where the goal is to
find a subset Q ⊆ R of k points minimizing the sum
of distances from the points in P to their projection
onto the convex hull of Q, that is

∑
p∈P ||p − CH(Q)||.

Furthermore, we generalize the problem to allow any
cost function of the form

∑
p∈P gp(||p−CH(Q)||), where

each gp can be any monotonically increasing real valued
function such that gp(α) = 0 if and only if α = 0. Thus
we can model for example weighted sums or other `p
norms of the distances of the points in P to the hull (by
taking the pth power of the norm).

We prove that convex hull coverage can be solved ex-
actly in the plane in O(m3k + m2n + mn log(n)) time
via dynamic programming. Interestingly, for the spe-
cial case when P = R, we can show that by care-
fully assigning weights the problem nicely reduces to
the problem of finding a minimum cost k length cycle
in a directed graph. This yields a simpler graph based
algorithm with O(n3 log k) running time. To comple-
ment our results in the plane, we argue that the con-
vex hull coverage problem is NP-hard for d ≥ 3, even
when restricting our objective to the sum of distances
(i.e. the gp are all the identity function). Furthermore,

1Any point set can be scaled to lie in the unit ball, effectively
meaning ε is measured relative to the diameter before scaling,
which is in some sense necessary. Via an affine transformation,
one can ague such coresets exist for directional width where error
is relative to the diameter in each direction, see [9].

we argue that even if one restricts to instances where
P = R, the problem remains NP-hard for d ≥ 4. Fi-
nally, we argue that a geometric set cover based algo-
rithm yields an approximation in constant dimensions
for the sum of distances. Namely, for d = 3 greedily se-
lecting O(k log(n/ε)) points in an appropriate way gives
a solution whose error is at most 1 + ε times the opti-
mal k point error. This generalizes to O(kbd/2c log(n/ε))
points for any constant dimension d.

One of the main challenges of convex hull coverage for
d ≥ 3 is that it lacks certain independence properties of
related problems. For example, in k-clustering, the clus-
ter centers partition the points based on their nearest
center, whereas the projection of a point onto the convex
hull is determined by several hull vertices. For subspace
approximation under the Frobenius norm there is inde-
pendence among the dimensions, in the sense that the
kth singular vector is determined by finding the opti-
mum vector in the orthogonal subspace of the first k−1
singular vectors. Note also that previous coreset results
focused on the max measure, where a given error ε rep-
resents a precise constraint that all points must satisfy.
On the other hand, for our sum measure, an error ε
represents a budget that the algorithm must now de-
cide how to allocate amongst the various points.

2 Preliminaries

Given a point set X in Rd, let CH(X) denote its con-
vex hull. For two points x, y ∈ Rd, let xy denote
their line segment, that is xy = CH({x, y}). Through-
out, given points x, y ∈ Rd, ||x − y|| denotes their Eu-
clidean distance. Given two compact sets X,Y ⊂ Rd,
||X −Y || = minx∈X,y∈Y ||x− y|| denotes their distance.
For a single point x we write ||x− Y || = ||{x} − Y ||.
Definition 1 Let P ⊂ Rd be a set of n points, where for
each point x ∈ P , there is an associated monotonically
increasing real valued function gx such that gx(α) = 0 if
and only if α = 0. Then we call any function of the form
f(Q,P ′) =

∑
x∈P ′ gx(||x−CH(Q)||), where Q ⊂ Rd and

P ′ ⊆ P , a hull coverage function. We let FP denote the
set of all such functions.

In the above definition we assume the gx functions
can be evaluated in constant time. The following is the
main problem studied in this paper.

Problem 2 Given a set P ⊂ Rd of n points, a set R ⊂
Rd of m points, and a function f ∈ FP , select a subset
Q ⊆ R of at most k points which minimizes f(Q,P).
That is, Q = arg minQ⊆R,|Q|≤k f(Q,P).

3 Exact Computation in the Plane

In this section we give polynomial time algorithms for
Problem 2 when d = 2. First, we give a simple graph

16

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

based algorithm for the special case when P = R, fol-
lowed by a slightly more involved dynamic programming
algorithm for the general case.

3.1 A graph algorithm for a simpler case

In this section we argue that by assuming P = R, one
can solve Problem 2 in the plane by converting it into
a corresponding graph problem. Specifically, construct
a weighted and fully connected directed graph GP =
(V,E) where V = P . Given an order pair of points p, q,
let Pp,q denote the subset of P in the closed halfspace
whose boundary is the line through p and q and lies to
the left of the ray from p to q. Then we define the weight
of the directed edge (p, q) to be w(p, q) = f({p, q}, Pp,q).
For a cycle of vertices C = {p1, . . . , pk}, let w(C) denote
the sum of the weights of the directed edges around the
cycle. Throughout, we only consider non-trivial cycles,
that is cycles must have at least two vertices.

For a set of pointsQ, let CHL(Q) denote the clockwise
list of vertices on the boundary of CH(Q). Observe that
any subset Q ⊆ P corresponds to the cycle CHL(Q) in
GP . Moreover, any cycle C correspond to the convex
hull CH(C).

Lemma 3 Consider an instance P,R, f, k of Problem 2
in the plane where P = R. Let C be any cycle in GP ,
and let Q be an optimal solution. Then,
1) w(C) ≥ f(C,P), 2) w(CHL(Q)) = f(Q,P).

Proof. First, observe that w(C) and f(C,P) can be
decomposed into the contribution of each point.

f(C,P) =
∑

p∈P
gp(||p− CH(C)||) and

w(C) =
∑

(a,b)∈C
f({a, b}, Pa,b) =

∑

p∈P

∑

(a,b)∈C
s.t. p∈Pa,b

gp(||p− ab||).

To prove the first part of the lemma, we thus argue
that for any p ∈ P , its contribution to w(C) is at least as
large as its contribution to f(C,P). Assume p /∈ CH(C),
since otherwise it does not contribute to f(C,P). It suf-
fices to argue there exists an edge (a, b) ∈ C, such that
p ∈ Pa,b, since ||p−ab|| ≥ ||p−CH(C)|| and gp is a mono-
tonically increasing function. So assume otherwise that
there is some point p ∈ P such that p lies to the right of
all edges in C. Create a line ` that passes through p and
any interior point of any edge (a, b) ∈ C, but does not
pass through any point in R. ` splits the plane into two
halfspaces. As p is to the right of any edge and is out-
side the convex hull of the points, all edges intersecting
` have to begin at the same halfspace, and end at the
other halfspace. This implies C is not a cycle, which is
a contradiction.

To prove the second part of the lemma for an optimal
solution Q, we argue that for any p ∈ P , its contribution

p

a
b c

d

Figure 3.1: b, c ∈ CH({a, d, p}) when p ∈ Pab and p ∈
Pcd.

to f(Q,P) is equal to its contribution to w(CHL(Q)).
If p ∈ CH(Q) then it lies to the right of all edges in
CHL(Q), and so its contributions to both w(CHL(Q))
and f(Q,P) are zero. So consider a point p /∈ CH(Q).
Let ab be the closest edge of CH(Q) (where b follows a
in clockwise order). Note that ||p−CH(Q)|| = ||p− ab||
and p ∈ Pab, and thus the contributions of p to f(Q,P)
and w(CHL(Q)) are equal if and only if p lies to right of
all other edges in CHL(Q), as otherwise p has a positive
contribution to another edge since by definition gp(α) >
0 for α > 0. So suppose otherwise, that p lies to the left
of some other edge cd (note it may be that b = c). Thus
p is in the intersection of the halfspace to the left of
the line from a through b and to the left of the line
from c through d, see Figure 3.1. This implies that
b, c ∈ CH({a, d, p}). So let Q′ = Q ∪ {p} \ {b, c}, then
CH(Q) ⊂ CH(Q′). This implies f(Q′, P) < f(Q,P) as
Q′ contains p but Q does not, which is a contradiction
with Q being an optimal solution as |Q′| ≤ |Q|. (Note
that assuming P = R was used to ensure that Q′ was a
possible solution.) �

Theorem 4 Given an instance P,R, f, k of Problem 2
in the plane where P = R, it can can be solved in
O(n3 log k) time, where n = |P | = |R|.
Proof. Let C be a minimum cost cycle in GR subject
to having at most k vertices. The claim is that the set
of vertices in C is an optimal solution to Problem 2,
that is, f(C,P) = minX⊆R,|X|≤k f(X,P). By part 1)
of Lemma 3, w(C) ≥ f(C,P), and thus if C is not op-
timal, then the optimal solution must have cost strictly
less than w(C). However, by part 2) of Lemma 3, the
optimal solution corresponds to a cycle in GR with the
same cost, which contradicts C being minimum cost.

Now we analyze the running time. Computing GR
takes O(n3) time as there are O(n2) edges, and com-
puting the weight of each edge takes O(n) time, as it
is a sum of at most n constant time computable func-
tions. To compute the minimum cost cycle with ≤ k

17

32nd Canadian Conference on Computational Geometry, 2020

edges, it suffices to compute the all pairs shortest path
distances for paths with ≤ k− 1 edges, since afterwards
in O(n2) time we can add the final edge of each cycle.
It is known that for a graph with n vertices the all pairs
shortest path distances for paths with ≤ k − 1 edges
can be computed in O(n3 log k) time, see for example
the matrix multiplication algorithm in [7]. Thus, the
overall running time is O(n3 log k). �

3.2 Dynamic programming for the general case

We now argue that when P is allowed to differ from R
we can still compute the optimal solution in the plane in
polynomial time by using a slightly more involved and
slightly slower dynamic program.

Let V = {v1, . . . , vk} ⊆ R be the vertices of some
convex hull of points from R, labeled in clockwise order,
where v1 is the vertex of V with smallest y-coordinate.
Consider our cost function f(V, P) =

∑
x∈P gx(||x −

CH(V)||). Any point x ∈ CH(V) contributes zero to f ,
as we required gx(0) = 0. So consider any point x ∈ P
lying outside of CH(V). The projection of x onto CH(V)
is either a vertex vi or a point on the interior of an edge
vi−1vi, for some i. Thus the edges and vertices of the
hull define a partition of points in P which lie outside
the hull, which we now formally describe.

Consider the ray with base point vi−1 and directed
from vi−1 towards vi. Define rl(vi−1, vi) to be the ro-
tation of this ray by π/2 to the left, that is the ray
with base point vi−1 and direction (vi−1.y− vi.y, vi.x−
vi−1.x). Define rr(vi−1, vi) to be ray with the same
direction, but with base point vi. Then slab(vi−1, vi)
is defined as the region of the plane interior to and
bounded by the edge vi−1vi and (between) the rays
rl(vi−1, vi) and rr(vi−1, vi). See Figure 3.2. De-
fine cone(vi−1, vi, vi+1) as the closed region bounded
rr(vi−1, vi) and rl(vi, vi+1), again see Figure 3.2. In
other words, slab(vi−1, vi) and cone(vi−1, vi, vi+1) are
the subsets of points in the plane outside of CH(V)
whose projection onto CH(V) lies on the interior of
vi−1vi or on the vertex vi, respectively. In particular,
for a point set P , define

sumslab(vi−1, vi) = f({vi−1, vi}, P ∩ slab(vi−1, vi))

=
∑

p∈slab(vi−1,vi)

gp(||p− CH({vi−1, vi})||)

sumcone(vi−1, vi, vi+1) = f({vi}, P ∩ cone(vi−1, vi, vi+1))

=
∑

p∈cone(vi−1,vi,vi+1)

gp(||p− vi||)

Observe that sumslab(vi−1, vi) only depends on vi−1

and vi and sumcone(vi−1, vi, vi+1) only depends on vi−1,
vi, and vi+1. In particular, these quantities are respec-
tively defined for any pair or triple of points in R, and
for now assume they have all been precomputed.

vi−1

vi

vi+1

slab(
vi−1, vi

) cone(vi−1, vi, vi+1)

Figure 3.2: Three consecutive vertices on the hull, and
the corresponding defined slabs and cone.

By the discussion above, for ordered vertices V of a
convex hull we can rewrite our cost function as

f(V, P) =
∑

x∈P
gx(||x− CH(V)||) =

k∑

i=1

(sumcone(vi−1, vi, vi+1) + sumslab(vi, vi+1)),

(3.1)

where indices are mod k, i.e. v0 = vk and vk+1 = v1.
This equation suggests a natural recursive strategy to
minimize f(V, P) (over choices of V) by guessing the
vertices of V in clockwise order.

First, at the cost of an additional linear factor in
the running time, we guess the point with the small-
est y-coordinate from the optimal hull.2 We call this
the starting point and denote it by s (i.e. v1 = s). Let
Rs be the subset of points in R whose y-coordinate is
greater than that of s. As we assumed s is the lowest
point in the optimal solution, we can disregard points
in R\Rs. Next, we sort all other points in Rs clockwise
radially around s (i.e. from the negative x axis clock-
wise about s to the positive x axis) and process points
in this order.

One issue we must deal with first is that in Equa-
tion 3.1, sumcone(vk, s, v2) depends both on the choice
of vk and v2. To break this cyclic behavior we cut the
cone for s in two. So cast a ray in the negative y-
direction from s and call it rs, and observe that as s
is the lowest vertex rs must lie in the cone for s. We
cut the cone for s along rs and assign each piece to its
adjacent slab. Specifically, suppose we set v2 = u for
some u ∈ Rs. Then define sumstart(s, u) as the union
the region sumslab(s, u) with the cone lying between the
rays rs and rl(s, u) (including rs). Similarly, if we set
vk = w, then define sumend(w, s) as the union of the re-
gion sumslab(w, s) with the cone lying between the rays

2We can assume all points have distinct y-coordinates, by ap-
plying a small random rotation, which does not affect f .

18

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

rr(w, s) and rs (excluding rs). Then we have,

f(V, P) = sumstart(s, v2)+

k−1∑

i=2

(sumcone(vi−1, vi, vi+1) + sumslab(vi, vi+1))

+ (sumcone(vk−1, vk, s) + sumend(vk, s)).

(3.2)

Given the above equation breaking the cost function
into a linear ordered set of cones and slabs, it is rela-
tively straightforward to compute the optimal solution
using dynamic programming. Due to space, the pseu-
docode and proof have been moved to Appendix A. We
remark that achieving the specific running time of the
following summarizing theorem though is non-trivial. In
particular, a roughly O(m) factor is saved over the naive
time bound by using sweeping both to batch dynamic
programming table entries together and to implicitly
precompute the sumcone values.

Theorem 5 Given an instance P,R, f, k of Problem 2
in the plane, it can be solved in O(m3k + m2n +
mn log(n)) time, where n = |P | and m = |R|.

4 Hardness in Higher Dimensions

A convex polytope T = (V,E) in R3, will be defined
as a graph where the vertices V are a set of points in
convex position in R3, and the edges E are the edges of
CH(V). [8] proved the following variant of vertex cover
is NP-hard.

Problem 6 (Polytope Vertex Cover) Given a con-
vex polytope T = (V,E) in R3 and an integer k, is there
a subset U ⊆ V of k vertices such that each edge in E
is incident to a vertex in U?

The following is the decision version of our main prob-
lem, Problem 2.

Problem 7 Given a set P ⊂ Rd of n points, a set R ⊂
Rd of m points, a function f ∈ FP , and a parameter ε,
is there a subset Q ⊆ R of at most k points such that
f(Q,P) ≤ ε.

We now show Problem 7 is NP-hard for d ≥ 3, where
f(Q,P) =

∑
x∈P gx(||x − CH(Q)||) is a natural and

simple function. Namely, we set gx(||x − CH(Q)||) =
||x−CH(Q)|| for all x. We denote this sum of distances
function as sd(Q,P) =

∑
x∈P ||x− CH(Q)||.

Theorem 8 Problem 7 is NP-hard for d ≥ 3, f = sd.

Proof. We give a polynomial time reduction from
Problem 6. Let T = (V,E) and k be an instance of
Problem 6. We first define several quantities based on
T . For any edge e ∈ E, define a vector ue = (n1+n2)/2,

where n1 and n2 are the normals of the planes of the two
faces adjacent to e. For any edge e = (v1, v2), consider
the plane ze containing e and with normal ue. Let he be
the distance from ze to the convex hull of V after remov-
ing the endpoints of e, i.e. he = ||ze−CH(V \{v1, v2})||,
and let h = mine∈E he. (Note h is non-zero as V is in
convex position.) Finally, let le be the length of the
edge e, and let l = maxe∈E le.

We construct our instance of Problem 7 as follows.
We use the same value of k, and set R = V . P will
contain one point for each edge e ∈ E, denoted pe. We
place pe outside CH(V) at a distance x in the direction
of ue from the midpoint of e, where x is a value to be
determined shortly. Finally, we set ε = n

√
x2 + (l/2)2,

and recall f(Q,P) = sd(Q,P) =
∑
p∈P ||p− CH(Q)||.

Observe that for any edge e ∈ E, if at least one of its
endpoints is selected, then the distance from pe to the
hull of the selected vertices is at most

√
x2 + (le/2)2 ≤√

x2 + (l/2)2. Thus if U ⊆ V is a vertex cover of V ,

then sd(U,P) ≤ n
√
x2 + (l/2)2 = ε. On the other hand

if U is not a vertex cover, then there is an edge e for
which neither endpoint is selected, in which case the
distance from pe to the hull of the selected vertices is
at least x + h. Thus the total distance of all points to
the hull is at least (n − 1)x + (x + h) = nx + h, as by
construction for any e′ ∈ E we have ||pe′−CH(R)|| = x.
Thus if we select x such that nx + h > ε, then U is
vertex cover if and only if sd(U,P) ≤ ε. To ensure this

inequality holds, set x = l2n
8h . Then we have

ε = n ·
√
x2 +

l2

4
= n ·

√(
l2n

8h

)2

+
l2

4

< n ·
√(

l2n

8h
+
h

n

)2

= n · l
2n

8h
+ h = nx+ h.

�

By lifting to R4 we can argue that the problem re-
mains NP-hard for the restricted variant where P = R,
i.e. the case considered in Section 3.1. The proof is
more technically challenging, though at a high level uses
a similar approach and thus has been moved to Ap-
pendix B for space.

Theorem 9 Problem 7 is NP-hard for d ≥ 4, f = sd,
and P = R.

5 Approximation in Higher Constant Dimensions

Given the hardness of our problem when d ≥ 3, it is
natural to consider approximations. For the Set Cover
problem, it is well known that if k sets cover the ground
set, then the greedy algorithm covers the ground set
with O(k log n) sets. Our hull problem is also a cover-
age problem, though it is more challenging as the points

19

32nd Canadian Conference on Computational Geometry, 2020

in P are not covered by the individual points we select
but rather convex combinations of them. Despite this,
we argue a similar greedy approach works, though it de-
pends on the number of facets of the convex hull of the
optimal k point solution. In 3d the number of facets
is O(k), yielding a (1 + ε) approximation to the error
with only O(k log(n/ε)) points, similar to Set Cover.
In higher constant dimensions, however, the worst case
facet complexity is O(kbd/2c). On real world inputs the
complexity may be significantly lower (see [12] for the
facet complexity of randomly sampled points), thus our
analysis suggests that greedily selecting roughly a loga-
rithmic factor more points may be a reasonable heuristic
in practice for small constant dimensions.

In this section we assume P and R are contained in
the unit ball, which as remarked in the introduction is
equivalent to measuring the error relative to the diam-
eter, as is standard.

Previously we considered the sum of distances func-
tion sd(Q,P) =

∑
x∈P ||x − CH(Q)||. Similarly, we

can define the maximum distance function md(Q,P) =
maxx∈P ||x − CH(Q)||. We have the following corre-
sponding optimization problem, considered in [3].

Problem 10 Given a set P ⊂ Rd of n points and a
set R ⊂ Rd of m points, select a subset Q ⊆ R of at
most k points which minimizes md(Q,P). That is, Q =
arg minQ⊆R,|Q|≤kmd(Q,P).

For an instance P,R ⊂ Rd and k of Problem 10, define

optmd := optmd(P,R, k) = arg min
Q⊆R, |Q|≤k

md(Q,P),

and optmd = md(optmd, P).

Similarly define

optsd := optsd(P,R, k) = arg min
Q⊆R, |Q|≤k

sd(Q,P),

and optsd = sd(optsd, P).

Lemma 11 ([3]) Let P,R ⊂ Rd and k be an instance
of Problem 10, where d is a constant. Then in polyno-
mial time one can compute a set Q0 of O(k log k) points
such that md(Q0, P) ≤ optmd(P,R, k).

Let Q0 be the set described in the above lemma. Ob-
serve that

sd(Q0, P)

n
≤ md(Q0, P) ≤ optmd

= max
p∈P
||p− CH(optmd)|| ≤ max

p∈P
||p− CH(optsd)||

≤
∑

p∈P
||p− CH(optsd)|| = optsd,

that is Q0 achieves an n-approximation to the optimal
sum distance cost optsd.

For any subset Q ⊆ R, let Z(Q,P) = sd(Q,P) −
sd(optsd, P) = sd(Q,P) − optsd. For convenience Z(Q)
will denote Z(Q,P) when P is the full point set. The
proof of the following helper lemma is in Appendix C.

Lemma 12 Given an instance P,R ⊂ Rd and k of
Problem 2, where f = sd and d is a constant, for any
subset Q ⊆ R such that Z(Q) ≥ 0, there exists a d-
simplex ∆ such that Z(Q ∪ ∆) ≤

(
1− 1

c·kbd/2c
)
Z(Q),

where c is a constant.

We remark that the running time of Lemma 11 from
[3] depends exponentially on d, and thus the same is
true for the following theorem which makes use of it.

Theorem 13 Given an instance P,R ⊂ Rd and k of
Problem 2, where f = sd and d is a constant, in
polynomial time one can compute a set Q ⊆ R of
O(kbd/2c log(n/ε)) points such that sd(Q,P) ≤ (1 + ε) ·
optsd(P,R, k).

Proof. Use Lemma 11 to compute a set Q0 ⊆ R of
O(k log k) points such that sd(Q0, P) ≤ n·optsd(P,R, k).
We will iteratively add subsets of d+ 1 points to Qi for
i = {0, 1, . . . ,m − 1} where m is the total number of
iterations. Let Ai := arg min∆⊆R,|∆|=d+1 sd(Qi ∪∆, P)
that is, Ai is the d-simplex whose addition to the current
hull minimizes the sum of distances. In the ith iteration
we add Ai to Qi to obtain Qi+1 := Qi ∪Ai.

Recall that Z(Qm) = sd(Qm, P) − optsd. Thus if
Z(Qm) ≤ ε · optsd then sd(Qm, P) ≤ (1 + ε)optsd as
desired. If at any iteration Z(Qi) ≤ 0, then Z(Qm) ≤
0 ≤ ε ·optsd, since adding more points in later iterations
can only further decrease the error. So assume that
Z(Qi) > 0, then by lemma Lemma 12, there exists a
simplex ∆ such that Z(Qi ∪∆) ≤

(
1− 1

c·kbd/2c
)
Z(Qi).

Note that since Z(Qi ∪∆) = sd(Qi ∪∆, P)− optsd, we
have Z(Qi+1) = Z(Qi∪Ai) ≤ Z(Qi∪∆) since we chose
Ai to minimize sd(Qi∪Ai, P) and optsd is fixed. Thus we
have Z(Qi+1) ≤

(
1− 1

c·kbd/2c
)
Z(Qi), and inductively

Z(Qm) ≤
(

1− 1

c · kbd/2c
)m

Z(Q0)

≤
(

1− 1

c · kbd/2c
)m

n · optsd,

where the second inequality follows as sd(Q0, P) ≤
n·optsd. Thus if we select m such that

(
1− 1

c·kbd/2c
)m ≤

(ε/n), then Z(Qm) ≤ ε ·optsd as desired. Note that (1−
1

ckbd/2c)
m ≤ exp(m/ckbd/2c) and rearranging the equa-

tion exp(m/ckbd/2c) = ε/n gives m = ckbd/2c log(n/ε).
As we are adding d + 1 points in each round, and d
is a constant, we thus get O(kbd/2c log(n/ε)) points in
total. �
Corollary 14 Given an instance P,R ⊂ R3 and k of
Problem 2, where f = sd, in polynomial time one can
compute a set Q ⊆ R of O(k log(n/ε)) points such that
sd(Q,P) ≤ (1 + ε) · optsd(P,R, k).

20

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] D. Arthur and S. Vassilvitskii. k-means++: the ad-
vantages of careful seeding. In ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1027–
1035, 2007.

[2] S. Barman. Approximating nash equilibria and
dense bipartite subgraphs via an approximate ver-
sion of caratheodory’s theorem. pages 361–369.
ACM, 2015.

[3] A. Blum, S. Har-Peled, and B. Raichel. Sparse ap-
proximation via generating point sets. ACM Trans.
Algorithms, 15(3):32:1–32:16, 2019.

[4] C. Boutsidis and D. Woodruff. Optimal CUR ma-
trix decompositions. SIAM J. Comput., 46(2):543–
589, 2017.

[5] E. Bronstein. Approximation of convex sets by
polytopes. Journal of Mathematical Sciences,
153(6):727–762, 2008.

[6] K. Clarkson. A randomized algorithm for closest-
point queries. SIAM J. Comput., 17(4):830–847,
1988.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. The
MIT Press, 3rd edition, 2009.

[8] G. Das and M. Goodrich. On the complexity of op-
timization problems for 3-dimensional convex poly-
hedra and decision trees. Comput. Geom., 8:123–
137, 1997.

[9] S. Har-peled. Geometric Approximation Algo-
rithms. American Mathematical Society, 2011.

[10] A. Kumar, V. Sindhwani, and P. Kambadur. Fast
conical hull algorithms for near-separable non-
negative matrix factorization. In Int. Conf. on Ma-
chine Learning, pages 28:231–239, 2013.

[11] M. Mahajan, P. Nimbhorkar, and K. Varadarajan.
The planar k-means problem is np-hard. Theor.
Comput. Sci., 442:13–21, 2012.

[12] M. Reitzner. The combinatorial structure of
random polytopes. Advances in Mathematics,
191(1):178 – 208, 2005.

[13] C. Tóth, J. O’Rourke, and J. Goodman. Handbook
of Discrete and Computational Geometry. Discrete
Mathematics and its Applications. CRC Press,
2017.

[14] G. Van Buskirk, B. Raichel, and N. Ruozzi. Sparse
approximate conic hulls. In Advances in Neural In-
formation Processing Systems (NIPS), pages 2534–
2544, 2017.

[15] S. Vavasis. On the complexity of nonnegative ma-
trix factorization. SIAM Journal on Optimization,
20(3):1364–1377, 2010.

21

32nd Canadian Conference on Computational Geometry, 2020

A Proofs from Section 3.2

We now argue that the recursive algorithm shown in Al-
gorithm 1, minimizes Equation 3.2 over all V ⊆ R, such
that V = {v1 = s, v2, . . . , vk} are the ordered vertices
of a convex hull with lowest point s. This algorithm
makes use of the function right(u, v, w) which returns
true if the ordered triple (u, v, w) represents a right turn
and returns false otherwise. The following simple helper
lemma ensures that we do not need to check for a right
turn at s (i.e. where we split the problem), as long as
we check everywhere else.

Lemma 15 Let V = {v1, v2, . . . , vk} be a sequence of
points such that v1 is the lowest point, and v2, . . . , vk are
in clockwise sorted order around v1. If for all 1 < i ≤ k,
(vi−1, vi, vi+1) is a right turn, where vk+1 = v1, then V
are the ordered vertices of a convex hull.

Proof. By definition V are the ordered vertices of a
convex hull if V represents a simple closed convex chain.
First, because the vertices in V = {v1, . . . , vk} are given
in clockwise sorted order around v1, the closed chain V
must be simple (i.e. when rotating a ray from v1, the
edges of the chain always cross it in the same direction).
In order for the chain to be a closed convex chain, it
must make a right turn at every vertex. We are already
explicitly given that a right turn is made at every vertex
except for v1. To see why (vk, v1, v2) is a right turn, ob-
serve that v1 is lower than both vk and v2, and moreover
vk comes after v2 in clockwise order about v1. These two
facts combined imply the angle ∠vkv1v2 is < π (i.e. the
angle subtended by rotating v1v2 clockwise about v1 to
v1vk), that is a right turn. �

Given the above discussion about breaking the cost
function into cones and slabs according to Equation 3.2,
the proof of correctness of Algorithm 1 is now fairly
straightforward.

Lemma 16 Given an instance P,R, f, k of Problem 2
in the plane, Algorithm 1 computes the optimal solution
cost, namely minQ⊆R,|Q|≤k f(Q,P).

Proof. For any s ∈ R, we now argue costs =
minv∈Rs(sumstart(s, v) + RecAlg(s, k − 1, s, v)) is the
minimum cost k length convex hull with lowest point
s. This will imply Wrapper computes the optimum
solution as it takes the minimum of this quantity over
all s ∈ R.

Suppose that costs is not infinite. By the structure
of the recursive algorithm, this can only happen if in
each recursive call determining costs that best is not
infinite. The places where best can be set to a non-
inifinite value are lines 4 and 9, and if the return value
of best is set by line 4 then this represents a terminal

Algorithm 1 Recursive Algorithm

1: function RecAlg(s, k′, u, v)
2: best =∞
3: if right(u, v, s) then
4: best = sumcone(u, v, s) + sumend(v, s)

5: if k′ = 1 then
6: return best
7: for w ∈ Rs after v in clockwise order do
8: if right(u, v, w) then
9: best = min{best, sumcone(u, v, w) +

sumslab(v, w) +RecAlg(s, k′− 1, v, w)}
10: return best

11: function Wrapper(R,P, k)
12: best =∞
13: for s ∈ R do
14: for v ∈ Rs in clockwise order do
15: best = min{best, sumstart(s, v) +

RecAlg(s, k − 1, s, v)}
16: return best

call. Moreover, observe that executing line 4 or 9 re-
quires satisfying a right turn check on the proceeding
line. Thus there must have been a sequence of recursive
calls made with a corresponding sequence of vertices
V = {v1 = s, v2, . . . , vκ} such that for all 1 < i ≤ κ,
right(vi−1, vi, vi+1) = true (where vκ+1 = v1), which
by Lemma 15 implies V are the ordered vertices of
a convex hull. (Note that s being lowest is enforced
by considering only Rs, and the clockwise ordering of
V is enforced the ordering of the for loops.) More-
over, we have costs = sumstart(s, v2) + RecAlg(s, k −
1, s, v2), and from line 9 for all 1 < i < κ we have
RecAlg(s, k− i+ 1, vi−1, vi) = sumcone(vi−1, vi, vi+1) +
sumslab(vi, vi+1) + RecAlg(s, k − i, vi, vi+1), and from
line 4 we have RecAlg(s, k − κ + 1, vκ−1, vκ) =
sumcone(vκ−1, vκ, s) + sumend(vk′ , s). Thus putting all
these equations together we have

costs = sumstart(s, v2)+

κ−1∑

i=2

(sumcone(vi−1, vi, vi+1) + sumslab(vi, vi+1))

+ (sumcone(vκ−1, vκ, s) + sumend(vκ, s)) = f(V, P)

where the last equality follows from Equation 3.2. Thus
if costs is not infinite then we know it represents the
true cost of some valid set of convex hull vertices V .
Conversely, by a similar logic it is easy to see that costs
is never infinite since for the ordered sequence of ver-
tices of any convex hull all the right turn checks will
be satisfied and in the algorithm when looking for the
next vertex we try all possible vertices that remain in
the sorted order. (Note ∞ may be returned if there

22

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

is no non-trivial convex hull, i.e. if s is the highest
vertex in R, a case which can be treated separately.)
Thus what remains is to argue that the output cost
and vertices selected correspond to a minimimal cost
solution, however, this is immediate from the above.
Specifically, let Vi be the set of all clockwise ordered
convex hull vertices such that all have the same prefix
{v1, . . . , vi}. Then minV ∈Vi

f(V, P) is determined by
selecting {vi+1, . . . vk} so as to minimize the cone and
slab sums they determine, which as argued above is pre-
cisely what lines 9 and 4 do. In particular, because the
cones and slabs define an ordered partition of P , mini-
mizing their cost over the remaining vertices, does not
affect the cone and slab cost determined by the previ-
ously selected vertices, and thus the recursive algorithm
correctly returns the minimal cost overall. �

As the correctness of our approach is established
by the above lemma, the proof of the following theo-
rem mainly focuses on running time. The proof saves
roughly an O(m) factor over the naive time bound by
using sweeping both to batch dynamic programming ta-
ble entries together and to implicitly precompute the
sumcone values.

Theorem 5. Given an instance P,R, f, k of Prob-
lem 2 in the plane, it can be solved in O(m3k +m2n+
mn log(n)) time, where n = |P | and m = |R|.

Proof. First, observe that the recursive Algorithm 1
can easily be turned into a dynamic program, as the
k′ parameter strictly decreases in each recursive call.
Moreover, it is easy to modify the code such that it
returns the actual vertices instead of just the cost of
the hull.

The correctness of this algorithm follows from
Lemma 16. For the running time, first observe that
for every vertex s ∈ R we can compute Rs and the
clockwise sorted order of all points in R around s, in
O(m2 logm) time. So assume this is done initially, and
moreover assume for now that all the cone and slab
sums have been precomputed. The dynamic program
will compute the value of RecAlg(s, k′, u, v) for each
quadruple (s, k′, u, v). Naively this takes O(m) time per
quadruple since the for loop on line 7 requires a table
lookup for each point in R. Thus overall the dynamic
program takes O(m4k) time as the table size is O(m3k).
However, we can save an O(m) factor in the running
time by instead computing for each triple (s, k′, ·, v),
the entire column of u values in O(m) time as follows.

Fix s, k′, and v. Define cost(u, v, w) =
sumcone(u, v, w) + sumslab(v, w) + RecAlg(s, k′ −
1, v, w). For any u ∈ Rs coming before v in the
clockwise order about s, the recursive algorithm com-
putes RecAlg(s, k′, u, v) = minw∈Y (u) cost(u, v, w),
where Y (u) is the set of points w ∈ Rs such that
right(u, v, w) = true and moreover w is after v in the

s

vui

ui+1

Figure A.1: Si+1 with 4 points shown shaded blue
on the right. The two points determining x =
sumcone(ui+1, v, ·) − sumcone(ui, v, ·) shown in shaded
yellow on the left.

clockwise order about s. Specifically, this is all points in
the region determined by sweeping the ray from v to s
counterclockwise until it hits the line passing through
u and v. See Figure A.1. So let u1, . . . , uz be the
vertices in Rs coming before v in the clockwise order
about s, but labelled by their counterclockwise order
about v. Then Y (ui) ⊆ Y (ui+1), and in particular
Si+1 = Y (ui+1) \ Y (ui) are the set of points in the
wedge lying between the line though ui and v and the
line through ui+1 and v (again see Figure A.1). Observe
that the Si are disjoint sets, and moreover,

RecAlg(s, k′, ui+1, v) = min
w∈Y (ui+1)

cost(ui+1, v, w)

= min{ min
w∈Si+1

cost(ui+1, v, w), min
w∈Y (ui)

cost(ui+1, v, w)}

Observe that minw∈Y (ui) cost(ui+1, v, w) =
minw∈Y (ui) cost(ui, v, w) + x for a fixed value
x that does not depends on w. Namely, x =
sumcone(ui+1, v, ·) − sumcone(ui, v, ·) (see Figure A.1),
as the cone sum is the only term in cost(u, v, w)
depending on u. Then given we already computed
RecAlg(s, k′, ui, v) = minw∈Y (ui) cost(ui, v, w),
by the above equation the time to compute
RecAlg(s, k′, ui+1, v) is proportional to just |Si|.
Thus as the Si are disjoint, this takes O(m) time over
all the ui, resulting in O(m3k) time for the entire
dynamic program.

Now we must consider the time to precompute the
cone and slab sums. For any pair u, v ∈ R, sumslab(u, v)
can be computed in O(n) time by scanning the points in
P to see which fall in the slab, and thus for all pairs in
R the sum slab cost can be computed in O(m2n) time.
As sumcone(u, v, w) is determined by three vertices in
R, similarly computing these values would take O(m3n)
time, however, we now argue that they can be implic-

23

32nd Canadian Conference on Computational Geometry, 2020

bqbp

ap aq

cp,q

Figure B.1: The edge (ap, aq) with added points in the
added dimension

itly computed more efficiently as follows. First, fix any
vertex v ∈ R. Recal the boundary of cone(u, v, w) is
determined by the rays rr(u, v) and rl(v, w) (defined
above). So let U and W be the sets of all vertices
that come before and after v in the clockwise sorted
order about s, respectively, and let Rr = ∪u∈U rr(u, v)
and Rl = ∪w∈W rl(v, w). Now sort all the vectors in
Rr∪Rl∪P in clockwise order around v, starting from the
first vertex occurring after the negative y-axis direction.
Now walk through the vertices in order maintaining a
rolling sum, which initially is zero. If the next vertex w
is in P then we add gv(||v − w||) to the sum, otherwise
if w ∈ Rr then we assign the current sum as valuer(w)
and if w ∈ Rl we assign the current sum as valuel(w).
Observe that given vertices u,w ∈ R where u comes
before v and w comes after v in clockwise order about
s, that sumcone(u, v, w) = valuel(w)− valuer(v). Thus
while we do not explicitly compute sumcone(u, v, w) for
all triples, by computing all of the valuel and valuer
values, then by taking a difference of two such values in
constant time we have access to sumcone(u, v, w). This
takes O((n + m) log(n + m)) time per vertex in R and
thus for all vertices in R takes O(m(n+m) log(n+m))
time. Thus precomputing all the slab sums and im-
plicitly precomputing all the cone sums overall takes
O(m2n+m2 log(m) +mn log(n)) time. Thus total run-
ning time of the entire algorithm is O(m3k + m2n +
mn log(n)). �

B Proof from Section 4

Theorem 9. Problem 7 is NP-hard for d ≥ 4, f = sd,
and P = R.

Proof. We give a polynomial time reduction from
Problem 6. Let T = (V,E) and k be an instance of
Problem 6. For any edge e ∈ E, let `e denote its
length and me its midpoint. Define the quantity h =
min{`, h1, h2}, where ` = mine∈E `e, h1 = minp∈V ||p−
CH(V \{p})||, and h2 = min(e1,e2)∈E ||m(e1,e2)−CH(V \
{e1, e2})||. Then for each point p = (px, py, pz) ∈
V , define the points ap = (px, py, pz, 0) and bp =
(px, py, pz, h), and for each edge (p, q) ∈ E define the

point cp,q = (px+qx
2 ,

py+qy
2 , pz+qz

2 , h2). See Figure B.1.
Define the sets A = {ap | p ∈ V }, B = {bp | p ∈ V },
and C = {cp,q | (p, q) ∈ E}. Intuitively, we wish to give
all points in B unit weight, and give n2 weight to all
points in A and C. To accomplish this let A′ and C ′ be
the multi-sets consisting of n2 copies of all points in A
and C, respectively. Our instance of Problem 7 in R4

is defined by P = R = A′ ∪ B ∪ C ′, k0 = k + n, and
ε = nh. Note that any solution to Problem 7 containing
a point from A′ (or C ′), does not change in cost if we
add one of its duplicates or exchange it for a duplicate.
Thus we can assume the optimal solution does not se-
lect duplicates, and so below we write A ⊂ P and refer
to selecting points from A.

Let W ⊆ V be a vertex cover of size k for the given
instance of Problem 6, and let B(W) = {b = (p, h) ∈
B | p ∈W}. The claim is that B(W)∪A is a solution to
our instance of Problem 7 with cost ≤ ε. First, observe
that |B(W)∪A| = k+n = k0 as required. Next, observe
that naturally this gives zero error to all points in A′ and
B(W). The same is true for any point cp,q ∈ C ′. To
see this observe that since W is a vertex cover, it must
contain at least one of p or q. Without loss of generality
suppose it contains q, in which case bq ∈ B(W). Thus
B(W) ∪ A contains both bq and ap, and since cp,q is
defined as the midpoint on the segment between bq and
ap, it is in their convex hull, i.e. it is covered with zero
error. Thus the error can only come from points in
B \ B(W), however, the error for these points is easily
upper bounded by ε = nh, as |B \B(W)| ≤ n and since
for any point bp ∈ B we have ||bp − ap|| = h and ap is
in our solution.

Now let Q be a solution to Problem 7 with k0 points
and error ≤ ε. We first argue that A ⊆ Q. Suppose
otherwise that some point a0 ∈ A is not in Q. We now
lower bound ||a0−CH(Q)||. Specifically, we will assume
Q = P \ {a0}, as this minimizes ||a0 − CH(Q)|| over all
possible Q. Observe, that cp,q ∈ CH(Q) for any point
cp,q ∈ C, since bp, bq ∈ Q, and at least one of ap or aq is
in Q. Thus every point in CH(Q) either lies in CH(A \
{a0}), in CH(B), or on a segment between a point of
CH(A\{a0}) and CH(B). Let α, β be the closest points
to a0 in CH(A\{a0}) and CH(B), respectively. Then by
the definition of h, ||a0−α|| ≥ h, and ||a0−CH(B)|| = h.
Moreover, it is not hard to see that the closest segment,
between a point of CH(A \ {a0}) and CH(B), to a0 is
the segment between α and β. Thus the distance form
a0 to CH(Q) is at least (

√
h2 + h2)/2 = h/

√
2. Since A′

contains n2 copies of a0, the error of Q for Problem 7
is at least n2 h√

2
> ε (for n ≥ 2). Thus all points in A

must have been selected.

Observe that for any point cp,q ∈ C, that cp,q ∈
CH(ap, aq, bp) and cp,q ∈ CH(ap, aq, bq), see Figure B.1.
That is, since A ⊆ Q, if a point cp,q is in Q, exchanging
it for either bp or bq can only enlarge CH(Q). Thus with-

24

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

out loss of generality we assume Q contains no points
from C. Moreover, for any cp,q ∈ C, at least one of bp
or bq is in Q, since otherwise cp,q /∈ CH(Q), in which
case by the same argument as above for a0, we have
||cp,q−CH(Q)|| ≥ (

√
(h/2)2 + (h/2)2)/2 = h/

√
8. Since

C ′ contains n2 copies of cp,q, the total error is then at
least n2 h√

8
> ε (for n ≥ 3), a contradiction. Thus

for every point cp,q at least one of bp or bq is in Q, or
equivalently W = {p | bp ∈ Q} is a vertex cover of E.
Moreover, it must be that |W | = k, as k0 = n + k and
all n points of A were selected. Thus all that remains is
to argue that the error due to B\W is less than ε (as all
other points are in CH(Q)). However, since all points in
A are in Q, this error is as most (n− k)h < nh = ε. �

C Proof from Section 5

Lemma 12. Given an instance P,R ⊂ Rd and k of
Problem 2, where f = sd and d is a constant, for any
subset Q ⊆ R such that Z(Q) ≥ 0, there exists a d-
simplex ∆ such that Z(Q ∪ ∆) ≤

(
1− 1

c·kbd/2c
)
Z(Q),

where c is a constant.

Proof. Let {∆1,∆2, . . . ,∆`} be the d-simplices of the
d-dimensional triangulation of CH(optsd) with the min-
imum number of d-simplices. It is known that ` ≤
c · kbd/2c, where c is a constant (using for example the
bottom vertex triangulation of [6]). Let {P1, P2, . . . , P`}
be the partition of P where p ∈ Pi if and only if
||p − ∆i|| = ||p − CH(optsd)||. (If the projection is on
a common point of more than one simplex, assign one
arbitrarily.) Now, rewrite Z(Q) as

Z(Q) =
∑̀

i=1

∑

x∈Pi

(||x− CH(Q)|| − ||x− CH(optsd)||) .

Let Avg := Z(Q)
` denote the average of Z(Q) over the

partitions Pi. Hence, there exists a simplex ∆j with
corresponding partition Pj such that

Z(Q,Pj) =
∑

x∈Pj

(||x− CH(Q)|| − ||x− CH(optsd)||)

≥ Avg ≥ Z(Q)

c · kbd/2c ,

where note the last inequality is where we used Z(Q) ≥
0. Finally, we have Z(Q ∪ ∆j , Pj) = sd(Q ∪ ∆j , Pj) −
sd(optsd, Pj) = sd(Q ∪∆j , Pj)− sd(∆j , Pj) ≤ 0. Thus,

Z(Q ∪∆j)=


 ∑

i∈[`],i6=j
Z(Q ∪∆j , Pi)


+ Z(Q ∪∆j , Pj)

≤
∑

i∈[`],i6=j
Z(Q,Pi) =


∑

i∈[`]

Z(Q,Pi)


− Z(Q,Pj)

≤
(

1− 1

c · kbd/2c
)
Z(Q)

�

25

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Fair Covering of Points by Balls

Daniel Lokshtanov* Chinmay Sonar∗ Subhash Suri∗ Jie Xue∗

Abstract

We consider the problem of covering a multi-colored set
of points in Rd using (at most) k disjoint unit-radius
balls chosen from a candidate set of unit-radius balls
so that each color class is covered fairly in proportion
to its size. Specifically, we investigate the complexity
of covering the maximum number of points in this set-
ting. We show that the problem is NP-hard even in one
dimension when the number of colors is large. On the
other hand, for a constant number of colors, we present
a polynomial time exact algorithm in one dimension,
and a PTAS in any fixed dimension d > 2.

1 Introduction

Given a set P of n points in Rd each of which is col-
ored by one of t colors, the fair covering problem aims
to cover the maximum number of points using k unit-
radius balls such that the coverage for each color is in
proportion to its size. More precisely, let C be a family
of k unit radius balls, ci be the number of the points of
color i that are covered by C, and ni be the total num-
ber of points of color i, for i ∈ {1, . . . , t}. Then we say
that the covering C is fair if

bρi · c∗c 6 ci 6 dρi · c∗e

for all i ∈ {1, . . . , t}, where c∗ =
∑t
i=1 ci and ρi = ni/n

for i ∈ {1, . . . , t}. Among all fair coverings, we want
the one that maximizes the total coverage c∗. We note
that an empty covering trivially satisfies the fairness
condition but covers no points.

Achieving strict fair covering can be computationally
hard, so we also define the notion of approximately fair
covering. A covering C is called ε-fair for some ε ∈ [0, 1],
if

(1− ε) · bρi · c∗c 6 ci 6 (1 + ε) · dρi · c∗e
for all i ∈ {1, . . . , t}. The goal of the approximately fair
covering problem is then to find an ε-fair covering that
maximizes the number of covered points.

The topic of algorithmic fairness has received significant
attention recently [17, 25, 9, 15, 4, 10, 18, 7], especially

*University of California, Santa Barbara, USA
Emails: {daniello, csonar, suri, jiexue}@cs.ucsb.edu

with the increasing use of machine learning in policy
and decision making. Our paper explores the compu-
tational implications of fairness as a constraint in geo-
metric optimization by focusing on the specific problem
of covering by unit balls, or equivalently, fixed-radius
facility location. The different colors in our input rep-
resent different demographic groups and proportionality
is one of the most basic forms of fairness, requiring that
each group’s share in the solution is proportional to its
size. The proportional fairness can be easily extended
to weighted sharing by assigning nonuniform weights to
different points or color classes and measuring fairness
on the overall covered weights. The fair covering prob-
lem can also be viewed as fair clustering under the k-
center measure when each cluster is constrained to have
unit radius.

Our Results

In this paper, we investigate the aforementioned (ap-
proximately) fair covering problem under the discrete-
ness and disjointness constraints defined below. We
require the balls used in a covering to be chosen from
a given candidate set of unit-radius balls (discreteness)
and to be pairwise disjoint (disjointness). Formally, the
input of the problem consists of a set P of n t-colored
points in Rd, a candidate set B of m unit-radius balls
in Rd, and a number k that is the budget of balls to be
used. Our goal is to find a (approximately) fair covering
for P using at most k disjoint balls in B that covers the
maximum number of points. Our main results are the
following:

� We show that there exists an exact algorithm solv-
ing the fair covering problem in R1 in O(mnt) time.
Alternatively, the problem can also be solved in
O(nmk) time (Section 2.1).

� We show that the fair covering problem in R1 is
NP-hard if the number of colors is part of the in-
put. We also show that the problem is W[1]-hard
parameterized by the number of covering balls k
(Section 2.2).

� For a fixed d > 2 and a fixed number of colors, we
present a PTAS for the approximately fair covering
problem (Section 3).

26

32nd Canadian Conference on Computational Geometry, 2020

Related Work

The problem of covering points by balls or other geo-
metric shapes has a long history in computational ge-
ometry, operations research, and theoretical computer
science, due to its natural connections to clustering and
facility location problems [3, 14, 20, 23, 24]. It is known
that covering a set of two-dimensional points with a
minimum number of unit disks is NP-hard, and so is
the problem of maximizing the number of points cov-
ered by k unit disks [13, 19, 8, 11]. Recently, a number
of researchers have considered clustering and covering
problems with an additional constraint of fairness. In
this setting, the input consists of points belonging to dif-
ferent colors (classes), and the goal is to find a solution
where each cluster has approximately equal representa-
tion of all colors [21, 10, 6, 1, 22]. These formulations
are different from our model because we allow individ-
ual clusters to be unbalanced as long as in aggregate
each color receives its fair share. This non-local form
of fair representation seems much harder than requiring
each cluster to locally meet the balance condition. In
another line of work, [5, 15, 2] consider a colorful vari-
ant of the k-center problem where the goal is to satisfy
a minimum coverage for each color type. The colorful
covering however does not achieve fairness because some
color classes can have arbitrarily high representation in
the output, as long as other colors meet the minimum
threshold. In fact, enforcing the fairness by controlling
both the lower and the upper bounds of representation
seems to be a much harder problem, as suggested by
some of our hardness results in one dimension.

2 Fair Covering in One Dimension

We begin by considering the problem in one dimension.
Let P = {p1, . . . , pn} be a set of n points on the real line
each of which belongs to one of the t color classes, and
let B = {B1, . . . , Bm} be the candidate set of unit in-
tervals on the line. (Technically speaking, a unit-radius
ball in one dimension would be an interval of length 2,
but a unit-length interval seems more natural, so that we
shall use unit intervals in the following discussion. Note
that the problem with intervals of length 2 is equivalent
to the problem with unit intervals by simply scaling the
points and the intervals.) Our goal is to cover the maxi-
mum number of points using at most k disjoint intervals
in B under the fair covering constraint. We show that an
optimal covering can be computed in polynomial time
when the number t of colors is fixed, but the problem
becomes intractable when t is part of the input.

2.1 A Dynamic Programming Algorithm

For simplicity, we describe our algorithm for t = 2 and
use red/blue as the two colors for easier reference. The
extension to an arbitrary number of colors is straight-
forward.

Given integers r and b, we define an (r, b)-covering to
be a subset of B consisting of disjoint intervals that
covers exactly r red and b blue points. An optimal
(r, b)-covering is an (r, b)-covering that uses the mini-
mum number of intervals. We solve the fair covering
problem by computing an optimal (r, b)-covering for all
r, b ∈ {1, . . . , n}. Without loss of generality, we assume
that the unit intervals B1, . . . , Bm are sorted in the left-
to-right order. Let r(Bi) and b(Bi) be the number of
the red and blue points covered by Bi, respectively. For
each i ∈ {1, . . . ,m}, let πi < i be the largest integer
such that Bπi ∩ Bi = ∅; we assume π1 = 0. We make
a left-to-right pass over the set of input points and the
intervals on the real line, and compute πi, r(Bi), b(Bi)
for all i ∈ {1, . . . ,m}.
Define F [i, r, b] as the size of an optimal (r, b)-covering
using only intervals in {B1, . . . , Bi}. For the pairs (r, b)
such that no (r, b)-covering exists, we set F [i, r, b] =∞.
It is easy to see that F satisfies the following recurrence.

Claim 1

F [i, r, b] = min

{
F [i− 1, r, b]
1 + F [πi, r − r(Bi), b− b(Bi)]

}

The above recurrence immediately allows us to com-
pute the table F using dynamic programming, which
is shown in Algorithm 1. The base case for the dy-
namic program is F [i, 0, 0] = 0 for all i ∈ {1, . . . ,m}
and F [0, r, b] =∞ for all r, b ∈ {1, . . . , n}.

Algorithm 1: Computing the F -table

Input: P,B
1 Compute πi, r(Bi), b(Bi) for i ∈ {1, . . . ,m}
2 Initialize m× r × b sized table with value ∞
3 for i ∈ {0, . . . ,m}; r, b ∈ {0, . . . , n} do
4 F [i, r, b]←

min{F [i−1, r, b], 1+F [πi, r−r(Bi), b− b(Bi)]}
5 end
6 return F

Lemma 2 Algorithm 1 can be implemented in worst-
case time O((n+m) log(n+m) +mn2).

Proof. Sorting P and B takes O((n + m) log(n + m))
time. Computing πi, r(Bi), b(Bi) for all i ∈ {1, . . . ,m}
takes additional linear time. After that the F -table can
be computed in O(mn2) time. �

27

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Once the F -table is computed, we can solve the fair
covering problem by checking all entries in the table for
which the (r, b)-covering is fair and has F [m, r, b] 6 k.
Among all such valid pairs, we return the pair (r∗, b∗)
with the maximum r∗ + b∗. Clearly, c∗ = r∗ + b∗ is the
optimum of the problem instance. We therefore have
the following result.

Theorem 3 The fair covering problem in R1 with t = 2
colors can be solved in O((n+m) log(n+m)+mn2) time.

The dynamic program easily extends to the case of t > 2
colors, by using a (t+ 1)-dimensional DP table.

Theorem 4 The fair covering problem in R1 can be
solved in O((n+m) log(n+m) +mnt) time.

Remarks. Recall that the fair covering problem we
investigate is defined with the discreteness and disjoint-
ness constraints. In fact, the problem without each of
these two constraints can also be solved using similar
dynamic programming approaches. We omit the details
here because our main focus is the problem with the
discreteness and disjointness constraints.

2.2 NP and W[1]-Hardness of the Fair Covering

In this section, we show that the one-dimensional fair
covering problem is NP-hard if the number of colors t
is large. We also show that the problem is W[1]-hard
parameterized by the number of intervals k.

Theorem 5 The one-dimensional fair covering prob-
lem with Ω(n) colors is NP-hard.

Proof. We reduce the well-known Exact Cover
problem [16] to our problem. Given a ground set U ,
a family F of subsets of U , and an integer `, the Exact
Cover problem is to decide if there exists a S ⊆ F of
size ` that contains each element of U exactly once. The
construction is described below.

Construction. Given an instance of Exact Cover
with U = {u1, u2, . . . , un}, F = {S1, S2, . . . , Sm}, and
an integer `, we construct a set of points P , and a set of
centersM as follows. The ith element of U is associated
with color i; thus, there are n color classes. We also
introduce an additional color 0, which we call special.
The set of points is organized in the following three
groups.

1. Basic Points: For each set Si ∈ F , we introduce
|Si| points, placed arbitrarily within the interval
[3i, 3i+ 1). Each point has the color of its element.

Figure 1: Constructed fair covering instance for
an Exact Cover instance U = {1, 2, 3}, F =
{(1, 3), (2), (1, 2)}, ` = 2. We introduce red (1), green
(2), and blue (3) colors corresponding to the elements in
the universe, and we also introduce cyan as the special
color. First five points are introduced in the basic points
group. Since f∗ = 2 (where f∗ is a maximum number
of sets to which an element of U belongs to), next, we
introduce one blue point so that each color except for
cyan has exactly two points. At last, we introduce 4
cyan points as enforcers (since f∗ = ` = 2).

The intervals corresponding to Si and Sj , i 6= j,
are distance 2 apart, which ensures that any unit
interval of B can cover points of at most one such
group.

2. Balancers: We add extra points for each color i to
ensure that all colors i = 1, 2, . . . , n end up with
the same number of points. Specifically, let f∗ be
the maximum number of sets to which an element
belongs, and let fi be the number of sets containing
the element ui. We introduce f∗−fi points of color
i in the interval [3(m+ i), 3(m+ i) + 1).

3. Enforcers: Finally, we introduce `f∗ points of color
0 (special color), at locations 3(m + n + 1), 3(m +
n+2), . . . , 3(m+n+ `f∗). These are needed in our
construction to enforce the fair covering condition.
Refer figure 1.

Finally, the set of centers M is defined as follows.

� For each Si ∈ F , we add a center at 3i+1/2, which
allows all points of that group to be covered by one
unit interval.

� Each enforcer point is also a center. We do not need
centers for the balancers—their role is primarily to
make all color classes have equal size.

Finally, we fix the number of covering intervals to be
k = 2`.

We now argue that the Exact Covering instance is
a yes instance if and only if our fair covering instance
admits a k-covering with at least n+ ` points.

For the forward direction of the proof, suppose S ⊆
F is an exact cover of size `, and T = {i | Si ∈ S}
be the set of indices. Then we build a covering C as
follows. We place first ` intervals centered at 3i + 1/2
for i ∈ T , and the remaining ` intervals are placed at
3(m + n + j) for j = 1, 2, . . . , ` covering one special
colored point each. Since S is an exact cover, C contains
exactly n + ` points. The covering is also fair, since

28

32nd Canadian Conference on Computational Geometry, 2020

all the colors i = 1, 2, . . . , n have the same number of
points f∗, and the special color 0 has `f∗ points. In the
covering, each of the color classes i = 1, 2, . . . , n has one
covered point and the special color has ` points.

For the reverse direction, let C be the fair covering with
at least n + ` points. We observe that a fair covering
necessarily contains the same number of points, say p,
for each color i = 1, 2, . . . , n, and contains exactly `p
points of the special color. For p = 2, to cover 2` special
colored points only, we need all 2` intervals. Hence,
for any fair covering, we get p < 2. This implies that
for the covering C, p = 1 to meet the overall covering
requirement. Since, we need ` intervals to cover ` special
colored points, it is easy to see that the remaining `
intervals cover exactly one point of every other color.
Hence, the intervals covered corresponds to an Exact
Cover. �

In the reduced instance above, the number of intervals is
dependent only upon the size of the Exact Cover (`).
The Exact Cover problem is known to be W[1]-hard
parameterized by ` [12]. Hence, the analogous results
for the fair covering problem is summarized as follows:

Theorem 6 The fair covering problem is W[1]-hard pa-
rameterized by the number of covering balls (k).

In dimensions d > 2, the maximum coverage problem
is NP-hard [13], and W[1]-hard [19], even without the
fairness constraint.

3 A PTAS for Fair Covering in d Dimensions

In this section, we describe a PTAS for the approxi-
mately fair covering problem in any fixed dimension d.
Specifically, given an approximate factor ε ∈ [0, 1], we
want to compute an ε-fair covering of P (using at most
k disjoint balls in B) such that the number of the points
covered is at least (1−ε) ·opt, where opt is the size of an
optimal fair covering of P . In other words, the approx-
imation is bi-criteria: one criterion is on the fairness of
the covering while the other one is on the quality of the
solution (i.e., the number of the points covered). For
the simplicity of exposition, we describe the algorithm
in two dimensions (d = 2) and for two colors (t = 2).
The extension to higher dimensions and the general case
of t > 2 colors is straightforward.

3.1 Shifted Partitions & Approximate Covering

When solving the fair covering problem in R1, we were
able to compute an optimal (r, b)-covering for any (r, b)
pair. This seems quite difficult in higher dimensions,

and so we resort to solving an approximate version of
this problem as follows. We want to compute a table
Γ [1 . . . n, 1 . . . n] of integers such that for each pair (r, b),
we have the following:

1. Γ [r, b] is at least the size of an optimal (r, b)-
covering, and

2. there exists r∗ ∈ [(1 − ε)r, r] and b∗ ∈ [(1 − ε)b, b]
such that Γ [r∗, b∗] is at most the size of an optimal
(r, b)-covering.

For convenience, we call such a table Γ an ε-approximate
covering table (ε-ACT) for the instance (P,B). Note
that to solve the approximately fair covering problem,
it suffices to compute an ε-ACT.

Lemma 7 Given an ε-ACT Γ for (P,B), one can solve
the approximately fair covering problem in polynomial
time.

Proof. Suppose an optimal fair covering covers r0 red
points and b0 blue points. We call a pair (r, b) with
r, b ∈ {1, . . . , n} feasible if (1) an (r, b)-covering is fair
and (2) there exists r∗ ∈ [(1−ε)r, r] and b∗ ∈ [(1−ε)b, b]
such that Γ [r∗, b∗] 6 k. We compute all feasible pairs,
which can clearly be done in polynomial time given Γ ,
and find the feasible pair (r, b) that maximizes r + b.
By definition, we can find r∗ ∈ [(1 − ε)r, r] and b∗ ∈
[(1−ε)b, b] such that Γ [r∗, b∗] 6 k. Note that an (r∗, b∗)-
covering is ε-fair. Furthermore, r+b > opt since (r0, b0)
is feasible, hence r∗ + b∗ > (1 − ε) · opt. Because Γ
is an ε-ACT, there exists an (r∗, b∗)-covering using at
most k (disjoint) disks in B. Therefore, r∗ + b∗ is a
(1− ε)-approximate solution for the approximately fair
covering problem. �

In order to compute an ε-ACT Γ , we use the shifting
technique [14]. Let h = h(ε) be an integer parameter
to be determined later. For an integer i ∈ Z, let �i,j
denote the h×h square [i, i+h]× [j, j+h]; we say �i,j is
nonempty if it contains at least one point in P . We first
compute the index set I = {(i, j) : �i,j is nonempty}.
This can be easily done in time polynomial in n and h,
by computing for each p ∈ P , the O(h2) squares �i,j
that contains p. For each (i, j) ∈ I, define Pi,j = P∩�i,j
and Bi,j = {B ∈ B : B ⊆ �i,j}. In the next step, we
compute a 0-ACT Γi,j for each (Pi,j ,Bi,j) with (i, j) ∈
I. We will show later in Section 3.2 how to compute
Γi,j in (ni,j + mi,j)

O(h2) time, where ni,j = |Pi,j | and
mi,j = |Bi,j |. At this point, let us assume we have the
0-ACTs Γi,j and finish the description of our PTAS. We
have the following key observation.

Lemma 8 Let {P1, . . . , Ps} be a partition of P and
B1, . . . ,Bs ⊆ B be disjoint subsets such that the disks

29

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

in Bi do not cover any points in P\Pi. Given 0-ACTs
for (P1,B1), . . . , (Ps,Bs), we can compute a 0-ACT for
(P,
⋃s
i=1 Bi) in polynomial time.

Proof. Computing a 0-ACT for (P,
⋃s
i=1 Bi) is equiv-

alent to computing for all pairs (r, b) the size of the
smallest (r, b)-covering of (P,

⋃s
i=1 Bi). Since the disks

in Bi can only cover the points in Pi, the entire problem
instance can be divided into independent sub-problems
(P1,B1), . . . , (Ps,Bs). This allows us to solve the prob-
lem in polynomial time using dynamic programming;
see Algorithm 2. �

Algorithm 2: Computing the 0-ACT

Input: Γ1, . . . , Γs, where Γi is a 0-ACT for (Pi,Bi)
1 Initialize a s× n× n table F with value ∞
2 for t ∈ {1, . . . , s}; r, b ∈ {1, . . . , n} do
3 F [t, r, b]←

min06r′6r
06b′6b

{Γt[r′, b′] + F [t− 1, r − r′, b− b′]}

4 end
5 Γ ∗[r, b] = F [s, r, b] for all r, b ∈ {1, . . . , n}.
6 return Γ ∗

For x, y ∈ {0, . . . , h−1}, let Lx,y be the set of all integer
pairs (i, j) such that i mod h = x and j mod h = y (See
Fig. 2a). We write Ix,y = I ∩ Lx,y.

1 2 3 4 5

1

2

3

4

5

O

(a)

p1
p6

p3 p7

p5

p2

p4

(b)

Figure 2: (a) The squares �i,j for (i, j) ∈ L1,0, with
h = 2. (b) An illustration of the boundary points. The
outer square is �i,j and the inner square is [i + 2, i +
h − 2] × [j + 2, j + h − 2], with h = 12. The points in
the gray region (i.e., p2, p4, p5) are the boundary points
in �i,j .

Lemma 9 For all x, y ∈ {0, . . . , h−1}, the squares �i,j
for (i, j) ∈ Ix,y are interior-disjoint and cover all points
in P .

Proof. Note that the squares �i,j for (i, j) ∈ Lx,y are
interior-disjoint and cover the entire plane R2 (see Fig-
ure 2a for an example). It directly follows that the

squares �i,j for (i, j) ∈ Ix,y are interior-disjoint. Con-
sider a point p ∈ P and let (i, j) ∈ Lx,y such that
p ∈ �i,j . Clearly, (i, j) ∈ I as �i,j is nonempty and
hence (i, j) ∈ Ix,y. Therefore, all points in P are cov-
ered by the squares �i,j for (i, j) ∈ Ix,y. �

Fix x, y ∈ {0, . . . , h − 1}. We know by Lemma 9 that
{Pi,j : (i, j) ∈ Ix,y} is a partition of P and the collec-
tions Bi,j for (i, j) ∈ Ix,y are disjoint. Furthermore, the
disks in Bi,j do not cover any point in P\Pi,j . There-
fore, we can apply Lemma 8 to compute a 0-ACT Γ (x,y)

for (P,
⋃

(i,j)∈Ix,y
Bi,j) in polynomial time. We do this

for all x, y ∈ {0, . . . , h − 1}. Finally, we construct the
table Γ by setting Γ [r, b] = minx,y∈{0,...,h−1} Γ (x,y)[r, b].

We shall show that Γ is a 12h−12
h2 -ACT for (P,B). To

this end, we introduce some notions. For a point p ∈ P
and a square �i,j , we say p is a boundary point in �i,j
if p ∈ �i,j and p /∈ [i+2, i+h−2]× [j+2, j+h−2] (See
Figure 2b). Now consider some x, y ∈ {0, . . . , h−1}. We
say p ∈ P conflicts with the pair (x, y) if p is a bound-
ary point in �i,j where (i, j) ∈ Ix,y is the (unique) pair
such that p ∈ �i,j . One can easily see that each point
p ∈ P conflicts with exactly h2 − (h− 2)2 pairs (x, y).

Lemma 10 For any P ′ ⊆ P , there exists some x, y ∈
{0, . . . , h− 1} such that the number of red (resp., blue)
points in P ′ conflicting with (x, y) is at most 12h−12

h2 ·n′red
(resp., 12h−12

h2 · n′blue), where n′red (resp., n′blue) is the
total number of red (blue) points in P ′.

Proof. Define δredx,y (resp., δbluex,y) as the number of the
red (resp., blue) points in P ′ that conflict with (x, y).
Because any point p ∈ P conflicts with exactly h2−(h−
2)2 pairs (x, y), we have

h−1∑

x=0

h−1∑

y=0

δredx,y = n′red(h2 − (h− 2)2) = n′red(4h− 4).

Therefore, the number of the pairs (x, y) such that
δredx,y > 3n′red(4h − 4)/h2 is at most h2/3. Equiva-

lently, the number of the pairs (x, y) such that δredx,y <
3n′red(4h − 4)/h2 is at least 2h2/3. For the same rea-
son, the number of the pairs (x, y) such that δbluex,y <
3n′blue(4h − 4)/h2 is at least 2h2/3. Since 2h2/3 +
2h2/3 > h2, there exists at least one pair (x, y) that
simultaneously satisfies δredx,y < 3n′red(4h − 4)/h2 and

δbluex,y < 3n′blue(4h − 4)/h2. This completes the proof
of the lemma. �

Now we are ready to prove that Γ is a 12h−12
h2 -ACT.

Lemma 11 Γ is a 12h−12
h2 -ACT for (P,B).

30

32nd Canadian Conference on Computational Geometry, 2020

Proof. Set η = 12h−12
h2 . By the definition of a η-ACT,

we have to verify that (1) Γ [r, b] is at least the size
of a smallest (r, b)-covering of (P,B) and (2) there ex-
ist r∗ ∈ [(1 − η)r, r] and b∗ ∈ [(1 − η)b, b] such that
Γ [r∗, b∗] is at most the size of a smallest (r, b)-covering
of (P,B). Condition (1) is clearly true. Indeed, for
all x, y ∈ {0, . . . , h − 1}, Γ (x,y)[r, b] is the size of the
smallest (r, b)-covering of (P,

⋃
(i,j)∈Ix,y

Bi,j) and hence

is at least the size of a smallest (r, b)-covering of (P,B).
Next, we verify condition (2). Let B′ ⊆ B be a small-
est (r, b)-covering of (P,B) and P ′ ⊆ P be the points
covered by the disks in B′ (hence P ′ consists of r red
points and b blue points). By Lemma 10, there exist
x, y ∈ {0, . . . , h−1} such that the number of red (resp.,
blue) points in P ′ conflicting with (x, y) is at most ηr
(resp., ηb). Let B′′ = B′∩ (

⋃
(i,j)∈Ix,y

Bi,j) and P ′′ ⊆ P ′
be the points covered by the disks in B′′. Suppose P ′′

consists of r∗ red points and b∗ blue points. Note that
any disk in B′\B′′ can only cover the points in P that
conflict with (x, y). Therefore, any point in P ′ that does
not conflict with (x, y) must be contained in P ′′, which
implies that r∗ ∈ [(1 − η)r, r] and b∗ ∈ [(1 − η)b, b].
Since Γ (x,y) is a 0-ACT for (P,

⋃
(i,j)∈Ix,y

Bi,j), we have

Γ (x,y)[r∗, b∗] 6 |B′′| 6 |B′|. It follows that condition (2)
is also true. �

We set h to be the smallest integer such that 12h−12
h2 6 ε;

clearly, h = O(1/ε). Then by the above lemma, Γ is an
ε-ACT for (P,B). In this way, we obtain a PTAS for the
fair covering problem in R2.

Theorem 12 There exists a (1− ε)-approximation al-
gorithm for the fair covering problem in R2 which runs
in nO(1)mO(1/ε2) time.

Proof. In our algorithm, the most time-consuming
work is the computation of each Γi,j for (i, j) ∈ I, which

takes n
O(1)
i,j m

O(h2)
i,j time as claimed before. All the other

work can be done in time polynomial in h, n, m. Since
I = O(h2n), the overall time complexity of our algo-

rithm is (n+m)O(h2), i.e., nO(1)mO(1/ε2). �

The algorithm can be straightforwardly generalized to
higher dimensions and the case t > 2, resulting in the
following theorem.

Theorem 13 There exists a (1− ε)-approximation al-
gorithm for the t-color fair covering problem in Rd which

runs in nO(t)mO(1/εd) time.

3.2 Computing the 0-ACTs Γi,j

We now discuss the only missing piece in our algorithm
above: the computation of the tables Γi,j . Recall that

Γi,j is a 0-ACT for (Pi,j ,Bi,j). We show that each Γi,j

can be computed in n
O(1)
i,j m

O(h2)
i,j time where ni,j = |Pi,j |

and mi,j = |Bi,j |. The key observation is the following.

Lemma 14 For r, b ∈ {1, . . . , ni,j}, an (r, b)-covering
of (Pi,j ,Bi,j) is of size at most bh2/πc.

Proof. Recall that an (r, b)-covering of (Pi,j ,Bi,j) con-
sists of disjoint disks in Bi,j . All disks in Bi,j are con-
tained in the h × h square �i,j . The area of �i,j is h2

and the area of a unit-disk is π. Therefore, any subset
of disjoint disks in �i,j is of size at most bh2/πc. �

With the above observation, we can compute Γi,j as
follows. We enumerate all subsets of Bi,j of size at most
bh2/πc, and keep the ones that consist of disjoint disks.
In this way, we obtain all (r, b)-coverings of (Pi,j ,Bi,j)
for all r, b ∈ {1, . . . , ni,j}. By checking these coverings
one by one, we can find the smallest (r, b)-covering for
all r, b ∈ {1, . . . , ni,j}, and hence compute Γi,j . The

total time cost is n
O(1)
i,j m

O(h2)
i,j .

4 Conclusion

In this paper, we introduced a new fair-covering prob-
lem, which is motivated by fair representation of mul-
tiple demographics in a geometric facility location set-
ting. We proved that the problem is NP-hard even in
one dimension when the number of color groups is large.
When the number of colors is fixed, we presented a poly-
nomial time exact algorithm in one dimension, and a
PTAS in any fixed dimension. Many open problems re-
main, including whether one can achieve a constant fac-
tor approximation significantly faster than our PTAS,
and whether the PTAS can be achieved for covering by
non-disjoint balls.

References

[1] S. Ahmadian, A. Epasto, R. Kumar, and M. Mahdian.
Clustering without over-representation. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 267–275,
2019.

[2] G. Anegg, H. Angelidakis, A. Kurpisz, and R. Zen-
klusen. A Technique for Obtaining True Approxima-
tions for k-Center with Covering Constraints. In Inter-
national Conference on Integer Programming and Com-
binatorial Optimization, pages 52–65. Springer, 2020.

[3] E. M. Arkin and R. Hassin. Approximation algorithms
for the geometric covering salesman problem. Discrete
Applied Mathematics, 55(3):197–218, 1994.

31

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[4] A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vak-
ilian, and T. Wagner. Scalable fair clustering. arXiv
preprint arXiv:1902.03519, 2019.

[5] S. Bandyapadhyay, T. Inamdar, S. Pai, and
K. Varadarajan. A Constant Approximation for Col-
orful k-Center. In 27th Annual European Symposium
on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[6] S. Bera, D. Chakrabarty, N. Flores, and M. Negahbani.
Fair algorithms for clustering. In Advances in Neural In-
formation Processing Systems, pages 4955–4966, 2019.

[7] L. E. Celis, V. Keswani, D. Straszak, A. Desh-
pande, T. Kathuria, and N. K. Vishnoi. Fair and di-
verse DPP-based data summarization. arXiv preprint
arXiv:1802.04023, 2018.

[8] T. M. Chan and E. Grant. Exact algorithms and
APX-hardness results for geometric packing and cover-
ing problems. Computational Geometry, 47(2):112–124,
2014.

[9] X. Chen, B. Fain, L. Lyu, and K. Munagala. Propor-
tionally Fair Clustering. In International Conference
on Machine Learning, pages 1032–1041, 2019.

[10] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassil-
vitskii. Fair clustering through fairlets. In Advances
in Neural Information Processing Systems, pages 5029–
5037, 2017.

[11] K. L. Clarkson and K. Varadarajan. Improved approx-
imation algorithms for geometric set cover. Discrete &
Computational Geometry, 37(1):43–58, 2007.

[12] R. G. Downey and M. R. Fellows. Fixed-parameter
tractability and completeness ii: On completeness for
W[1]. Theoretical Computer Science, 141(1-2):109–131,
1995.

[13] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Opti-
mal packing and covering in the plane are NP-complete.
Information processing letters, pages 133–137, 1981.

[14] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. Journal of the ACM (JACM),
pages 130–136, 1985.

[15] X. Jia, K. Sheth, and O. Svensson. Fair Colorful k-
Center Clustering. In Integer Programming and Com-
binatorial Optimization, pages 209–222. Springer, 2020.

[16] R. M. Karp. Reducibility among combinatorial prob-
lems. In Complexity of computer computations, pages
85–103. Springer, 1972.

[17] J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and
S. Mullainathan. Human decisions and machine predic-
tions. The quarterly journal of economics, 133(1):237–
293, 2018.

[18] M. Kleindessner, P. Awasthi, and J. Morgenstern. Fair
k-Center Clustering for Data Summarization. In Inter-
national Conference on Machine Learning, pages 3448–
3457, 2019.

[19] D. Marx. Efficient approximation schemes for geomet-
ric problems? In European Symposium on Algorithms,
pages 448–459, 2005.

[20] N. Megiddo and K. J. Supowit. On the complexity
of some common geometric location problems. SIAM
journal on computing, 13(1):182–196, 1984.

[21] C. Rösner and M. Schmidt. Privacy Preserving Clus-
tering with Constraints. In 45th International Col-
loquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

[22] M. Schmidt, C. Schwiegelshohn, and C. Sohler. Fair
coresets and streaming algorithms for fair k-means. In
International Workshop on Approximation and Online
Algorithms, pages 232–251. Springer, 2019.

[23] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The
location of emergency service facilities. Operations re-
search, 19(6):1363–1373, 1971.

[24] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang.
Two-tiered constrained relay node placement in wire-
less sensor networks: Computational complexity and
efficient approximations. IEEE Transactions on Mobile
Computing, 11(8):1399–1411, 2011.

[25] M. B. Zafar, I. Valera, M. Rodriguez, K. Gummadi, and
A. Weller. From parity to preference-based notions of
fairness in classification. In Advances in Neural Infor-
mation Processing Systems, pages 229–239, 2017.

32

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Covering Points with Pairs of Concentric Disks*

Anil Maheshwari� Saeed Mehrabi† Sasanka Roy� Michiel Smid†

Abstract

In this paper, we study the following problem moti-
vated by applications in wireless local area networks.
We are given a set of m pairs of concentric disks in d-
dimensional space, d ∈ {1, 2}, where each pair consists
of one disk with radius one and the other with radius
two. We are also given a set of n points such that the
union of the m pairs of disks covers all the n points.
The goal is to select exactly one disk from each pair
such that every point is covered by at least one disk
and the number of points covered by at least one disk
with radius one is maximized; we refer to this as the
sDiskCover problem.

When d = 1 (i.e., we have m pairs of intervals on the
real line), we give an exact algorithm that solves the
sDiskCover problem in O(m2n) time. We also consider
a special case of the problem for d = 1, and show that
it can be solved in O(mn) time. For d = 2, we prove
that the sDiskCover problem is NP-hard.

1 Introduction

In this paper, we study a problem that is moti-
vated by applications in wireless local area networks
(WLANs) [1]. In a WLAN, all the users (also called sta-
tions) receive data from access points. An access point
can operate exactly one frequency, which can be chosen
from many different frequencies at the beginning. When
an access point is activated by a single frequency, it cov-
ers a circular area inside a disk. Higher frequency has
higher speed, but lower coverage in disk area (i.e., covers
a disk with smaller radius); see Figure 1 for an example.
One can view different frequencies at an access point as
concentric disks that are centered at the access point
with different radii. Disks with smaller radius have
higher frequency, which means the corresponding ac-
cess point can provide data with higher speed. If a user
is within a higher-frequency region of an access point,
then they can be supplied data with higher speed; this
will correspond to the profit of the service provider who
installs the frequency at the access point. The service

*This work is supported in part by NSERC.
�School of Computer Science, Carleton University, Ottawa,

Canada. anil@scs.carleton.ca, saeed.mehrabi@carleton.ca,

michiel@scs.carleton.ca.
�ACMU, Indian Statistical Institute (ISI), Kolkata, India.

sasanka@isical.ac.in

Figure 1: The points in red (resp., black) are the loca-
tions of access points (resp., users). The areas within
red and black disks centered at each access point denote
higher-to-lower frequency disks of the access point. A
user can be served with the maximum speed if they are
within a red disk and the corresponding access point is
activated by that frequency.

provider has to provide services to all the users, which
might force the service provider to allocate lower fre-
quency at an access point to get a higher coverage area.1

The objective of the service provider is to increase sum
of the total speed provided to the users, which in turn
will maximize the profit made by the service provider.
In this paper, we formalize this problem with two types
of frequencies.

Problem statement. Let d ∈ {1, 2}. Then, an object
in d-dimensional space is a pair of disks, a disk with
radius one and a disk with radius two, such that the
disk with radius one is entirely contained in the one
with radius two. For an object i, we call the disk of i
with radius one (resp., two) the small disk (resp., big
disk) of i and denote it by sDisk(i) (resp., bDisk(i)).

Consider a set of n > 0 points p1, . . . , pn and a set
of m > 0 objects in d-dimensional space for some d ∈
{1, 2}. Then, the objective of the sDiskCover problem
is to select exactly one disk from each object such that

1Here, we assume that the union of lowest-frequency disks cov-
ers all the users.

33

32nd Canadian Conference on Computational Geometry, 2020

every point is contained in at least one disk and

n∑

i=1

min{1, |small(pi)|}

is maximized, where small(pi) is the set of selected small
disks that contain the point pi. In other words, we want
to select exactly one disk from each object such that all
the points are covered and the number of points covered
by at least one small disk is maximized.

Notation. For a point p in the plane, we denote the
x- and y-coordinates of p by x(p) and y(p), respectively.
Moreover, we denote the Euclidean distance between
two points pi and pj by dist(pi, pj). For an object i, we
denote the centres of sDisk(i) and bDisk(i) by sCentre(i)
and bCentre(i), respectively.

Consider an instance of the sDiskCover problem. Let
p be an input point that is contained in exactly one big
disk bDisk(i) (for some object i) and not contained in
any small disk. Then, any feasible solution must select
bDisk(i). Moreover, let M be the set of all input points
q(6= p) such that (i) q is covered by bDisk(i) and (ii) no
small disk covers q (i.e., q is only covered by big disks).
Then, we can include bDisk(i) into the solution, and
then remove the object i and the set M ∪ {p} from the
instance. Therefore, we assume the following through-
out the paper.

Assumption 1 Given an instance of the sDiskCover
problem, if an input point is not contained in any small
disk, then it is contained in at least two big disks.

2 One-dimensional Objects

In this section, we consider the sDiskCover problem for
n points and m one-dimensional objects: each object
is a pair of intervals on the real line (i.e., an interval
with length one and an interval with length two). For
an interval i, we denote its left and right endpoints by
left(i) and right(i), respectively. Moreover, we write p(i)
to denote the set of input points covered by i. For the
rest of this section, we refer to the small and big disks
of an object i as the small and big intervals of i and
denote them by sInt(i) and bInt(i), respectively (we still
use the term “object” whenever we are not referring to
a specific interval). Moreover, we assume that the input
points have distinct x-coordinates and x(pi) is distinct
from that of the endpoints of any interval in the input
objects, for all 1 ≤ i ≤ n.

Here, we first consider the sDiskCover problem in a
special case in which the objects are left-aligned : we
have x(left(sInt(i))) = x(left(bInt(i))) for all objects 1 ≤
i ≤ m. In Section 2.2, we will solve the problem without
this restriction. In this subsection, we assume that the
points are ordered from left to right as p1, p2, . . . , pn,

and the objects are sorted from left to right by the x-
coordinate of the right endpoint of their big interval.

2.1 Left-aligned Intervals

An object i on the real line is called left-aligned
if x(left(sInt(i))) = x(left(bInt(i))); a set of one-
dimensional objects is called left-aligned if every ob-
ject in the set is left-aligned. Given a set of n points
p1, . . . , pn and m one-dimensional left-aligned objects
on the real line, we give an exact O(mn)-time algorithm
for the sDiskCover problem.

For 1 ≤ i ≤ n and 1 ≤ j ≤ m, define A[i, j]
to be the objective value of an exact solution for the
problem on the points p1, p2, . . . , pi and the objects
o1, o2, . . . , oj . Similarly, define B[i, j] to be the objec-
tive value of an exact solution for the problem on the
points p1, p2, . . . , pi and the objects o1, o2, . . . , oj , as-
suming that bInt(oj) is in the solution. Our goal is
to compute A[n,m]; the actual solution that gives us
A[n,m] can be computed in the standard manner. We
next show how to compute A[i, j] and B[i, j]. First, we
need the following lemma.

Lemma 1 Consider an instance of the sDiskCover
problem, and let ` be the vertical line through
right(sInt(om)). Moreover, assume that pn lies to the
right of `, and let T denote the set of all big inter-
vals that intersect ` (including bInt(om)). Then, there
exists an exact solution S for the problem such that
S ∩ T ⊆ {bInt(om), bInt(om−1)} and S ∩ T 6= ∅.
Proof. Since pn lies to the right of `, we have |T | ≥ 2
by Assumption 1. If |T | = 2, then T = {om−1, om}
and so any feasible solution S must contain at least
one of bInt(om−1) and bInt(om). Hence, S ∩ T ⊆
{bInt(om), bInt(om−1)} and S ∩ T 6= ∅.

Now, assume that |T | > 2. Consider an exact so-
lution that contains neither bInt(om−1) nor bInt(om).
Then, pn must be covered by bInt(oi) in this solution,
for some i < m − 1, and so bInt(oi) ∈ T . We now re-
place bInt(oi) and sInt(om−1) with, respectively, sInt(oi)
and bInt(om−1) in this solution; let S be the result-
ing set of intervals. Since the objects are left-aligned,
these replacements do not leave any point uncovered:
any point that was covered by bInt(oi) ∪ sInt(om−1) is
still covered by sInt(oi) ∪ bInt(om−1). Moreover, since
i < m − 1 and oi ∈ T (i.e., bInt(oi) intersects `),
any point that was covered by sInt(om−1) is still cov-
ered by sInt(oi) ∪ sInt(om). Hence, S is a feasible solu-
tion for the problem and its objective value is at least
as big as that of the initial solution. Observe that
S ∩ T ⊆ {bInt(om), bInt(om−1)} and S ∩ T 6= ∅. �

Computing A[i, j]. Let ` denote the vertical line
through right(sInt(oj)). We consider two cases depend-
ing on whether pi lies to the right or to the left of `.

34

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

If pi lies to the right of `, then we can focus our at-
tention to bInt(oj) and bInt(oj−1) by Lemma 1. Let `′

be the vertical line through right(sInt(oj−1)) and let pi′

be the rightmost point that is to the left of `′. More-
over, let `′′ be the vertical line through left(sInt(oj))
and let pi′′ be the rightmost point that is to the left
of `′′. Now, if bInt(oj) is in the solution, then every
point to the right of `′ is covered by bInt(oj) and no
such point is contained in a small interval; hence, the
problem is reduced to B[i′, j]. On the other hand, if
bInt(oj−1) is in the solution, then we also take sInt(oj)
into the solution. Hence, the problem is reduced to
B[i′′, j − 1] + |p(sInt(oj))|. Therefore, we have A[i, j] =
max{B[i′, j], B[i′′, j − 1] + |p(sInt(oj))|}.

If pi is to the left of `, then we take sInt(oj) into the
solution. This is because if there exist a solution with
bInt(oj), then we can replace bInt(oj) with sInt(oj) with-
out decreasing the objective value. Now, let `′ denote
the vertical line through left(sInt(oj)) and let pi′ be the
rightmost point that is to the left of `′. Then, the prob-
lem is reduced to A[i′, j − 1] + p(sInt(oj)). In summary,
we compute A[i, j] as follows. First, assume that i > 1
and j > 1. If pn is to the right of `, then A[i, j] =
max{B[i′, j], B[i′′, j−1]+ |p(sInt(oj))|}; otherwise, if pn
is to the left of `, then A[i, j] = A[i′, j− 1] + p(sInt(oj)).
Now, assume that i = 1. If p1 is contained in at least one
small interval, then A[i, j] = 1; but, if p1 is contained
in no small interval, then A[i, j] = 0. Finally, assume
that j = 1. If there is at least one point that is not con-
tained in sInt(o1), then A[i, j] = 0; but, if every point is
contained in sInt(o1), then A[i, j] = |p(sInt(o1))|.

Computing B[i, j]. To compute B[i, j], let ` be the
vertical line through right(sInt(oj)). We again consider
two cases. If pi is to the right of `, then the problem
is simply reduced to B[i− 1, j]. If pi is to the left of `,
then the problem is reduced to A[i, j−1] because we can
remove the object oj from the instance (as we know that
bInt(oj) has been selected) and then solve the problem
with the same points and the objects o1, o2, . . . , oj−1.
Therefore,

B[i, j] =

{
B[i− 1, j], if pi is to the right of `,

A[i, j − 1], if pi is to the left of `.

Moreover, to compute the base cases, assume first
that i = 1. If at least one of sInt(o1), . . . , sInt(oj−1)
contains p1, then B[i, j] = 1; otherwise, B[i, j] = 0.
Now, if j = 1, then B[i, j] = 0 because we have taken
bInt(o1) into the solution.

Running time. The tables A and B each have size mn,
and we spend O(1) time to fill one entry of A or one
entry of B. Hence, the total time spent to fill out A
and B is O(mn) and so we have the following theorem.

Theorem 2 For a set of n points and m left-aligned
objects on the real line, the sDiskCover problem can be
solved in O(mn) time.

2.2 Arbitrary Intervals

Here, we remove the “left-aligned” restriction and as-
sume that the small interval of an object i can be any-
where within the big interval of the object as long as
dist(sCentre(i), bCentre(i)) ≤ 1/2 (i.e., the small interval
is entirely contained in the big interval). In this subsec-
tion, we assume that the objects are ordered from left to
right by the x-coordinate of the right endpoint of their
small interval.

Lemma 3 There exists an optimal solution for the
sDiskCover problem such that each point is covered by
at most two small intervals.

Proof. Take any optimal solution OPT for the prob-
lem. Let S(pi) denote the set of small intervals in OPT
that cover point pi for all i = 1, 2, . . . , n. For each
point p for which |S(p)| > 2, we do the following: let o`
(resp., or) be the object for which sInt(o`) ∈ S(p) (resp.,
sInt(or) ∈ S(p)) and x(left(sInt(o`)) ≥ x(left(sInt(oj)))
(resp., x(right(sInt(or)) ≤ x(right(sInt(oj)))) for all oj
such that sInt(oj) ∈ S(p). Now, for every small interval
in S(p) \ {sInt(o`), sInt(oj)}, we replace the small inter-
val in OPT by its big interval. Clearly, every point is
covered by at most two small intervals in the resulting
set. Moreover, one can verify that the resulting set of
intervals will still cover all the points and has the same
objective value as OPT. �

We now describe a dynamic programming algorithm.
Let T [i, j] denote the objective value of an optimal so-
lution for covering the points p1, p2, . . . , pi with the ob-
jects o1, o2, . . . , oj (where the latter ordering is by their
small interval). Then, the goal is to compute T [n,m].
To compute T [i, j], we assume in the following that the
union of the j objects cover all the i points (as otherwise
we set T [i, j] to −1). Now, take any optimal solution
OPT for T [i, j] and let pr be the rightmost point for
which OPT gets a credit; that is, pr is the rightmost
point that is covered by at least one small interval in
OPT. Then, by Lemma 3, pr is covered by either one
or two small intervals in OPT. Let us consider these in
two cases.

Point pr is covered by one small interval in OPT. Let
oa be the object such that sInt(oa) ∈ OPT and sInt(oa)
covers pr. Let ` (resp., `′) be the vertical line through
left(sInt(oa)) (resp., right(sInt(oa))). Moreover, let Ma

be the set of objects ot such that bInt(ot) intersects `′.
To see which interval of the objects in Ma \ {oa} are
in OPT, take any object ot ∈ Ma \ {oa}. Observe

35

32nd Canadian Conference on Computational Geometry, 2020

that if sInt(ot) ∈ OPT, then sInt(ot) does not cover
any points in {pr+1, . . . , pn}. Moreover, the points that
lie to the right of ` and to the left of pr are already
covered by sInt(oa) (and so for each of which OPT has
gained a credit). This means that, the only way OPT
could potentially gain points by having sInt(ot) is when
left(sInt(ot)) lies strictly to the left of `. In that case,
among all such sInt(ot), OPT must have the one with
leftmost left endpoint; consider this object and let t∗

be the index of its small interval (in the input order-
ing defined on small intervals). Notice that for all other
objects in Ma \ {oa}, we can have their big intervals in
OPT. Let pr′ for some r′ ≤ r, be the leftmost point
covered by sInt(ot∗). Then, in this case, we have

T [i, j] = max
pr∈{p1,...,pi}
oa∈{o1,...,oj}:
pr∈sInt(oa)

{f(sInt(oa), sInt(ot∗))

+ T [r′ − 1, t∗ − 1]},

where f(sInt(oa), sInt(ot∗)) denotes the number of points
covered by at least one of sInt(oa) and sInt(ot∗).

Point pr is covered by two small intervals in
OPT. Let oa and ob be the two objects such that
sInt(oa), sInt(ob) ∈ OPT and they both cover pr. As-
sume w.l.o.g. that x(left(sInt(oa))) ≤ x(left(sInt(ob)));
let ` (resp., `′) be the vertical line through left(sInt(oa))
(resp., right(sInt(ob))). Let Mab be the set of objects ot
such that bInt(ot) intersects `′. To see which interval of
the objects in Mab \ {oa, ob} are in OPT, take any ob-
ject ot ∈Mab \ {oa, ob}. Observe that if sInt(ot) ∈ OPT,
then sInt(ot) does not cover any point in {pr+1, . . . , pn}.
Moreover, the points that lie to the right of ` and to the
left of pr are already covered by sInt(oa) (and so for
each of which OPT has gained a point). This means
that, if x(left(sInt(ot))) ≥ x(left(sInt(oa))), then OPT
does not gain any points by having sInt(ot). Therefore,
the only way OPT could potentially gain points by hav-
ing sInt(ot) is when left(sInt(ot)) lies strictly to the left
of `. In that case, among all such sInt(ot), OPT must
have the one with leftmost left endpoint; consider this
object and let t∗ be the index of its small interval. No-
tice that for all other objects in Mab \ {oa, ob}, we can
have their big interval in OPT. Let pr′ , for some r′ ≤ r,
be the leftmost point covered by sInt(ot∗). Then, in this
case, we have

T [i, j] = max
pr∈{p1,...,pi}

{oa,ob}⊆{o1,...,oj}:
pr∈sInt(oa)∩sInt(ob)

{f(sInt(oa), sInt(ob), sInt(ot∗))

+ T [r′ − 1, t∗ − 1]},

where f(sInt(oa), sInt(ob), sInt(ot∗)) denotes the number
of points covered by at least one of sInt(oa), sInt(ob) and
sInt(ot∗). The base case is T [1, j] for all j = 1, . . . ,m;

we set T [1, j] = 1 if p1 is covered by at least one small
interval in {sInt(o1), sInt(o2), . . . , sInt(oj)} and T [1, j] =
0, otherwise.

Running time. Given an instance of the problem, we
can compute the order of the points and the intervals (as
required by the algorithm) in O(n log n) and O(m logm)
time, respectively. Moreover, within the same time
bound, we can preprocess the input to compute the
function f(sInt(o)) for all the input objects o. Each
entry of the table T can be computed in O(m2n) time,
and so we have the following theorem.

Theorem 4 For a set of n points and m arbitrary in-
tervals on the real line, the sDiskCover problem can be
solved in O(m2n) time.

3 Two-dimensional Objects

In this section, we consider the sDiskCover problem for
objects in the plane and show that the problem is NP-
hard. Recall that for each object i, we have two disks:
sDisk(i) whose radius is one and bDisk(i) whose ra-
dius is two. Throughout this section, we assume that
sCentre(i) = bCentre(i); i.e., the disks are centred at the
same point.

We show a polynomial-time reduction from Planar
Variable Restricted 3SAT (Planar VR3SAT, for short).
Planar VR3SAT is a constrained version of 3SAT in
which each variable can appear in at most three clauses
and the corresponding variable-clause graph is planar.
Efrat et al. [2] showed that Planar VR3SAT is NP-hard.

Let ISAT be an instance of Planar VR3SAT with K
clauses C1, C2, . . . , CK and N variables X1, X2, . . . , XN ;
we denote the two literals of a variable Xi by xi and
xi. We construct an instance IsDC of our problem such
that IsDC has a solution with objective value of at least
MNK + MK/2, for some M that we will determine
its value below, if and only if ISAT is satisfiable. Given
ISAT, we first construct the variable-clause graph G of
ISAT in the non-crossing comb-shape form of Knuth and
Raghunathan [3]. We assume w.l.o.g. that the variable
vertices lie on a vertical line and the clause vertices are
connected from left or right of that line; see Figure 2
(left) for an example. This representation has size poly-
nomial in N and K.

Gadgets. For each variable Xi ∈ ISAT, we replace the
corresponding variable vertex in G with two objects as
shown in Figure 2 (right); we call this pair of objects
the variable gadget of Xi. The top object serves as lit-
eral xi while the bottom object serves as literal xi. The
variable gadget initially contains three disjoint group of
points; we call each such group of points a cloud. There
is one cloud ofK points that is shared between bDisk(xi)
and bDisk(xi), called a variable-shared cloud. Moreover,

36

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

X1

X2

X3

X4

X5

C1

C2

C3 C4

xi

xi

Figure 2: Left: an instance of the Planar VR3SAT
problem in the comb-shape form of Knuth and Raghu-
nathan [3]. Crosses on the edges indicate negations; for
example, C2 = (x1 ∨ x3 ∨ x5). Right: A variable gad-
get. The three clouds of the gadget are shown as small
shaded disks.

each of sDisk(xi) and sDisk(xi) contains one cloud, each
of which we refer to as a variable-small cloud. We de-
termine the number of points in a variable-small cloud
later.

Observation 1 Given any feasible solution S for the
sDiskCover problem, at most one of sDisk(xi) and
sDisk(xi) can be in S, for any variable Xi.

The idea behind the variable gadget (corresponding
to a variable Xi) is to ensure that also at most one of
bDisk(xi) and bDisk(xi) appears in any feasible solution.
Then, we set the variable to true if and only if bDisk(xi)
is in the solution. However, the gadget as it is now does
not enforce this. To enforce this, we must enforce one
of the small disks to be selected in any feasible solution
(hence, forcing its big disk not to be selected). To this
end, we will set the number of points in each variable-
small cloud (in the variable gadget) to a large enough
value that any feasible solution must contain at least
one small disk from every variable gadget in order for
its objective value to meet a minimum requirement. We
will determine this minimum requirement later.

If the literal xi (resp., xi) appears in a clause, then
the bottom object (resp., top object) of the gadget is
connected to the corresponding clause by a chain of ob-
jects, called a wire. A wire starting from the bottom
object (resp., top object) of a variable gadget and end-
ing at a clause has the following structure. (i) Every
object i in the wire has a cloud of K points in sDisk(i).
(ii) The big disk of the first object of the wire shares one
cloud of K points with the big disk of the bottom ob-
ject (resp., top object) in the variable gadget. (iii) The
big disks of every two consecutive objects in the wire
share one cloud of K points. We call the first object of
a wire (that shares a cloud with one of the objects in

Figure 3: An illustration of a clause gadget.

the variable gadget) the starting object of the wire.

For the clause gadget, where three wires meet, the
small disks of the last three objects (each arriving from
one of the wires) will have a non-empty intersection in
which we place one cloud containing K points; see Fig-
ure 3. We call this K points a clause cloud.

Construction details. Let S be a feasible solution for
the problem, and consider the object xi shown in Fig-
ure 2 (right). The variable-small cloud of this object is
covered by either sDisk(xi) or bDisk(xi) in S. If it is
covered by sDisk(xi) in S, then we must cover the other
clouds in this object by the starting objects of the wires
connected to xi. But, if it is covered by bDisk(xi) in
S, then we can select the small disk of the starting ob-
ject of each wire. Consequently, depending on whether
sDisk(xi) or bDisk(xi) is selected, one can see that the
clouds in the wires connected to this object are covered
in S in one of the two possible ways. (Here, we are as-
suming that S needs to meet the minimum requirement
for its objective value.) By re-scaling and adjusting the
length of a wire, we can ensure that exactly one of these
two possible coverings will let S to select the small disk
of the last object in the wire; the other will only let S
to select the big disk of the last object. In other words,
exactly one of these two possible ways allows S to gain
K points for covering the corresponding clause cloud.

By the discussion above, we set a variable Xi to true
if and only if bDisk(xi) is selected. By having an appro-
priate number of objects in each wire (while keeping the
size polynomial), we can assume that S gains K points
for covering the clause cloud (i.e., the small disk of the
last object in the wire is selected) if and only if bDisk(xi)
is selected (i.e., variable Xi is set to true). Notice that

37

32nd Canadian Conference on Computational Geometry, 2020

selecting bDisk(xi) forces S to select sDisk(xi). Now,
by adjusting the number of objects in a wire connect-
ing xi to a clause gadget, we also ensure that the big
disk of the last object of the wire is selected. That is,
sDisk(xi) is selected if and only if the big disk of the
last object of the corresponding wire is selected (i.e., S
does not gain any points from the corresponding clause
cloud). Finally, we require by re-scaling that the num-
ber of objects in each wire is even. This concludes the
consistency for the truth assignment of Xi.

We first prove that the number of objects in each
wire is polynomial in N and K. Consider an edge in
the graph and let L be its length. Notice that since the
drawing is polynomial in N and K, so is L. Moreover,
this edge can have either no bends or one bend. Our
goal is to have each wire consistent with the drawing of
its corresponding edge in G; hence, making each wire
having no bends or one bend. Suppose first that the
edge has no bends. Since the distance between every two
consecutive centres of the disks in the wire is three, we
have at most bL/3c objects in the wire. Now, suppose
that the edge has one bend and let L1 and L2 denote
the lengths of its segments (i.e., L = L1+L2). Then, by
a similar argument, the corresponding wire will have at
most bL1/3c + bL2/3c objects. We therefore conclude
that the number of objects in both cases is polynomial
in N and K.

In the full version of the paper, we prove that the
wires can be connected to variable gadgets such that
the objects from different wires do not intersect each
other (except at clause gadgets and/or slightly at vari-
able gadgets). To ensure this, we might require to “re-
route” some of the wires; hence, making new bends.
However, one can verify that the number of objects in
each wire remains polynomial in N and K. The proof
of the following lemma is given in the full version of the
paper.

Lemma 5 Let S be a feasible solution for the problem
with objective value of at least MNK + MK/2. Then,
S has exactly one big disk and exactly one small disk
from every variable gadget.

Lemma 5 gives us the minimum objective value for a
feasible solution that we will use to argue that then the
instance ISAT is satisfiable.

Lemma 6 There exists a feasible solution S for IsDC

with objective value of at least MNK + MK/2 if and
only if ISAT is satisfiable.

Proof. (⇒) Let S be a feasible solution for IsDC with
objective value of at leastMNK+MK/2. By Lemma 5,
we know that there is exactly one big disk from every
variable gadget in S. For each variable Xi, 1 ≤ i ≤ N ,
we set the variable to true if and only if bDisk(xi) is
in S; otherwise, we set Xi to false. To show that this

results in a truth assignment, suppose for a contradic-
tion that there exists a clause C that is not satisfied by
this assignment. Take any variable X ∈ C. If x ∈ C,
then the variable X is set to false (resp., true) by the
assignment. This means that S has selected the small
disk of object x. Consequently, the big disk of the last
object in the wire connecting C to xi is selected by S:
the solution S did not gain K points from the cloud of
C. Analogously, if x ∈ C, then the variable X is set to
true by the assignment. This means that S has selected
sDisk(xi). Consequently, the big disk of the last object
in the wire connecting C to xi is selected by S: again,
the solution S did not gain K points from the cloud
of C. Therefore, S cannot have an objective value of
MNK +MK/2—a contradiction.

(⇐) Given a truth assignment for ISAT, we con-
struct a feasible solution S for IsDC with objective value
MNK + MK/2 as follows. For each variable Xi in
ISAT, where 1 ≤ i ≤ N : if Xi is set to true, then we add
bDisk(xi) to S; otherwise, we add sDisk(xi) to S. This
selection ensures that we get MK points from each vari-
able gadget. Moreover, by selecting the corresponding
disk of xi, we will select the disks in the wires connected
to xi accordingly by alternating between small and big
disks. The same also happens for the wires that are con-
nected to xi. One can consequently argue that, within
a wire, exactly half of the small disks are selected; that
is, we will gain MK/2 points by covering these clouds
using small disks. Therefore, S has the objective value
MNK +MK/2. �

By Lemma 6, we have the following theorem.

Theorem 7 The sDiskCover problem is NP-hard for
concentric disks in the plane.

References

[1] D. Bhaumick and S. C. Ghosh. Efficient multicast associ-
ation to improve the throughput in IEEE 802.11 WLAN.
MONET, 21(3):436–452, 2016.

[2] A. Efrat, C. Erten, and S. G. Kobourov. Fixed-location
circular arc drawing of planar graphs. J. Graph Algo-
rithms Appl., 11(1):145–164, 2007.

[3] D. E. Knuth and A. Raghunathan. The problem of
compatible representatives. SIAM J. Discrete Math.,
5(3):422–427, 1992.

38

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Hardness of Approximation for Red-Blue Covering

Sima Hajiaghaei Shanjani∗

Abstract

In Red-Blue Geometric Set Cover a set of red points,
a set of blue points, and a set of objects are given and
the goal is to find a subset of the objects that cover
all the blue points while covering the minimum num-
ber of red points. Chan and Hu in 2014 showed that
the problem is NP-hard even when the points are in the
plane and objects are axis-aligned unit squares. Here we
study Red-Blue Geometric Set Cover when the objects
are axis-aligned rectangles, convex shapes, and trian-
gles. We also study the problem of Boxes Class Cover:
a red-blue point set is given, and the goal is to find a
minimum number of axis-aligned rectangles that cover
all the blue points but no red. This problem is intro-
duced in a paper in 2012 by Bereg et al., who showed
the problem is NP-hard.

We prove the following: 1) Red-Blue Geometric Set
Cover is APX-hard when the objects are axis-aligned
rectangles. 2) Red-Blue Geometric Set Cover cannot be

approximated to within 2log
1−1/(log logm)c m in polynomial

time for any constant c < 1/2, unless P = NP , when
the given objects are m triangles or convex objects. 3)
Boxes Class Cover is APX-hard.

In the non-geometric setting Red-Blue Set Cover is
known to be strictly harder to approximate than Set
Cover. In the geometric setting, no such a relation be-
tween Geometric Set Cover and Red-Blue Geometric
Set Cover was previously known. We show that there
is a class of objects, triangles, for which approximating
Red-Blue Geometric Set Cover is strictly harder than
approximating Geometric Set Cover.

We also define a restricted version of Max3SAT,
MaxRM-3SAT, and we prove that this problem is APX-
hard. This problem might be interesting in its own
right.

1 Introduction

Geometric Set Cover, the geometric version of Set
Cover, is a fundamental theoretical problem that has
been studied for over 30 years. Applications of this
problem include wireless network design, image com-
pression, and circuit-printing [10]. This problem is NP-
hard even for simple geometric objects such as unit

∗Department of Computer Science, University of Victoria,
sima@uvic.ca, [Research funded by NSERC Discovery Grant RG-
PIN 2016-04234]

squares, unit disks, and axis-aligned rectangles [19].
Much effort has been made to develop approximation
algorithms or prove lower bounds for the best possible
approximation ratio for this problem. While Geometric
Set Cover has been studied widely for several geometric
objects, the problem of Red-Blue Geometric Set Cover
has been studied only for axis-aligned unit squares [11].

In this paper, we study Red-Blue Geometric Set
Cover for some classes of objects, and we prove new
results on the hardness of approximation for this and
Boxes Class Cover. Then we compare our result with
the approximability of Geometric Set Cover for the same
class of objects, and we conclude that Red-Blue Geo-
metric Set Cover is a harder problem than Geometric
Set Cover for some class of objects. In the following
section, we define and describe related works to these
problems.

1.1 Problems, and Related Works

We recall that for an optimization problem, a
polynomial-time approximation scheme (PTAS) is a
(1 + ε)-approximation algorithm which takes a param-
eter ε > 0 as part of the input and is polynomial in
the problem size n for every fixed ε. An optimization
problem is APX-hard if no PTAS exists for the problem
unless P = NP .

Set Cover : A universe set X of n elements and a fam-
ily T of m subsets of X are given, and the goal is to
find a minimum sized subset T ′ ⊆ T such that each
element in X is contained in at least one member of
T ′. This fundamental problem has been known to be
NP-hard and NP-hard to approximate within a factor
of (1 − α) lnn of the optimum for every α > 0 [14]. It
has also been shown that this problem cannot be ap-

proximated to within 2log
1−δc(m)m in polynomial time

for any constant c < 1/2 unless SAT can be decided in

time 2O(2log
1−δc(n) n), where δc(n) = 1/(log logn)c [23].

Geometric Set Cover(GSC): In this version of Set
Cover, we are given a set of points X and a family T
of geometric objects, and the goal is to find a minimum
sized subset T ′ ⊆ T such that each point is covered with
at least one of the selected objects. The results of this
problem can be studied in two directions.

First, PTASes have been developed for some simple ob-
jects, such as unit-squares [19] and disks in R2 [22]. For
some other objects with low VC-dimension, ε-net based

39

32nd Canadian Conference on Computational Geometry, 2020

algorithms with constant or almost-constant approxi-
mation factors have been presented [7, 15]. However,
finding a small, O(1/ε)-size , ε-net is not always pos-
sible. For example, [24] shows that there exist a dual
range space induced by a family of finite families of axis-
aligned rectangles in which the size of the smallest ε-net
is Ω(1

ε) log 1
ε). In this case the approximation factor of

the ε-net based algorithms is O(logOPT), where OPT
is the size of the optimal solution. Second, it has been
shown that Geometric Set Cover is APX-hard for a large
class of geometric objects including axis-aligned rectan-
gles, axis-aligned slabs, and triangles[10][17].

In this paper we denote the problem of Geometric Set
Cover when the objects are from the class of objects
OBJ with GSC[OBJ], e.g. GSC[AARectangle].

Class Cover:In class cover problems, points are given
in two sets R and B, red points and blue points respec-
tively, and the goal is to find a minimum sized family T
of a specific type of objects (e.g. balls) that cover all the
points in B but no point in R. Note that in Set Cover
problems, the family of subsets is given as the input,
and we select a subfamily of them. But, in class cover,
the goal is to compute such a family and the candidate
subsets are all the subsets of that type of object. This
problem has been studied also in the context of data
mining when the objects are balls with the constraint
that balls are centered at blue points [8, 13, 20]. The
constraint and non-constraint version of this problem is
NP-hard when the objects are balls [8, 2]

Boxes Class Cover(BCC): In this version of Class
Cover problem, the objects are axis-aligned rectangles.
Bereg et.al. use a reduction from a rectilinear poly-
gon covering problem [12, 21] to show that the BCC is
NP-hard and admits O(logOPT)-approximation, where
OPT is the size of optimal covering [3]. The same paper
also shows NP-hardness and the existence of an O(1)-
approximation algorithm for BCC when the objects are
axis-aligned squares. They also show that BCC is NP-
hard even if the objects are axis-aligned half-slabs, but
BCC can be exactly solved in polynomial time when
the objects are axis-aligned slabs. However, no hard-
ness of approximation has been shown for BCC yet. [1]
also shows that BCC is NP-hard by a reduction from a
version of Max3SAT, NAS-SAT, to this problem.

Note that BCC is a restricted version of
GSC[AARectangle]. In BCC a family of rectan-
gles is not given, but we can consider the family of all
the possible eligible rectangles as the family of given
objects for the Geometric Set Cover. It is interesting
to see that Geometric Set Cover is strictly harder than
BCC. This comes from the fact that Geometric Set
Cover is APX-hard, but BCC can be solved in poly-
nomial time exactly when the objects are axis-aligned
slabs.

Red-Blue Set Cover: This is a more general version

of Set Cover, where the elements are given in two sets
R and B, red elements and blue elements, and the goal
is to select a subfamily T ′ of a given family T of subsets
of R ∪B such that T ′ covers all the elements in B, but
includes only the minimum number of elements in R.
Carr et.al. in [9]showed that the problem is NP-hard

and NP-hard to approximate within 2(logm)(1−δ) factor
of the optimal for δ = 1/ logα logm and any constant
α < 1/2 even in the restricted case that each set in T
contains only one blue and two red elements. They also
present a 2

√
m-approximation algorithm for the case

that each set in T contains only one blue element.

Red-Blue Geometric Set Cover (RBGSC): In the
geometric version of Red-Blue Set Cover, the given sets
R and B are points and the given family T are geometric
objects. Chan and Hu showed that the problem is NP-
hard even when the objects are unit-squares and present
a PTAS for this version of the problem [11]. To the best
of our knowledge, no hardness of approximation result
has been shown for Red-Blue Geometric Set Cover.

Note that Red-Blue Set cover is a general version of
Set Cover: any instance of Set Cover can be transformed
to an instance of Red-Blue set Cover by considering all
the elements of X as blue elements and adding exactly
one distinct red element to each subset in T . However,
this reduction does not work for the geometric version.
This is because it is not always possible to add exactly
one distinct red point to each member of T . So, Red-
Blue Geometric Set Cover is not yet shown to be a more
general version of Geometric Set Cover, and we do not
know a way to relate lower bounds on these two geo-
metric problems. We independently show a hardness of
approximation for the Red-Blue Geometric Set Cover.

In this paper, we denote the problem of Red-
Blue Geometric Set Cover when the objects are from
the class of objects OBJ with RBGSC[OBJ]. e.g.
RBGSC[AARectangle].

We show APX-hardness of RBGSC[AARectangle]
and Boxes Class Cover via reductions from a newly de-
fined version of Max3SAT. We also show how we can
modify reductions in [11] and [3] to prove the APX-
harness of these two problems.

Max3SAT: This is the version of MaxSAT where a
CNF formula is given and each clause has at most 3
distinct literals, and the goal is to determine the max-
imum number of clauses that can be satisfied by any
assignment. H̊astad showed that MaxE3SAT, the ver-
sion of Max3SAT in which each clause is size of exactly
three, is NP-hard to approximate within a factor greater
than 7/8 of the optimum even in the case of satisfi-
able instances of the problem [18]. Here we use MAX-
EkSAT-b, a version of MaxSAT in which every clause
has length k and each variable occurs exactly b times
(other notations have been used for this problem e.g.
(k, b)-SAT , EbOCC-EkSAT, and MAX EkSAT(b) [5]).

40

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Feige showed that MaxE3SAT-5 is hard to approximate
within a specific constant number [16]. MaxE3SAT-4 is
also shown to be hard to approximate within a specific
constant factor of the optimal [5] [6].

1.2 Our Contribution

We present proof of hardness of approximation for some
geometric problems listed below:

• RBGSC[Axis-Aligned Rectangles] is APX-hard.

• RBGSC[Triangle] and RBGSC[Convex] cannot be

approximated to within 2log
1−1/(log logm)c m in poly-

nomial time for any constant c < 1/2, unless
P = NP , where m is the number of given trian-
gles or convex objects.

• Boxes Class Cover for axis-aligned rectangles is
APX-hard.

These results show that there is a class of objects, trian-
gles, for which approximating Red-Blue Geometric Set
Cover is strictly harder than approximating Geometric
Set Cover.

we also obtain to define a new version of Max3SAT,
MaxRM-3SAT, in Definition 1, and then prove that this
problem is also APX-hard.

1.3 Outline of the Paper

We show our hardness results by a series of reductions.
Figure 1 shows these reductions. In section 2 we de-
fine a new version of Max3SAT, MAX Restricted Mixed
3SAT (MaxRM-3SAT), and we show that the problem
is APX-hard. In Section 2 we only provide the idea of
the reduction, and the details of this reduction appear in
Appendix A. In Section 3 we prove the APX-hardness of
RBGSC[AARectangle] in two ways: First, we show a re-
duction from MaxRM-3SAT to RBGSC[AARectangle].
Second, we show how to modify the presented reduc-
tions in [10] to show that RBGSC[AARectangle] is
APX-hard. As the reduction from MaxRM-3SAT to
BCC is similar to the reduction we described in Sec-
tion 3, we provide the proof of APX-hardness of BCC
in Appendix B. In Appendix B, we also mention how we
can use the reduction presented in [3] to show the sim-
ilar result. In Section 4 we prove hardness results for
RBGSC[Convex] and RBGSC[Triangle] by reductions
from Set Cover and Red-Blue Set Cover.

2 MaxRM-3SAT

Max3SAT is a version of MaxSAT where all clauses have
at most 3 literals and the goal is to determine the maxi-
mum number of clauses that can be satisfied by any as-
signment. Here, we define MaxRM-3SAT, and we prove
this problem is APX-hard.

Figure 1: Reductions. * This is a modified version of the
reduction that Chan and Grant showed from SPECIAL-
3SC to GSC[AARectangle] in [10]. ** This is the reduc-
tion that Bereg et.al. showed from Rectilinear Polygon
Covering to BCC in [3].

Definition 1 (MaxRM-3SAT) This problem is a
variant of Max3SAT where all the clauses are of size
2 or 3 and have the following properties:

1. All the clauses of size 3 have a literal in negated
form and a literal in non-negated form.

2. Any variable appears in exactly one clause of size
3, i.e., if vi is a variable in this formula, only one
of vi or v̄i can appear in any clause of size 3.

3. Any variable appears in exactly one of the clauses
of size 2 in negated form, and exactly one of the
clauses of size 2 in non-negated form.

We can observe that by properties 2 and 3 of the
definition if m is the number of clauses of size 3 in an
instance of MaxRM-3SAT, then there are exactly 3m
variables and 4m clauses in total in the formula.

We prove a hardness result for MaxRM-3SAT by
a reduction from MaxE3SAT-5, the version of the
Max3SAT in which each clause is of length exactly 3
and each variable appears in exactly 5 clauses [16].

Theorem 2 MaxRM-3SAT problem is NP-hard to ap-
proximate within specific constant factor CRM−SAT of
the optimum. (Proof in Appendix A.)

3 RBGSC[AARectangle]

RBGSC[AARectangle]: A set of red points R, a set
of blue points B, and a family of axis-aligned rectangles
T are given, the goal is to select a subfamily T ′ of a
given family T such that T ′ covers all the elements in
B, but includes the minimum number of elements in R.

The hardness result that we prove for
RBGSC[Triangle] in this section shows that Red-
Blue Geometric Set Cover is APX-hard, same as
Geometric Set Cover, when the objects are axis-aligned
rectangles.

41

32nd Canadian Conference on Computational Geometry, 2020

3.1 Reduction from MaxRM-3SAT to
RBGSC[AARectangle]

In this Section, for an instance of MaxRM-3SAT we
construct a set of red points, a set of blue points, and
a set of rectangles in polynomial time. Then, we show
a relation between the number of satisfied clauses in
an optimal solution of MaxRM-3SAT and the size of
the optimum solution in the corresponding instance of
RBGSC[AARectangle]. The idea of this structure was
inspired by the structure used in [1].

For Φ, an instance of MaxRM-3SAT with 3m vari-
ables and 4m clauses, we change the order of the clauses
to have all the clauses of size 3 first and then clauses of
size 2. We rename the jth variable of the kth clause of
this order to X3(k−1)+j .

For each variable Xi, 1 ≤ i ≤ 3m, we add 4 blue
points to set B and two vertical and two horizontal rect-
angles to the object set T as shown in Figure2(a). These
axis-aligned rectangles for each variable only cover blue
points associated with their variable. On this arrange-
ment of points RBGSC[AARectangle] has to have an
optimal solution that covers each variable’s blue points
by exactly two rectangles, either both vertical or both
horizontal. We call these blue points that we added to
B variable points, and the rectangles variable rectangles.

The main idea of the reduction from MaxRM-3SAT
to BCC is that the choice of vertical vs horizontal
corresponds to a true vs a false assignment to the
variables. For each clause, we add some blue points
to B to force the choice of the covering rectangle to
be horizontal or vertical in the optimal solution for
RBGSC[AARectangle] based on the structure of the
clauses of Φ. The locations of these points are differ-
ent in each type of clauses depending on the size of
the clause and the number of negated literals in the
clause. Figure 2 (c), (d), (e), and (f), show these new
blue points added to B and the associated rectangles
added to T . We call these added blue points clause
points and the rectangles clause rectangles.

Finally, we add one distinct red point to each rect-
angle. Figure2 illustrates that there is a region in each
rectangle that does not overlap with the other rectan-
gles.

Observation 1 a) For each clause c and an assign-
ment for Φ, if the clause is satisfied, then one extra
rectangle in addition to ’variable rectangles’ is needed to
cover clause points of c; otherwise two extra rectangles
are needed to cover clause points of c. b) 10m rectangles
are needed to cover blue points in B.

Lemma 3 If there is an assignment for Φ with 4m− k
satisfied clauses, then there is a solution for the cor-
responding instance of RBGSC[AARectangle] with at
most 10m+ k rectangles.

X1X2X3 X2

X2

X2

X3m(a)

· · ·

· · ·

···

···

Region 1

R
e
g
io
n

3

Region 2

(b)

· · ·

· · ·

···

···

· · ·

(c) In Region 1 Xj

Xl

· · ·

(d) In Region 1
Xj Xl

· · ·

(e) In Region 1

Xj

Xl

(f) In region 2

Xj+2

Xj+1

Xj Xj

Figure 2: a) variable points for all the variables and four
variable rectangles for X2 (b)Highlighted green areas
are divisions of the plane to Region 1-3. clause points
and clause rectangles for different types of clauses: c)
c = (Xj ∨ X̄l), d) c = (Xj ∨ Xl), e) c = (X̄j ∨ X̄l), f)
c = (Xj ∨ X̄j+1 ∨ X̄j+2) (For c = (X̄j ∨Xj+1 ∨Xj+2),
added points are similar to part (e) but rotated by −π/2
in Region 3.) In the figures of this paper, circles and
stars indicate blue and red points respectively. Clause
points are shown in blue and the variable points are
shown in black.

Proof. The following mapping G maps an assignment
α for Φ to a solution T ′ for RBGSC[AARectangle]: For
any variable Xi, if α(Xi) is true, then add two hori-

42

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

zontal variable rectangles associated with Xi to T ′. For
any variable Xi, if α(Xi) is false, then add two vertical
variable rectangles associated with Xi to T ′. For each
satisfied clause c, add one of the clasue rectangles asso-
ciated with c to T ′. For each unsatisfied clause c, add
both of the clasue rectangles associated with c to T ′.

The rectangles in T ′ cover all the blue points and the
size of T ′ is 10m+ k. �

Lemma 4 If there is a solution with 10m+k rectangles
for this instance of RBGSC[AARectangle], then there
is an assignment for Φ with at least 4m − k satisfied
clauses.

Proof. Let T , |T | = 10m + k, denote the set of rect-
angles in this solution for RBGSC[AARectangle]. Here
we show how we can define a mapping G−1 that maps a
solution T for RBGSC[AARectangle] to an assignment
α for Φ.

Assume all the four variable points of any variable is
covered with exactly two vertical or exactly two hori-
zontal rectangles in T , then G−1 is defined as below. If
T does not have such a property, later we show how we
can find another solution T ′ that satisfies this property
with the same or lower number of rectangles than T .
G−1: α(Xi) = 1; if the variable points of Xi are cov-

ered with vertical rectangles in T ′. α(Xi) = 0; if the
variable points of Xi are covered with horizontal rect-
angles in T ′.

Here we show there is the solution T ′, in which all
the four variable points of any variable is covered with
exactly two vertical or exactly two horizontal rectan-
gles and |T | ≥ |T ′|. Observe that for any variable, each
variable point can be covered only by its variable rect-
angles. Set T ′ = ∅. For any variable Xi, 1 ≤ i ≤ 3m,
if T covers the variable points of Xi with exactly two
rectangles, this means either both of them are vertical
or both of them are horizontal. In this case, we add
both of these rectangles to T ′. In the case that T covers
the variable points of Xi with three or four rectangles,
check if the two vertical or the two horizontal rectangles
cover the most number of clause points of the clauses
that Xi appears in. Add these two variable rectangles
to T ′. If a clause point remains uncovered, add one
rectangle clause to T ′ to cover that. Note that no more
than one clause point might remain uncovered as by the
definition of MaxRM-3SAT each variable only appears
in three clauses, two clauses of size 2 and one clause of
size 3, so either the two vertical or the two horizontal
rectangles cover at least two of these clauses. There-
fore, for this case, we added three or lees rectangles to
T ′. �

In this instance of RBGSC[AARectangles], each ob-
ject covers a distinct red point, so minimizing the num-
ber of covered red points also minimizes the number of
objects.

Figure 3: Points and rectangles for Reduction from
SPECIAL-3SC to RBGSC[AARectangle]

3.2 Reduction from SPECIAL-3SC to
RBGSC[AARectangle]

In this section, we show how we can modify the pre-
sented reduction in [10] from SPECIAL-3CS, a re-
stricted version of Set Cover, to GSC[AARectangle] to
show that RBGSC[AARectangle] is APX-hard.
ESPECIAL-3SC [10]: we are given universe set
U = A ∪ W ∪ X ∪ Y ∪ Z comprising disjoint sets
A = {a1, ..., an}, W = {w1, ..., wm}, X = {x1, ..., xm},
Y = {y1, ..., ym}, and Z = {z1, ..., zm} where 2n = 3m.
We are also given a family S of 5m subsets of U satisfy-
ing the following two conditions: 1) for each a ≤ t ≤ m,
there are integers 1 ≤ i < j < k ≤ n such that S con-
tains the sets {ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, and
{ak, zt} (summing over all t given the 5msets contained
in S.) 2) for all 1 ≤ t ≤ n, the element at is in exactly
two sets in S. SPECIAL-3SC denotes the Set Cover on
universe set U and subset set S.

Chan and Grant showed SPECIAL-3SC is APX-hard
by a reduction from minimum vertex cover on 3-regular
graphs [10]. Then, they showed a reduction from
SPECIAL-3SC to GSC[Fat Axis-Aligned Rectangles]:
place the elements of A, in order, on the line segment
{(x, x − 2) : x ∈ [1, 1 + ε]} and place the elements of
A′ = W ∪ X ∪ Y ∪ Z, in order, on the line segment
{(x, x + 2) : x ∈ [−1,−1 + ε]}, for a sufficiently small
ε > 0. Then, add 5m axis-aligned rectangles covering
{ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt} for
any 1 ≤ t ≤ m. Figure 1.(C1) of [10] shows these points
and rectangles.

The following is the modified reduction for
RBGSC[AARectangle].
Reduction from SPECIAL-3SC to
RBGSC[AARectangle]: Add m blue points on
the line y = x − 2 for the elements in A, and add 5m

43

32nd Canadian Conference on Computational Geometry, 2020

blue points on the line y = x + 2 for the elements
in A′ = W ∪ X ∪ Y ∪ Z. For each set si ∈ S add
the axis-aligned rectangles shown in Figure 3. Note
that here the rectangles are slightly different than the
rectangles in [10]. This is to make sure that there
is an area in each rectangle which is not covered
by any other rectangle. Therefore, we can add a
distinct red point to each rectangle. Thus, an optimal
solution for RBGSC[AARectangle] that minimizes
the number of covered red points also minimizes the
number of rectangles and so an optimal solution for
SPECIAL-3SC.

4 RBGSC[Convex] and RBGSC[Triangle]

Theorem 5 For every α > 0 it is NP-hard to approx-
imate RBGSC[AARectangle] within (1 − α) ln b of the
optimum, where b is the number of blue points.

Proof. Suppose that we have an instance of Set Cover,
in which X is the set of n elements and T is a family
of m subsets of X. The following transformation ψ,
transforms this instance of Set Cover to an instance of
RBGSC[Convex], where R is the set of red points, B is
the set of blue points, and O is the set of convex objects.
ψ takes an arbitrary circle on the plane, and for each

xi ∈ X, ψ adds the blue point bi on the circle. For each
si ∈ T , ψ adds the red point ri on the circle as shown in
Figure 4. For set of objects O, for each si ∈ T , ψ adds
the convex shape oi, which is defined by connecting ri
and the blue points corresponded to si’s members, i.e.
oi = ConvexHull({ri} ∪ {bj |xj ∈ si}).

In this instance of RGBSC[Convex], each object cov-
ers exactly one distinct red point. So, any solution for
set cover with size k gives a solution for this instance
of RBGSC[Convex] in which k red points are covered.
Besides, for any solution of RBGSC[Convex] with k cov-
ered red points, there is a solution for set cover with size
k. �

Theorem 6 Red-Blue Geometric Set Cover is cannot
be approximated to within 2log

1−1/(log logm)c m in polyno-
mial time for any constant c < 1/2, unless P = NP ,
where the objects are convex objects and m is the number
of given convex objects.

Proof. The proof of this theorem is similar to The-
orem 5. If XB , XR, and T are the inputs of an in-
stance of Red-Blue Set Cover, for each xbi ∈ XB ,add
the blue point bi, on the circle, to B similar to Fig-
ure 4. For each xri ∈ XR, add the red point ri, on
the circle, to R similar to Figure 4. For each si ∈ T ,
add convex shape oi, which is defined by connecting red
points and blue points corresponded to si’s members,
i.e. oi = ConvexHull({bj |xbj ∈ si} ∪ {rl|xrl ∈ si}).
This implies that RBGSC[Convex] is as hard as Red-
Blue Set Cover, which has been shopwn to be NP-hard

Figure 4: points and convex shapes for the reduction
from Set Cover to RBGSC[Convex]

to approximate within 2(logm)(1−δ) factor of the optimal
for δ = 1/ logα logm and any constant α < 1/2 [9]. �

Carr et.al. showed that their hardness result holds
even in the restricted case that each set in T con-
tains only one blue and two red elements [9]. Here
we reduce this version of the Red-Blue Set Cover to
RBGSC[Triangle].

Theorem 7 Red-Blue Geometric Set Cover is cannot
be approximated to within 2log

1−1/(log logm)c m in polyno-
mial time for any constant c < 1/2, unless P = NP ,
where the objects are triangles and m is the number of
given triangles.

Proof. This proof is also similar to is similar to the
proof of Theorem 5. Assume XB , XR, and T are the
inputs of an instance of Red-Blue Set Cover, where each
si ∈ T contains only one blue and two red elements. For
each xbi ∈ XB ,add the blue point bi, on the circle, to
B similar to Figure 4. For each xri ∈ XR, add the red
point ri, on the circle, to R similar to Figure 4. For each
si ∈ T , add triangle ti, which is defined by connecting
the two red points and the one blue point corresponded
to si’s members, i.e. ti = Triangle({bi|xbi ∈ si} ∪
{rl|xrl ∈ si}).

This implies that RBGSC[Triangle] is as hard as the
restricted version of Red-Blue Set Cover, which has
been shopwn to be NP-hard to approximate within

2(logm)(1−δ) factor of the optimal for δ = 1/(log logm)α

and any constant α < 1/2 [9]. �

The hardness result in Theorem 7 shows that Red-Blue
Geometric Set Cover is strictly harder than Geometric
Set Cover, when the objects are triangles. This is be-
cause the VC-dimension of triangles in the plane is 7, so
the approximation factor of ε-net based algorithms on
GSC[Triangle] is O(logOPT), which is smaller than the
lower bound we showed for RBGSC[Triangle] in Theo-
rem 7.

44

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] N. Assadian. Separating colored points. M.sc. thesis,
Sharif University of Technology, Tehran, 2014.

[2] C. Bautista-Santiago, D. L. J.M. Dı́az-Báñez, C. Peláez,
and J. Urrutia. On covering a class with arbitrary disk.
Technical report, 2008.

[3] S. Bereg, S. Cabello, J. M. Dı́az-Báñez, P. Pérez-
Lantero, C. Seara, and I. Ventura. The class cover
problem with boxes. Comput. Geom., 45(7):294–304,
2012.

[4] P. Berman and B. DasGupta. Complexities of efficient
solutions of rectilinear polygon cover problems. Algo-
rithmica, 17(4):331–356, 1997.

[5] P. Berman, M. Karpinski, and A. D. Scott. Approxima-
tion hardness and satisfiability of bounded occurrence
instances of SAT. Electronic Colloquium on Computa-
tional Complexity (ECCC), 10(022), 2003.

[6] P. Berman, M. Karpinski, and A. D. Scott. Approxi-
mation hardness of short symmetric instances of MAX-
3SAT. Electronic Colloquium on Computational Com-
plexity (ECCC), (049), 2003.

[7] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite vc-dimension. Discrete & Computa-
tional Geometry, 14(4):463–479, 1995.

[8] A. Cannon and L. Cowen. Approximation algorithms
for the class cover problem. Ann. Math. Artif. Intell.,
40(3-4):215–224, 2004.

[9] R. D. Carr, S. Doddi, G. Konjevod, and M. Marathe.
On the red-blue set cover problem. In Proceedings of
the Eleventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’00, pages 345–353, Philadel-
phia, PA, USA, 2000. Society for Industrial and Applied
Mathematics.

[10] T. M. Chan and E. Grant. Exact algorithms and apx-
hardness results for geometric packing and covering
problems. Comput. Geom., 47(2):112–124, 2014.

[11] T. M. Chan and N. Hu. Geometric red-blue set cover
for unit squares and related problems. Comput. Geom.,
48(5):380–385, 2015.

[12] J. C. Culberson and R. A. Reckhow. Covering polygons
is hard. J. Algorithms, 17(1):2–44, 1994.

[13] J. G. DeVinney. The class cover problem and its appli-
cation in pattern recognition. PhD thesis, 2003.

[14] I. Dinur and D. Steurer. Analytical approach to par-
allel repetition. In D. B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 624–633. ACM,
2014.

[15] G. Even, D. Rawitz, and S. Shahar. Hitting sets when
the vc-dimension is small. Inf. Process. Lett., 95(2):358–
362, 2005.

[16] U. Feige. A threshold of ln n for approximating set
cover. J. ACM, 45(4):634–652, 1998.

[17] S. Har-Peled. Being fat and friendly is not enough.
CoRR, abs/0908.2369, 2009.

[18] J. H̊astad. Some optimal inapproximability results. In
Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, El Paso, Texas,
USA, May 4-6, 1997, pages 1–10, 1997.

[19] D. S. Hochbaum and W. Maass. Fast approximation
algorithms for a nonconvex covering problem. J. Algo-
rithms, 8(3):305–323, 1987.

[20] D. Marchette. Class cover catch digraphs. Wi-
ley Interdisciplinary Reviews: Computational Statistics,
2(2):171–177, 2010.

[21] W. Masek. On covering a class with arbitrary disk.
Technical report, 1979.

[22] N. H. Mustafa and S. Ray. Improved results on geo-
metric hitting set problems. Discrete & Computational
Geometry, 44(4):883–895, 2010.

[23] J. Nelson. A note on set cover inapproximability in-
dependent of universe size. Electronic Colloquium on
Computational Complexity (ECCC), 14(105), 2007.

[24] J. Pach and G. Tardos. Tight lower bounds for the size
of epsilon-nets. In Proceedings of the 27th ACM Sympo-
sium on Computational Geometry, Paris, France, June
13-15, 2011, pages 458–463, 2011.

45

32nd Canadian Conference on Computational Geometry, 2020

Appendix A. Hardness of Approximation of MaxRM-
3SAT

A.1. Reduction from MaxE3SAT-5 to MaxRM-3SAT

We use a reduction from MaxE3SAT-5 to show the inap-
proximability of MaxRM-3SAT. Given the fact MaxE3SAT-
5 is APX-hard [16], we can observe that the following prob-
lem is also APX-hard: MaxE3SAT-5 even where every vari-
able appears at least twice. Here we use this instance of
MaxE3SAT-5.

Suppose that an instance φ of MaxE3SAT-5 is given with
n variables and m = 5n/3 clauses. The following transfor-
mation F transforms φ to Φ, an instance of MaxRM-3SAT
with M clauses and N variables.
F adds all the clauses of φ to Φ, then changes the name

of variables and adds some clauses as described below.
First, F takes arbitrary orders on φ’s variables and

clauses. For each variable x, let cx,i be the ith clause that x
appears in φ.

For each variable x and clause c = cx,i, F replaces x with
xi or x̄i in c′, the corresponding clause in Φ, as described
in the following steps. In addition, let f be a mapping that
shows if x replaced by xi or x̄i; f(x, i) = xi or x̄i.

1. If c = cx,i = (x∨ y ∨ z), F replaces x with x̄i such that
c′ = (x̄i ∨ y ∨ z) and f(x, i) = x̄i.

2. If c = cx,i = (xi ∨ t2 ∨ t3), where either or both t2 = ȳ
and t3 = z̄, F replaces x with xi such that c′ = (xi ∨
t2 ∨ t3) and f(x, i) = xi;

After step 1 and step 2 are completed, F adds the clauses in
steps 3 to Φ to have equality of xi’s instances with original
x. For each variable x in φ, let nx be the number of xi’s in
Φ. If nx > 1, then

3. F adds the following clauses to Φ for each 1 ≤ i ≤ nx:

(f(x, i) ∨ f(x, t)), where t = i + 1 if 1 ≤ i ≤ nx − 1;
t = 1 if i = nx.

Now Φ is an instance of RM-3SAT. This is because it is
a CNF formula, each clause of size 3 has one negated and
one non-negated literal, each variable appears in one of the
clauses of size 3, and each variable appears in exactly one
of the clauses of size 2 in negated form, and exactly one
of the clauses of size 2 in non-negated form. The number
of clauses in Φ is M , M = m + 3m = 4m, where m is
the number of clauses in φ. This is because the number of
clauses of size 3 in Φ is m. Besides, the number of clauses of
size 2 associated with each variable x is at most the number
of times it appears in φ, so the total number of clauses of
size 2 for all the variables is 3m = 5n.

Lemma 8 If there is an assignment for φ that satisfies m−
k clauses, then there is an assignment for Φ that satisfies at
least M − k clauses and can find such an assignment for Φ
by having the assignment for φ.

Proof. Consider the assignment for φ that satisfies at least
m − k clauses. Set the value of all the xi’s in Φ to the
equivalent value of x in this assignment for φ by using f . e.g
xi = x if f(x, i) = xi, and xi = x̄ if f(x, i) = x̄i. Therefore,
the only unsatisfied clauses of size 3 in Φ are the ones whose

their corresponding clauses in φ are not satisfied. Besides,
all the clauses of size 2 are satisfied in Φ. This is because
all the values of xi’s are equivalent for any variable x, e.g.
f(x, i) = f(x, j) for any 1 ≤ i, j ≤ nx. This means either
all the f(xi)’s are true or all the f(x, i). Thus, at most, k
clauses are unsatisfied by this assignment for Φ. �

Lemma 9 If there is an assignment for Φ that leaves no
more than k clauses unsatisfied, there is an assignment for
φ that leaves no more than k clauses unsatisfied and can find
such an assignment for φ by having the assignment for Φ.

Proof. First, we explain how we can change any assignment
for Φ with no more than k unsatisfied clauses to another
assignment, in which for each variable x all the xi’s have
equivalent value and there are no more than k unsatisfied
clauses. Then, in the assignment for φ, we set the value of
x to the value that all xi’s agreed on, and we show that this
assignment does not leave more than k clauses unsatisfied.

For each x, we change the value of xi’s to the majority
value of them. Now, we describe why this assignment for Φ
has no more than k unsatisfied clauses. The number of un-
satisfied clauses in Φ with this new assignment is, at most,
the number of unsatisfied clauses of size 3 with the original
assignment added to the number of satisfied clauses of size 3
in Φ that are no longer satisfied due to the change in xi’s val-
ues. For each x with equivalent values of xi’s in the original
assignment, there is no change in the value of them in the
new assignment and consequently no change by these vari-
ables in the number of satisfied clauses of size 3. For each x
with non-equivalent values of xi’s in the original assignment,
at most, two clauses of size 3 can be unsatisfied after chang-
ing their values to their equivalent majority value, as i ≤ 5
and there are no more than two changes in xi’s values. On
the other hand, if all the values of xi’s are equivalent, then
the clauses of size 2 for each variable x are all true. But, if
the values of xi’s are not equivalent, then, at least, two of
their clauses of size 2 are unsatisfied. So, changing the value
of xi’s to their majority satisfies, at least, two more clauses
of size 2 for these variables. This means that changing the
value of xi’s to their majority does not increase the number
of unsatisfied clauses. Therefore, we have an assignment for
Φ with no more than k unsatisfied clause and for each x all
the xi’s are equivalent. Finally, for the assignment for φ,
each variable x gets the majority equivalent value of xi’s in
Φ, and there are no more than k unsatisfied clauses in this
assignment for φ. �

A.2. Hardness of Approximation

Observation 2 For any instance of MaxE3SAT-5 there is
an assignment that satisfies at least half of the clauses.

Proof of Theorem 2. Consider the two CNF formu-
las φ and Φ, an instance of MaxE3SAT-5 with m clauses
and an instance of MaxRM-3SAT with M clauses, respec-
tively. Assume the optimal solution for φ has (m − k) true
clauses. Lemma 8 implies that there is an assignment for
Φ with at least (M − k) true clauses. Assume that there is
an algorithm that approximates MaxRM-3SAT with factor
CRM−SAT , where CRM−SAT ≤ 1. Then, the algorithm pro-
vides an assignment that has at least CRM−SAT (M−k) true

46

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

clauses and at most M −CRM−SAT (M − k) false clauses in
Φ. By using Lemma 9, we can find an assignment that has
at most M − CRM−SAT (M − k) false clauses and at least
m−M + CRM−SAT (M − k) true clauses in φ. By knowing
M ≤ 4m, then the approximation ratio of this assignment
in φ is at least ρ = m −M + CRM−SAT (M − k)/(m − k).
By using Observation 2,k ≤ m,

ρ ≥ m− (1− CRM−SAT)M − CRM−SAT k

m− k

≥ m(4CRM−SAT − 3)− CRM−SAT k

m− k

If MaxE3SAT-5 is C3SAT5-inapproximable [16], then we

chose CRM−SAT such that
m(4CRM−SAT−3)−CRM−SAT k

m−k
≥

C3SAT5. Therefore, there is an algorithm to find C3SAT5-
approximation for MaxE3SAT-5, which is a contradiction.

Appendix B. Boxes Class Cover

Here we show that BCC is APX-hard in two ways: First,
we demonstrate that the same presented reduction in [3]
from Rectilinear Polygon Cover to BCC for showing the NP-
hardness of this problem also shows that BCC is APX-hard.
Second, we modify the reduction described in Section3.1 to
show a reduction from MaxRM-3SAT to BCC.

Rectilinear Polygon Cover(RPC): Given a rectilinear
polygon P , find a minimum size set of axis-aligned rectangles
whose union is exactly P.

The idea of the reduction in [3] is to add blue points on
the boundary and inside the polygon and add red points
outside of the polygon in a way that the only possible non-
empty rectangles are the ones that are inside P . Thus, any
solution for BCC on these points gives a solution with the
same size for RPC. Given that RPC is APX-hard [4], BCC
is APX-hard.

B.1. Reduction from MaxRM-3SAT to BCC

The idea of the reduction from MaxRM-3SAT to BCC is
very similar to the idea of the reduction from MaxRM-3SAT
to RBGSC[AARectangle]. For this reduction we keep all
the same blue points, but we change the set of red points
in a way that the set of all possible axis-aligned rectangles
is limited to the variable rectangles and clasue rectangles
and the rectangles in the optimal solution of BCC on this
instance of the problem are the same as the rectangles in the
optimal solution of RBGSC[AARectangle]. Figure 5 shows
the location of these red points.

A rectangle t is a blue-rectangle if t contains only blue
points but no red point. We can observe that blue-rectangles
in any solution for BCC can be expanded to reach a red point
without any change in the size of the solution. We call the
set of all expanded possible axis-aligned rectangles maximal
rectangles.

In this instance of BCC, the set of maximal rectangles
that contain blue points is the same as the set of rectangles
of RBGSC[AARectangle] in Section 3.1. In BCC, the goal is
to minimize the number of these rectangles to cover all the
blue points, which is the same as minimizing the number

of covered red points in RBGSC[AARectangle] when each
rectangle covers only one distinct red point. Therefore the
same proof works here too.

X1
X2

X3

X3m

(a)

· · ·

· · ·

···

···

Region 1

R
e
g
io
n

2

Region 3

(b)

· · ·

· · ·

···

···

(c) In Region 1

Xj

Xl

47

32nd Canadian Conference on Computational Geometry, 2020

(d) In Region 1

Xj

Xl

(e) In Region 1

Xj

Xl

(f) In Region 2

Xj+2

Xj+1

Xj

Figure 5: a) The points in the highlighted gray area are
variable points for X2. b) Highlighted green areas are
divisions of the plane to Region 1-3. c) Added red points
and blue points for c = (Xj ∨ X̄l), d) Added red points
and blue points for c = (Xj ∨Xl), e) c = (X̄j ∨ X̄l), f)
Added red points and blue points for c = (Xj ∨ X̄j+1 ∨
X̄j+2) (For c = (X̄j ∨ Xj+1 ∨ Xj+2), added points are
similar to part (f) but rotated by −π/2 in Region 3).

48

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Relocating Units in Robot Swarms with Uniform Control Signals is
PSPACE-Complete*

David Caballero Angel A. Cantu Timothy Gomez Austin Luchsinger Robert Schweller
Tim Wylie

Abstract

This paper investigates a restricted version of robot mo-
tion planning, in which particles on a board uniformly
respond to global signals that cause them to move one
unit distance in a particular direction on a 2D grid board
with geometric obstacles. We show that the problem
of deciding if a particular particle can be relocated to
a specified location on the board is PSPACE-complete
when only allowing 1×1 particles. This shows a separa-
tion between this problem, called the relocation problem,
and the occupancy problem in which we ask whether a
particular location can be occupied by any particle on
the board, which is known to be in P with only 1×1 par-
ticles. We then consider both the occupancy and reloca-
tion problems for the case of extremely simple rectangu-
lar geometry, but slightly more complicated pieces con-
sisting of 1×2 and 2×1 domino particles, and show that
in both cases the problems are PSPACE-complete.

1 Introduction

The advanced development of microbots and nanobots
has quickly become one of the most significant frontiers
of our time. However, power and computation limita-
tions at these scales often make autonomous robots in-
feasible and individually-controlled robots impractical.
Thus, recent attention has focused on controlling large
numbers of relatively simple robots. Many examples of
large population robot swarms exist, ranging from natu-
rally occuring magnetotactic bacteria [9,11,12] to man-
ufactured light-driven “nanocars” [7, 13]. These par-
ticular microrobot swarms are manipulated uniformly
through the use of external inputs such as light or a
magnetic field. That is, all of the agents in the system
react identically to the same global signal.

First proposed by Becker et al. [5], this model con-
sists of movable polyominoes (as an abstraction of these
nanorobots) that exist on a 2D grid board with “open”
and “blocked” spaces. These polyominoes may be af-
fected by global signals and step one unit distance when
given a move command. Similar work has been shown
in [4], where instead of moving one unit distance they

*This research was supported in part by National Science
Foundation Grant CCF-1817602.

travel maximally (referred to as “tilts”), which causes
them to move linearly from one open location to an-
other.

Previous Work. Before the tilt model was formally
defined, there was research studying uniform control of
particle swarms with precise movement [5]. Shortly af-
ter, investigation began on a version of particle swarm
control where commands became limited and caused
particles to move maximally [4]. In this work, the au-
thors ask if any particle within a system can be moved to
occupy a specified location. We refer to this problem as
the occupancy problem. They prove that deciding the
minimum number of moves needed to reconfigure one
configuration of robots to another is PSPACE-complete.
Recently in [2, 3], two additional natural questions for
the model were proposed: the relocation and reconfigu-
ration problems. The first asks whether a specified par-
ticle can be moved to a specified location. The second
problem is to determine whether or not every particle
in the system can be moved to its own specified loca-
tion. In the later work the authors proved all of these
problems to be PSPACE-complete even when limited
to 1 × 1 tiles. These problems have also been investi-
gated in the single-step model when considering limited
directions. Recent work in [1, 6] shows that the relo-
cation problem when limited to two or three directions
and the reconfiguration problem when limited to two di-
rections are both NP-complete. It was also shown that
the occupancy problem is solvable in polynomial time in
the single-step model even when all four directions are
allowed.

Our Contributions. Our contributions are out-
lined in Table 1. We first show the relocation problem
is PSPACE-complete with only 1 × 1 tiles by way of
a reduction from a restricted version of the relocation
problem within the full-tilt model, recently shown to be
PSPACE-complete in SODA 2020 [2]. We then consider
the case of domino shaped pieces, but with board geom-
etry limited to being a single rectangle, and show that
in this case both the relocation and occupancy prob-
lems are PSPACE-complete by a reduction from the
problem of traversing a toggle-lock maze, shown to be
PSPACE-complete in [8]. Videos of the constructions
can be found at https://asarg.hackresearch.com/

main/cccg2020-Complexity

49

32nd Canadian Conference on Computational Geometry, 2020

Problem Tile Size Geometry Result Theorem
Occupancy 1×1 All P In [6]
Relocation 1×1 Connected PSPACE-complete Thm. 2

Occupancy/Relocation 1×1, 1×2 Rectangular PSPACE-complete Thms. 4,5

Table 1: An overview of the complexity results. For 1 × 1 polyominoes, the occupancy problem is in P, but the
related problem of relocation is PSPACE-complete. We show that if 1 × 2 and 2 × 1 polyominoes (dominoes) are
allowed, both of the problems are PSPACE-complete even with rectangular geometry.

2 Preliminaries

Board. A board (or workspace) is a rectangular re-
gion of the 2D square lattice in which specific locations
are marked as blocked. Formally, an m × n board is a
partition B = (O,W) of {(x, y)|x ∈ {1, 2, . . . ,m}, y ∈
{1, 2, . . . , n}} where O denotes a set of open locations,
and W denotes a set of blocked locations- referred to as
“concrete.” We classify the different board geometries
according to the following hierarchy:

� Connected: A board where the set of open spaces
O is a connected shape.

� Simple: A connected board is said to be simple if
O has genus-0.

� Monotone: A simple board where O is either hori-
zontally monotone or vertically monotone.

� Convex: A monotone board where O is both hori-
zontally and vertically monotone.

� Rectangular: A convex board is rectangular if O is
a rectangle.

Tile and Polyomino. A tile is a unit square centered
on a non-blocked point on a given board. Formally a tile
stores a coordinate on the board c and is said to occupy
c. A polyomino is a finite set of tiles P = {t1, . . . tk} that
is connected with respect to the coordinates occupied by
the tiles in the polyomino. A polyomino that consists
of a single tile is informally referred to as a “tile.” In
this work we only use single tiles and dominos which are
polyominos consisting of two tiles.

Configurations. A configuration is an arrangement of
polyominoes on a board such that there are no overlaps
among polyominoes, or with blocked board spaces. For-
mally, a configuration C = (B,P = {P1 . . . Pk}) consists
of a board B and a set of non-overlapping polyominoes
P that each do not overlap with the blocked locations
of board B.

Step. A step is a way to turn one configuration into
another by way of a global signal that moves all tiles in
a configuration one unit in a direction d ∈ {N,E, S,W}
when possible without causing an overlap with a blocked
position, or another tile. Formally, for a configuration
C = (B,P), let P ′ be the maximal subset of P such

Init 〈N〉 〈E〉 〈E〉

Figure 1: An example step sequence. The initial board
configuration followed by the resulting configurations
after an N step, E step, and then final E step.

that translation of all tiles in P ′ by 1 unit in the direc-
tion d induces no overlap with blocked squares or other
tiles. A step in direction d is performed by executing the
translation of all tiles in P ′ by 1 unit in that direction.

We say that a configuration C can be directly recon-
figured into configuration C ′ (denoted C →1 C

′) if ap-
plying one step in some direction d ∈ {N,E, S,W} to
C results in C ′. We define the relation →∗ to be the
transitive closure of →1 and say that C can be recon-
figured into C ′ if and only if C →∗ C ′, i.e., C may
be reconfigured into C ′ by way of a sequence of step
transformations. A related concept that is the focus of
previous work is the tilt transformation in which a single
direction d tilt consists of the repeated application of a
direction d-step until the configuration is d-terminal. In
this paper we focus on the step transition, but discuss
connections to previous work using the tilt transforma-
tion.

Step Sequence. A step sequence is a series of steps
which can be inferred from a series of directions D =
〈d1, d2, . . . , dk〉; each di ∈ D implies a step in that direc-
tion. For simplicity, when discussing a step sequence,
we just refer to the series of directions from which that
sequence was derived. Given a starting configuration,
a step sequence corresponds to a sequence of configu-
rations based on the step transformation. An example
step sequence 〈N,E,E〉 and the corresponding sequence
of configurations can be seen in Fig. 1.

3 Hardness Results for Occupancy and Relocation

In this section we present our two PSPACE-
completeness results. We first show the relocation prob-
lem is PSPACE-complete when allowing only 1 × 1
tiles by reducing from a restricted form of reloca-

50

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

(a) initial (b) S (c) W (d) N

(e) E (f) N (g) W (h) S

Figure 2: An example of an empty space moving
through a configuration. The board geometry is just
a rectangular frame. The dominoes along with many
of the tiles (shown in lighter blue) are gridlocked and
cannot move. We can see that through a sequence of
tilts the space can move through the configuration and
eventually allow the orange tile to change position.

tion within the full-tilt model, shown to be PSPACE-
complete in [2]. Then, we show that both relocation
and occupancy problems are PSPACE-complete when
allowing 1 × 2 and 2 × 1 polyominoes even when re-
stricted to a board with rectangular geometry. We show
this by a reduction from the problem of moving a sin-
gle robot through a toggle-lock maze [8]. Both of our
PSPACE-hardness reductions utilize a common tech-
nique in which we consider an empty space in a mostly-
full board as an agent. With this technique, isolated
spaces now travel maximally across the board per step,
similar to a single tile in the full-tilt model. This method
is demonstrated in Figure 2.

3.1 Problem Definitions

Occupancy. The occupancy problem asks whether or
not a given location can be occupied by any tile on the
board. Formally, given a configuration C = (B,P) and
a coordinate e ∈ B, does there exist a step sequence
such that C →∗ C ′ where C ′ = (B,P ′) and ∃p ∈ P ′

that contains a tile that occupies coordinate e?

Relocation. The relocation problem asks whether a
specified polyomino can be relocated to a particular po-
sition. Formally, given a configuration C = (B,P),
a polyomino p ∈ P ′ , and a coordinate e ∈ B, does
there exist a step sequence such that C →∗ C ′ where
C ′ = (B,P ′) and a tile in p occupies coordinate e?

3.2 Relocation with 1× 1s

Recently, [2] proved that occupancy and relocation in
the full-tilt model are PSPACE-complete with only 1×1
tiles. We can reduce directly from a modified version of
the occupancy problem in full-tilt. The key idea in the

(a)

(b)

Figure 3: (a) An example input for the k-region relo-
cation problem. (b) Reducing the k-region relocation
problem to the relocation problem.

reduction to invert the construction from [2] so that ev-
ery space is replaced by a single tile, and vice versa.
Now, the empty spaces act as the tiles in the original
reductions and behave similarly to that in Figure 2 (al-
though, this results in a board with no dominoes).

Lemma 1 The relocation problem in the single-step
model is in PSPACE.

Proof. The problem can be solved by non-
determinisitically selecting a movement from the
available current movements until a tile is in the correct
position. We only need to keep track of the current
configuration between each move so the problem can
be solved in NPSPACE which is known to equal
PSPACE. �

Theorem 2 The relocation problem in the single-step
model is PSPACE-complete even when limited to only
1× 1 tiles and connected geometry.

Proof. To show hardness we reduce from a restricted
version of the relocation problem under the full-tilt op-
eration. The full-tilt model simply moves all pieces max-
imally in a given direction until colliding with a wall or
other obstructed unit. In [2] the following restricted ver-
sion of this problem, which we will call the k-region re-
location problem, was shown to be PSPACE-complete 1

by way of a reduction from non-deterministic constraint
logic [10]. In this problem we consider an input board
configuration consisting of k disjoint regions, each with
a single particle within each region. Further, we ap-
pend a 1× 3 enclosed region to the bottom row of each
of these regions that includes a single central opening at

1This version of the problem was not explicitly formulated
within the conference version of this paper, but this subproblem
represents the key portion from which the hardness is derived.
Key details and a formal proof is provided in Section 4.

51

32nd Canadian Conference on Computational Geometry, 2020

the center leading the next higher row. See Figure 3a
for an example. Given such an input, the k-region relo-
cation problem asks if it is possible to move all k pieces
into their corresponding 1× 3 enclosed regions.

Given the PSPACE-hardness of k-region relocation,
we now show the PSPACE-hardness of the relocation
problem within our single-step model. The key idea is
to apply the technique of filling each of the k disjoint
regions with tiles, with the exception of the location of
the given region’s single particle. In this way, each step
transition moves the empty particle in the same manner
a full-tilt transition would maximally move a single par-
ticle (but in the opposite direction). Next, we connect
the 1× 3 output regions as shown in Figure 3b. In this
way, the k empty spaces are able to reach the bottom-
most row of the configuration if and only if the original
k-region relocation input can relocate it’s k pieces to
the k output regions. With a final additional step the
k spaces combine to create enough space for the target
particle (shown in yellow) to move exactly k spaces to
a designated relocation point. �

3.3 Complexity with Rectangular Board Geometry
and Dominoes

In this section we relax the restriction on tile size and
show both the occupancy and relocation problems are
both PSPACE-complete even when restricted to rect-
angular board geometry, and with particles of size at
most 2. We show this by reducing from a simple gadget
model proposed in [8]. The authors show that the prob-
lem of relocating a single agent in a connected system
of these gadgets is PSPACE-complete.

Gadget Basics. The gadgets used follow simple rules.
They have two states, and contain tunnels that allow
traversal through the gadgets. These tunnels exist in
different types, such as the lock and toggle. A toggle
tunnel can always be traversed in one direction, and
on a state change that direction is reversed. The lock
tunnel can be traversed in either direction when it is
unlocked, and neither when it is locked. On a state
change the lock tunnel will either lock or unlock. A
gadget can contain multiple tunnels, each affected by
the gadget’s state changes. For our purpose we will use
a crossing toggle lock, as shown in Figure 4a.

Crossing Toggle-Lock Domino Gadget. The
Crossing Toggle-Lock Domino Gadget, shown in Fig-
ure 4b, enforces the same rules for traversal with two
dominoes. When in the unlocked state the horizontal
tunnel contains only 1× 1 tiles and allows for the space
to travel through it unblocked. When in the locked state
there is a domino blocking the horizontal path. When a
space attempts to pass through that path it is blocked
by the domino and cannot continue through the gadget.

The vertical tunnel only allows traversal in one di-

(a) (b) (c)

(d) (e) (f) (g)

Figure 4: (a) Crossing Toggle-Lock (CTL) gadget in
state 1 left and in state 2 right. The

⊗
represents the

locked state of the lock tunnel. (b) The crossing toggle-
lock gadget implemented in the single-step tilt model.
The left image is in an open position, and the right is
the closed position. (c) The goal gadget for occupation.
The space can only be covered by a polyomino if another
space is in the gadget. (The light blue tiles are used to
fill up the board and keep polyominoes in the gadgets
from moving. These tiles will never move) (d) The 3-
way branching gadget that allows the space to enter at
any of the 3 locations and exit at any other. (e) The
Start Gadget. Intially contains the space that acts as
the agent and has dominos to enforce that the space can
only exit at one location. (f) The wire gadget, a group
of tiles act as a medium for the space to travel through.
(g) Corner Gadget used to allow the space to change
directions.

rection based on the state of the gadget. When in the
unlocked state, traversal is allowed from south to north
and if attempting to enter from the north, it is blocked
by a domino. When in the locked state traversal is only
allowed from north to south. Any complete traversal
through the vertical tunnel will change the location of
the dominoes in the tunnel and the state of the gadget.

Other Gadgets. In order to fully implement a CTL
puzzle, we need a few other gadgets shown in Figures
4(d-g).

Branching Gadget. The other gadget required in the
motion planning problem is a 3-way branching gadget.
The gadget is shown in Figure 4d and connects all three
locations and allows for movement between them. The
way the gadget is set up is when entering from any point
the space will be able to cycle around the edges of the
gadget. At certain positions in the gadget the space will
be able to exit out one of the locations.

Wire Gadget. The wire gadget shown in Figure 4f is
just a group of single tiles. These tiles connect the other
gadgets and allow the agent to travel through them.

Corner Gadget. The puzzle solvabilty problem allows
for wires that turn. Since the agent travels the maxi-
mum distance possible before reaching a domino or the
edge of the board we create a corner gadget (Figure 4g)

52

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

to allow the agent to stop and change direction.

Start Gadget. The start gadget (Figure 4e) is where
the agent starts. When constructing the reduction the
gadget contains the space that acts as the agent. The
open position is surrounded on three sides by dominoes
so the space can only exit from one side.

Goal Gadget. The goal gadget (Figure 4c) is the ob-
jective for the agent to reach. The gadget contains a sec-
ond empty space that is surronded by dominoes. This
space is the goal location. There is a horizontal domino
that can be moved into this space if the agent reaches
the goal gadget. The horizontal domino can only fill the
goal location if the agent reaches the goal location.

Lemma 3 The occupancy problem in single-step is
PSPACE-hard with a rectangular board.

Proof. Given an instance of a CTL puzzle we create
a configuration by replacing each element of the CTL
puzzle with one of our gadgets. We replace each CTL
gadget with a crossing toggle-lock domino gadget and
every 3-way intersection with a branching gadget. We
also replace the start location with the start gadget and
the goal location with the goal gadget. We finally con-
nect these with wire gadgets and corner gadgets.

Our crossing toggle-lock domino gadget must behave
the same as the CTL gadget. We can see that the space
can only traverse the crossing toggle-lock domino gadget
when an agent can traverse a CTL gadget in the same
state. Observe that a space can travel through the hor-
izontal tunnel when the gadget is in the unlocked state.
While in this state observe that the space can only tra-
verse the vertical tunnel from south to north since the
north entrance is blocked by a domino in all directions.
When traversing from south to north in this state we
can see that the dominoes are able to move downward
one step changing the state of the gadget to the locked
state. Observe that in the locked state the horizontal
tunnel is blocked by a vertical domino so a horizontal
traversal in either direction is not possible. Also, ob-
serve that the space cannot traverse the vertical tunnel
when entering from the south since it is blocked by a
domino. When entering from the north in this state
the space can traverse and changes the locations of the
dominoes.

There exists a solution to the given instance of the
CTL puzzle if and if only if there exists a solution to the
occupancy problem on the given configuration. Since
the crossing toggle-lock domino gadget has the same
behavior of the CTL gadget, and the branching gadget
allows a tile to enter and exit at any location, we can
see that if the CTL puzzle is solvable then there exists
a move sequence that solves the occupancy problem.
Also since our gadgets behave the same as the gadgets
in the CTL puzzle if there does not exist a solution to
the CTL puzzle then there is no way for the space to

reach the goal gadget and no way to solve the occupancy
problem. �

Theorem 4 The occupancy problem in single-step is
PSPACE-complete when limited to rectangular board ge-
ometry if both 1×1 tiles and 1×2 / 2×1 dominoes are
included.

Proof. We can see that the occupancy problem is in
PSPACE in the same way as in Lemma 1 since we
can non-deterministically select a valid move sequence.
Through the reduction in Lemma 3 we show the prob-
lem is PSPACE-hard so the occupancy problem with
the paramaters shown is PSPACE-complete. �

Corollary 5 The relocation problem in single-step is
PSPACE-complete even when limited to a rectangular
board geometry when allowing 1 × 1 tiles and 1 × 2 /
2× 1 dominoes.

Proof. We can see from Lemma 1 that the relocation
problem is in PSPACE. The reduction from above can
be extended to show the relocation problem is PSPACE-
hard by asking if the horizontal domino in the goal gad-
get can reach the positon directly below it. �

4 Relocation Complexity in Full Tilt

This section is taken from [2] with the additional proof
of k-region relocation hardness. To achieve this re-
sult we provide a polynomial time reduction from Non-
Deterministic Constraint Logic [10]. We explain high
level details of this construction along with key lemmas.

4.1 Non-Deterministic Constraint Logic

A constrant logic graph is a weighted directed graph
with a constraint on each of the vertices [10]. The con-
straint specifies the minimum weight required from the
edges directed in (the sum of the inflow) to any ver-
tex. When given a graph, the usual problem studied
is whether a particular edge can be “flipped”- the di-
rection of the edge changed, i.e., is there a sequence of
edge flips that maintain the constraints on all vertices,
and allows the target edge to be flipped? This is a one-
player unbounded game. The problem is still PSPACE-
Complete when the edge weights are all strength 1 or 2,
and vertices have max degree 3. We address the follow-
ing equivalent problem.

Configuration-to-Configuration Problem. Given two
states of a constraint graph G and G′, does there exist
a sequence of edge flips starting with G that results in
G′ [10].

53

32nd Canadian Conference on Computational Geometry, 2020

Figure 5: An overview of the layout of the different com-
ponents for the reduction. The dotted red lines repre-
sent where each of the vertex gadgets go (not to scale),
the dotted green boxes below denote the geometry spe-
cific to each vertex to force the state tile into the top
row (the vertex was in the wrong state) unless the ver-
tex is in the state specified by the target configuration.
The bottom row requires all |V | state tiles in order for
a tile to get into the goal location g.

4.1.1 Vertex Gadget

Assuming a max degree of three, there are 8 possible
arrangements of in/out edges. Define the vertex state
as a label from 0 to 7 determined by the directions of its
incident edges. A vertex gadget contains a single 1× 1
tile refered to as the state tile, a transition area, and
a number of state gadgets equal to the number of legal
states of that vertex. Since there are eight states, there
are eight basic paths in the gadget that the state tile
could be in representing the vertex’s state.

Flipping an edge is represented by a move sequence
performed while in a valid state that moves the state tile
from one state path to another, which happens simul-
taneously in two vertex gadgets since an edge connects
two vertices. This edge flip happens in all vertex gad-
gets, but if the edge is not incident to that vertex, there
is no effect on the path of the state tile.

4.1.2 Goal Area

An overview of the reduction layout is in Figure 5 where
the goal area is shown at the bottom of all the vertex
gadgets. Once all the tiles are in positions that represent
the target configuration, the tiles can be extracted into
the goal area though the bottom of a state gadget. After
extraction the tiles enter the goal area. The goal area
consists of two rows. The valid row and the invalid
row. The invalid row (top row) traps any tiles that
enter when a vertex was not in the specified (in the
target configuration) state. If there exists a solution
to the Configuration-to-Configuration Problem then all
tiles will be able to reach the valid row.

Lemma 6 After performing a move sequence to flip an
edge, only the two vertex gadgets representing vertices
incident to that edge will have their state tile change
state paths. All other vertex gadgets will have their state
tile stay in the same state path.

Lemma 7 If a vertex enters an illegal state, the repre-
sentative vertex gadget’s state tile will be trapped in an
‘illegal’ state path and cannot be extracted.

4.2 Hardness of k-region Relocation

In this section we will describe how to modify the reduc-
tion from [2] to show hardness for the k-region relocation
problem.

k-region relocation. The k-region relocation problem
asks: given a board with k disjoint regions each contain-
ing a single tile, and a set of positions in each region
called goal areas, does there exist a move sequence that
relocates all tiles to their goal area?

Theorem 8 The k-region relocation problem in the
full-tilt model is PSPACE-hard.

Proof. First, note in the orginal reduction that the goal
location may be filled if and only if each tile is extracted
from its vertex gadget and enters the goal row. This
means that the problem of ”Can each tile be extracted
from it’s vertex gadget?” is PSPACE-hard. Now con-
sider the board used for the proof of hardness for the
occupancy problem in [2]. Each vertex gadget is only
connected to the others through the two rows at the
bottom of the construction. Both of these rows can be
removed and replaced with the 1 × 3 regions described
in Theorem 2. The k-many 1× 3 rows (which replaced
the goal row) can now be reached if and only if each tile
can be extracted from it’s goal gadget. �

5 Future Work

There are a number of directions for future work.
We show that with only 1 × 1 tiles the relocation
problem is PSPACE-complete with a connected board.
Relocation and occupancy become PSPACE-complete
when restricted to a rectangular board but allowing for
larger pieces. How much power do these constraints
remove? Do these problems become easier when only
restricting either the board geometry or the number of
larger pieces (i.e., constant number of dominoes), or
are they still hard?

References

[1] Jose Balanza-Martinez, David Caballero, An-
gel A. Cantu, Timothy Gomez, Austin Luchsinger,
Robert Schweller, and Tim Wylie, Relocation with
uniform external control in limited directions, The
22nd Japan Conference on Discrete and Computa-
tional Geometry, Graphs, and Games, JCDCGGG,
2019, pp. 39–40.

54

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[2] Jose Balanza-Martinez, Timothy Gomez, David
Caballero, Austin Luchsinger, Angel A. Cantu,
Rene Reyes, Mauricio Flores, Robert T. Schweller,
and Tim Wylie, Hierarchical shape construction
and complexity for slidable polyominoes under uni-
form external forces, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms,
SODA’20, SIAM, 2020, pp. 2625–2641.

[3] Jose Balanza-Martinez, Austin Luchsinger, David
Caballero, Rene Reyes, Angel A. Cantu, Robert
Schweller, Luis Angel Garcia, and Tim Wylie, Full
tilt: Universal constructors for general shapes with
uniform external forces, Proceedings of the 30th

Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA’19, 2019, pp. 2689–2708.

[4] Aaron T. Becker, Erik D. Demaine, Sándor P.
Fekete, Golnaz Habibi, and James McLurkin,
Reconfiguring massive particle swarms with lim-
ited, global control, Algorithms for Sensor Sys-
tems (Berlin, Heidelberg) (Paola Flocchini, Jie
Gao, Evangelos Kranakis, and Friedhelm Meyer
auf der Heide, eds.), Springer Berlin Heidelberg,
2014, pp. 51–66.

[5] Aaron T. Becker, Golnaz Habibi, Justin Werfel,
Michael Rubenstein, and James McLurkin, Mas-
sive uniform manipulation: Controlling large popu-
lations of simple robots with a common input signal,
2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Nov 2013, pp. 520–527.

[6] David Caballero, Angel A. Cantu, Timothy Gomez,
Austin Luchsinger, Robert Schweller, and Tim
Wylie, Hardness of reconfiguring robot swarms
with uniform external control in limited directions,
ArXiv e-prints (2020), arxiv:2003.13097.

[7] Pinn-Tsong Chiang, Johannes Mielke, Jazmin
Godoy, Jason M. Guerrero, Lawrence B. Alemany,
Carlos J. Villagómez, Alex Saywell, Leonhard Grill,
and James M. Tour, Toward a light-driven motor-
ized nanocar: Synthesis and initial imaging of sin-
gle molecules, ACS Nano 6 (2012), no. 1, 592–597,
PMID: 22129498.

[8] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and
Mikhail Rudoy, Computational complexity of mo-
tion planning of a robot through simple gadgets, 9th
International Conference on Fun with Algorithms,
FUN 2018, June 13-15, 2018, La Maddalena, Italy,
2018, pp. 18:1–18:21.

[9] Ouajdi Felfoul, Mahmood Mohammadi, Louis
Gaboury, and Sylvain Martel, Tumor targeting
by computer controlled guidance of magnetotactic
bacteria acting like autonomous microrobots, 2011

IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sep. 2011, pp. 1304–1308.

[10] Robert A. Hearn and Erik D. Demaine, The non-
deterministic constraint logic model of computa-
tion: Reductions and applications, Proceedings of
the 29th International Colloquium on Automata,
Languages and Programming (London, UK, UK),
ICALP ’02, Springer-Verlag, 2002, pp. 401–413.

[11] Sylvain Martel, Bacterial microsystems and mi-
crorobots, Biomedical Microdevices, vol. 14, 2012,
pp. 1033–1045.

[12] Sylvain Martel, Samira Taherkhani, Maryam
Tabrizian, Mahmood Mohammadi, Dominic
de Lanauze, and Ouajdi Felfoul, Computer 3d
controlled bacterial transports and aggregations of
microbial adhered nano-components, Journal of
Micro-Bio Robotics 9 (2014), no. 1, 23–28.

[13] Yasuhiro Shirai, Andrew J. Osgood, Yuming Zhao,
Kevin F. Kelly, and James M. Tour, Direc-
tional control in thermally driven single-molecule
nanocars, Nano Letters 5 (2005), no. 11, 2330–
2334, PMID: 16277478.

55

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Building Patterned Shapes in Robot Swarms with Uniform Control Signals∗

David Caballero Angel A. Cantu Timothy Gomez Austin Luchsinger Robert Schweller
Tim Wylie

Abstract

This paper investigates a restricted version of robot mo-
tion planning, in which particles on a board uniformly
respond to global signals that cause them to move one
unit distance in a particular direction. We look at the
problem of assembling patterns within this model. We
first derive upper and lower bounds on the worst-case
number of steps needed to reconfigure a general pur-
pose board into a target pattern. We then show that
the construction of k-colored patterns of size-n requires
Ω(n log k) steps in general, and Ω(n log k+

√
k) steps if

the constructed shape must always be placed in a des-
ignated output location. We then design algorithms to
approach these lower bounds: We show how to construct
k-colored 1×n lines in O(n log k+k) steps with unique
output locations. For general colored shapes within a
w×h bounding box, we achieve O(wh log k+hk) steps.

1 Introduction

In this paper we investigate a model of robot motion
planning first proposed by Becker et. al. [7] in which
n robots exist on a 2D grid consisting of “open” and
“blocked” spaces, and are controlled by way of uniform
control signals which tell all robots to move one step
in any one of the four cardinal directions. This model,
which we call the single-step model, has important ap-
plications for the scalable development of microbot and
nanobot swarms due to the simplified method of con-
trol [9,11]. While previous work in this model has inves-
tigated how to build general shapes [7], and the hardness
of relocation related problems [1], here we focus on the
problem of quickly rearranging the robots into a desired
colored pattern (with an arbitrary shape).

In particular, our problem is as follows. Given a color
palette of k distinct colors, as well as a bounding box of
width w and height h, our goal is to design a universal
board configuration (a board with open and blocked
locations, as well as specified locations for a set of robots
each assigned one of the k colors) with the property that
any pattern fitting within a w × h bounding box can
be assembled (the robots can be reconfigured into the
provided pattern) in a near-optimal number of steps.

∗This research was supported in part by National Science
Foundation Grant CCF-1817602.

Our results. We first focus on a special case class of
patterns consisting of 1 × n lines over k colors. We
provide a board that can assemble any 1× n patterned
line over k colors within O(n log k+k) steps, along with
showing a lower-bound of Ω(n log k +

√
k) under the

assumption that the board must always place the output
pattern in the same location. We extend this to general
2D shapes of size n and provide a construction achieving
O(wh log k+hk) steps, which for dense shapes of size n
is comparable to the lower bound of Ω(n log k +

√
k).

Previous Work. The single-step model of this pa-
per was first studied in [7] where it was shown how to
reconfigure n robots into any size n shape within O(n2)
steps given a single blocked location. An additional line
of related research considers global movement signals,
but requires that all pieces move maximally in the input
direction [4]. This line of research has explored build-
ing shapes [2,3,6,8,10], performing computation [5], as
well complexities for reconfiguration and relocation of
particles [2–5]. Additionally, [12] considers the recon-
figuration of rectangular patterns of n colored robots
within O(n2) steps. While closely related to our work,
this work differs from the problem we are considering
in that 1) they consider the maximal-movement of par-
ticles, and 2) we are attempting to build arbitrary pat-
terns, while they are rearranging a given set of pieces
(meaning the number of each color in the pattern is
fixed). We also consider general shaped patterns and
striving for near-optimal construction times, and are not
attempting to reconfigure all pieces on the board.

2 Preliminaries

Board. A board (or workspace) is a rectangular re-
gion of the 2D square lattice in which specific locations
are marked as blocked. Formally, an m × n board is a
partition B = (O,W) of {(x, y)|x ∈ {1, 2, . . . ,m}, y ∈
{1, 2, . . . , n}} where O denotes a set of open locations,
and W denotes a set of blocked locations- referred to as
“concrete.”

Tiles/Robots. A tile/robot is a labeled unit square
centered on a non-blocked point on a given board. For-
mally, a tile is an ordered pair (c, a) where c is a coor-
dinate on the board, and a is a label.

Configurations. A configuration is an arrangement
of tiles on a board such that no tiles occupy the same

56

32nd Canadian Conference on Computational Geometry, 2020

Result Step Complexity Theorem
Lower Upper

Patterned Lines Ω(n log k +
√
k) O(n log k + k) Thms. 3, 4

General Patterns Ω(n log k +
√
k) O(wh log k + hk) Thms. 3, 5

Table 1: Construction Results. The patterned lines result is for 1 × n lines using k colors. The general patterns
result is for k-colored size-n w × h-bounded shapes.

location, or occupy blocked board spaces. Formally, a
configuration C = (B,P) consists of a board B and
a set of tiles P whose coordinates do not overlap each
other, or with blocked locations of board B.

Step. A step is a way to turn one configuration into
another by way of a global signal that moves all tiles in
a configuration one unit in a direction d ∈ {N,E, S,W}
when possible without causing an overlap with a blocked
position, or another tile. Formally, for a configuration
C = (B,P), let P ′ be the maximal subset of P such
that translation of all tiles in P ′ by 1 unit in the direc-
tion d induces no overlap with blocked squares or other
tiles. A step in direction d is performed by executing the
translation of all tiles in P ′ by 1 unit in that direction.

We say that a configuration C can be directly recon-
figured into configuration C ′ (denoted C →1 C

′) if ap-
plying one step in some direction d ∈ {N,E, S,W} to
C results in C ′. We define the relation →∗ to be the
transitive closure of →1 and say that C can be recon-
figured into C ′ if and only if C →∗ C ′, i.e., C may
be reconfigured into C ′ by way of a sequence of step
transformations. A related concept that is the focus of
previous work is the tilt transformation in which a single
direction d tilt consists of the repeated application of a
direction d-step until the configuration is d-terminal. In
this paper, we focus on the step transition, but discuss
connections to work using the tilt transformation.

Step Sequence. A step sequence is a series of steps
which can be inferred from a series of directions D =
〈d1, d2, . . . , dk〉; each di ∈ D implies a step in that direc-
tion. For simplicity, when discussing a step sequence,
we just refer to the series of directions from which that
sequence was derived. Given a starting configuration,
a step sequence corresponds to a sequence of configu-
rations based on the step transformation. An example
step sequence 〈N,E,E〉 and the corresponding sequence
of configurations can be seen in Figure 1a.

Universal Configuration. A configuration C ′ is uni-
versal to a set of configurations C = {C1, C2, . . . , Ck} if
and only if C ′ →∗ Ci, ∀ Ci ∈ C.
Shape/Pattern. We define a shape to be a connected
subset S ⊂ Z2. We define a pattern to be a tuple (S,L),
where S is a shape and L : S → A is a total function
that maps each point to a label in a set of labels A.

Configuration Representation. A configuration
may be interpreted as having constructed a “shape” in

Init 〈N〉 〈E〉 〈E〉
(a) An example step sequence

Strong Regional

(b) Representation Examples

Figure 1: (a) An example step sequence. The initial
board configuration followed by the resulting configura-
tions after an N step, E step, and then final E step. (b)
Configuration Representation Examples. Both of these
configurations are different representations of the shape
“A.” First, we show a strong representation where every
tile in the configuration contributes to the shape. Then
we show a regional representation. The yellow square
represents the output region, and the orange tiles repre-
sent additional polyominoes on the board which do not
count towards shape representation (as they are not in
the output region).

a natural way. A configuration C strongly represents
shape S if the collection of all tile coordinates in C is
exactly the set of points of some translation t(S).

An alternate form of representation allows for a rect-
angular region of the board to be deemed the output
region. Here, we say a configuration regionally repre-
sents a shape S w.r.t. output region T if the collection
of all tile coordinates in T is exactly the set of points of
some translation t(S). Figure 1b illustrates the different
types of representations. In the regional representation,
any tiles outside of the output region are ignored.

We extend this idea of shape representation to include
patterns. A configuration C represents a pattern (S,L)
if C represents S and there exists a translation t, such
that for all tiles (c, a), L(t(c)) = a. The idea of regional
representation of a pattern extends in the same way.

Universal Pattern Builder. Given the concept of
pattern representation, a configuration C ′ is universal
for a set of patterns S if and only if there exists a set of
configurations C such that 1) each S ∈ S is represented

57

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

by a unique C ∈ C and 2) C ′ is universal for C.
We say that C ′ is regionally universal for S w.r.t. out-

put region T if ∀S ∈ S ∃ C ∈ C s.t. C regionally repre-
sents S w.r.t. T . Further, C ′ achieves unique placement
if output region T is exactly the size of the minimum
bounding box which can contain any of the patterns in
S. In this paper we focus on designing regionally uni-
versal configurations for general patterns fitting within
a w × h bounding box.

Worst-Case Step Complexity for Universal Con-
figurations. Given a universal configuration C, the
worst-case step complexity is the maximum number of
steps required to reconfigure C into some element from
its universe set. Consider a universal configuration C
over a set of configurations U . For each u ∈ U , let
d(C, u) denote the length of the smallest step-sequence
from C to u. The worst-case step complexity of C over
U is defined to be max{d(C, u)|u ∈ U}.

3 Fast Universal Constructors: Patterns

We now focus on building shapes with a desired color
pattern. To model this, we specify each robot in the sys-
tem to have a designated color from a given set of k col-
ors. Our goal is then to design configurations that allow
quick reconfiguration of the robots into a specified shape
with a specified color pattern. We start with an analysis
of some lower bounds for any k-color pattern construc-
tors in Section 3.1. We then derive upper bounds for
linear patterns in Section 3.2, general patterns in Sec-
tion 3.3. Accompanying videos for these constructions
can be found at https://asarg.hackresearch.com/

main/CCCG2020-Patterns.

3.1 Lower Bounds on Patterns

Lemma 1 For a given set of n distinct points from the
2D integer lattice, consider the corresponding set of all
size-n colored patterns over those points using at most k
distinct colors. Any universal configuration for such a
set of patterns has worst-case step complexity Ω(n log k).

Proof. There are kn distinct k-color patterns over n
points. Therefore, any universal configuration for this
set of patterns must be universal to a set of kn configura-
tions. The maximum number of distinct configurations
reachable from an initial configuration C ′ within r steps
is upper bounded by

r∑

i=0

(4i) =
4r+1 − 1

3
.

Thus C ′ must satisfy that 4r+1−1
3 ≥ kn, implying that

r = Ω(n log k). �

Lemma 2 Any universal configuration for all k-colored
patterns over a size-n shape with unique placement has
worst-case step complexity Ω(

√
k).

Proof. Consider a unique placement universal con-
structor for all k-colored patterns over some size-n
shape. As this is a unique placement constructor, the
output zone is a fixed region of size exactly the bound-
ing box of the size-n shape. Select an arbitrary point
p = (x, y) within the output region that is covered by
the size-n shape when inscribed within the output re-

gion. Let d = b
√
k
4 − 1c and note that the number of

points within (Manhattan) distance d of (x, y) is strictly
less than k. Therefore, there must be one color c for
which all tiles of color c are at least distance d from
point (x, y). Further, as this system is universal for all
k-colored patterns over the target shape, and the unique
placement restriction enforces the output shape into a
fixed position for each represented pattern, there exists
a pattern in the universe for which the color c must be
placed at position (x, y). The step-sequence to place a
color c tile at location (x, y) requires at least d = Ω(

√
k)

steps, and therefore requires at least Ω(
√
k) steps to fin-

ish this pattern. �

Theorem 3 Any universal configuration for all k-
colored patterns over a shape of size-n has worst-case
run-time at least Ω(n log k). If the configuration sat-
isfies the unique placement requirement, the worst-case
run-time is at least Ω(n log k +

√
k).

Proof. This follows from Lemma 1 and Lemma 2. �

3.2 Fast Linear Patterns

For our first positive result on universal pattern building
we focus on the case of linear 1×n shapes over k colors.
We construct a universal configuration with worst-case
run time of O(n log k+k) (Theorem 4), which is reason-
ably close to the lower bound of Ω(n log k+

√
k) shown

in Theorem 3, and optimal in the case where n ≥ k. The
linear pattern constructor is made up of three sections:
fuel chambers, bit selectors, and holding chambers.

Fuel Chambers. This section of the constructor con-
sists of the fuel chambers, where each are 3 × n open
spaces surrounded by concrete with an opening on the
center right. Morever, each chamber contains a 1 × n
line of robots of one color. Using the opening on the
right side of each chamber we can “chop” off one robot
at a time. By chopping off a robot from each chamber
in parallel, we transmit a column of k differently colored
robots into section 2.

Bit Selectors. The bit selectors are gadgets used to
assign a unique bit-string to each colored robot enter-
ing the section. These bit-strings are created by the
unique combination of two smaller gadgets called the

58

32nd Canadian Conference on Computational Geometry, 2020

1

2

3

k=4

1 2 3 4 n=5

(a) Constructor

1 2 3

(b) Sections

(c) Not Selected

(d) Selected

Figure 2: (a) The linear patterns constructor and (b) the different sections. Section 1 consists of the fuel chambers.
Section 2 consists of bit-selector gadgets. Section 3 consists of tile holding chambers, as well as a concrete floor
where the line will be assembled. (c) Example bit selection where one robot is extracted via execution of its unique
bit-string.

up-select and down-select. Each of these smaller gad-
gets has an open space path from one side to the other
such that each of their paths are the opposite of the
other smaller gadget. The incorrect path causes a robot
to get stuck. This idea is demonstrated in Figure 2d,
where one robot can sucessfully traverse the bit selectors
at the cost of the other robot stopping in the up-select
gadget. Therefore, for all k robots entering this section
from the fuel chamber, we can design a unique combi-
nation of up-select and down-select gadgets such that
traversal of any robot through their respected gadgets
will yield that robot on the other side, while all others
stay within their gadgets. Therefore, bit selectors con-
sisting of log k bits each are needed to yield a unique
bit-string per robot, each of which creates an open space
path from one side to the other of length O(log k).

Holding Chambers. Each individual robot enters
section 3 through the left side at possibly different
heights since each colored robot comes from a different
bit selector. There are nk holding chambers in the
output area of the bit selectors, where each holding
chamber is a 1 × 3 open space surrounded by concrete
tiles, with an open space path from the center left
to right. These chambers hold the robots in place
while another robot is being extracted from the fuel
chambers. After outputting a robot from a bit selector
gadget, we place the robot in the closest holding
chamber to the right. After placing the new robot in a
holding chamber, we address the unselected robots that
were blocked in the bit selectors. The unused robots
are placed back into the fuel chambers by the sequence
〈W 4, N2,WO(log k), S8,WO(log k), N4,W 2, N,EO(log k)〉.
After returning the unselected robots to their fuel cham-
bers, we continue the building process. The sequence
to extract robots and traverse the robot through the
bit selector gadgets also moves all robots in a holding
chamber to the next holding chamber on their right.
After the nth robot has been placed in section 3, we

combine them by extracting them from the holding
chambers and placing them all on the concrete floor.
Then, we push them together using the single concrete
tile on the right of this floor. Figure 3 shows an
example of this sequence.

Theorem 4 For any positive integers n and k, there
exists a regionally universal configuration for all 1×n k-
colored lines with worst-case step complexity O(n log k+
k). Moreover, this configuration obtains unique place-
ment and has board-size O(n+ log k)×O(k).

Proof. Above we describe a configuration C = (B,P)
such that it consists of three sections. The first section
pertains to the fuel chambers, which is used to hold k
1×n lines of robots, one line for each color, in separate
chambers. It follows that a single robot can be extracted
from each of these chambers, resulting in a column of
k robots entering the third section. The third section
consists of the bit-string gadgets, where each receives
one of the k robots. We have shown that the bit-string
gadgets each have a specific unique sequence that takes
the robot from the left side to the right side such that
performing the sequence of one bit-string gadget will
make all robots, save for the one that is within that bit-
string gadget, stuck in one of the compartments in the
bit selectors of the other bit-string gadgets. Therefore,
it is possible to send one robot to the third section in
O(log k) steps. The holding chambers in the third sec-
tion are used to hold the robots in place while the next
robots are being extracted from the former two sections.
Together, these sections can place n robots in the hold-
ing chambers in the third section, after which we can re-
move these robots from the holding chambers and com-
bine them to form a line at the bottom side of the third
section. Placing the robots at the bottom of the third
section takes O(k) steps, while combining them takes
O(n) steps. Therefore, the configuration C = (B, P)
is a universal configuration for all 1× n k-colored lines

59

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

(a) Holding Chambers (b) Extraction (c) Line Building

Figure 3: Line building depicted.

(a) Extraction

(b) Placement

(c) Extraction

Figure 4: Line holders depicted. After each line is built
and extracted from the holding chambers, we place them
in the first row of the line holder. This, in parallel, will
move each line already within the line holder down into
the next row.

with worst-case runtime O(n log k + k). Moreover, this
configuration has board size O(n + log k) × O(k) and
achieves unique placement w.r.t. a 1 × n rectangular
output region located at the bottom-right of the board,
along the concrete floor. �

3.3 General Patterns

We now generalize our line pattern construction to gen-
eral shapes over k colors. For given positive integers n,
h and w we focus on size-n shapes fitting in a h × w
bounding box.

Line Holders. For general shapes, we replace the
south concrete floor of section 3 of the line pattern
builder with the line holder depicted in Figure 4. As
shown, each new line built can be moved into the line

holder. If some lines are inside the line holder already,
those lines will move in parallel to the next chamber
below whenever a new line is added to the line holder.
After all lines have been built, we extract them, yielding
essentially a general w×h pattern, but with a constant
vertical and horizontal gap between tiles. Further, by
adding in an “empty” color chamber, we can include
empty spaces within this pattern, yielding a general pat-
terned shape. Finally, to remove the gaps in the shape,
we apply a funneling operation, described in Section 4.

Theorem 5 For positive integers w and h, each greater
than some constant, and positive integer k, there exists a
regionally universal configuration for any k-colored size-
n shape fitting within a h×w bounding box with worst-
case step complexity O(wh log k + hk) and board size
O(wh+ log k)×O(max(h, k)).

Proof. The k-colored shape constructor is a simple ex-
tension from the 1× n constructor. The main addition
of the line constructor is the line holders at the bottom
of the third section. Each different line we construct
can be held inside one of these different line holders in
order to build another line. After each line is made, we
can move that line into the line holders and at the same
time move any line already in the line holders down
one row. After each line is built, we can extract them
and send them through the funneling gadget in order
to remove the constant amount of space between each
tile. With the inclusion of “empty” tiles, we obtain
general patterned shapes. The details of the funneling
gadget are presented in 4. Therefore, the configuration
C = (B,P) is a universal configuration for all k-colored
size-n shapes fitting within a h× w bounding box with
worst-case step complexity O(wh log k+hk). Moreover,
this configuration has board size O(n+log k)×O(k) and
achieves unique placement w.r.t. a w× h output region
located just above the funneling gadget. �

4 Funneling Gadget

The funneling gadget is designed to take a group of
robots separated by a constant amount of spaces and co-

60

32nd Canadian Conference on Computational Geometry, 2020

(a)

1

2

3

(b) (c) (d)

Figure 5: (a) An example funneling gadget for a 3 × 3
shape. (b) Basic functional sections of the funneling
gadget. (c-d) Repeating the sequence 〈N,E〉 will yield
the shape on the outside of the funneling gadget.

β

2

(a)

α

1

(b)

Figure 6: (a-b) Reducing the horizontal distance be-
tween the rightmost column of robots. (c-d) Reducing
the vertical distance between the topmost row of robots.

alesce them into a desired shape. The architecture and
sections of the funneling gadget are illustrated in Figure
5. Let α and β be constants equaling the largest num-
ber of vertical and horizontal spaces, respectively, that
separates a robot from its neighbor in the shape. The
first section of the funneling gadget reduces β so that
the largest horizontal separation between two robots is
two. Section two takes the group of robots from the
former section and reduces α until it is one. The third
section finally reduces α and β to zero, and outputs the
group of robots as the desired shape outside the funnel-
ing gadget. However, this process skews the shape in
one direction. This effect can be countered if the input
group of robots are instead skewed in the opposite direc-
tion before passing them through the funneling gadget.

Section One. Section one consists of a grid-like or-
ganization of concrete tiles that are themselves spaced
out vertically by α but horizontally by two, as shown in
Figure 6. To reduce β to two, we place the rightmost
column of the group of robots between the two leftmost
columns of concrete tiles (Figure 6a). By stepping in
the 〈E〉 direction enough times, the second-to-rightmost
column of the group of robots will meet the leftmost

O(n)

O(n)

(a) (b) (c)

Figure 7: (a-b) Making the rows of robots adjacent by
using section three.

column of section one, reducing the spaces between the
two columns of robots. After repeating this process for
every column of robots, section one will contain within
itself the group of robots vertically separated by α and
horizontally separated by a distance of two.

Section Two. Section two is a grid-like configuration
of concrete tiles that are vertically separated by one
space and horizontally separated by two spaces. The
same basic process is applied here, but we instead place
the rows of robots in between the rows of concrete tiles
and perform sufficient steps in the 〈N〉 direction, as
shown in Figure 7.

Section Three. By positioning the group of robots in
the third section as depicted in Figure 7a, stepping twice
in the 〈N〉 direction will cause the topmost rows of the
group of tiles to meet. This is repeated for every row by
first stepping in the 〈E〉 direction, followed by two steps
in the 〈N〉 direction. After every row has been made
adjacent, repeating the step sequence 〈N,E〉 will output
the robots from the funneling gadget, bringing together
each column of robots and outputting the desired shape
at the top of the gadget, (Figures 5c, 5d).

5 Future Work

Our work leads into a number of areas for future work.
The first direction is to attempt to close the gaps be-
tween our upper bounds and our lower bounds for linear
and general patterns. For lines, the goal is to close the
Θ(
√
k) gap between our upper and lower bounds, and

with general shapes, we are interested in closing the gap
for sparse shapes existing in large bounding boxes. An-
other direction is to consider how the unique placement
requirement affects the required run-time. Without it,
the Ω(

√
k) lower bound no longer holds. Is it possible to

achieve O(n log k) step complexity by placing different
patterns at different locations? And if so, can this be
done with a polynomial sized board? Finally, another
interesting direction is to focus on pattern reconfigura-
tion, similar to what [12] have looked at within the full
tilt model. How fast can reconfiguration be done in the
single-step model? Can reconfiguration be done quickly
for general patterns and general shapes?

61

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] Jose Balanza-Martinez, David Caballero, An-
gel A. Cantu, Timothy Gomez, Austin Luchsinger,
Robert Schweller, and Tim Wylie, Relocation with
uniform external control in limited directions, The
22nd Japan Conference on Discrete and Computa-
tional Geometry, Graphs, and Games, JCDCGGG,
2019, pp. 39–40.

[2] Jose Balanza-Martinez, Timothy Gomez, David
Caballero, Austin Luchsinger, Angel A. Cantu,
Rene Reyes, Mauricio Flores, Robert T. Schweller,
and Tim Wylie, Hierarchical shape construction
and complexity for slidable polyominoes under uni-
form external forces, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms,
SODA’20, SIAM, 2020, pp. 2625–2641.

[3] Jose Balanza-Martinez, Austin Luchsinger, David
Caballero, Rene Reyes, Angel A. Cantu, Robert
Schweller, Luis Angel Garcia, and Tim Wylie, Full
tilt: Universal constructors for general shapes with
uniform external forces, Proceedings of the 30th

Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA’19, 2019, pp. 2689–2708.

[4] Aaron T. Becker, Erik D. Demaine, Sándor P.
Fekete, Golnaz Habibi, and James McLurkin,
Reconfiguring massive particle swarms with lim-
ited, global control, Algorithms for Sensor Sys-
tems (Berlin, Heidelberg) (Paola Flocchini, Jie
Gao, Evangelos Kranakis, and Friedhelm Meyer
auf der Heide, eds.), Springer Berlin Heidelberg,
2014, pp. 51–66.

[5] Aaron T. Becker, Erik D. Demaine, Sándor P.
Fekete, Jarrett Lonsford, and Rose Morris-Wright,
Particle computation: complexity, algorithms, and
logic, Natural Computing 18 (2019), 6751–6756.

[6] Aaron T. Becker, Sándor P. Fekete, Phillip
Keldenich, Dominik Krupke, Christian Rieck,
Christian Scheffer, and Arne Schmidt, Tilt assem-
bly: Algorithms for micro-factories that build ob-
jects with uniform external forces, 2017.

[7] Aaron T. Becker, Golnaz Habibi, Justin Werfel,
Michael Rubenstein, and James McLurkin, Mas-
sive uniform manipulation: Controlling large popu-
lations of simple robots with a common input signal,
2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Nov 2013, pp. 520–527.

[8] Sheryl Manzoor, Samuel Sheckman, Jarrett Lons-
ford, Hoyeon Kim, Min Jun Kim, and Aaron T.
Becker, Parallel self-assembly of polyominoes un-
der uniform control inputs, IEEE Robotics and Au-
tomation Letters 2 (2017), no. 4, 2040–2047.

[9] Sylvain Martel, Samira Taherkhani, Maryam
Tabrizian, Mahmood Mohammadi, Dominic
de Lanauze, and Ouajdi Felfoul, Computer 3d
controlled bacterial transports and aggregations of
microbial adhered nano-components, Journal of
Micro-Bio Robotics 9 (2014), no. 1, 23–28.

[10] Arne Schmidt, Sheryl Manzoor, Li Huang,
Aaron T. Becker, and Sándor Fekete, Efficient par-
allel self-assembly under uniform control inputs,
IEEE Robotics and Automation Letters (2018), 1–
1.

[11] Yasuhiro Shirai, Andrew J. Osgood, Yuming Zhao,
Kevin F. Kelly, and James M. Tour, Direc-
tional control in thermally driven single-molecule
nanocars, Nano Letters 5 (2005), no. 11, 2330–
2334, PMID: 16277478.

[12] Y. Zhang, X. Chen, H. Qi, and D. Balkcom,
Rearranging agents in a small space using global
controls, 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017,
pp. 3576–3582.

62

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

New Results in Sona Drawing: Hardness and TSP Separation

Man-Kwun Chiu∗ Erik D. Demaine† Yevhenii Diomidov† David Eppstein‡ Robert A. Hearn§

Adam Hesterberg† Matias Korman¶ Irene Parada‖ Mikhail Rudoy∗∗

In memoriam Godfried Toussaint (1944–2019)

Abstract

Given a set of point sites, a sona drawing is a single
closed curve, disjoint from the sites and intersecting
itself only in simple crossings, so that each bounded
region of its complement contains exactly one of the
sites. We prove that it is NP-hard to find a minimum-
length sona drawing for n given points, and that such a
curve can be longer than the TSP tour of the same points
by a factor > 1.5487875. When restricted to tours that
lie on the edges of a square grid, with points in the grid
cells, we prove that it is NP-hard even to decide whether
such a tour exists. These results answer questions posed
at CCCG 2006.

1 Introduction

In April 2005, Godfried Toussaint visited the second
author at MIT, where he proposed a computational
geometric analysis of the “sona” sand drawings of the
Tshokwe people in the West Central Bantu area of Africa.
Godfried encountered sona drawings, in particular the
ethnomathematical work of Ascher [1] and Gerdes [7],
during his research into African rhythms. Together with
his then-student Perouz Taslakian, we came up with a
formal model of sona drawing of a set P of point sites

— a closed curve drawn in the plane such that

1. wherever the curve touches itself, it crosses itself;

2. each crossing involves only two arcs of the curve;

3. exactly one site is in each bounded face formed by
the curve; and

4. no sites lie on the curve or within its outside face.

∗Institut für Informatik, Freie Universität Berlin, Germany,
chiumk@inf.fu-berlin.de. This work was supported in part by
ERC StG 757609.
†CSAIL, Massachusetts Institute of Technology, USA,

{edemaine,diomidov,achester}@mit.edu
‡Computer Science Department, University of California, Irvine,

eppstein@uci.edu. This work was supported in part by the US
National Science Foundation under grant CCF-1616248.
§bob@hearn.to
¶Tufts University, USA, matias.korman@tufts.edu
‖TU Eindhoven, The Netherlands, i.m.de.parada.munoz@tue.nl
∗∗CSAIL, MIT, USA. Now at Google Inc.

Our first paper on sona drawings appeared at
BRIDGES 2006 [5], detailing the related cultural prac-
tices, proving and computing combinatorial results and
drawings, and posing several open problems. In early
2006, we brought these open problems to Godfried’s
Bellairs Winter Workshop on Computational Geometry,
where a much larger group tackled sona drawings, re-
sulting in a CCCG 2006 paper later the same year [4].
Next we highlight some of the key prior results and open
problems as they relate to the results of this paper.

Sona vs. TSP. Every TSP tour can be easily converted
into a sona drawing of roughly the same length: instead
of visiting a site, loop around it, except for one site
that we place slightly interior to the tour [5, Lemma 11].
Conversely, every sona drawing can be converted into a
TSP tour of length at most a factor π+2

π ≈ 1.63661977
larger [4, Theorem 12], settling [5, Open Problem 6]. Is
this constant tight? The best previous lower bound was a
four-site example proving a TSP/sona separation factor

of 2
3 + 2

√
3

9 ≈ 1.05156685 [5, Lemma 12]. In Section 2, we
construct a recursive family of examples proving a much

larger TSP/sona separation factor of 14+8
√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

≈
1.54878753. We also study L1 and L∞ metrics, where
we prove that the worst-case TSP/sona separation factor
is exactly 1.5.

Length minimization. The relation to TSP implies a
constant-factor approximation algorithm for finding the
minimum-length sona drawing on a given set of sites.
But is this problem NP-hard? In Section 3, we prove NP-
hardness for L1, L2, and L∞ metrics, settling [5, Open
Problem 5] and [4, Open Problem 4].

Grid drawings. The last variant we consider is when
the sona drawing is restricted to lie along the edges of a
unit-square grid, while sites are at the centers of cells of
the grid. Not all point sets admit a grid sona drawing;
however, if we scale the sites’ coordinates by a factor of
3, then they always do [4, Proposition 10]. A natural
remaining question [4, Open Problem 3] is which point
sets admit grid sona drawings. In Section 4, we prove
that this question is in fact NP-hard.

63

32nd Canadian Conference on Computational Geometry, 2020

2 Separation from TSP Tour

We first show an example which gives a large TSP/sona
separation factor under the L2 metric in the plane.

Theorem 1 There exists a set of sites for which
the length of the minimum-length TSP tour is
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

≈ 1.54878753 times the length of the

minimum-length sona drawing.

The full proof can be found in Appendix A.

Sketch of Proof. We construct a problem instance
whose minimum-length TSP tour is longer than its
minimum-length sona drawing by a factor within ε of
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

. Our construction is illustrated in Fig-

ure 1 and follows a fractal approach with ε−1 levels (for
simplicity, we assume that ε−1 is an integer).

1. We start by defining a few auxiliary points:

(a) The initial set of auxiliary points A0 is
the intersection between a slightly shifted
integer lattice and the L1 ball B(0, ε−1)
of radius ε−1 centered at the origin.
That is, A0 =

{
(2i+1

2 , 2j+1
2) : i, j ∈ Z

}
∩{

(x, y) : |x|+ |y| ≤ ε−1
}

. In Figure 1a, the
auxiliary points are exactly the intersections
of solid red lines.

(b) Then, in Step i (starting with i = 1), for each
auxiliary point p ∈ Ai−1, we add five points to
Ai: p itself, and four new points at distance(

1
1+
√
2

)2i
from p in each of the four cardinal

directions. Let A = Aε−1 . By construction, we
have |Ai| = 5i|A0| and |A0| = 2ε−2 +O(ε−1).
We note that set A contains auxiliary points
(not sites). These points will not be part of
the instance.

2. We now use the auxiliary points to create some sites
(the isolated black points of Figure 1):

(a) For any i ≥ 1 we define set Pi of sites as follows:
for each auxiliary point q ∈ Ai−1 we add the
four sites whose x and y coordinates each differ

from q by 1
2

(
1

1+
√
2

)2i
. We note that all the

added sites are distinct sites.

(b) We define P0 as the set of integer lattice points
in B(0, ε−1). Equivalently, for each auxiliary
point q ∈ A0 we add the sites whose x and y
coordinates each differ from q by 1

2 , but we do
not add sites that lie outside B(0, ε−1), which
affects O(ε−1) sites (out of Ω(ε−2) sites of P0).

In this case, the sites created by different
auxiliary points may lie in the same spot.

In total, P0 contains only one site per aux-
iliary point of A0 (except for O(ε−1) auxil-
iary points near the boundary). Thus, |Pi| =
4 · |Ai−1| = 4 · 5i−1 · |A0| (for i ≥ 1) and
|P0| = |A0|+O(ε−1) = (2ε−2 +O(ε−1)).

Let P (1) = P0 ∪ P1 ∪ · · · ∪ Pε−1 .

3. Next, we place additional sona sites packing line
segments and/or curves. Whenever we pack any
curve, we place sites spaced at a distance δ small
enough that the length of the shortest path that
passes within δ of all of them is within a factor
(1− ε) of the length of the curve.

(a) Solid lines as drawn in red in Figure 1a: for
each x ∈ {i+ 1

2 : −(ε−1+1) ≤ i ≤ ε−1 and i ∈
Z}, we pack the vertical line segment with
endpoints (x, ε−1+1−|x|) and (x, |x|−ε−1−1),
and analogously with y for the horizontal line
segments.

(b) In Step i of the above recursive definition (start-
ing with i = 1), when we create four new aux-
iliary points of Ai from a point p ∈ Ai−1, we
also pack the boundary of the region within

Euclidean distance 1
2

(
1

1+
√
2

)2i
of the square

whose vertices are the four auxiliary points
of Ai. Note that this boundary region forms a
square with rounded corners as in Figure 1b.
With these extra points we preserve the invari-
ant that the auxiliary points are exactly the
intersections of packed curves.

Let P (2) be the set of sites created in Step 3 in our
construction, and P = P (1) ∪ P (2). This is a complete
description of the construction.

In the full proof we show that the length of the packed
curves is a (1 + ε)-approximation of the total length
of the minimum-length sona drawing of P . Careful
calculations then yield that the length of the minimum-

length sona drawing is (2ε−2 + O(ε−1))
(

2 + 4+π
2
√
2−2

)
.

We then argue that the minimum-length TSP has
an additional length of (2ε−2 + O(ε−1))(2

√
2 + 3).

Thus, the TSP/sona separation factor for the construc-

tion is, ignoring lower-order terms,
2+ 4+π

2
√

2−2
+2
√
2+3

2+ 4+π

2
√

2−2

=

14+π(
√
2+1)+8

√
2

8+4
√
2+π(

√
2+1)

≈ 1.54878753.

We have presented a construction for the L2 metric in
the plane showing that the ratio between the lengths of
the minimum-length TSP and the minimum-length sona
drawing can be strictly greater than 1.5. Our next result
shows that this cannot be the case for the L1 and L∞
metrics in the plane.

64

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

(a) First step of our construction for ε−1 = 2: points of A0

lie in the intersection of solid lines (packed segments). In
the construction, P1 contains thirteen sites (shown as black
dots).

(b) Final construction for ε−1 = 2. Sets P1, P2, and P3 are
shown as black dots of varying sizes. Additional sites of P (2)

pack lines and rounded squares nearby the auxiliary points
of A0, A1, and A2.

Figure 1: Recursive construction of sites requiring ≈ 1.54878753 factor shorter sona tour (drawn in red) compared to
TSP tour (red plus doubled radius of each grey circle). All red lines have black sites sprinkled densely along them.

Theorem 2 For the Manhattan (L1) and the Chebyshev
(L∞) metrics, the minimum-length TSP tour for a set of
sites P has length at most 1.5 times that of the minimum-
length sona drawing for P . Moreover, this bound is tight
for both metrics.

Proof. The proof of the upper bound on the length
of the minimum-length TSP tour follows the lines of
the (unpublished) proof of [4, Theorem 12]. Let P =
{p1, . . . , pn} be a set of n sites, S(P) the minimum-length
sona drawing for P , and TSP(P) the minimum-length
TSP tour for P . The sona drawing S(P) must have n
bounded faces, each containing a site of P . Let fi be
the face of S(P) containing the site pi. In this proof,
for an edge-weighted graph H, |H| denotes the sum of
the weights/lengths of all the edges of H. In particular,
|S(P)| denotes the length of the sona drawing S(P).

For each site pi, let c(pi) be the closest point in S(P)
to pi and ri the distance between pi and c(pi). By the
definition of c(pi), the open disk centered at pi and
with radius ri does not intersect S(P). This implies
that the length of the boundary of fi is at least the
perimeter of a disk with radius ri, that for both the L1

and the L∞ metrics is 8ri. That is, |fi| ≤ 8ri. Moreover,
the sum of the lengths of all the faces is 2|S(P)|, so
|f1| + · · · + |fn| < 2|S(P)| since we do not sum the
length of the unbounded face.

We define a multigraph G whose vertex set is the
union of the set of sites P , the set of vertices of S(P),
and {c(pi) ∈ S : pi ∈ P}. The edge set of G is the
union of the set of edges of S and two parallel edges
{pi, c(pi)} for each pi ∈ P . The weight of each edge is
its length in the drawing. By the observations above,
|G| = |S(P)|+ 2r1 + · · ·+ 2rn ≤ |S(P)|+ |f1|/4 + · · ·+
|fn|/4 < |S(P)|+ |S(P)|/2 = 1.5|S(P)|.

To obtain the desired upper bound on |TSP(P)| it
remains to show that |TSP(P)| ≤ |G|. By construction,
since S(P) is Eulerian, so is G. An Euler tour of G
defines a TSP tour for the vertices of G by skipping
vertices that were already visited (as in the Christofides
1.5-approximation algorithm for TSP on instances where
the distances form a metric space [3]). This TSP tour
has length at most |G| and can be shortcut so that it
only visits the sites of P . By the triangle inequality, the
length of the tour does not increase with these shortcuts.
Thus, we have that |TSP(P)| ≤ |G| < 1.5|S(P)|.

The construction for the matching this bound is similar
to the one in the proof of Theorem 1, but simpler. An
illustration can be found in Figure 1a. For every ε > 0 we
construct a set of sites Pε (the set of TSP vertices/sona
sites) such that |TSP(Pε)| ≥ (1.5− ε)|S(Pε)|.

We fix k = d1/(2ε)e. The set of sites Pε includes
every integer lattice point (x, y) such that |x|+ |y| ≤ k.
Consider drawing Q resulting from the union of the axis-

65

32nd Canadian Conference on Computational Geometry, 2020

aligned unit squares centered at these sites. It is easy
to see, for example by rotating the construction, that
so far we have added (k + 1)2 + k2 sites to Pε and that
the length of Q is 4(k + 1)2. Straightforward compu-

tations show that 4(k+1)2+(k+1)2+k2

4(k+1)2 = 5/4 + k2

4(k+1)2 ≥
5/4 + 1

4(2ε+1)2 = 1.5 − ε + ε2(4ε+3)
(2ε+1)2 > 1.5 − ε. Thus, a

dense-enough packing of sites along Q yields the desired
result. �

We next consider sona drawings on the sphere. By the
definition of sona drawings in the plane, the unbounded
face contains no sites. For the sphere we consider the
following analogue: if there is a face that contains in
its interior a half-sphere then this face contains no sites.
Note that there is at most one such face. The following
theorem shows a tight upper bound on the TSP/sona sep-
aration factor for drawings on the sphere. (We consider
the usual metric inherited from the Euclidean metric
in R3.)

Theorem 3 For drawings on the sphere, the length of
the minimum-length TSP tour for a set of sites P is
at most 2 times the length of the minimum-length sona
drawing for P . Moreover, this bound is tight.

Proof. The proof of the upper bound on the length of
the minimum-length TSP tour again follows the lines of
the (unpublished) proof of [4, Theorem 12]. It only differs
slightly from the first part of the the proof of Theorem 2.
Using the same notation, in this case, the distance ri
between a site pi ∈ P and its closest point c(pi) in S(P)
corresponds to the length of the shortest arc on the great
circle through pi and c(pi). The open disk centered at
pi and with radius ri is an open spherical cap that does
not intersect S(P). Assuming that the sphere has radius
ρ, the boundary of this cap has length 2πρ sin(ri/ρ).
Since the face containing a site cannot contain a half-
sphere in its interior we have that 0 ≤ ri/ρ ≤ π/2.
The function sin(x)/x in the interval 0 ≤ x ≤ π/2 is
decreasing. Thus, ρ/ri sin(ri/ρ) ≥ 2/π sin(π/2) = 2/π.
This implies that 2πρ sin(ri/ρ) ≥ 4ri. Thus, the face
fi of S(P) containing the site pi has length |fi| ≥ 4ri.
Moreover, |f1| + · · · + |fn| ≤ 2|S(P)|. With the same
arguments and defining the same multigraph as in the
proof of Theorem 2 we obtain that |TSP(P)| ≤ 2|S(P)|.

The construction showing that this bound is tight
places two sites on the north and south poles of the
sphere and packs the equator densely with sites. Then
the minimum-length sona drawing goes along the equator
while the minimum-length TSP must reach both poles,
yielding a 2− ε TSP/sona separation factor. �

3 Complexity of Length Minimization

In this section and Appendix B, we prove that finding
a sona drawing of minimum length for given sites is

NP-hard, even when the sites lie on a polynomially sized
grid. The complexity of minimum-length sona drawing
was posed as an open problem in 2006 by Damian et
al. [4, Open Problem 4]. We use a reduction from the
problem of finding a Hamiltonian cycle in a grid graph
(a graph whose n vertices are a subset of the points in
an integer grid, and whose edges are the unit-length line
segments between pairs of vertices), proven NP-complete
by Itai, Papadimitriou, and Szwarcfiter [8].

Let V be the set of n vertices in a hard instance for
Hamiltonian cycle in grid graphs. If V is a yes instance,
its Hamiltonian cycle forms a Euclidean traveling sales-
man tour with length exactly n. If it is a no instance,
the shortest Euclidean traveling salesman tour through
its vertices has length at least 1 for every grid edge, and
length at least

√
2 for at least one edge that is not a

grid edge (as this is the shortest distance between grid
points that are non-adjacent), so its total length is at
least n+

√
2− 1 ≈ n+ 0.414. For the L1 distance, the

increase in length is larger, at least 1. Our reduction
replaces each point of V by two points, close enough
together to make the increase in length from converting
a TSP to a sona drawing negligible with respect to this
gap in tour length.

Theorem 4 It is NP-hard to find a sona drawing for
a given set of sites whose length is less than a given
threshold L, for any of the L1, L2, and L∞ metrics.

4 Complexity of Grid Drawing Existence

While minimizing the length of sona drawings in general
is hard, if we restrict the drawing to lie on a grid, then
even determining the existence of a sona drawing is hard.

Given n sites at the centers of some cells in the unit-
square grid, a grid sona drawing is a sona drawing
whose edges are drawn as polygonal lines along the
orthogonal grid lines (like orthogonal graph drawing).

We show that finding a grid sona drawing for a given
set of sites is NP-hard by a reduction from Planar CNF
SAT [9].

4.1 Construction

In this section we view the grid as a graph, thus by
edge we mean a unit segment of a grid line, and by
vertex we mean a grid vertex — these terms are distinct
from “sona edge” etc. We say that an edge is either on
or off according to as it belongs in the sona drawing.
The subgraph of the grid that is on is the path graph .
Observe that two grid-adjacent sites always require the
edge between them to be on; otherwise both would be
in the same sona face (connected). Also, every vertex
must have even degree in the path graph.

Here we are concerned with internal properties of the
gadgets. Their exteriors are lined with unconnected

66

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A

B
C
D
F

E

Figure 2: Wire
gadget

Figure 3:
Constant gadget

Figure 4: Turn /
Split / Invert
gadget

edges; we will show later how to connect them.

Wire. The wire gadget is shown in Figure 2. One of
edges A and B must be on, otherwise two sites would
be connected. Assume without loss of generality that
A is on. Now, suppose C is off. Then D must be too,
to preserve even vertex degree. Then, B and E must
both be on to prevent sites from being connected, but
this is impossible with C off. Therefore C and D are
on. The same reasoning shows that the entire line A, D,
etc. is on, as well as edges C, F , etc. Then E must be
off to prevent an empty face, and thus the entire line B,
E, etc. is off. The wire thus has two states: the upper
line can be on and the lower off, or vice-versa. We can
extend a wire as long as necessary. An unconnected wire
end serves as a variable.

In Figures 2 through 5, all marked edge states (red for
on, gray for off) are forced by the indicated wire states.
These marks were generated by computer search, but
are easy to verify by local analysis.

Constant. The gadget shown in Figure 3 forces the
attached wire to be in the up state: the edge between
the two left sites must be on, forcing the rest.

Turn / Split / Invert. The gadget shown in Figure 4
is multi-purpose. If we view the left wire as the input,
then the upper and lower outputs represent turned sig-
nals, and the right output represents an inverted signal.
(Unused outputs can be left unattached, thus uncon-
strained.)

Any wire state forces all the others. Given that the
left wire is in the up state, suppose the right wire is also
up. Then the top wire and bottom wire must be in the
same left/right state, otherwise we will have degree-three
vertices in the middle. But this would leave the central
site connected to another site, so the right wire is forced
down. Then, if the (top, bottom) wires are not in the
(left, right) states, again the central site will be connected
to another one. (This figure contains multiple loops, but
these will be eliminated in the final configuration by
adding more edges.)

OR. Figure 5 shows the OR gadget. The upper wire is
interpreted as an output, with the left state representing
true; the other wires are inputs, with true represented
as down on the left wire and up on the right wire. (We
can easily adjust truth representations between gadgets
with inverters.) If either input is true, then the output
may be set true, as shown. If both inputs are false, the
output may be set false. Figure 5e shows that setting
the output to true when both inputs are false is not
possible: all marked edge states are forced by the wire
properties, but two sites are left connected.

4.2 Hardness

Theorem 5 It is NP-hard to find a grid sona drawing
for a given set of sites at the centers of grid cells.

Proof. Given a CNF Boolean formula with a planar
incidence graph, we connect the above gadgets to rep-
resent this graph: unconstrained wire ends represent
variables, and are connected to splitters and inverters to
reach clause constructions. A clause is implemented with
chained OR gadgets, with the final output constrained to
be true with a constant gadget. By the gadget properties
described above, we will be able to consistently choose
wire states if and only if the formula is satisfiable.

We must still show that all edges can be joined to-
gether into a single closed loop, while retaining the sona
properties. Our basic strategy for connecting loose ends
is to border each gadget with “crenellations”, as shown
in Figure 6. This figure also shows how to pass pairs of
path segments across a wire without affecting its internal
properties, which we will use to help form a single loop.

Adding crenellations to the other gadgets is straight-
forward, and we defer explicit figures to Appendix C,
with one exception. (The crenellations do add a parity
constraint when wiring gadgets together; we show in the
appendix how to shift parity.) When we use the gadget
in Figure 4 to turn a wire, it will be useful to use the
crenellated version in Figure 7. With the connections
to other gadgets on the left and top, the right and bot-
tom portions are unconstrained. We can place edges as
shown, so that they leave the gadget identically regard-
less of which state it is in. Then, all paths entering from
the left or the top leave on the bottom or the right as
loose edges, except that in Figure 7a, one path connects
the left to the top. If we connect a right turn to the top
port, this path will also terminate in an unconnected
edge. If every wire contains a left turn and matching
right turn, then every path in the sona graph must end
in two unconnected edges in turn gadgets, because there
are no internal loops in any of the gadgets.

The space occupied by the loose ends of a turn lies
either in an internal face of the wiring graph, or on its
exterior. We route the interior ends to pass-through
pairs as shown in Figure 6, so all unconnected edges

67

32nd Canadian Conference on Computational Geometry, 2020

(a) false + true →
true

(b) true + true →
true

(c) true + false →
true

(d) false + false →
false

(e) Bad state

Figure 5: OR gadget

Figure 6: Wire gadget with crenellations and pass-
through

(a) State 1 (b) State 2

Figure 7: Crenellated turn

wind up on the outer border of the graph. Because
the terminal edges are placed identically in Figures 7a
and 7b, we can plan their routing without knowing the
wire states. As a result, we can place additional sites as
required for the property that a single site lies in each
internal sona face. (We can lengthen the wires as needed
to create additional routing space in the internal faces.)

Now we are in a state where all paths end on the
exterior of the construction. If we join these paths
together without crossing, the number of extra sites
needed in the outer face is just the number of paths. We
place that many sites in a widely spaced grid (spacing
proportional to number of paths) surrounding the inner
construction. Then, we can complete the path greedily
by repeatedly connecting one outer path end to one of
its neighboring path ends, surrounding one of the added
sites. Only one of its two neighboring path ends can
come from the same path, so there’s always another one
to connect to. The wide grid spacing of the outer sites

means there is always room to route the connection. �

Acknowledgments

Thanks to Godfried Toussaint for introducing us (and
computational geometry) to sona drawings. This re-
search was initiated during the Virtual Workshop on
Computational Geometry held March 20–27, 2020, which
would have been the 35th Bellairs Winter Workshop on
Computational Geometry co-organized by E. Demaine
and G. Toussaint if not for other circumstances. We
thank the other participants of that workshop for helpful
discussions and providing an inspiring atmosphere.

References

[1] Marcia Ascher. Mathematics Elsewhere: An
Exploration of Ideas Across Cultures. Princeton
University Press, 2002.

[2] Molly Baird, Sara C. Billey, Erik D. Demaine,
Martin L. Demaine, David Eppstein, Sándor
Fekete, Graham Gordon, Sean Griffin, Joseph S. B.
Mitchell, and Joshua P. Swanson. Existence and
hardness of conveyor belts. Electronic preprint
arXiv:1908.07668, 2019. URL:
https://arXiv.org/abs/1908.07668.

[3] Nicos Christofides. Worst-case analysis of a new
heuristic for the travelling salesman problem.
Technical report, Graduate School of Industrial
Administration, Carnegie Mellon University, 1976.

[4] Mirela Damian, Erik D. Demaine, Martin L.
Demaine, Vida Dujmović, Dania El-Khechen,
Robin Flatland, John Iacono, Stefan Langerman,
Henk Meijer, Suneeta Ramaswami, Diane L.
Souvaine, Perouz Taslakian, and Godfried T.
Toussaint. Curves in the sand: Algorithmic
drawing. In Proceedings of the 18th Annual
Canadian Conference on Computational Geometry
(CCCG 2006), pages 11–14, Kingston, Ontario,
August 2006. URL:
https://cccg.ca/proceedings/2006/cccg4.pdf.

68

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[5] Erik D. Demaine, Martin L. Demaine, Perouz
Taslakian, and Godfried T. Toussaint. Sand
drawings and Gaussian graphs. Journal of
Mathematics and The Arts, 1(2):125–132, June
2007. Originally at BRIDGES 2006.
doi:10.1080/17513470701413451.

[6] Erik D. Demaine, Joseph S. B. Mitchell, and
Joseph O’Rourke. Problem 33: Sum of Square
Roots. In The Open Problems Project. Smith
College, September 19 2017. URL:
https://cs.smith.edu/∼jorourke/TOPP/P33.html.

[7] Paulus Gerdes. The ‘sona’ sand drawing tradition
and possibilities for its educational use. In
Geometry From Africa: Mathematical and
Educational Explorations, pages 156–205. The
Mathematical Association of America, 1999.

[8] Alon Itai, Christos H. Papadimitriou, and
Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing,
11(4):676–686, 1982. doi:10.1137/0211056.

[9] David Lichtenstein. Planar formulae and their uses.
SIAM Journal on Computing, 11(2):329–343, 1982.
URL: https://doi.org/10.1137/0211025,
doi:10.1137/0211025.

[10] Joseph O’Rourke. Advanced problem 6369.
American Mathematical Monthly, 88(10):769, 1981.
doi:10.2307/2321488.

A Separation from TSP Tour under the L2 Metric

Theorem 1 There exists a set of sites for which
the length of the minimum-length TSP tour is
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

≈ 1.54878753 times the length of the

minimum-length sona drawing.

Proof. We construct a problem instance whose
minimum-length TSP tour is longer than its minimum-
length sona drawing by a factor within ε of
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

. Our construction is illustrated in Fig-

ure 1 and follows a fractal approach with ε−1 levels (for
simplicity, we assume that ε−1 is an integer).

1. We start by defining a few auxiliary points:

(a) The initial set of auxiliary points A0 is
the intersection between a slightly shifted
integer lattice and the L1 ball B(0, ε−1)
of radius ε−1 centered at the origin.
That is, A0 =

{
(2i+1

2 , 2j+1
2) : i, j ∈ Z

}
∩{

(x, y) : |x|+ |y| ≤ ε−1
}

. In Figure 1a, the
auxiliary points are exactly the intersections
of solid red lines.

(b) Then, in Step i (starting with i = 1), for each
auxiliary point p ∈ Ai−1, we add five points to
Ai: p itself, and four new points at distance(

1
1+
√
2

)2i
from p in each of the four cardinal

directions. Let A = Aε−1 . By construction, we
have |Ai| = 5i|A0| and |A0| = 2ε−2 +O(ε−1).
We note that set A contains auxiliary points
(not sites). These points will not be part of
the instance.

2. We now use the auxiliary points to create some sites
(the isolated black points of Figure 1):

(a) For any i ≥ 1 we define set Pi of sites as follows:
for each auxiliary point q ∈ Ai−1 we add the
four sites whose x and y coordinates each differ

from q by 1
2

(
1

1+
√
2

)2i
. We note that all the

added sites are distinct sites.

(b) We define P0 as the set of integer lattice points
in B(0, ε−1). Equivalently, for each auxiliary
point q ∈ A0 we add the sites whose x and y
coordinates each differ from q by 1

2 , but we do
not add sites that lie outside B(0, ε−1), which
affects O(ε−1) sites (out of Ω(ε−2) sites of P0).

In this case, the sites created by different
auxiliary points may lie in the same spot.
In total, P0 contains only one site per aux-
iliary point of A0 (except for O(ε−1) auxil-
iary points near the boundary). Thus, |Pi| =
4 · |Ai−1| = 4 · 5i−1 · |A0| (for i ≥ 1) and
|P0| = |A0|+O(ε−1) = (2ε−2 +O(ε−1)).

Let P (1) = P0 ∪ P1 ∪ · · · ∪ Pε−1 .

3. Next, we place additional sona sites packing line
segments and/or curves. Whenever we pack any
curve, we place sites spaced at a distance δ small
enough that the length of the shortest path that
passes within δ of all of them is within a factor
(1− ε) of the length of the curve.

(a) Solid lines as drawn in red in Figure 1a: for
each x ∈ {i+ 1

2 : −(ε−1+1) ≤ i ≤ ε−1 and i ∈
Z}, we pack the vertical line segment with
endpoints (x, ε−1+1−|x|) and (x, |x|−ε−1−1),
and analogously with y for the horizontal line
segments.

(b) In Step i of the above recursive definition (start-
ing with i = 1), when we create four new aux-
iliary points of Ai from a point p ∈ Ai−1, we
also pack the boundary of the region within

Euclidean distance 1
2

(
1

1+
√
2

)2i
of the square

whose vertices are the four auxiliary points
of Ai. Note that this boundary region forms a
square with rounded corners as in Figure 1b.

69

32nd Canadian Conference on Computational Geometry, 2020

With these extra points we preserve the invari-
ant that the auxiliary points are exactly the
intersections of packed curves.

Let P (2) be the set of sites created in Step 3 in our
construction, and P = P (1) ∪ P (2). This is a complete
description of the construction.

We now find the minimum-length sona drawing of P .
Each pair of consecutive points in a packed curve must
be in a separate sona region, so any sona drawing must
pass between them; in particular, any sona drawing must
pass within δ of each of them, and so the length of any
valid sona drawing is at least 1−ε times the length of the
packed curves. Also, there’s a valid sona drawing that’s
at most 1+ε times the length of the packed curves: follow
all the packed curves exactly, adding small loops around
the sona sites of the packed curves as necessary (loops
small enough to lengthen the curve by a factor of at most
1 + ε). The graph of packed curves is Eulerian (because
it’s defined as a union of boundaries of regions, which are
cycles), so the TSP tour can follow an Eulerian circuit
through it. At an intersection of packed curves, we have
two options for the sona drawing (as shown in the inset
images of Figure 1). We can have one sona path cross
over the other in the Eulerian circuit (by including every
site of the packed curve in a small loop). Alternatively,
we can have one sona path cross over the other in two
places p and q at the intersection, and leaving one sona
site of the packed curve out of a small loop to be the
sona site of the extra region between p and q. In either
case, we conclude that there is a valid sona path that
follows an Eulerian circuit of the packed curves within
(1 + ε). Note that, although our description focused in
the sites of P (2), this is a valid sona tour for P since the
sites of P (1) lie in different faces.

The total length of the packed curves is hence a (1+ε)-
approximation of the total length of the minimum-length
sona drawing.

The total length of the packed segments of P (2) (the
square lattice) is 4ε−2 + O(ε−1), since the area of the
region |x|+ |y| < ε−1 and the number of lattice points
in it are each 2ε−2 +O(ε−1).

Now we bound the length of the packed curves
(rounded squares). In Step i of the construction (starting
with i = 1), we added a packed curve that is the bound-

ary of the region within Euclidean distance 1
2

(
1

1+
√
2

)2i

of a square of side length
(

1
1+
√
2

)2i
(with a total length

of (4 + π)
(

1
1+
√
2

)2i
).

Recall that we added one such curve for each of the
points of Ai−1 and that |Ai| = 5i−1(2ε−2 + O(ε−1)).
Thus, the total length of the sona drawings introduced

at Step i is (4 + π)
(

1
1+
√
2

)2i
5i−1(2ε−2 +O(ε−1)).

For ε small, this series is well-approximated

by an infinite geometric series with sum

(2ε−2 + O(ε−1))

(
4+π

(1+
√
2)2·

(
1− 5

(1+
√

2)2

)

)
=

(2ε−2 + O(ε−1))
(

4+π
2
√
2−2

)
, and adding in the length of

the packed segments of P (2) (the square lattice) gives

(2ε−2 +O(ε−1))
(

2 + 4+π
2
√
2−2

)
.

We have approximated the minimum length of a valid
sona drawing; now we approximate the minimum length
of a TSP tour.

Any TSP tour must also come within δ of every point
on every packed curve, which requires a length at least

(2ε−2 +O(ε−1))
(

2 + 4+π
2
√
2−2

)
as above. Also, the TSP

tour must visit each site of P (1). We observe some
properties of this set:

• Set P (1) is defined so that sites are far from each
other. Specifically, the Euclidean ball centered at

any site p ∈ Pi of radius ri = 1
2

(
1

1+
√
2

)2i
does not

contain other sona sites. This means that we must
include at least 2ri in the length of the TSP tour for
each point in Pi, for the part of the tour that passes
from the boundary of this ball to Pi and then back
to the boundary.

• There are 4 · 5i−1(2ε−2 + O(ε−1)) sites in Pi (for
i ≥ 1) and (2ε−2 +O(ε−1)) sites in P0.

When ε tends to zero, the additional length needed
in the TSP tour is

(2ε−2 +O(ε−1))(1 +
∑

i≥1
2ri · 4 · 5i−1)

= (2ε−2 +O(ε−1))(1 +
4

5

∑

i≥1

(
5

3 + 2
√

2

)i
)

= (2ε−2 +O(ε−1))(1 +
4

3 + 2
√

2
· 1

1− 5
3+2
√
2

)

= (2ε−2 +O(ε−1))(1 +
4

2
√

2− 2
)

= (2ε−2 +O(ε−1))(2
√

2 + 3).

So, the total length of the TSP tour is at least

(2ε−2 + O(ε−1))
(

2 + 4+π
2
√
2−2 + 2

√
2 + 3

)
. Hence the

ratio of the length of the TSP tour to the length
of the sona drawing is, ignoring lower-order terms,
2+ 4+π

2
√

2−2
+2
√
2+3

2+ 4+π

2
√

2−2

= 14+π(
√
2+1)+8

√
2

8+4
√
2+π(

√
2+1)

≈ 1.54878753. �

B Complexity of Length Minimization

Theorem 4 It is NP-hard to find a sona drawing for
a given set of sites whose length is less than a given
threshold L, for any of the L1, L2, and L∞ metrics.

70

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 8: Local modifications to convert a grid Hamilto-
nian cycle into a short sona drawing for a set of doubled
sites

Proof. Let V be the set of n vertices in a hard instance
for finding a Hamiltonian cycle in grid graphs. We
may form a hard instance of the minimum-length sona
drawing problem for L1 or L2 distances by replacing
each vertex in V by a pair of sites, one at the original
vertex position and the other at distance less than ε from
it, where ε = Θ(1/n) is chosen to be small enough that
4nε <

√
2 − 1. We set L = n + 2nε. For L∞ distance,

we use a hard instance for L1 distance, rotated by 45◦.
If V is a yes-instance for Hamiltonian cycle, let C be a

Hamiltonian cycle of length n for V . We may form a sona
drawing of length less than L by modifying C within a
neighborhood of each pair of sites so that, for all but
one of these pairs, it makes two loops, one surrounding
each site (Figure 8), and so that for the remaining pair it
makes one loop around one of the two sites and surrounds
the other point by the face formed by C itself. In this
way, each face of the modified curve surrounds a single
site of our instance. Each of these local modifications to
C may be performed using additional length less than
2ε, so the total length of the resulting sona drawing is
less than L.

If V is a no instance for Hamiltonian cycle, let C
be any sona drawing for the resulting instance of the
minimum-length sona drawing problem. Then C must
pass between each pair of sites in the instance, and by
making a local modification of length at most 2ε near
each pair, we can cause it to touch the point in the
pair that belongs to V itself. Thus, we have a curve of
length |C|+ 2nε touching all points of V . Because V is
a no instance, the length of this curve must be at least
n+
√

2− 1, from which it follows that the length of C
is at least n+

√
2− 1− 2nε ≥ L. �

By scaling the sites by a factor of Θ(1/ε) = O(n) we
may obtain a hard instance of the minimum-length sona
drawing problem in which all sites lie in an integer grid
whose bounding box has side length O(n2).

It is possible to represent a minimum-length sona
drawing combinatorially, as a conveyor belt [2] formed
by bitangents and arcs of infinitesimally small disks

centered at each site, and to verify in polynomial time
that a representation of this form is a valid sona drawing.
However, this does not suffice to prove that the decision
version of the minimum-length sona drawing problem
belongs to NP. The reason is that, when the sites have
integer coordinates, the limiting length of a sona drawing,
represented combinatorially in this way, is a sum of
square roots (distances between pairs of given points)
and we do not know the computational complexity of
testing inequalities involving sums of square roots [6,10].
(Euclidean TSP has the same issue.)

C Crenellations for Grid Drawing

Figures 9, 10, and 11 show how to add crenellations to the
Constant gadget, an unconstrained wire end (variable),
and the OR gadget, respectively. The crenellated Split
/ Invert is the same as in Figure 7, extended in the
obvious way for ports that are used. In no case do
the crenellations affect the internal properties described
in the main text; these figures simply show that it is
possible to add the crenellations appropriately.

As mentioned in the main text, the crenellations do
add a parity constraint when connecting gadgets with
wires; we can no longer make wires of arbitrary length,
but must match the crenellations to the gadgets at each
end. In order to do that we need one additional gadget,
an inverting turn, shown in Figure 12. Unlike in Figure 7,
the wire state is switched during the turn. Observe that
in Figure 7, turning does not change crenellation parity,
but the straight-through path, which would invert if
not terminated, does change crenellation parity. The
inverting turn also does not change crenellation parity.
Therefore, to change the crenellation parity of a wire,
we can invert it (straight through), changing the parity,
and add a sequence left inverting turn, right turn, right
turn, left turn to restore the original line of the wire.

71

32nd Canadian Conference on Computational Geometry, 2020

Figure 9: Crenellated Constant gadget

(a) State 1 (b) State 2

Figure 10: Crenellated unconstrained wire end

(a) false + true → true (b) true + true → true

(c) true + false → true (d) false + false → false

Figure 11: Crenellated OR gadget

Figure 12: Crenellated inverting Turn gadget

72

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Minimizing The Maximum Distance Traveled To Form Patterns With
Systems of Mobile Robots

Jared Coleman* Evangelos Kranakis� Oscar Morales-Ponce� Jaroslav Opatrny§ Jorge Urrutia¶

Birgit Vogtenhuber�

Abstract

In the pattern formation problem, robots in a system
must self-coordinate to form a given pattern, regardless
of translation, rotation, uniform-scaling, and/or reflec-
tion. In other words, a valid final configuration of the
system is a formation that is similar to the desired pat-
tern. While there has been no shortage of research in the
pattern formation problem under a variety of assump-
tions, models, and contexts, we consider the additional
constraint that the maximum distance traveled among
all robots in the system is minimum. Existing work
in pattern formation and closely related problems are
typically application-specific or not concerned with op-
timality (but rather feasibility). We show the necessary
conditions any optimal solution must satisfy and present
a solution for systems of three robots. Our work also
led to an interesting result that has applications beyond
pattern formation. Namely, a metric for comparing two
triangles where a distance of 0 indicates the triangles
are similar, and 1 indicates they are fully dissimilar.

1 Introduction

While distributed systems have clear advantages over
centralized ones, their complexity has stunted their
potential in the mobile robotics market. Where dis-
tributed systems are cheap to build, scalable, and fault-
tolerant in theory, they are extremely difficult to prop-
erly design in practice [14]. In this paper, we present
results from a study on pattern formation, a common
problem in distributed robotics. In the pattern forma-
tion problem, a system of mobile robots on the plane

*California State University, Long Beach,
jared.coleman@student.csulb.edu

�Carleton University, School of Computer Science, Ottawa,
Ontario K1S 5B6, Canada, Research supported in part by NSERC
Discovery grant kranakis@scs.carleton.ca

�California State University, Long Beach,
oscar.morales-ponce@csulb.edu

§Concordia University, Department Computer Sci-
ence and Engineering, Montréal QC H3G 1M8 Canada
opatrny@cs.concordia.ca

¶Instituto de Matematicas, UNAM, Mexico City, Mexico
urrutia@matem.unam.mx

�Institute of Software Technology, University of Technology,
Graz, Austria bvogt@ist.tugraz.at

must move to form a given pattern. While this problem
has been studied extensively, we consider the additional
constraint that the maximum distance traveled among
all robots must be minimum. For the purpose of this
paper, we call solutions that satisfy this constraint op-
timal.

The main goal of this study is to develop a theoreti-
cal understanding of the pattern formation problem. In
this study, we make contributions to establishing this
baseline and, in doing so, make many interesting ob-
servations about properties and limitations for patterns
and the systems that form them.

Our Contributions. The goal of this study is
to develop a theoretical understanding of the min-max
traversal pattern formation problem. To do so, we first
explore the necessary conditions that any optimal solu-
tion must satisfy. For example, we prove in Section 4
(Lemma 1) that for any optimal solution, at least three
robots must travel exactly the maximum distance. No-
tice that for systems of three robots, this means all three
robots must move exactly the same distance, regardless
of the pattern they must form. Clearly, the three-robot
case is an important lower bound for the general case
and is therefore the primary focus of this study. In
Section 6, we present an algorithm for computing the
optimal solution for systems of three robots. While not
directly applicable, the three-robot solution has impor-
tant implications on systems of many robots. In Sec-
tion 9, we discuss these implications in further detail.

Our work on systems of three robots also yielded
a surprising, but profound result. In Section 7, we
prove that by modifying the aforementioned algorithm
slightly, we can use it as a metric for measuring the
similarity between two arbitrary triangles. This has po-
tential applications beyond pattern formation for mo-
bile robotic systems, like computational geometry and
computer vision.

Models. In this paper, we are interested in the glob-
ally optimal solution to the pattern formation problem.
Different models, however, may or may not be able to
compute the optimal solution. In this section, we briefly
discuss various models used in related literature and
their implications on the pattern formation problem.

73

32nd Canadian Conference on Computational Geometry, 2020

All models discussed in this paper follow the look, com-
pute, move execution cycle. In the look phase, each
robot observes the position of all other robots in the
system (either globally or relative to their own local co-
ordinate frame). Then, robots compute a solution and
move some distance towards it. We also assume that, in
each cycle, all robots move the same distance δ toward
their destination unless they reach it, in which case they
move some distance less than δ.

In accordance with related literature, we consider
whether robots in the system are globally coordinated,
oblivious, oriented, and/or synchronous. Robots are
globally coordinated if they have access to a global co-
ordinate system, otherwise they are said to be locally
coordinated. Robots are oblivious if they do not have
access to previous states of the system. In oblivious
models, a solution must be computed using only a snap-
shot of the system at a given time. Robots are oriented
if they have a common sense of direction (i.e. North,
South, East, and West), otherwise they are unoriented.
Robots are synchronous if they start each phase of their
look, compute, move cycles at the same time (according
to some global clock). In this paper, we also assume
synchronous robots move at the same speed.

It has been shown that asynchronous and oblivious
robots cannot form any arbitrary pattern (Theorem 3.1
in [15]). It has also been shown that locally coordi-
nated, synchronous robots cannot form any arbitrary
pattern (even sub-optimally) [15], but that locally co-
ordinated, asynchronous robots can as long as they are
oriented [10] due to possible symmetry in the initial con-
figuration of robots. We assume robots are in general
position and therefore do not consider the special case
where robots are symmetric. Note that for any special
case where robots are synchronous with each other, we
can perturbate each robot’s position by some small arbi-
trarily random amount to break symmetry. Table 1 is a
summary of which models can and cannot form patterns
optimally or sub-optimally for systems of three robots.

In this paper, we show that our solution for systems
of three robots is valid under all globally coordinated,
synchronous models and under the locally coordinated,
oblivious, synchronous, and oriented model.

Notation. For any system of n robots, we denote
their initial positions by R = (r0, r1, . . . , rn−1) (robot i
is at position ri). We define a pattern to be a sequence
of distinct points on the plane and use capital letters,
like P and S, to denote them. Lower-case letters and
subscript indices are used to denote the elements of the
sequence. For example, pi is the ith element of P . Sets
of sequences of distinct points on the plane (e.g. sets of
patterns) are denoted in calligraphic font, for example
P and S. Elements of these sets are denoted with their
non-calligraphic equivalent and a superscript index. For

example, Si is the ith element of S and sij is the jth

element of Si.

The number of elements in a sequence P , or its length,
is denoted by |P |. Two sequences P and Q are equiva-
lent, or P = Q, if and only if |P | = |Q| and pi = qi for
0 ≤ i < |P |. We say P and Q are similar, or P ∼ Q
if and only if there exists some translation, rotation,
uniform scaling, and/or reflection of any permutation
of P that is equivalent to Q. P and Q are rigidly sim-
ilar, or P

∗∼ Q if and only if there exists some trans-
lation, rotation, and/or uniform scaling of P , say P ′,
such that P ′ = Q. Observe that P

∗∼ Q⇒ P ∼ Q, but
P ∼ Q 6⇒ P

∗∼ Q.

Let C(p, r) be the circle centered at p with radius r
and D(p, r) be the closed disk with center p and ra-
dius r. Also, let d(u, v) be the Euclidian distance be-
tween points u and v.

Outline. This paper is organized as follows. First,
we formally introduce the problem statement in Sec-
tion 2 and discuss related work in Section 3. Then, we
discuss the necessary conditions any optimal solution
must satisfy in Section 4. In Section 5, we introduce
Replication, a tool we use in Section 6 to show that
our main contribution, an optimal solution for systems
of three robots, is in fact optimal. In Section 7, we
present a metric based on the optimal solution for sys-
tems of three robots. In Section 8, we discuss some
properties of systems of three robots and the patterns
they can form. Finally, Section 9 concludes this study
with a discussion about future work and the significance
of our contributions toward a theoretical understanding
of the pattern formation problem.

2 Problem Statement

Consider a system of n robots with initial positions R =
(r0, r1, ..., rn−1). The trajectory of robot i is defined as
a continuous function fi(t) for all t ≥ 0. A strategy A
defines a trajectory for every robot. Given a pattern
P , we say that the strategy A is valid if there exists a
time t such that the robots’ positions are similar to P .
Otherwise the strategy is invalid. To simplify notation
we say robots that use a valid strategy form P . Let t(A)
be the earliest time at which the robots form P using
strategy A. The distance that each robot traverses is

defined as dAi =
∫ t(A)

0
fAi (t)dt.

In this study we are interested in a strategy that min-
imizes the maximum distance any robot traverses to
form the desired pattern:

Problem 1 (Min-Max Traversal Pattern Formation)
Given a system of n ≥ 3 robots with initial positions R
and a pattern P , determine the minimum d∗ for which
there exists a valid strategy for forming P such that ev-

74

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Globally Oblivious Synchronous Oriented Pattern
Coordinated Formable

Yes - Yes - Optimal Corollary 9,Theorem 7
No No - Valid [15]

No Yes Yes Yes Optimal Corollary 9,Theorem 7
- No Impossible [15]

No Yes - Optimal Corollary 9
No Yes Valid [10]

No Impossible [10]

Table 1: A globally optimal pattern is only formable in the general case under some models. Under some models,
a valid sub-optimal formation can always be formed while under others, valid formations are not formable at all in
the general case. Note that the results reported in this paper are only valid for systems of three robots.

ery robot travels at most distance d∗. Formally:

d∗ = min
∀A∈A

(max
0≤i<n

(dAi))

where A is the set of all valid strategies.

3 Related Work

The pattern formation problem has been studied exten-
sively under a variety of assumptions, models, and con-
texts. Many researchers use the pattern formation prob-
lem to study the algorithmic limitations of autonomous
mobile robots [10, 15]. It has been shown, for exam-
ple, that systems of synchronous robots with initially
symmetric positions cannot form any geometric pattern
[15] but that systems of asynchronous robots with com-
passes (A global sense of North/South and East/West)
can [10]. We mitigate the problems that symmetry in-
troduces to the pattern formation problem by assuming
robots initial positions are random, and the probabil-
ity of exact symmetry approaches zero. Since we are
interested in finding any theoretically optimal solution
for the general case, a feasibility discussion is out of the
scope for this paper and left as future work.

Researchers have proposed solutions for many vari-
ants of the pattern formation problem. For example,
it has been shown that it is possible to form a uni-
form circle (one such that the distance between neigh-
boring robots on the circle is equal) for any system of
robots arbitrarily deployed on the plane [8]. Other vari-
ations of the pattern formation that have been studied
include gathering on a ring [11], point-convergence [4],
and forming a series of patterns in succession [6]. There
has also been work in variations of these problems where
robots have visibility constraints, that is, they can only
see other robots in the system if they are within a given
distance [3, 9, 5]. Various methods and solutions for bio-
inspired pattern formation are reviewed in [13]. When
the destination positions are known, the pattern forma-
tion is reduced to robot-destination matching. There
are many available solutions for these kinds of variants

of the problem that guarantee a variety of different prop-
erties (i.e. no collision, minimum total distance trav-
eled, etc.) [2]. Solutions typically involve a combinato-
rial optimization algorithm for the assignment problem,
like the Hungarian Algorithm [12]. The quantity and
variety of the literature reflects the seemingly unlim-
ited variants and applications of the pattern formation
problem. There is, however, no unifying theory that
ties all these solutions together. In this study, we make
progress toward addressing this shortcoming of the field.

The pattern formation problem has also been stud-
ied from an operations research perspective. A solution
has been proposed that formulates the problem as a
second-order cone program [7] and uses interior-point
methods to solve it. This solution, however, relies on
a prescribed assignment and does not consider reflec-
tion. The authors report a constant runtime, but this is
in the number of iterations of the convex optimization
step, and does not consider the time to create the nec-
essary data structures. Our implementation has a time-
complexity of O(n3) where n is the number of robots in
the system. Some work has been done to incorporate
assignment as well, but current solutions exist only for
minimizing the total distance traveled by all robots (as
opposed to the maximum distance traveled by any robot
in the system) [1]. While these solutions are practical
and useful for many situations, they are not analytical
and do not provide any insight into the properties of
optimal solutions. In this study, we develop a theoreti-
cal understanding of the pattern formation problem and
work toward an analytical solution to the problem.

4 Necessary Conditions

First, we start by characterizing an optimal solution.
In this section we present the necessary conditions that
every optimal solution must satisfy.

Critical Robots. Throughout the paper, we use
critical robots to refer to robots which move the maxi-
mum distance (the solution). In Lemma 1 we show that

75

32nd Canadian Conference on Computational Geometry, 2020

in any optimal solution there are at least three critical
robots.

Lemma 1 Given a system of n robots with initial po-
sitions R = (r0, r1, . . . , rn−1), let d∗ be the optimal so-
lution for forming some pattern. Then at least three
robots traverse exactly distance d∗.

Lemma 1 does not prove the existence of any upper
bound on the number of robots that move distance d∗.

5 Replication

In this section we present Replication as a tool that we
use to derive results presented later in the study. The
replication machine is based on pure geometry and re-
sembles a Pantograph. While replication is naturally
applicable for any pattern with three or more vertices,
we present replication for triangles in this study to sim-
plify notation and proofs.

Definition 1 (Trivial Replication) The Trivial Repli-
cation of a triangle P on a pair of points (u, v) is the
triangle rigidly similar to P whose first two points are
fixed to u and v. Formally:

RTriv(P, u, v) = T
∗∼ P such that t0 = u, and t1 = v.

For any Trivial Replication T = RTriv(P, u, v), we
call u = t0 and v = t1 its anchors. We call the third
point, t2, the Trivial Replication Point. Note that the
Trivial Replication Point is not explicitly fixed to a pre-
scribed point, rather, its position is entirely dependent
on the triangle being replicated and the two anchors.

Definition 2 (Replication Machine) The Replication
Machine of a triangle P on a point and a circle
(u,C(v, r)) is the infinite set of triangles rigidly similar
to P whose first point is fixed to u and whose second
point is on the circle C(v, r). Formally:

RMach(P, u, v, r) = {T ∗∼ P |t0 = u, t1 ∈ C(v, r)}.
or equivalently:

RMach(P, u, v, r) = {RTriv(P, u, v′)|v′ ∈ C(v, r)}.
Observe that RMach(P, u, v, r) is the set of all pat-

terns rigidly similar to P such that, for any T ∈
RMach(P, u, v, r), t0 is fixed to u and t1 is exactly dis-
tance r from v. Observe that each triangle in a Repli-
cation Machine is also a Trivial Replication of the same
triangle. We call the set of Trivial Replication Points of
the Trivial Replications in a Replication Machine Repli-
cation Machine Points.

Definition 3 (Replication Spanner) The Replica-
tion Spanner of a triangle P on a pair of circles
(C(u, r), C(v, r)) is the infinite set of triangles rigidly
similar to P whose first and second points are on the
circles C(u, r) and C(v, r), respectively. Formally:

RSpan(P, u, v, r) = {T ∗∼ P |t0 ∈ C(u, r), t1 ∈ C(v, r)}.

or equivalently:

RSpan(P, u, v, r) =
⋃

u′∈C(u,r)

RMach(P, u′, v, r).

RSpan(P, u, v, r) is the set of all patterns rigidly sim-
ilar to P such that, for any T ∈ RSpan(P, u, v, r), both
t0 and t1 are exactly distance r from p and q, respec-
tively. We call the set of Trivial Replication Points of
the Trivial Replications in a Replication Spanner Repli-
cation Spanner Points.

It is starting to become clear why Replication is a
useful tool for pattern formation. Suppose u and v are
the initial positions of two robots in a system that must
form a triangle P . Then RSpan(P, u, v, r) is the set of
all patterns rigidly similar to T that the robots can
form by each moving distance r. Since we are deal-
ing with a system of three robots (forming triangular
patterns), we know that all three robots are critical
(Lemma 1). Therefore, the optimal pattern (without
considering permutation or reflection) must be one from
RSpan(P, u, v, r) for some value of r.

Lemma 2 Let c be the Trivial Replication Point of a
triangle P on a pair of points (u, v). Then the set Repli-
cation Machine Points of P on (u,C(v, r)) is enclosed

by the circle C
(
c, r d(u,c)

d(u,v)

)
.

Proof. [Proof sketch] First, we show that the Replica-
tion Machine Points form a circle. Consider the Trivial
Replication T = RTriv(P, u, v) (note that t2 = c) and
an arbitrary Trivial Replication M ∈ RMach(P, u, v, r)
(note that m2 is in the Trivial Replication Circle of
RMach(P, u, v, r)). First, observe that since T is rigidly
similar to M , then d(u,m1) = k d(u, v) and d(u,m2) =
k d(u, c) for some k, thus 4um2c is similar to 4um1v
and d(c,m2) must be proportional to r.

In order to simplify the calculation of the cir-
cle’s radius, consider the Trivial Replication M ∈
RMach(P, u, v, r) such that m1 is colinear with the line←→uv . Observe that k d(u, v) = d(u, v) + r and k d(u, c) =
d(u, c) + d(c,m2). Solving the system of equations re-

sults in d(c,m2) = r d(u,c)
d(u,v) . �

We call C
(
c, r d(u,c)

d(u,v)

)
the Replication Machine Circle

of RMach(P, u, v, r).

Lemma 3 If c is the Trivial Replication Point of
a triangle P on a pair of points (u, v). Then

C
(
c, r d(u,c)+d(v,c)

d(u,v)

)
is the smallest circle that en-

closes the Replication Spanner Points of P on
(C(u, r), C(v, r)).

76

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Proof. [Proof sketch] Consider the Trivial Replication
T = RTriv(P, u, v), and the replication machines M =
RMach((p1, p0, p2), v, u, r) and, for some M ∈ M, S =
RMach(P,m0, v, r).

Observe that for any S ∈ S, by the definition of Repli-
cation Spanner, S ∈ RSpan(P, u, v, r). Observe that
the center of the Replication Machine Circle of S is in
the Replication Machine Circle of M. Therefore, c is
the center-of-centers of two Replication Machine Cir-
cles. �

We call C
(
c, r d(u,c)+d(v,c)

d(u,v)

)
the Replication Spanner

Circle of RSpan(P, u, v, r).

6 Three-Robot Solution

In this section, we present the main contribution of this
study: a solution for systems of three robots. First, we
show the optimal solution under rigid similarity, that is,
we do not consider assignment (i.e. robot i with initial
position ri will assume the role of pi in the desired pat-
tern). Note that this is not necessarily the optimal so-
lution. For systems of three robots, there are 3! possible
assignments (permutations) of P that could be optimal.
After presenting the solution for the trivial assignment,
we demonstrate a simple method for choosing the cor-
rect assignment without testing all 3! = 6 possibilities.
Algorithm 1 produces a construction based entirely on
geometric properties.

Algorithm 1 Algorithm for robot i in system with cur-
rent positions R to form pattern P

// Let the perimeter of P be 1
// indices are modulo 3

1: ti ← point such that ∠tiri+1ri−1 = ∠pipi+1pi−1 and
∠ri+1ri−1ti = ∠pi+1pi−1pi

2: r ← d(ri, ti) d(pi+1, pi−1)
3: ri moves r toward ti

Lemma 4 For any system of robots with initial posi-
tions R and any triangular pattern P , the distance r
computed in Algorithm 1 (Line 2) is the same for each
robot.

Recall that for systems of three robots, all robots
travel exactly the same distance. We show in Lemma 4
that Algorithm 1 satisfies this necessary condition.

Theorem 5 For any system of robots with initial posi-
tions R and triangular pattern P with perimeter 1, let
Q be the positions that robots move to after running Al-
gorithm 1. Then Q is a valid solution. In other words,
Q is similar to P .

Algorithm 1 computes a valid solution such that all
robots move the same distance. These conditions are

necessary for any optimal solution, although not suffi-
cient. We show in Theorem 6 that the solution Algo-
rithm 1 produces is optimal.

Theorem 6 For any system of robots with initial posi-
tions R and triangular pattern P , let Q be the positions
that each robot moves to after running Algorithm 1, then
Q is an optimal formation under rigid similarity.

Optimal Pattern Formation by Three
Robots. In order to prove Algorithm 1 is op-
timal, we assumed that robots move directly to their
computed destinations. In Section 1, though, we dis-
cussed models where each robot executes look, compute,
move cycles. In other words, we want to consider
systems in which robots move a small distance ε toward
their target, then re-compute the solution based on the
new system state. In this section, we show that our
solution is valid for models with oblivious robots.

Consider a modification of Algorithm 1, where instead
of moving incrementally toward (rather than directly to)
their destinations by replacing line 3 with:

ri ← moves min(r, ε) toward ti

Theorem 7 Let fi(t) denote the position of robot i at
time t. For any ε > 0, let Qt be the solution computed
at time t. Then, Qt = Qt+1.

Assignment. The geometric construction provides a
solution under rigid similarity only and therefore does
not consider different assignments (permutations) of the
desired pattern. In order to find the globally optimal
solution, the geometric construction must be considered
for all permutations of P . In this section, we present
a simple method for choosing the optimal assignment
without testing all 3! = 6 possibilities.

Theorem 8 Consider a system of robots with initial
positions R = (r0, r1, r2), a pattern P = (p0, p1, p2), and
d(r0, r1) ≤ d(r1, r2) ≤ d(r2, r0). Then P is an optimal
assignment for R if and only if d(p0, p1) ≤ d(p1, p2) ≤
d(p2, p0).

Observe that, for any triangle P , d(p0, p1) ≤
d(p1, p2) ≤ d(p2, p0) if and only if ∠pi−1p0pi+1 ≤
∠p0pi+1pi−1 ≤ ∠pi+1pi−1p0. Theorem 8 indicates that
the optimal formation can be obtained by first sorting
R and P by their angles (or side lengths), and then
running Algorithm 1.

Corollary 9 For a system of robots with initial posi-
tions R = (r0, r1, r2), such that d(r0, r1) ≤ d(r1, r2) ≤
d(r2, r0) and a pattern P = (p0, p1, p2) such that
d(p0, p1) ≤ d(p1, p2) ≤ d(p2, p0) let Q be the positions
that robots move to after running Algorithm 1. Then Q
is an optimal formation.

Proof. Follows from Theorems 6 and 8. �

77

32nd Canadian Conference on Computational Geometry, 2020

7 Triangle Metric

In this section, we introduce a metric for comparing
triangles inspired by the solution for systems of three
robots presented in Section 6. Let d∗(A,B) be the op-
timal distance that robots with initial positions A need
to form B. This distance can also be interpreted as a
distance between the triangles A and B. d∗ is not a
valid metric by itself, though. In particular, since d∗

depends on the position and size of the first argument
only, it is not symmetric, or d∗(A,B) 6= d∗(B,A). In
order to enforce symmetry, our metric should be invari-
ant to translation, rotation, uniform scaling, reflection,
and permutation of both A and B.

Lemma 10 Let α and β the ordered sequences of inte-
rior angles of two triangles. Then τ is a valid metric
for comparing the triangles:

τ2(α, β) =
sin2(α1)

sin2(α2)
+
sin2(β1)

sin2(β2)

− 2
sin(α1) sin(β1)

sin(α2) sin(β2)
cos(α0 − β0)

The τ -distance between two triangles, defined by their
angles, is a measure of similarity between them. Two
triangles, A and B are similar when τ(A,B) = 0. If
τ(A,B) < τ(A,C) this indicates that B is more similar
to A than C is. In other words, a system of robots with
an initial formation of A would need to travel further
to form C than it would move in order to form B.

8 Arising Geometric Properties

In this section, we present some interesting properties of
systems of three robots and the patterns they can form.

Focal Point. One interesting property that emerges
for every system of three robots forming any arbitrary
pattern is that all three of their paths can be character-
ized by a single point on the plane.

Theorem 11 For systems of three robots and any opti-
mal formation, there exists a point that all robots move
either directly toward or directly away from.

For any optimal pattern, we call this single point that
robots move either directly to or from, the focal point.

Constant Center-of-Mass. For systems forming
equilateral triangles, an even stronger property emerges.

Lemma 12 Suppose Q is an optimal formation for a
system of three robots with initial positions R to form
an equilateral triangle. Then, the center of mass of Q
is equivalent to that of R. Furthermore, since robots
move at the same speed, the system’s center of mass is
invariant with respect to time.

9 Conclusion

The main contribution of this study is an optimal so-
lution for systems of three robots. Systems of three
robots are interesting because they have clear applica-
tions to systems of many robots. Recall that, even in
the general case, at least three robots must traverse the
maximum distance, therefore it is a lower bound for the
general case, that is, d is the minimum optimal solution
for all combinations of three robots and triangular sub
patterns of P with a prescribed assignment, or:

d = min
pi,pj ,pk∈P

(max
ri,rj ,rk∈R

(d∗((ri, rj , rk), (pi, pj , pk))))

Finding an upper bound on the solution is an area for
future work. A generalized Replication Machine tool
might prove useful in finding the solution for systems of
n robots.

We are also interested in finding an algorithm for de-
termining the optimal assignment in the general case.
It is clear that some assignments are infeasible. For
example, it makes intuitive sense that a robot’s set of
nearest neighbors in the initial configuration of the sys-
tem should be close to that of final configuration.

Further work is also needed to understand under
which models (see Section 1) our solution (or some vari-
ant of it) is valid for. For example, Algorithm 1 is
only valid for synchronous models, where each robot
starts its cycle at the same time (according to a global
clock). If the robots were asynchronous, they would
compute optimal solutions for different initial configu-
rations, since they would observe the current positions
of robots at different times.

Finally, we plan to explore applications for the trian-
gle metric introduced in Section 7. The metric provides
a nice way to score, classify, or sort triangles based on
their similarity to each other. This has potential ap-
plications in computer vision, computational geometry,
and of course, mobile robotics.

Acknowledgements. This work was initiated at the
18th Routing Workshop which took place in Merida,
Mexico from July 29 to August 02, 2019. Research
supported by PAPIIT grant IN 102117 from Univer-
sidad Nacional Autónoma de México. B.V. was par-
tially supported by the European Union’s Horizon 2020
research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 734922 and by
the Austrian Science Fund within the collaborative
DACH project Arrangements and Drawings as FWF
project I 3340-N35.

78

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] S. Agarwal and S. Akella. Simultaneous optimization
of assignments and goal formations for multiple robots.
In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6708–6715, 2018.

[2] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Sieg-
wart, and P. Beardsley. Multi-robot system for artistic
pattern formation. In 2011 IEEE International Con-
ference on Robotics and Automation, pages 4512–4517,
2011.

[3] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Dis-
tributed memoryless point convergence algorithm for
mobile robots with limited visibility. IEEE Transac-
tions on Robotics and Automation, 15(5):818–828, 1999.

[4] R. Cohen and D. Peleg. Convergence properties of the
gravitational algorithm in asynchronous robot systems.
SIAM Journal on Computing, 34(6):1516–1528, 2005.

[5] R. Cohen and D. Peleg. Local spreading algorithms
for autonomous robot systems. Theoretical Computer
Science, 399(1-2):71–82, 2008.

[6] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. On
the computational power of oblivious robots: forming
a series of geometric patterns. In Proceedings of the
29th ACM SIGACT-SIGOPS symposium on Principles
of distributed computing, pages 267–276, 2010.

[7] J. Derenick and J. Spletzer. Convex optimization
strategies for coordinating large-scale robot formations.
IEEE Transactions on Robotics, 23(6):1252–1259, 2007.

[8] P. Flocchini, G. Prencipe, N. Santoro, and G. Vigli-
etta. Distributed computing by mobile robots: Solving
the uniform circle formation problem. In International
Conference on Principles of Distributed Systems, pages
217–232, 2014.

[9] P. Flocchini, G. Prencipe, N. Santoro, and P. Wid-
mayer. Gathering of asynchronous robots with limited
visibility. Theoretical Computer Science, 337(1-3):147–
168, 2005.

[10] P. Flocchini, G. Prencipe, N. Santoro, and P. Wid-
mayer. Arbitrary pattern formation by asynchronous,
anonymous, oblivious robots. Theoretical Computer
Science, 407(1):412–447, 2008.

[11] R. Klasing, E. Markou, and A. Pelc. Gathering asyn-
chronous oblivious mobile robots in a ring. Theoretical
Computer Science, 390(1):27, 2008.

[12] H. W. Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–
97, 1955.

[13] H. Oh, A. R. Shirazi, C. Sun, and Y. Jin. Bio-inspired
self-organising multi-robot pattern formation. Robotics
and Autonomous Systems, 91:83–100, 2017.

[14] T. Schetter, M. Campbell, and D. Surka. Multiple
agent-based autonomy for satellite constellations. Arti-
ficial Intelligence, 145(1-2):147–180, 2003.

[15] I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: Formation of geometric patterns. SIAM
Journal on Computing, 28(4):1347–1363, 1999.

79

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Path Planning in a Weighted Planar Subdivision
Under the Manhattan Metric

Mansoor Davoodi* � Hosein Enamzadeh* � Ashkan Safari* §

Abstract

In this paper, we consider the problem of path planning
in a weighted polygonal planar subdivision. Each poly-
gon has an associated positive weight which shows the
cost of path per unit distance of movement in that poly-
gon. The goal is finding a minimum cost path under the
Manhattan metric for two given start and destination
points. We propose an O(n2) time and space algorithm
to solve this problem, where n is the total number of
vertices in the subdivision. We also study the case of
rectilinear regions in three dimensions, and generalize
the proposed algorithm to find a minimum cost path
under the Manhattan metric in O(n3 log n) time and
O(n3) space.

1 Introduction

Path planning (PP) problem is one of the fundamen-
tal problems in motion planning whose objective is to
find an optimal path with minimum length between two
start and destination points s and t in a work space.
In the classical version of PP, the work space contains
some obstacles, and the path must avoid these obstacles
[7, 14]. However, in a general formulation of PP – called
Weighted Region Problem (WRP) – which was first in-
troduced by Mitchell and Papadimitriou [17], each ob-
stacle has an associated weight and a path is allowed to
enter them at extra costs. In fact, these weights rep-
resent the cost per unit distance of movement in the
obstacles (or say weighted regions). This generalization
of PP has a lot of applications, e.g., it can be used in
self-driving cars navigation, robot motion planning [6],
military purposes [16], crowd simulation [13], and gam-
ing applications [13]. An important theoretical result
on WRP [9] has shown that this problem cannot be
solved in the algebraic computation model over the ra-
tional numbers under the Euclidean metric. Motivated
by this result, we investigate WRP under the Manhat-
tan metric and show that it can be solved efficiently in
polynomial time.

*Department of Computer Science and Information Technol-
ogy, Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan, Iran

�mdmonfared@iasbs.ac.ir
�hosein.enamzadeh@iasbs.ac.ir
§ashkan.safari@iasbs.ac.ir

Mitchell and Papadimitriou [17] introduced an ε-
optimal algorithm with running time of O(n8L), where
n is the total number of vertices of polygonal regions
and L is the precision of problem’s instance. Precisely,
L = O(log(nNW/εw)), where N is the maximum inte-
ger coordinate of any vertex of the subdivision, W and
w are the maximum non-infinite and minimum non-zero
integer weights assigned to the faces of the subdivision,
and ε > 0 is a user-specified error tolerance. The output
is the shortest path from the starting point s to all ver-
tices of the polygons with an error tolerance ε under the
Euclidean metric. Mata and Mitchell [16] have proposed
an algorithm based on constructing a relatively sparse
graph – called pathnet – that can search for paths that
are close to optimal. They have proved that a path-
net of size O(nk) can be constructed in O(kn3) time.
As a matter of fact, the pathnet limits the paths that
can extend from vertices with k cones at each vertex.
Searching for a path on the constructed pathnet yields
a path whose weighted length is at most (1 + ε) of op-

timal path. Precisely, ε = W/w
kΘmin

, where W/w is the
ratio of the maximum non-infinite weight to the mini-
mum non-zero weight, and θmin is the minimum internal
face angle of the subdivision. One of the common tech-
niques for obtaining approximate shortest paths is to
positioning Steiner points for discretizing the edges of
the triangular regions and then constructing a graph by
connecting them. Finally, by using graph search algo-
rithms such as Dijkstra, an approximate minimum cost
path can be computed [1, 2, 18].

There are several variants of WRP due to the metric
and the shape of weighted regions. Lee et al. [15] have
solved the problem in the presence of isothetic obsta-
cles (the boundary edges of obstacles are either vertical
or horizontal line segments). They have presented two
algorithms for finding the shortest path under the Man-
hattan metric. The first algorithm runs in O(n log2 n)
time and O(n log n) space, and the second one runs in

O(n log3/2 n) time and space. Gewali et al. [10] have
considered a special case of this problem in which there
are only three types of regions: regions with weight of
∞, regions with weight of 0, and regions with weight of
1. They have presented an algorithm in O(m+ n log n)
time, where m ∈ O(n2) is the number of visibility edges.
Furthermore, they have presented an algorithm for the
case that linear feathers are added. Precisely, edges of

80

32nd Canadian Conference on Computational Geometry, 2020

the subdivision are allowed to have arbitrary weights.
Their algorithm for this case takes O(n2) time for con-
structing a graph of size O(n2) for searching the short-
est path. In fact, it takes O(n2 log n) time for finding
the shortest path. Gheibi et al. [11] have discussed the
problem in an arrangement of lines. Due to the fact that
this special case of the problem has unbounded regions,
they have presented a minimal region – called SP-Hull
– to bound the regions. This minimal region contains
the minimum cost path from s to t. They construct
SP-Hull in O(n log n) time, where n is the number of
lines in the arrangement. After constructing SP-Hull,
an approximate minimum cost path can be obtained by
applying the existing approximation algorithms within
bounded regions. Jaklin et al. [13] have analyzed the
problem when the weighted regions are cells of a grid.
They have also presented a new hybrid method – called
vertex-based pruning – which is able to compute paths
that are ε-optimal inside a pruned subset of the scene.

In this paper, we consider a planar subdivision with
arbitrary positive weights. We present an algorithm
which constructs a planar graph in O(n2) time with
O(n2) vertices and edges, where n is the total number of
vertices of the subdivision. The constructed graph con-
tains the minimum cost path between two points s and
t in the plane, where the distances are measured under
the weighted Manhattan metric – the length of a path is
the weighted sum of Manhattan lengths of the sub-paths
within each region. It has been shown that this prob-
lem is unsolvable over the rational numbers when the
distances are measured under the weighted Euclidean
metric [9]. To the best of our knowledge, this is the
first result that presents an exact algorithm for solv-
ing WRP under the Manhattan metric in a case where
the regions are arbitrary simple polygons with positive
weights. We propose an exact algorithm for finding the
minimum cost path under the weighted Manhattan met-
ric in O(n2) time which is also a

√
2−approximation for

the Euclidean metric. Also, we show that the proposed
algorithm can be used for WRP with rectilinear subdivi-
sion in three dimensions in O(n3 log n) time and O(n3)
space.

This paper is organized in five sections. In section 2,
we give some preliminaries and definitions. In section 3,
we present our algorithm for constructing a graph which
contains the minimum cost path in a two dimensional
work space, and prove that the shortest path is within
the constructed graph. In section 4, we generalize the
algorithm for the case of rectilinear regions in three di-
mensions, and in section 5, we draw a conclusion.

2 Preliminaries and Definitions

The problem of weighted region path planning, WRP,
considered in this paper is defined as follows: let S be

s

t

b1

b2

b3

b4

b5

Figure 1: A path from s to t with seven breakpoints.

a subdivision of the plane into polygonal regions with
n vertices, and s, t ∈ S be two start and destination
points in the plane. Each region of S has an associated
positive weight. The weight of an edge e ∈ S (boundary
of regions) is assumed to be min{wr, wr′}, where wr and
wr′ are the weights of regions incident to e. The goal is
to find a minimum cost path between s and t, where the
distances are measured under the weighted Manhattan
metric – the length of a path is the weighted sum of
Manhattan lengths of the sub-paths within each region.

Let πst denote a path between s and t which consists
of some sub-paths between consecutive breakpoints. A
breakpoint is a point on the path in which the path
turns. We also consider s and t as breakpoints (see
Fig. 1). Let ρ1, ρ2, ..., ρk be sub-paths between consec-
utive breakpoints of a path πst in which each ρi, for
i = 1, 2, . . . , k lies completely within one region. If a
part of a path πst does not lie totally in one of the re-
gions, we decompose it to some sub-paths. We denote
d(ρi) as the Manhattan distance between two endpoints
of ρi. The weighted length of a path πst under the Man-
hattan metric, denoted by dw(πst), is defined as:

dw(πst) =
∑k

i=1 d(ρi)× wi,

where wi is the weight of the region in which ρi lies.
A path πst is called a horizontal (resp., vertical) path

if it consists of a horizontal (resp., vertical) sub-path
between only two consecutive breakpoints. Also, we say
two horizontal (resp., vertical) paths are consecutive if
and only if they have the same starting and termination
points. This definition is used in Lemma 1.

The basic idea behind the proposed algorithm is
reducing the problem to a graph searching problem.
Therefore, we provide an algorithm for constructing a
graph that contains the minimum cost path under the
weighted Manhattan metric. The constructed graph is
a planar graph with O(n2) vertices and edges, where n
is the total number of vertices of the subdivision. For
planar graphs with positive edge weights, Henzinger et
al. [12] have given a linear-time algorithm to compute

81

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

single-source shortest paths. By running this algorithm
on the constructed graph, we obtain the minimum cost
path between s and t under the Manhattan metric in
O(n2) time. Since a simple polygon with n vertices can
be triangulated in O(n log n) time and O(n) space [8],
w.l.o.g. we assume all the regions to be triangular re-
gions in all parts of the paper.

3 The Graph Construction Algorithm

3.1 The Algorithm

Let G = (V,E) be a graph. First, we initialize V
= Ø and E = Ø. Let HL(αi) and V L(αi) be hori-
zontal and vertical lines passing through point αi, for
i = 1, 2, . . . ,n. Precisely, αi, for i = 1, 2, . . . ,n are the
vertices of the subdivision which contain s, t, and the
vertices of the triangles. We add s, t, vertices of the tri-
angles, and the intersection points among HL(αi) and
V L(αj), for i, j = 1, 2, . . . ,n to V. We also add the
intersection points among HL(αi) (resp., V L(αi)), for
i = 1, 2, . . . ,n and the edges of the triangles to V. Next,
we add the line segments between two consecutive ver-
tices in V that lie on the considered horizontal lines,
vertical lines or the edges of the triangles as edges of G
to E. For an edge (u, v) ∈ E where lies in a region with
wight wi, let d(u, v) denote the Manhattan distance be-
tween two endpoints of the edge. The weight of the edge
is equal to the product of d(u, v) and wi. Note that each
edge lies completely within one region.

The basic idea of our algorithm is to extend four rays
to the up, down, right and left directions (horizontal
and vertical lines) at every vertex of the subdivision.
This idea has similarity to vertical cell decomposition
(VCD) method [14]. In this method, the free space is
partitioned into a finite collection of one-dimensional
and two-dimensional cells by extending rays upward and
downward through free space. In this method, the rays
are not allowed to enter obstacles, however, in our al-
gorithm the rays are extended to all parts of the sub-
division since the paths are allowed to enter weighted
regions at extra costs. Also, we extend rays to the four
directions at every vertex, however, in the VCD method
the rays are extended only upward and downward. In
both methods, the motion planning problem is reduced
to a graph search problem. In VCD method, a roadmap
is constructed by selecting sample points from the cell
centroids, however, in our algorithm the graph is con-
structed by intersecting the rays with each other and
also by the edges of the triangles.

Some of the edges of G which lie on an edge of a
triangle are oblique. These edges are useful when two
triangular regions are close to each other and the region
among them has a lower weight than these triangles. A
path which passes between these two triangles cannot
be completely horizontal or vertical since it will enter

s

t

Figure 2: The constructed graph of Fig. 1.

the triangles. So it will be oblique and lie on one of the
edges of the triangles (see the sub-path between b4 and
b5 on Fig. 1).

According to the construction of the graph, some ver-
tices and edges are added to the graph by vertical and
horizontal lines passing through vertices of the subdivi-
sion. We call the part of the work space which lies be-
tween two consecutive horizontal (resp., vertical) lines,
a horizontal lane (resp., vertical lane) denoted by LH
(resp., LV). So each LH (resp., LV) is surrounded by
two consecutive horizontal (resp., vertical) lines. There-
fore, when we say the lines of an LH (resp., an LV), we
mean these consecutive lines.

For constructing the graph, we can use one of the line
segments intersections algorithms [3, 5] which computes
all k intersections among n line segments in the plane
in O(n log n + k) time. These intersection points are
vertices of G. After specifying the set of vertices of G,
the set of edges of G can be specified. It takes O(n2)
time to construct G since the graph has O(n2) vertices
and edges. The constructed graph of the work space
on Fig. 1 is shown on Fig. 2. For simplicity, we do
not triangulate the white regions with weight 1 in these
figures. Precisely, we can apply the proposed algorithm
in a polygonal subdivision in which the regions are not
triangular. The triangulation of the regions just helps
us for showing that G contains the minimum cost path
between s and t.

For computing the minimum cost path under the
Manhattan metric between s and t, we can apply Di-
jkstra’s algorithm to G. In this case, the minimum cost
path is obtained in O(n2 log n) time. However, since
G is a planar graph with positive edge weights, we can
apply the algorithm presented by Henzinger et al. [12],
which is a linear-time algorithm, to G. Therefore, the
minimum cost path is obtained in O(n2) time.

3.2 Correctness Proof

Now, we show that the constructed graph contains the
minimum cost path between s and t under the Manhat-

82

32nd Canadian Conference on Computational Geometry, 2020

tan metric. Since our metric for measuring the distance
is Manhattan, we can convert any path between s and t
to a path which consists of vertical and horizontal line
segments. In other words, when a sub-path between
two consecutive breakpoints is oblique, we can replace
it by two horizontal and vertical line segments where
the cost of movement on these horizontal and vertical
line segments is equal to the cost of movement along
the oblique line segment. In a case where a sub-path
lies between two close triangular regions and the region
between these two triangular regions has lower weight
than these triangles, by applying this conversion, some
parts of the horizontal and vertical line segments may
lie in the triangular region with higher weight. In this
case, we can replace the part which lies in a triangular
region with higher cost with a line segment which lies
on an edge of the triangles (see the sub-path between
b4 and b5 on Fig. 1). Since the weight of each of the
edges of the work space is equal to the minimum weight
of the regions that are incident to that edge, the cost
of movement between two breakpoints on the replaced
line segments is equal to the cost of movement along the
oblique line segment. Therefore, a path between s and
t can only consist of horizontal, vertical, and oblique
line segments, the latter of which are located on the
edges of the triangles. As a result, all the paths that we
consider in the following lemmas consist of the above
mentioned line segments. Our first objective is to prove
the following lemma.

Lemma 1 Let π1, π2, and π3 be three consecutive hor-
izontal (or vertical) sub-paths from s′ to t′ which lie
inside an LH (resp., an LV) and pass through k > 0
triangular regions. If dw(π2) < dw(π1), then dw(π3) <
dw(π2).

Proof. We consider the case k = 2, the proof is similar
for any k > 0. For simple comparison among the sub-
paths, let the points s′ and t′ lie on the same horizontal
line segment. Assume w.l.o.g. that both triangles have
vertical edges (see Fig. 3). The weighted lengths of π1,
π2 and π3 are defined as follows (refer to Fig. 3 for the
notations):

dw(π1) = (w1 × a1) + (w2 × a2) + z2 + x2 + L,

dw(π2) = (2× h) + x1 + (w1 × b1) + (w2 × b2) + x2 +L,

dw(π3) = (2× h) + x1 + (2× h′) + z1 + (w1 × c1)
+ (w2 × c2) + L.

According to Fig. 3, a1 = b1 +x1 and a2 = b2− z2. Due
to the assumption that dw(π2) < dw(π1), we have the
following inequality:

(2× h) < x1 × (w1 − 1) + z2 × (1− w2),

and due to the triangle similarity theorems we have the
following equations:

π3

π2

π1

h

h
′

x1

z1 c1

b1

a1

L

t
′′

t
′z2

x2

s
′

s
′′

w1

c2

b2

a2

w2

HL(αi)

HL(αj)

Figure 3: Three consecutive horizontal sub-paths from
s′ to t′ through two triangular regions.

x1

h
=
z1

h′
,
z2

h
=
x2

h′
.

By applying the triangle similarity equations in the
mentioned inequality and adding (w1 × c1) + (w2 × b2)
to both sides of the inequality we get:

(2× h′) + z1 + (w1 × c1) + (w2 × c2) <
(w1 × b1) + (w2 × b2) + x2 =⇒ dw(π3) < dw(π2).

Thus, the weighted length of π3 is less than π2. In fact,
the proof is based on the following equation:

h

h′
=
x1

z1
=
z2

x2
,

and since h
h′ is constant, we can generalize the proof for

any k > 0 triangular regions between s′ and t′. There-
fore, the lemma holds. �

Note that inside an LH (resp., an LV), we can con-
sider all the triangles to have vertical (resp., horizontal)
edges since vertical (resp., horizontal) lines are consid-
ered passing through vertices of the subdivision. The
result of this lemma helps us to show that there exists
a shortest path between s and t under the Manhattan
metric such that all the horizontal (resp., vertical) sub-
paths between consecutive breakpoints in LHs (resp.,
LVs) lie on the lines of the LHs (resp., LVs). We call
such a path, a perfect shortest path between s and t,
denoted by πp

st. Note that according to the principle
of optimality, since πp

st is optimal in length, all of its
sub-paths in LHs and LVs are also optimal in length.

Lemma 2 There exists a shortest path between s and
t under the Manhattan metric such that, for any sub-
path of the shortest path in an LH (resp., an LV), all
the horizontal (resp., vertical) sub-paths between consec-
utive breakpoints lie on the lines of the LH (resp., LV).

83

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

According to Lemma 2, a path between the entrance
(s′) and exit point (t′) of an LH (resp., an LV) is not
optimal in length, unless there exists an optimal path
in length such that all the horizontal (resp., vertical)
sub-paths between consecutive breakpoints lie on the
lines of the LH (resp., LV). Precisely, there is always
a path πp

s′t′ in an LH (resp., an LV). According to the
construction of the graph, lines of an LH (resp., an LV)
are edges of G and a horizontal (resp., vertical) sub-path
of a path πp

s′t′ between two consecutive breakpoints in
an LH (resp., an LV) lies on the edges of G.

Corollary 3 For any path πp
s′t′ in an LH (resp., an

LV), the sub-paths between consecutive breakpoints can-
not be simultaneously horizontal (resp., vertical) and lie
between two lines of the LH (resp., LV).

Lemma 4 A breakpoint of a path πp
s′t′ in an LH (resp.,

an LV) is located on a line of an LH or an LV or possibly
both.

Proof. We assume that b is a breakpoint in an LH
which is not located on a line of the LH or a LV. Ac-
cording to Corollary 3, the line segment that is incident
to b cannot be horizontal. Therefore, one of the line
segments is vertical and the other one is located on an
edge of a triangle. Since b is also located in an LV and
is not located on one of the lines of the LV, the vertical
line segment incident to b lies between the left and right
lines of the LV, which contradicts Corollary 3. Thus, the
lemma holds. �

Lemma 4 shows that the breakpoints of the perfect
shortest paths in LHs (resp., LVs) must lie on the lines
of the LHs and LVs, meaning that they lie on the edges
of G (since the lines of LHs and LVs are edges of G). The
next step is to show that these breakpoints are located
on the vertices of G.

Lemma 5 For a path πp
s′t′ in an LH (resp., an LV),

the breakpoints of the path are located on the vertices of
G.

Proof. According to Lemma 4, a breakpoint of a path
πp
s′t′ in an LH (resp., an LV) is located on a line of

an LH or an LV or possibly both. If a breakpoint is
located on both a line of an LV and a line of an LH, it
is on the intersection point of these two lines. Thus, it
is on a vertex of G. If it is only located on a line of an
LH or an LV, and one of the incident line segments lies
on a triangle edge, then the breakpoint is located on a
vertex of G (since the intersection of an LH or LV line
with a triangle edge is a vertex of G). Therefore, the
breakpoints of a path πp

s′t′ are on the vertices of G. �

Lemma 5 shows that the breakpoints of a path πp
s′t′

in an LH (resp., an LV) are located on the vertices of

G. The next step is to show that a path πp
s′t′ under the

Manhattan metric in an LH (resp., an LV) is on G. To
this end, we need to show that the edges of the path
πp
s′t′ are on the edges of G.

Lemma 6 A path πp
s′t′ in an LH (resp., an LV) is on

G.

Proof. According to Lemma 5, the breakpoints of a
path πp

s′t′ in an LH (resp., an LV) are on the vertices
of G. Let e be an edge between two consecutive break-
points. If e is on an edge of a triangle, it is on G. Now
we assume that e is in an LH and is not on G. Accord-
ing to Corollary 3, e cannot be horizontal since it must
lie on one of the lines of the LH and the lines of LH s
are edges of G. Therefore, it is a vertical edge. Since it
is also located in an LV and is not on G, it is not on
a line of the LV. Therefore, it contradicts Corollary 3.
Thus, e is on G. �

According to Lemma 6, perfect shortest paths in LHs
and LVs which are sub-paths of a path πp

st are on the
constructed graph. Note that in all the lemmas, a path
between s and t only consists of horizontal, vertical, and
oblique line segments, the latter of which are located
on the edges of the triangles. In the continuous work
space, an arbitrary path between s and t consists of line
segments which are not in the form of the mentioned line
segments. Finally, we prove that there exists a shortest
path between s and t on G.

Theorem 7 For a shortest path π1 under the weighted
Manhattan metric in the continuous work space from s
to t, there exists a path π2 from s to t on G such that
dw(π2) ≤ dw(π1).

Proof. It is obvious that when the metric for measuring
the distance is Manhattan, any arbitrary path in the
continuous work space, can be converted to a path which
consists of the three mentioned line segments without
increment in the cost of the path. Thus, we convert π1

to π′
1 such that the line segments in π′

1 are in the form
of the mentioned line segments. Obviously, dw(π′

1) =
dw(π1). According to the principle of optimality, each
sub-path of an optimal path in length is also optimal.
Therefore, π′

1 consists of optimal sub-paths in length in
LHs and LVs. According to Lemma 2, for any shortest
path in an LH (resp., an LV), there exists a path πp

s′t′

and due to the Lemma 6, perfect shortest paths in LHs
and LVs are on G. Thus, π′

1 can be converted to a
perfect shortest path (π2) without increment in the cost
of the path. Therefore, a path from s to t on G exists
(π2) whose weighted length is not greater than π1. �

According to Theorem 7, G contains a shortest path
from s to t under the weighted Manhattan metric. Since
simple polygons can be triangulated in O(n log n) time

84

32nd Canadian Conference on Computational Geometry, 2020

and O(n) space [8], work spaces with simple polygonal
regions can be discretized by using the mentioned graph
construction algorithm. Thus, the proposed algorithm
solves WRP under the Manhattan metric.

Theorem 8 The weighted region problem in a planar
polygonal subdivision with positive weights under the
Manhattan metric can be solved in O(n2) time and
space, where n is the total number of vertices of the
subdivision.

By using the triangular inequality, it is easy to see
that the length of a path under the Manhattan metric
is at most

√
2 times of the length of the path under the

Euclidean metric. Thus, the proposed algorithm is also
a
√

2-approximation algorithm for solving WRP under
the Euclidean metric.

4 The Three-Dimensional Case

In this section, we consider WRP in three dimensions.
It has been shown that the problem of finding a shortest
path under any LP metric in a three-dimensional poly-
hedral environment is NP-hard [4]. Here, we consider a
specific variation where the regions are rectilinear.

Since the metric for measuring the distance is Man-
hattan, any oblique path between two consecutive
breakpoints in three-dimensional space can be converted
to three parallel line segments to x, y and z axes with-
out increment in the cost of the path. Thus, we consider
all the paths to be rectilinear.

Let n be the total number of vertices of the subdivi-
sion and let (xi, yi, zi), for i = 1, 2, . . . ,n be the coor-
dinates of the vertices of the regions (and of s and t).
Let P be the set of planes x = xi, y = yi, z = zi, for
i = 1, 2, . . . ,n. The set of vertices of the graph consists
of the intersection points among at least three planes in
P, and the set of edges of the graph consists of the line
segments between two consecutive vertices of the graph
which lie on the intersection lines between at least two
planes in P. The constructed graph has O(n3) vertices
and edges, and by applying Dijkstra’s algorithm to it,
the minimum cost path under the Manhattan metric
can be obtained in O(n3 log n) time.

Similar to the definitions of LH and LV in the pla-
nar case, we define similar notations for the three-
dimensional case. Let XY C denote a part of the
work space which is surrounded by two consecutive
planes orthogonal to the x-axis and two consecutive
planes orthogonal to the y-axis in P which is called an
XY − container. Precisely, an XY C is not surrounded
along the z-axis. XZC and Y ZC notations are defined
similarly. Since all the paths are considered to be recti-
linear, for any path in an XY C, there exists an equiva-
lent path in length such that all the sub-paths between
consecutive breakpoints along the z-axis are located on

the planes surrounding XY C. Precisely, according to
the graph construction algorithm, each XY C consists
of some cuboids where the cost of movement in every
part of a cuboid is equal. Therefore, the sub-paths along
the z-axis in a cuboid have the same cost when they are
located either on the planes surrounding XY C or in-
side the cuboid. Similar results hold for an XZC and
a Y ZC. Thus, an equivalent path in length between s
and t exists where all the sub-paths between consecu-
tive breakpoints are located on the considered planes in
P. Arguments similar to the ones used in Theorem 7
show that the constructed graph contains the minimum
cost path between s and t under the Manhattan metric.

Theorem 9 The weighted region problem in a three-
dimensional work space among rectilinear regions with
positive weights under the Manhattan metric can be
solved in O(n3 log n) time and O(n3) space, where n is
the total number of vertices of the subdivision.

5 Conclusion

In this paper, we have considered a generalization of
path planning problem – called weighted region prob-
lem (WRP). While unsolvability of WRP over the ra-
tional numbers under the Euclidean metric has been
proved [9], we proposed an algorithm for solving WRP
under the Manhattan metric which is also a

√
2-

approximation solution for the Euclidean case. We also
considered the case of rectilinear regions in three dimen-
sions, and generalized our algorithm for it. Improving
the time complexity of the algorithm and providing a
better approximation factor for the Euclidean metric
remain open.

References

[1] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-
R. Sack. An ε—approximation algorithm for weighted
shortest paths on polyhedral surfaces. In Scandinavian
Workshop on Algorithm Theory, pages 11–22. Springer,
1998.

[2] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Deter-
mining approximate shortest paths on weighted polyhe-
dral surfaces. Journal of the ACM (JACM), 52(1):25–
53, 2005.

[3] I. J. Balaban. An optimal algorithm for finding seg-
ments intersections. In Proceedings of the eleventh
annual symposium on Computational geometry, pages
211–219, 1995.

[4] J. Canny and J. Reif. New lower bound techniques
for robot motion planning problems. In 28th Annual
Symposium on Foundations of Computer Science (sfcs
1987), pages 49–60. IEEE, 1987.

[5] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. Journal of
the ACM (JACM), 39(1):1–54, 1992.

85

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[6] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami.
An adaptive action model for legged navigation plan-
ning. In 2007 7th IEEE-RAS International Conference
on Humanoid Robots, pages 196–202. IEEE, 2007.

[7] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor,
W. Burgard, L. E. Kavraki, and S. Thrun. Principles of
robot motion: theory, algorithms, and implementation.
MIT press, 2005.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. C.
Schwarzkopf. Polygon triangulation. In Computational
Geometry, pages 45–61. Springer, 2000.

[9] J.-L. De Carufel, C. Grimm, A. Maheshwari, M. Owen,
and M. Smid. A note on the unsolvability of the
weighted region shortest path problem. Computational
Geometry, 47(7):724–727, 2014.

[10] L. P. Gewali, A. C. Meng, J. S. Mitchell, and S. Ntafos.
Path planning in 0/1/∞ weighted regions with appli-
cations. ORSA Journal on Computing, 2(3):253–272,
1990.

[11] A. Gheibi, A. Maheshwari, and J.-R. Sack. Weighted
region problem in arrangement of lines. In CCCG, 2013.

[12] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian.
Faster shortest-path algorithms for planar graphs. jour-
nal of computer and system sciences, 55(1):3–23, 1997.

[13] N. Jaklin, M. Tibboel, and R. Geraerts. Computing
high-quality paths in weighted regions. In Proceedings
of the Seventh International Conference on Motion in
Games, pages 77–86, 2014.

[14] S. M. LaValle. Planning algorithms. Cambridge univer-
sity press, 2006.

[15] D. Lee, C.-D. Yang, and T. Chen. Shortest rectilinear
paths among weighted obstacle. International Journal
of Computational Geometry & Applications, 1(02):109–
124, 1991.

[16] C. S. Mata and J. S. Mitchell. A new algorithm for com-
puting shortest paths in weighted planar subdivisions.
In Proceedings of the thirteenth annual symposium on
Computational geometry, pages 264–273, 1997.

[17] J. S. Mitchell and C. H. Papadimitriou. The weighted
region problem: finding shortest paths through a
weighted planar subdivision. Journal of the ACM
(JACM), 38(1):18–73, 1991.

[18] Z. Sun and J. H. Reif. On finding approximate opti-
mal paths in weighted regions. Journal of Algorithms,
58(1):1–32, 2006.

Appendix

Proof of Lemma 2

Lemma 2 There exists a shortest path between s and t un-
der the Manhattan metric such that, for any sub-path of the
shortest path in an LH (resp., an LV), all the horizontal
(resp., vertical) sub-paths between consecutive breakpoints lie
on the lines of the LH (resp., LV).

e

c

a

f1 fk

π3

π2

π1 b

d

f

HL(αi)

HL(αj)

Figure 4: Three horizontal paths passing through k tri-
angular regions.

Proof. Suppose the lemma for the case of a horizontal lane.
Similarly, the lemma holds for a vertical lane. We consider
s′ as the entrance point to the LH and t′ as the exit point.
W.l.o.g. we consider that s′ is on the left side of t′. Due to
the assumption that the path between s and t is optimal in
length, any sub-path of this path is also optimal in length.
Thus, the path between s′ and t′ is optimal in length. We
consider a path between s′ and t′ where a horizontal sub-
path between two consecutive breakpoints does not lie on
the lines of the LH. We show that there exists an equivalent
path in length between s′ and t′ such that all the horizontal
sub-paths between consecutive breakpoints lie on the lines of
the LH. We assume c and d as two consecutive breakpoints
such that the horizontal sub-path between them does not lie
on the lines of the LH (see Fig. 4). There are k triangular
regions between c and d and the sub-path between these two
breakpoints must pass all k triangular regions (w.l.o.g. as-
sume c and d are located on the edges of the triangles). We
also assume that the path between s′ and t′ contains other
two breakpoints – we call them a and b – which are on the
lower line of the LH (these two breakpoints are also located
on the edges of the triangles). For passing these triangles, a
path can directly go from a to b. Since the path between s′

and t′ is optimal in length, the path which contains c and d
(π2) has less than or equal length to the case in which it goes
directly from a to b (π1). If dw(π1) = dw(π2), an equivalent
path in length which does not contain the horizontal path
between c and d exists. If dw(π1) < dw(π2), it contradicts
our assumption that the path between s and t is optimal
in length. For the other case where dw(π2) < dw(π1), we
consider another path which goes from a to e (a breakpoint
on the upper line of the LH and on the edge of the left
most triangle) and then from e to f (a breakpoint on the
upper line of the LH and on the edge of the right most tri-
angle) and then to b (π3). According to Lemma 1, since
dw(π2) < dw(π1), therefore, dw(π3) < dw(π2) and this con-
tradicts our assumption that the path between s and t is
optimal in length. Thus, the lemma holds. �

86

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Scheduling Three Trains is NP-Complete

Christian Scheffer∗

Abstract

We consider the Train Scheduling Problem which
can be described as follows: Given m trains via their
tracks, i.e., curves in the plane, and the trains’ lengths,
we want to compute a schedule that moves collision-free
and with limited speed the trains along their tracks such
that the maximal travel time is minimized. We prove
that the Train Scheduling Problem is NP-complete
already for three trains.

Furthermore, we extend our NP-completeness con-
struction to the Aircraft Scheduling Problem
which means from the case of three trains, i.e., sub-
curves, to the case of three aircrafts, i.e., disks or squares
moving on curves.

1 Introduction

In this paper, we consider a parallel motion planning
problem, the Train Scheduling Problem which is
naturally motivated from practice and defined as fol-
lows: Consider k given trains each one defined as a pair
which is made up of a curve in the plane, called the track
of the train and a value, called the length of the train.
We want to compute a schedule moving collision-free
and with bounded velocity all trains along their tracks
from their tracks’ start points to their tracks’ end points
such that the maximal travel time called the makespan
is minimized.

Furthermore, we consider the Aircraft Schedul-
ing Problem which considers aircrafts, i.e., squares or
disks, instead of trains, i.e., subcurves of the tracks.

1.1 Our Results

1. We show that the Train Scheduling Problem
is NP-complete already for three trains, see Theo-
rem 1.

2. We establish that the Aircraft Scheduling
Problem is NP-complete already for three air-
crafts, see Theorem 6.

∗Department for Computer Science, Westfälische
Wcollision-freeilhelms-Universität Münster
christian.scheffer@uni-muenster.de

1.2 Related Work

Multi-robot coordination is one of the most famous and
traditional interfaces between robotics and computa-
tional geometry. Due to the amazing large landscape
of parallel motion planning topics and corresponding
results, we refer to surveys as [7, 8, 9] for detailed
overviews.

In their pioneering work, Hopcroft, Schwartz, and
Sharir [6] show that even the simple Warehouseman’s
Problem which requires to coordinate a set of rectan-
gles from a start configuration to a target configuration
inside a rectangular box is PSPACE-hard.

In a previous paper [4] accepted to the International
Symposium on Computational Geometry 2018, we con-
sider the variant of our Aircraft Scheduling Prob-
lem such that the aircrafts’ movements are not re-
stricted to curves but to the common Euclidean plane.
Amongst others, we showed that this 2D variant is NP-
complete for arbitrary many vehicles and gave a con-
stant factor approximation for the case that the air-
crafts are sufficiently separated. Furthermore, in [2] we
demonstrate a practical realization of our approaches.

In a recent paper [13], we show that there is no
FPTAS neither for the Train Scheduling Problem
nor for the Aircraft Scheduling Problem but do
not answer the question whether there is an efficient
algorithm for a constant number of vehicles.

O`Donnell and Lozano-Perez [11] consider the
Path Coordination Problem which corresponds
to our Aircraft Scheduling Problem and give
a O(q2 log q) runtime algorithm for coordinating two
robots at which only forward movements are allowed
and q is the maximal number of segments on the
considered trajectories. Akella and Hutchinson [1]
consider Trajectory Coordination Problems in
which both the traveling curves and the velocity at
which the robots traverse the curves are known. They
showed that it is NP-complete to compute departure
times for arbitrary many robots such that a minimum-
time collision-free robot coordination is achieved.

Reif and Sharir [12] consider Dynamic Movers
Problems in which a given polyhedral body B has to
be moved collision-free within some 1D, 2D, or 3D space
by translations and rotations from a start position to a
target position amid a set of obstacles that rotate and
move along known trajectories. They provide PSPACE-
hardness of the 3D dynamic movement problem if the

87

32nd Canadian Conference on Computational Geometry, 2020

body B has to hold a velocity bound and NP-hardness
if the body’s velocity is unbounded. Furthermore, Reif
and Sharir [12] consider Asteroid Avoidance Prob-
lems as a special variant of Dynamic Movers Prob-
lems in which neither the moving body B nor the ob-
stacles may rotate. In particular, Reif and Sharir pro-
vide a near-linear time algorithm for the 1-dimensional
Asteroid Avoidance Problem in which each of the
obstacles is a polyhedron traveling with fixed (possi-
ble distinct) translational velocity along a 1-dimensional
line. Reif and Sharir provide an efficient algorithm for
the two-dimensional Asteroid Avoidance Problem
if the number of the obstacles is a constant and for
the three-dimensioal Asteroid Avoidance Problem
a single exponential time and a polynomial space algo-
rithm for a convex polyhedron B and arbitrary many
obstacles.

2 Preliminaries

A train is a pair (H,Lh) where Lh ∈ R>0 is the length
of the train and H is the track of the train which is
defined as a curve H : [0, 1] → R2. We simultaneously
denote by H, the function H : [0, 1]→ R2 and its image
{p ∈ R2 | there is a t ∈ [0, 1] with p = H(t)}. The
length |T | of a track T : [0, 1] → R2 in the ambient
space is defined as its length w.r.t. the Euclidean norm,

i.e., |T | :=
∫ 1

0
||T ′(t)||2 dt. A k-fleet is an k-tuple of

trains. Two trains (H,Lh) and (X,Lx) collide for the
parameters λh and λx if the subcurves of H and X with
midpoints H(λh) and X(λx) and lengths Lh and Lx are
intersecting each other. A reparametrization of a train
(H,Lh) is a continuous and piecewise linear function
α : [0,+∞) → [0, 1] such that (1) α(0) = 0, (2) there
is a minimal value λ ≥ 0 with α(µ) = 1 for all µ ≥
λ, and (3) the speed of the train is upper-bounded by
1, i.e., for each point in time t ∈ [0,+∞), both left
and right derivative of H ◦ α have Euclidean length at
most 1. A schedule for a k-fleet ((T1, L1), . . . , (Tk, Lk))
is a tuple (α1 : [0,M1]→ [0, 1], . . . , αk : [0,Mk → [0, 1])
such that (1) αi is a reparametrization for the train
(Ti, Li) for all i ∈ {1, . . . , k} and (2) Ti and Tj do not
collide for the parameters αi(t) and αj(t) for all i 6= j ∈
{1, . . . , k} and t ≥ 0. The makespan of the schedule
(α1 : [0,M1]→ [0, 1], . . . , αk : [0,Mk → [0, 1]) is defined
as the maximum Mmax of the M1, . . . ,Mk. Wl.o.g., all
travel times are equal to Tmax by extending αi with
αi(t) = αi(Mi) for all Mi < t < Mmax. Given a k-
fleet F , the Train Scheduling Problem asks for a
schedule with minimal makespan.

The parameter space P of a k-fleet
((T1, L1), . . . , (Tk, Lk)) is defined as P :=
[0, |T1|] × · · · × [0, |Tk|]. The forbidden or black
space B of P is the union of all parameter points
p = (λ1, . . . , λk) ∈ P such that there are two trains Ti

and Tj that collide with the parameters λi and λj . The
allowed or white space W is defined as P \B◦ where B◦
denotes the interior of B. Note that the white space W
is closed.

A path is a curve π : [0, 1] → P and the length `(π)
of π is defined as its length w.r.t. the maximum metric,

i.e., `(π) :=
∫ 1

0
||π′(t)||∞ dt. An a-b-path in the free

space diagram of ((T1, L1), . . . , (Tk, Lk)) is a path π ⊂
W between a and b. If not stated otherwise, a path in
the free space diagram is a path π ⊂ W connecting the
points (0, . . . , 0) and (|T1|, . . . , |Tk|).

3 Scheduling Three Vehicles is NP-complete

In this section, we show that surprisingly the Train
Scheduling Problem already for three trains,
Train (3) for short, and the Aircraft Scheduling
Problem already for three aircrafts, Aircraft (3) for
short, are NP-complete. We start with the hardness
proof for Train (3).

Theorem 1 Train (3) is NP-complete.

We show that Train (3) is NP-complete by prov-
ing that it is NP-complete to decide whether there is
a schedule with a makespan no larger than M where
M is an input value. Given an M , w.l.o.g., we set
s := (0, 0, 0) and t := (M,M,M). It is obvious that
in an optimal schedule for each point in time there is a
train that travels with speed 1. Thus we obtain:

Observation 2 For a given fleet F , there is a schedule
with makespan M if and only if there is an s-t-path of
length M w.r.t. the maximum metric in the free space
diagram of F .

In Section 3.1, we construct an instance I of a 3D-
shortest path problem that implies a polynomial time
reduction from 3-SAT to a 3D-shortest path problem
that is NP-complete. In Section 3.5, we give a reduction
of 3-SAT to Train (3) by providing a construction of an
instance for Train (3) whose optimal makespan is equal
to the shortest path distance of I.

3.1 An NP-Completeness Construction for 3D-
Shortest Paths

We consider the three-dimensional Euclidean space R3

and refer to the three corresponding axes and coor-
dinates as h-, x-, and y-axis and -coordinates. For
a ∈ {h, x, y}, the a-length of a point set A ⊆ R3 is
defined as maxp,q∈A |p.a − q.a| where p.a and q.a de-
note the a-coordinates of p and q. Furthermore, the
a-distance between two connected point sets A,B ⊂ R3

is defined as minp∈A,q∈B |p.a− q.a|.

88

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Definition 3 A plank is an axis-aligned cuboid R ⊂ R3

whose h-, x- or y-length is long enough to be assumed
infinity. The width and height of a plank are the maxi-
mum and minimum of the lengths of R in the remaining
two axes directions. A plank R is

• horizontal if the h- and x-lengths of R are the height
of R and infinity

• vertical if the h- and y-lengths of R are the height
of R and infinity, and

• perpendicular if the y- and h-lengths of R are the
height of R and infinity.

The orientation of R is horizontal, vertical, or perpen-
dicular.

Next, we define the shortest path problem to which
we reduce 3-SAT.

Definition 4 An instance I =: (s, t, L, ξ,R) of
3Dplanks asks if there is a shortest path of length
L ∈ R≥0 w.r.t. the maximum metric between the points
s, t ∈ R3 and among the set R of horizontal, vertical,
or perpendicular planks that have all a height of ξ.

For the polynomial-time reduction of 3-SAT to
3Dplanks, we apply the path encoding technique as
already used for hardness results of other 3D-shortest
path problems [3, 10]. However, in the context of
our problem setting we need to ensure important
new aspects, see Properties (P1)-(P8), because our
construction needs to be realisable by the free space
diagram of three trains.

In the remainder of this section we show that
3Dplanks is NP-complete. First we prove that
3Dplanks is in NP. After that we give the construc-
tion of I and its analysis.

The piecewise linear environment implies that a
shortest path is piecewise linear. Thus, the length of
a given path can be calculated within polynomial time
w.r.t. the complexity of the environment. Hence, we
obtain that 3Dplanks is in NP.

3.2 Outline of the Construction

We consider shortest paths between two points s and t
at which st induces a line that has a slope close to 1
w.r.t. x-, y-, and h-coordinate, see Figures 1.

We construct an instance with exponentially many
topologically different shortest path classes represent-
ing all possible variable assignments for a given 3-SAT
formula F . Thus, we first construct a sequence of n
path splitter gadgets, see the green gadget in Figure 1,
at which each path splitter gadget doubles the number
of incoming shortest path classes.

S3

12
34

123
4

12132434

13243
4

1324

1
3 2434

2
1

132434

path blockerpath blockerpath splitter
Stage (1): a Stage (2): a Stage (3): a

Stage (1) Stage (2)

Stage (2)

Stage (1)

Stage (3)

The path spliter gadget

The path

blocker
gadget

The path shuffle gadget

The 3-way path splitter gadget

P1

P2

P3P4P5

P6
P7 P8

P9

P1

P2

P1

P2

P3

P4

`
Stage (1)

or (2)

Figure 1: (Top) Construction of I made up of (3-way)
splitter (blue and green), blocker (violet), and shuffle
gadgets (orange). (Bottom) Detailed illustration of the
used gadgets.

89

32nd Canadian Conference on Computational Geometry, 2020

Next it follows a sequence of m clause filters. A clause
filter realizes a clause Ci = (`i1 ∨ `i2 ∨ `i3) and is made
up of three parallel literal filters at which parallel means
that each literal filter is passed by an individual tube
containing 2n shortest path classes. In order to produce
these tubes, a clause filter starts with a 3-way path split-
ter gadget, see the blue gadget in Figure 1, and ends with
an inverted 3-way path splitter gadget which merges
three input tubes of 2n shortest path classes into one
tube of 2n shortest path class.

Inside a clause filter Ci, each literal filter represents a
literal `ij and is made up of a sequence of n path shuffle
gadgets (see the orange gadgets in Figure 1) which is
interrupted by one path blocker gadget (see the violet
gadget in Figure 1). The path blocker gadget blocks all
shortest path classes whose represented bit assignment
for b1, . . . , bn contradicts `ij . In particular, the shortest
path classes inside each literal filter lie inside a thin di-
agonal tube. The prefixed sequence of path shuffle gad-
gets ensures that all shortest path classes corresponding
to bit assignments that contradict `ij lie either on the
top left side of the tube or on the bottom right side of
the tube. Correspondingly, the path blocker gadgets in-
creases the length of all these shortest path classes to
be blocked, i.e., blocks them from being a shortest path
of length L between s and t. Finally, the postposed se-
quence of path shuffle gadget rebuilds the configuration
of the shortest path classes inside the tube.

Finally, the bundle of all remaining shortest path
classes are merged by a sequence of n inverted path
splitting gadgets. By the above discussion it follows
that F is satisfiable if and only if there is a shortest
path of length L between s and t which we call prop-
erty (P1).

The first sequence of n path splitter gadgets generates
2n shortest path classes lying inside a tube of width
ε � 1 which is maintained for all three copies inside
each clause filter.

Each gadget is made up of O(1) planks, see Figure 1
for an overview and the following section for more de-
tails. All in all we have 2n+m(2 +n+ 1) path gadgets
which implies that I has O(mn) planks which we call
property (P2).

3.3 Detailed Construction of the Path Gadgets

In the following, we discuss the approaches of path split-
ter gadgets, path blocker gadgets, path shuffle gadgets,
and 3-way path splitter gadgets separately, see Figure 1.
The inverted versions of the path splitter and the 3-way
path splitter gadget are constructed in inverted order.

The input to the path splitter gadget is a thin bundle
of shortest path classes, see the green gadget in Figure 1.
The produced output is a bundle containing two copies
of the input bundle. A perpendicular plank blocks paths
from being a shortest path by enforcing the “unwanted”

paths to take a detour around the perpendicular plank,
see the black bar and the red arrow in the green gadget
of Figure 1.

The path blocker gadget blocks either an upper or
lower part of the input bundle of shortest paths from
being an overall shortest path.

The path shuffle gadget realizes a perfect shuffle to
all input shortest path classes and is made up of three
stages, see the orange gadget in Figure 1: A path splitter
gadget which is colored in gray and two path blocker
gadgets colored in yellow, gold, and orange.

The 3-way path splitter gadget produces three in-
stances π1, π2, and π3 of the input shortest path classes
for a clause filter representing a clause Ci = (`i,1∨ `i,2∨
`i,3), see the blue gadget of Figure 1. Each instance π1,
π2, and π3 represents one of the three literals `i,1, `i,2,
and `i,3 which are logically linked by an “or”. Thus, a
plank in the clause filter corresponding to Ci is only al-
lowed to have an influence to either the shortest paths in
π1, π2, or π3. In order to ensure that, we construct the
3-way path splitter gadget such that the distance be-
tween two points from two different bundles of π1, π2,
and π3 on a diagonal line ` is a constant times larger
than the widths of the planks used in the clause filter
of Ci, see Figure 1. In particular, the 3-way path split-
ter gadget is made up of three stages: (1) Four planks,
splitting the input shortest path class into two classes,
(2) four planks, splitting the upper class of Stage (1)
into two shortest path classes π1 and π2, and (3) two
planks extending the length of the second shortest path
class π3 of Stage (1) about a distance equal to the length
extension caused by Stage (2) for π1 and π2.

In the following section, we prove that the remaining
properties (P3)-(P8) of Theorem 5 are fulfilled by I.

Theorem 5 3Dplanks is NP-complete. In particu-
lar, for each 3-SAT formula Φ with n variables and m
clauses, there is an instance I = I(Φ) = (s, t, L, ξ,R)
of 3Dplanks (see Figure 1) such that

• (P1): the shortest s-t-path has a length of L if and
only if Φ is satisfiable,

• (P2): there are O(mn) planks,

• (P3): all planks have the same height ξ,

• (P4): the minimal width of a plank is 1,

• (P5): the minimal h-distance of two planks that
are not perpendicular is Ω(1),

• (P6): all planks have a width of O(mn),

• (P7): the maximal x-distance between two vertical
planks of the same path gadget is O(mn), and

• (P8): the maximal y-distance between two con-
secutive horizontal planks of the same path gadget
is O(mn).

90

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

3.4 Properties (P3)-(P8)

Property (P3) is trivially ensured by explicitly using
planks of a common height. Furthermore, w.l.o.g. we
assume that the minimal width of planks used in I is 1
which is property (P4). Otherwise, we scale the whole
construction of I which maintains that all planks have
the same height.

For each path gadget, we ensure that the h-distance
between two planks that are not perpendicular is Ω(1).
As the input and output path bundles of all path gad-
gets are diagonal, we can construct I such that the
length of the (shortest) subpath between two consec-
utive path gadgets is in Θ(mn). Analogously, we en-
sure that the shortest path distance between two stages
of the same path shuffle or 3-way path splitter gadget
is Θ(mn). Thus we can ensure in our overall construc-
tion that the h-distance between any pair of planks that
are not perpendicular is at least Θ(1) which is prop-
erty (P5).

In our reduction from 3-SAT to 3Dplanks, we ap-
ply that some planks are only passed at one side. We
guarantee that by choosing the widths of these planks
“sufficiently large” (see below for details) such that pass-
ing the plank at a forbidden side would cause a detour
which prevents the path from being shortest. In the fol-
lowing, we discuss the details of that approach for each
type of path gadgets separately.

• The path splitter gadget is constructed such that
doubling the input shortest path classes causes a
detour of constant length. In order to enforce that
a shortest path passes through all 2n path splitter
gadgets despite a detour of length Θ(n), we choose
the widths of the planks P1, P2, P8, and P9 of all
2n path splitter gadgets as Θ(n). Furthermore, we
choose the widths of the planks P4, P5, P6, and P7

as Θ(1) to ensure that a shortest path passes the
planks P4, P5, P6, and P7 on the required sides of
the planks, as illustrated in Figure 1.

• A path blocker gadget simply needs to ensure that
shortest path classes that represent variable assign-
ments that are forbidden by the represented literal
are blocked from being an overall shortest path.
Thus, it suffices to choose the width of all planks
of all path blocker gadgets as Θ(1).

• Each path splitter of a path shuffle gadget causes a
detour of constant lengths. Inside each clause filter,
a shortest path passes through n path shuffle gad-
gets resulting in summed detour of O(n). In order
to enforce that a shortest path inside each clause
filter passes through all n path shuffle gadgets of a
literal filter, we choose the widths of the first, the
second, and the last two planks of the path split-
ter part of the path shuffle gadget as Θ(n). The

widths of the remaining planks are chosen equal to
the widths of the corresponding planks in the path
splitter and path blocker gadgets.

• The 3-way path splitter gadget ensures that the
distance between two points from different out-
put bundles is Θ(n). This results in a detour of
length Θ(n) caused by each 3-way path splitter gad-
get. In order to ensure that a shortest path passes
each plank of a clause filter only at the intended
side we choose the width of each one-sided passed
plank larger than the entire detour length caused
by all m clause filters, i.e., as Θ(mn).

From the above discussion it follows that the widths
of all planks used in our overall construction of I are
upper-bounded by O(mn) which is property (P6).

Let P1 and P2 be two vertical planks of the same path
gadget such that there is not another vertical plank ly-
ing between P1 and P2 w.r.t. the h-axis. We distinguish
wether P1 and P2 belong to a path splitter gadget or not:
If P1 and P2 belong to a path splitter gadget, our con-
struction of I ensures that the x-distance between P1

and P2 is 0. As a path splitter gadget is made up ofO(1)
planks with widths no larger than O(1) we obtain that
the x-distance between P1 and P2 is upper-bounded by
O(1). If P1 and P2 belong to path shuffle or a 3-way
path splitter gadget, we combine that the path distances
between different stages of the path gadget is upper-
bounded by O(mn), that the planks have a width of
O(mn), that each stage is made up of O(1) planks, and
that the path shuffle and the 3-way path splitter gad-
get are made up of three stages. Thus, we obtain that
the x-distance between P1 and P2 is upper-bounded by
O(mn). In both cases, we obtain that the x-distance
between P1 and P2 is upper-bounded by O(mn) which
is property (P7).

A symmetric argument implies that the y-distance
between two consecutive horizontal planks belonging
to the same path gadget is in O(mn) which is prop-
erty (P8) concluding the proof of Theorem 5.

3.5 Reduction of 3-SAT to Train (3)

We construct a 3-fleet with optimal makespan equal to
the shortest path distance of the instance I constructed
in Section 3.1. A triple (λh, λx, λy) of parameters for
the three trains of a 3-fleet F is forbidden if at least two
trains collide with their parameters independent from
the parameter of the third train. This means the for-
bidden space B of F is the union of a set of axis-aligned
planks at which each single plank corresponds to an in-
tersection point of two curves, see Figure 2(a)+(b).

The lengths of the planks in the axes directions corre-
sponding to the colliding trains are equal to the lengths
of the colliding trains. Furthermore, the plank extends

91

32nd Canadian Conference on Computational Geometry, 2020

x

h

y

Parameter space of

Lx

Lh

H ×X

Lx

LhX

H

(a) (b)

R

x

h

y

Parameter space of
Hstair ×Xstair

Lx w

≤ 30◦

≤ 2Lh

SR

Hstair

Xstair

of the zig-zag
folding

width µ

Lh
d

Lh
2

Lh
2

Lx
2

a b

(c) (d)

Figure 2: (a) A vertical plank as part caused by an
intersection point of the curves H and X that are illus-
trated in (b). The length of the plank in y-axis direction
is infinite because a collision of the trains on H and X
is independent from the position of the train on Y . (c)
Replacing a vertical plank R by a vertical stairway SR,
and (d) the curves Hstair and Xstair.

in parallel to the axis corresponding to the third train
through the whole parameter space of H, X, and Y .
Thus, we occasionally say that a plank has a length of
infinity (w.r.t. the axis corresponding to the train which
is not necessarily involved in the collision).

The forbidden space of F is piecewise linear implying
that a shortest path π′ inside the free space diagram is
piecewise linear, i.e., π′ can be represented by a polyno-
mial sequence of edges it flips over. This implies, that
the length of π′ can be determined in polynomial time.
Thus, Observation 2 implies that Train (3) is in NP.

In order to prove that Train (3) is NP-hard we con-
sider an arbitrary 3-SAT formula Φ and the correspond-
ing instance I := I(Φ) := (s, t, L, ξ,R) of 3Dplanks
constructed in Section 3.1. We construct a 3-fleet
F := ((H,Lh), (X,Lx), (Y, Ly)) and a value L′ such that
verifying if there is an optimal schedule for F with max-
imal travel time no larger than L′ is equivalent to ver-
ifying if there is a shortest path with length no larger
than L for I. As the construction of I induces a poly-
nomial time reduction from 3-SAT to 3Dplanks, it fol-
lows that the construction of F induces a polynomial
time reduction from 3-SAT to Train (3).

Straightforwardly substituting the planks of I by
planks that are caused by intersection points of the
trains (H,Lh), (X,Lx), and (Y,Ly) is not possible be-
cause in the construction of I we use different horizon-
tal planks that have different widths while all horizon-
tal planks in the forbidden space of (H,Lh), (X,Lx),
and (Y,Ly) have a width of Ly. Furthermore, there is

the same issue with vertical and perpendicular planks.
Thus, we replace each single plank R of I by a so called
stairway SR and give an approach how to construct
three trains whose forbidden space modulo translations
is equal to SR, see Figures 2(c)+(d) for illustrations.

By assembling all resulting curves corresponding to
stairways, we obtain the trains (H,LH), (X,Lx), and
(Y, Ly) concluding the proof of Theorem 1.

3.6 Reduction of 3-SAT to Aircraft (3)

We remark that scheduling three aircrafts, i.e., squares
or disks instead of trains, i.e., subcurves is also NP-
complete. Generally speaking, we use the 3D-shortest
path instance I and substitute planks of I by (curved)
wedges, see Figure 3.

R
W

x

h

y

µ

ζε2
ε1

Hstamp ×Xstamp
Parameter space of

B2(a5)
a3

a5
ε1ε2

ε1ε2

B2(a3)

Hstamp

Xstamp

(a) (b)

R
W

x

h

y

µ

Hstamp ×Xstamp
Parameter space of

2ζ

B2(a3)

Hstamp

Xstamp

a3

a4

B2(a4)

ζ

(c) (d)

Figure 3: (a)+(c): In the case of square-shaped and
disk-shaped aircrafts, we substitute planks by wedges
and curved wedges. (b)+(d): In a fixed configuration,
two aircrafts collide if and only if the centre of the first
aircraft lies inside the square B2(c) with radius 2 and
centre c in the midpoint of the second aircraft.

Theorem 6 Aircraft (3) is NP-complete for disk-
shaped and square-shaped aircrafts.

4 Conclusion

We presented hardness results for parallel motion plan-
ning problems considering objects to moved collision-
free along their tracks. Our hardness constructions in-
volve curves that are quite dense in the following man-
ner: Driemel et al. [5] say that a curve is c-packed for a
c ≥ 0 if the total intersection of the curve with any ball
of radius r > 0 is no larger than cr. The curves con-
structed in our hardness proof are not c-packed for any
constant c. Thus, we ask the question whether there
is an efficient algorithm for scheduling three trains or
aircrafts along c-packed curves.

92

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] S. Akella and S. Hutchinson. Coordinating the mo-
tions of multiple robots with specified trajectories. In
Proceedings of the 2002 IEEE International Conference
on Robotics and Automation, ICRA 2002, May 11-15,
2002, Washington, DC, USA, pages 624–631, 2002.

[2] A. T. Becker, S. P. Fekete, P. Keldenich, L. Lin, and
C. Scheffer. Coordinated motion planning: The video.
In C. Tóth and B. Speckmann, editors, 34th Interna-
tional Symposium on Computational Geometry (SoCG
2018), volume 99 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 74:1–74:6, 2018. Video
available at https://youtu.be/0OrG72sX5gk.

[3] J. F. Canny and J. H. Reif. New lower bound techniques
for robot motion planning problems. In 28th Annual
Symposium on Foundations of Computer Science, Los
Angeles, California, USA, 27-29 October 1987, pages
49–60, 1987.

[4] E. D. Demaine, S. P. Fekete, P. Keldenich, H. Meijer,
and C. Scheffer. Coordinated Motion Planning: Co-
ordinating a Swarm of Labeled Robots with Bounded
Stretch. In C. Tóth and B. Speckmann, editors, 34th
International Symposium on Computational Geometry,
SoCG 2018, June 11-14, 2018, Budapest, Hungary, vol-
ume 99 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 29:1–29:15, 2018.

[5] A. Driemel, S. Har-Peled, and C. Wenk. Approximating
the fréchet distance for realistic curves in near linear
time. Discret. Comput. Geom., 48(1):94–127, 2012.

[6] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On
the complexity of motion planning for multiple inde-
pendent objects; PSPACE-hardness of the warehouse-
man’s problem. The International Journal of Robotics
Research, 3(4):76–88, 1984.

[7] L. E. Kavraki and S. M. LaValle. Motion planning. In
Springer Handbook of Robotics, pages 139–162. 2016.

[8] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1991.

[9] S. M. LaValle. Planning algorithms. Cambridge Uni-
versity Press, 2006.

[10] J. S. B. Mitchell and M. Sharir. New results on shortest
paths in three dimensions. In Proceedings of the 20th
ACM Symposium on Computational Geometry, Brook-
lyn, New York, USA, June 8-11, 2004, pages 124–133,
2004.

[11] P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free
and collision-free coordination of two robot manipula-
tors. In Proceedings of the 1989 IEEE International
Conference on Robotics and Automation, Scottsdale,
Arizona, USA, May 14-19, 1989, pages 484–489, 1989.

[12] J. H. Reif and M. Sharir. Motion planning in the pres-
ence of moving obstacles. J. ACM, 41(4):764–790, 1994.

[13] C. Scheffer. Train scheduling: Hardness and algorithms.
In Proceedings of the 14th International Conference on
Algorithms and Computation (WALCOM), pages 342–
347, 2020.

93

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Chasing Puppies

Jeff Erickson*

I will describe a topological solution to the following puzzle, which Michael Biro posed as an open problem at
CCCG 2013. A human and a puppy find themselves at different points on a walking trail, which is a simple closed
curve in the plane. The human and puppy can see each other from anywhere on the trail, but they cannot leave the
trial. The puppy always moves as quickly as possible to decrease its distance to the human. Can the human catch
the puppy? (Yes!)

This is joint work with Irina Kostitsyna, Maarten Löffler, Tillman Miltzow, Jérôme Urhausen, and Jordi Ver-
meulen.

*University of Illinois at Urbana-Champaign, USA, jeffe@illinois.edu

94

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Folding Small Polyominoes into a Unit Cube

Kingston Yao Czajkowski∗ Erik D. Demaine† Martin L. Demaine† Kim Eppling‡ Robby Kraft§

Klara Mundilova† Levi Smith¶

Abstract

We demonstrate that a 3×3 square can fold into a unit
cube using horizontal, vertical, and diagonal creases on
the 6× 6 half-grid. Together with previous results, this
result implies that all tree-shaped polyominoes with at
least nine squares fold into a unit cube. We also make
partial progress on the analogous problem for septomi-
noes and octominoes by showing a half-grid folding of
the U septomino and 2× 4 rectangle into a unit cube.

1 Introduction

Which polyominoes fold into a unit cube? Aichholzer et
al. [ABD+18] introduced this problem at CCCG 2015,
along with a variety of different models for folding. Ta-
ble 1 summarizes the main models and known results.
We focus here on the powerful half-grid model (the
bottom two rows of Table 1) where

1. the polyomino can be folded along horizontal, ver-
tical, and ±45◦ diagonal creases;

2. every crease has endpoints whose coordinates are
integer multiples of 1

2 ; and

3. each crease can be folded by ±90◦ or ±180◦.

In particular, the paper can overlap itself, using multi-
ple layers to cover the cube (as in origami, but unlike
polyhedron unfolding), so long as the paper covers every
point of the cube. Look ahead to Figures 4, 5, and 6 for
examples of foldings in the half-grid model.

A strong positive result [ABD+18, Theorem 3] is that
every polyomino of at least ten squares can fold into a
unit cube in the half-grid model.1 In this paper, we

∗Cairo-Durham Middle School, Cairo, NY, USA. stonkinge41@
gmail.com

†MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA. {edemaine,mdemaine,kmundil}@mit.edu

‡Massachusetts Institute of Technology, Cambridge, MA,
USA. kimeppling@gmail.com

§The New School, New York, NY, USA. robbykraft@gmail.
com

¶The Newton School, Strafford, VT, USA. levipaulsmith08@
gmail.com

1A small typo in [ABD+18] is that the Introduction fails to
mention the half-grid nature of this result, though their Theorem 3
correctly states the result. Their result also guarantees that every
face of the cube is covered by a seamless square in the folding, a
property we ignore here.

tackle the analogous problem for smaller polyominoes,
with at most nine squares.2

Any polyomino folding into a unit cube has at least
six squares (because the cube has surface area 6). In-
deed, for hexominoes, the half-grid and diagonal fea-
tures of the model are not useful, because the folding
cannot have any overlap (again by an area argument).
Therefore, the hexominoes that fold into a unit cube are
exactly the eleven hexomino nets of the cube; see e.g.
Gardner [Gar89] for the list. Aichholzer et al. [ABD+18,
Fig. 16] verified by exhaustive search that this claim re-
mains true even if we allow cutting the polyomino with
slits until the dual graph (with a vertex for each square
and edges for uncut edge adjacency) is a tree; we call
these tree-shaped polyominoes.

In between this solved hexomino case and the uni-
versally foldable ≥ 10-ominoes are polyominoes with
between seven and nine squares: septominoes, octomi-
noes, and nonominoes. For these cases, Aichholzer et
al. [ABD+18, Fig. 17] did an exhaustive enumeration of
which tree-shaped polyominoes cannot fold into a unit
cube in a more restrictive grid + diagonals model
(the two middle rows of Table 1), which is identical to
the half-grid model above except that every crease has
endpoints whose coordinates are integers.

Therefore the only remaining unsolved tree-shaped
cases for the half-grid model are exactly these examples
not foldable in the grid + diagonals model. Aichholzer
et al. [ABD+18, Fig. 17] lists twelve septominoes, three
octominoes, and just one nonomino with the property
that some cutting into a tree-shaped polyomino has no
grid folding. Figures 1, 2, and 3 list all tree-shaped
cuttings of these polyominoes that lack a grid folding,
as computed by Aichholzer for [ABD+18] (but which
have not previously appeared).

2 Results

In this paper, we show how to fold the one nonomino
case (the 3× 3 square), one of the octomino cases (the
2 × 4 square), and one of the septomino cases (the U)

2The Introduction of [ABD+18] claims to “characterize all the
polyominoes that can be folded into a unit cube, in grid-based
models”, but in fact the characterizations for < 10 and ≥ 10
squares are in two different models, as we now detail, so neither
is a complete characterization.

95

32nd Canadian Conference on Computational Geometry, 2020

Coordinates Creases Polyominoes Polyomino sizes and results

Grid Orthogonal Tree-shaped
Characterized ≤ 14 [ABD+18]
Characterized height-2 and height-3 [ABD+18]
OPEN: ≥ 15 of height ≥ 3

Grid Orthogonal Arbitrary
Partially characterized [AAC+19]
OPEN: ≥ 7

Grid Diagonal Tree-shaped
Characterized ≤ 14; all 10, 11, 12, 13, 14 [ABD+18]
OPEN: ≥ 15

Grid Diagonal Arbitrary OPEN: ≥ 7

Half-grid Diagonal Tree-shaped
All ≥ 9 [this paper]
OPEN: 7, 8

Half-grid Diagonal Arbitrary
All ≥ 10 [ABD+18]
OPEN: 7, 8, 9

Table 1: Summary of known/open characterizations of which polyominoes fold into a unit cube in six different models,
according to whether crease endpoints must be integers (“grid”) or can be half-integers (“half-grid”); whether creases must
be horizontal and vertical (“orthogonal”) or they can also be at ±45◦ (“diagonal”); and whether the polyominos’ duals must
be trees (“tree-shaped”) or can have cycles (“arbitrary”). Numbers (between 7 and 15) refer to the number of squares in
the polyomino, except that “height” refers to the smaller dimension of the polyomino’s bounding box. “All” means that all
polyominoes of a given size fold into a unit cube; “Characterized” means that there is a list of which do and which do not;
“Partially characterized” means that there are necessary conditions and sufficient conditions.

into a cube in the half-grid model. Because our foldings
do not require any particular cuts, they also work for
any tree-shaped polyomino resulting from cutting these
polyominoes (the shaded cases in Figures 1, 2, and 3).
In particular, our solution to the sole nonomino case
implies (together with [ABD+18, Theorem 3]) that all
tree-shaped polyominoes with at least nine squares fold
into a cube in the half-grid model.

Figures 4, 5, and 6 show how to fold a 3 × 3 square,
2 × 4 rectangle, and U, respectively, into a unit cube.
In the crease patterns of subfigures (a), dotted lines in-
dicate the integer grid, while solid lines indicate creases
and paper boundary. Mountain creases are drawn in
red, valley creases are drawn in blue, and crease lines
are partially transparent if they fold by ±90◦ and fully
opaque if they fold by ±180◦. This notation enables ver-
ification of the folding via Origami Simulator [GDG18],
which generated the intermediate 3D foldings in subfig-
ures (c). (As Figure 6(c) makes clear, the simulation
allows collisions and material stretch during the mo-
tion, but it still verifies the final folding.) Subfigures (b)
present human-drawn views of the folded states with the
faces spread out slightly to make clear how the faces can
be stacked while avoiding collision. In addition to the
full folded state with translucent faces (right), which re-
veals mainly the front three faces of the cube, we show
the subfolding of just the back three faces of the cube
(left). To show the correspondence between the crease
pattern (a) and folded state (b), we also label the faces
that make up the outer cube surface.

The foldings in Figures 4 and 5 shift the grid of the

polyomino by 1
2 to make the grid of the unit cube. Cu-

riously, the folding of the U septomino in Figure 6 does
not, and barely uses the half-grid model by having two
crossing diagonals which meet at a half-integer point.

3 Other Related Work

Beyond the problem studied in this paper, several other
variations have been considered.

In addition to the results mentioned above, Aich-
holzer et al. [ABD+18] studied the grid model where
creases must be horizontal or vertical (no diagonals)
and have endpoints at integer coordinates (the top two
rows of Table 1). Specifically, they characterized exactly
which tree-shaped polyominoes of height 2 or 3 (i.e., fit-
ting in a 2 ×∞ or 3 ×∞ strip) fold into a unit cube;
their condition can be checked in linear time. A general
characterization remains open. They also proved sep-
arations between the models in Table 1, along with a
few other models, and characterized which polyiamonds
(edge-to-edge joinings of equilateral triangles) fold into
a unit tetrahedron in an analog to the grid model.

At CCCG 2019, Aichholzer et al. [AAC+19] consid-
ered the grid model when the polyomino has holes (and
is thus not tree-shaped). This case corresponds to some
puzzles invented by Nikolai Beluhov [Bel14] which orig-
inally motivated [ABD+18] as well. Aichholzer et al.
[AAC+19] gave sufficient conditions when a polyomino
containing certain hole shapes can fold into a cube, as
well as some necessary conditions, but a general char-
acterization remains open.

96

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 1: Tree-shaped septominoes that cannot fold into
a unit cube in the grid + diagonals model, as computed
by Aichholzer [ABD+18]. Figure 6 shows how to fold the
shaded case in the half-grid model.

Gardner [Gar95] posed a puzzle about cutting the
3×3 square with slits and then folding along orthogonal
grid lines into a unit cube with the additional property
of just one side of the paper showing on the outside.
Gardner gave one solution, and stated that it can be
done “in many different ways”. Dunham and Whiel-
don [DW17] subsequently found all solutions (with and
without the additional property) by exhaustive search.

Off the polyomino grid, Catalano-Johnson, Loeb, and
Beebee [CLB01] (see also [DO07, Section 15.4.1]) proved
that the smallest square that folds into a unit cube has
dimensions (2

√
2)×(2

√
2) ≈ 2.8284×2.8284. This fold-

ing implies a folding of a 3× 3 square into a unit cube:
just fold away the extra material first. Our innovation
is to show that there is a folding in the half-grid model.
By contrast, the solution in [CLB01] rotates the square
45◦ to make the grid of the unit cube.

Figure 2: Tree-shaped octominoes that cannot fold into
a unit cube in the grid + diagonals model, as computed
by Aichholzer [ABD+18]. Figure 5 shows how to fold the
shaded cases in the half-grid model.

Figure 3: Tree-shaped nonominoes that cannot fold into
a unit cube in the grid + diagonals model, as computed by
Aichholzer [ABD+18]. Figure 4 shows how to fold all of
them in the half-grid model.

4 Open Problems

We conjecture that the remaining septomino and oc-
tomino cases cannot be folded into a cube, but could
not find an easy argument for impossibility. The best
approach may be an exhaustive search for foldings in
the half-grid model.

Beyond just tree-shaped polyominoes, we conjecture
that all polyominoes with at least nine squares fold into
a cube in the half-grid model. The result for at least
ten squares [ABD+18, Theorem 3] does not rely on the
tree-shaped property, but the existence of grid foldings
for all nonominoes beyond the 3× 3 square does. Thus
we would need to verify that all 438 non-tree-shaped
nonominoes fold into a cube, which we have started
to do, but may be easiest to complete via exhaustive
search.

There are also countless other models and additional
conditions to consider. We mention a few now.

As mentioned in Footnote 1, the universal folding for
at least ten squares [ABD+18, Theorem 3] guarantees
that every face of the cube is covered by a seamless unit

97

32nd Canadian Conference on Computational Geometry, 2020

(a) Crease pattern (b) Folded state (right) and back faces (left)

(c) Folding animation from Origami Simulator [GDG18]

Figure 4: Folding the 3 × 3 square into a unit cube.

square. Our folding of the U septomino in Figure 6
shares this property, but we conjecture that this prop-
erty is unattainable for the 2×4 rectangle or 3×3 square
because (unlike the U) they seem to need to misalign the
cube’s grid with the polyomino’s grid.

Gardner’s 3×3 puzzle [Gar95] mentioned in Section 3
required that the surface of the cube be made entirely
from the same side of the piece of paper. Our foldings of
the 3×3 square (Figure 4) and 2×4 rectangle (Figure 5),
while our folding of the U (Figure 6) does not, and we
conjecture that it cannot. With this restriction, many
other problems become open again. For example, can
all polyominoes of at least ten squares still fold into a
unit cube?

Finally, the animations we draw in Figures 4(c), 5(c),
and 6(c) raise the question of which cube foldings are
achievable as rigid origami (avoiding collisions while
folding only at creases). This direction has yet to be
explored.

Acknowledgments

This work was initiated at the 9th Annual OrigaMIT
Convention held at MIT on November 9, 2019, where
multiple groups tackled the then-unsolved puzzles posed
in [DD19], which are now solved by Figure 4.

We thank Oswin Aichholzer for providing the data
from [ABD+18] that enabled us to draw Figures 1, 2,
and 3.

References

[AAC+19] Oswin Aichholzer, Hugo A. Akitaya, Ken-
neth C. Cheung, Erik D. Demaine, Martin L.
Demaine, Sándor P. Fekete, Linda Kleist,
Irina Kostitsyna, Maarten Löffler, Zuzana
Masárová, Klara Mundilova, and Christiane
Schmidt. Folding polyominoes with holes
into a cube. In Proceedings of the 31st Cana-
dian Conference in Computational Geome-

98

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

(a) Crease pattern (b) Folded state (right) and back faces (left)

(c) Folding animation from Origami Simulator [GDG18]

Figure 5: Folding the 2 × 4 rectangle into a unit cube.

try (CCCG 2019), pages 164–170, Edmon-
ton, Alberta, Canada, August 2019.

[ABD+18] Oswin Aichholzer, Michael Biro, Erik D. De-
maine, Martin L. Demaine, David Eppstein,
Sándor P. Fekete, Adam Hesterberg, Irina
Kostitsyna, and Christiane Schmidt. Fold-
ing polyominoes into (poly)cubes. Interna-
tional Journal of Computational Geometry
and Applications, 28(3):197–226, 2018. Orig-
inally at CCCG 2015.

[Bel14] Nikolai Beluhov. Cube folding.
https://nbpuzzles.wordpress.com/2014/
06/08/cube-folding/, 2014.

[CLB01] Michael L. Catalano-Johnson, Daniel E.
Loeb, and John Beebee. A cubical
gift: 10716. The American Mathematical
Monthly, 108(1):81–82, 2001.

[DD19] Erik D. Demaine and Martin L. De-
maine. Cube folding puzzles: Origamit 2019
edition. http://erikdemaine.org/puzzles/
CubeFolding/OrigaMIT2019/, 2019.

[DO07] Erik D. Demaine and Joseph O’Rourke.
Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University
Press, July 2007.

[DW17] Jill Bigley Dunham and Gwyneth R. Whiel-
don. Enumeration of solutions to Gardner’s
paper cutting and folding problem. In The
Mathematics of Various Entertaining Sub-
jects, volume 2, pages 108–124. Princeton
University Press, 2017.

[Gar89] Martin Gardner. Hypercubes. In Mathe-
matical Carnival, chapter 4, pages 41–54.
The Mathematical Association of America,
Washington, D.C., 1989.

[Gar95] Martin Gardner. Paper cutting. In New
Mathematical Diversions, chapter 5, pages
58–69. The Mathematical Association of
America, Washington, D.C., 1995.

[GDG18] Amanda Ghassaei, Erik D. Demaine, and
Neil Gershenfeld. Fast, interactive origami
simulation using GPU computation. In
Origami7: Proceedings of the 7th Interna-
tional Meeting on Origami in Science, Math-
ematics and Education (OSME 2018), vol-
ume 4, pages 1151–1166. Oxford, England,
September 2018. https://origamisimulator.
org.

99

32nd Canadian Conference on Computational Geometry, 2020

(a) Crease pattern (b) Folded state (right) and back faces (left)

(c) Folding animation from Origami Simulator [GDG18]

Figure 6: Folding the U septomino into a unit cube.

100

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Some Polycubes Have No Edge Zipper Unfolding

Erik D. Demaine* Martin L. Demaine* David Eppstein� Joseph O’Rourke�

Abstract

It is unknown whether every polycube (polyhedron con-
structed by gluing cubes face-to-face) has an edge un-
folding, that is, cuts along edges of the cubes that un-
folds the polycube to a single nonoverlapping polygon
in the plane. Here we construct polycubes that have no
edge zipper unfolding where the cut edges are further
restricted to form a path.

1 Introduction

A polycube P is an object constructed by gluing cubes
whole-face to whole-face, such that its surface is a man-
ifold. Thus the neighborhood of every surface point is
a disk; so there are no edge-edge nor vertex-vertex non-
manifold surface touchings. Here we only consider poly-
cubes of genus zero. The edges of a polycube are all
the cube edges on the surface, even when those edges
are shared between two coplanar faces. Similarly, the
vertices of a polycube are all the cube vertices on the
surface, even when those vertices are flat, incident to
360◦ total face angle. Such polycube flat vertices have
degree 4. It will be useful to distinguish these flat ver-
tices from corner vertices, nonflat vertices with total
incident angle 6= 360◦ (degree 3, 5, or 6). For a polycube
P , let its 1-skeleton graph GP include every vertex
and edge of P , with vertices marked as either corner or
flat.

It is an open problem to determine whether every
polycube has an edge unfolding (also called a grid
unfolding) — a tree in the 1-skeleton that spans all cor-
ner vertices (but need not include flat vertices) which,
when cut, unfolds the surface to a net, a planar nonover-
lapping polygon [O’R19]. By nonoverlapping we
mean that no two points, each interior to a face, are
mapped to the same point in the plane. This definition
allows two boundary edges to coincide in the net, so the
polygon may be “weakly simple.” The intent is that we
want to be able to cut out the net and refold to P .

It would be remarkable if every polycube could be
edge unfolded, but no counterexample is known. There

*MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA, {edemaine,mdemaine}@mit.edu

�Computer Science Department University of California,
Irvine, CA 92679, USA eppstein@uci.edu Supported in part by
NSF grants CCF-1618301 and CCF-1616248

�Department of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. jorourke@smith.edu.

has been considerable exploration of orthogonal poly-
hedra, a more general type of object, for which there
are examples that cannot be edge-unfolded [BDD+98].
(See [DF18] for citations to earlier work.) But poly-
cubes have more edges in their 1-skeleton graphs for
the cut tree to follow than do orthogonal polyhedra, so
it is conceivably easier to edge-unfold polycubes.

A restriction of edge unfolding studied in [She75,
DDL+10, O’R10, DDU13] is edge zipper unfolding
(also called Hamiltonian unfolding). A zipper un-
folding has a cut tree that is a path (so that the surface
could be “unzipped” by a single zipper). It is appar-
ently unknown whether even the highly restricted edge
zipper unfolding could unfold every polycube to a net.
The result of this note is to settle this question in the
negative: polycubes are constructed none of which have
an edge zipper unfolding. Two polycubes in particular,
shown in Fig. 1, have no such unfolding. Other poly-
cubes with the same property are built upon these two.

Figure 1: Two polycubes that have no edge zipper un-
folding.

2 Hamiltonian Paths

Shephard [She75] introduced Hamiltonian unfoldings of
convex polyhedra, what we refer to here as edge zip-
per unfolding, following the terminology of [DDL+10].
Any edge zipper unfolding must cut along a Hamilto-
nian path of the vertices. It is easy to see that not every
convex polyhedron has an edge zipper unfolding, simply
because the rhombic dodecahedron has no Hamiltonian

101

32nd Canadian Conference on Computational Geometry, 2020

path. This counterexample avoids confronting the diffi-
cult nonoverlapping condition.

We follow a similar strategy here, constructing a poly-
cube with no Hamiltonian path. But there is a differ-
ence in that a polycube edge zipper unfolding need not
include flat vertices, and so need not be a Hamiltonian
path in GP . Thus identifying a polycube P that has no
Hamiltonian path does not immediately establish that
P has no edge zipper unfolding, if P has flat vertices.

So one approach is to construct a polycube P that has
no flat vertices—every vertex is a corner vertex. Then,
if P has no Hamiltonian path, then it has no edge zipper
unfolding. A natural candidate is the polycube object
P6 shown in Fig. 2. However, the 1-skeleton of P6 does

Figure 2: All of P6’s vertices are corner vertices.

admit Hamiltonian paths, and indeed we found a path
that unfolds P6 to a net.

Let GP be the dual graph of P : each cube is a node,
and two nodes are connected if they are glued face-to-
face. A polycube tree is a polycube whose dual graph is
a tree. P6 is a polycube tree. That it has a Hamiltonian
path is an instance of a more general claim:

Lemma 1 The graph GP for any polycube tree P has
a Hamiltonian cycle.

Proof. It is easy to see by induction that every poly-
cube tree can be built by gluing cubes each of which
touches just one face at the time of gluing: never is
there a need to glue a cube to more than one face of the
previously built object.

A single cube has a Hamiltonian cycle. Now assume
that every polycube tree of ≤ n cubes has a Hamilto-
nian cycle. For a tree P of n + 1 cubes, remove a GP

leaf-node cube C, and apply the induction hypothesis.
The exposed square face f to which C glues to make
P includes either 2 or 3 edges of the Hamiltonian cycle
(4 would close the cycle; 1 or 0 would imply the cycle
misses some vertices of f). It is then easy to extend the
Hamiltonian cycle to include C, as shown in Fig. 3. �

So to prove that a polycube tree has no edge zipper
unfolding would require an argument that confronted
nonoverlap. This leads to an open question:

Figure 3: (a) f contains 3 edges of the cycle (blue); (b)
f contains 2 edges of the cycle. The cycles are extended
to C by replacing the blue with the the red paths.

Question 1 Does every polycube tree have an edge zip-
per unfolding?

3 Bipartite GP

To guarantee the nonexistence of Hamiltonian paths,
we can exploit the bipartiteness of GP , using Lemma 3
below.

Lemma 2 A polycube graph GP is 2-colorable, and
therefore bipartite.

Proof. Label each lattice point p of Z3 with the {0, 1}-
parity of the sum of the Cartesian coordinates of p. A
polycube P ’s vertices are all lattice points of Z3. This
provides a 2-coloring of GP ; 2-colorable graphs are bi-
partite. �

The parity imbalance in a 2-colored (bipartite)
graph is the absolute value of the difference in the num-
ber of nodes of each color.

Lemma 3 A bipartite graph G with a parity imbalance
> 1 has no Hamiltonian path.1

Proof. The nodes in a Hamiltonian path alternate col-
ors 010101 Because by definition a Hamiltonian
path includes every node, the parity imbalance in a bi-
partite graph with a Hamiltonian path is either 0 (if of
even length) or 1 (if of odd length). �

So if we can construct a polycube P that (a) has no
flat vertices, and (b) has parity imbalance > 1, then we
will have established that P has no Hamiltonian path,
and therefore no edge zipper unfolding. We now show
that the polycube P44, illustrated in Fig. 4, meets these
conditions.

Lemma 4 The polycube P44’s graph GP44
has parity

imbalance of 2.

Proof. Consider first the 2×2×2 cube that is the core
of P44; call it P222. The front face F has an extra 0;
see Fig. 5. It is clear that the 8 corners of P222 are all

1Stated at http://mathworld.wolfram.com/

HamiltonianPath.html.

102

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 4: The polycube P44, consisting of 44 cubes, has
no Hamiltonian path.

0

1

0

1

0

1

0

1

0

Figure 5: 2-coloring of one face of P222.

colored 0. The midpoint vertices of the 12 edges of P222

are colored 1. Finally the 6 face midpoints are colored
0. So 14 vertices are colored 0 and 12 colored 1.

Next observe that attaching a cube C to exactly one
face of any polycube does not change the parity: the
receiving face f has colors 0101, and the opposite face
of C has colors 1010.

Now, P44 can be constructed by attaching six copies
of a 6-cube “cross,” call it P+, which in isolation is a
polycube tree and so can be built by attaching cubes
each to exactly one face. And each P+ attaches to one
corner cube of P222. Therefore P44 retains P222’s imbal-
ance of 2. �

The point of the P+ attachments is to remove the flat
vertices of P222. Note that when attached to P222, each
P+ has only corner vertices.

Theorem 5 Polycube P44 has no edge zipper unfolding.

Proof. Although it takes some scrutiny of Fig. 4 to
verify, P44 has no (degree-4) flat vertices. Thus an edge
zipper unfolding must pass through every vertex, and
so be a Hamiltonian path. Lemma 4 says that GP44 has

imbalance 2, and Lemma 3 says it therefore cannot have
a Hamiltonian path. �

4 Construction of P14

It turns out that the smaller polycube P14 shown in
Fig. 6 also has no edge zipper unfolding, even though
it has flat vertices. To establish this, we still need an

Figure 6: P14: P222 with six 1-cube attachments.

imbalance > 1, which easily follows just as in Lemma 4:

Lemma 6 The polycube P14’s graph GP14 has parity
imbalance of 2.

But notice that P14 has three flat vertices: a, b, and c.

Theorem 7 Polycube P14 has no edge zipper unfolding.

Proof. An edge zipper unfolding need not pass through
the three flat vertices, a, b, and c, but it could pass
through one, two, or all three. We show that in all
cases, an appropriately modified subgraph of GP14

has
no Hamiltonian path. Let ρ be a hypothetical edge zip-
per unfolding cut path. We consider four exhaustive
possibilities, and show that each leads to a contradic-
tion.

(0) ρ includes a, b, c. So ρ is a Hamiltonian path
in GP14

. But Lemma 6 says that GP14
has imbal-

ance 2, and Lemma 3 says that no such graph has
a Hamiltonian path.

(1) ρ excludes one flat vertex a and includes b, c.
(Because of the symmetry of P14, it is no loss of
generality to assume that it is a that is excluded.)
If ρ excludes a, then it does not travel over any of
the four edges incident to a. Thus we can delete a
from GP14

; say that G−a = GP14
\ a. This graph is

shown in Fig. 7. Following the coloring in Fig. 5,
all corners of P222 are colored 0, so each of the edge
midpoints a, b, c is colored 1. The parity imbalance

103

32nd Canadian Conference on Computational Geometry, 2020

Figure 7: Schlegel diagram of G−a. We follow [DF18] in
labeling the faces of a cube as F,K,R,L, T,B for Front,
bacK, Right, Left, Top, Bottom respectively. The cor-
ners of P222 are labeled 0, 1, 2, 3 around the bottom face
B, and 4, 5, 6, 7 around the top face T . m is the ver-
tex in the middle of B. The edges deleted by removing
vertex a are shown dashed.

of P14 is 2 extra 0’s. Deleting a maintains bipartite-
ness and increases the parity imbalance of G−a to
3. Therefore by Lemma 3, G−a has no Hamiltonian
path, and such a ρ cannot exist.

(2) ρ includes just one flat vertex c, and excludes
a, b. (Again symmetry ensures there is no loss of
generality in assuming the one included flat vertex
is c.) ρ must include corner x, which is only ac-
cessible in GP14

through the three flat vertices. If
ρ excludes a, b, then it must include the edge cx.
Let G−ab = GP14 \ {a, b}. In G−ab, x has degree
1, so ρ terminates there. It must be that ρ is a
Hamiltonian path in G−ab, but the deletion of a, b
increases the parity imbalance to 4, and so again
such a Hamiltonian path cannot exist.

(3) ρ excludes a, b, c. Because corner x is only ac-
cessible through one of these flat vertices, ρ never
reaches x and so cannot be an edge zipper unfold-
ing.

Thus the assumption that there is an edge zipper un-
folding cut path ρ for P14 reaches a contradiction in all
four cases. Therefore, there is no edge zipper unfolding

cut path for P14.2 �

5 Edge Unfoldings of P14 and P44

Now that it is known that P14 and P44 each have no edge
zipper unfolding, it is natural to wonder whether either
settles the edge-unfolding open problem: can they be
edge unfolded? Indeed both can: see Figures 8 and 9.

Figure 8: Edge unfolding of P14. Colors: green = cut,
red = mountain, blue = valley, yellow = flat.

The colors in these layouts are those used by Origami
Simulator [GDG18]. Fig. 10 shows a partial folding

Figure 9: Edge unfolding of P44. Colors: green = cut,
red = mountain, blue = valley, yellow = flat.

of P44, and animations are at http://cs.smith.edu/

~jorourke/Unf/NoEdgeUnzip.html.

2Just to verify this conclusion, we constructed these graphs in
Mathematica and FindHamiltonianPath[] returned {} for each.

104

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 10: Partial folding of the layout in Fig. 9. Com-
pare with Fig. 4.

6 Many Polycubes with No Edge Zipper Unfolding

As pointed out by Ryuhei Uehara,3 P44 can be extended
to an infinite number of polycubes with no zipper un-
folding. Let P ′6 be the polycube in Fig. 2 with the bot-
tom cube removed. So P ′6 has a ‘+’ sign of five cubes
in its base layer. Let B be the bottom face of the cube
at the center of the ‘+’ sign. Attach P ′6 to the highest
cube of P44 in Fig. 1(a) by gluing B to the top face of
that top cube. It is easy to verify that all new vertices
of this augmented object, call it P ′44, are corners. The
joining process can be repeated with another copy of
P ′6, producing P ′′44, and so on. All of these polycubes
have no zipper unfolding.

We have not attempted to edge-unfold these larger
objects.

7 Open Problems

The most interesting question remaining in this line of
investigation is Question 1 (Sec. 2): Does every poly-
cube tree have an edge zipper unfolding?

Acknowledgements. We thank participants of the
Bellairs 2018 workshop for their insights. We benefitted
from suggestions by the referees.

References

[BDD+98] Therese Biedl, Erik D. Demaine, Martin L.
Demaine, Anna Lubiw, Joseph O’Rourke,
Mark Overmars, Steve Robbins, and Sue
Whitesides. Unfolding some classes of
orthogonal polyhedra. In Proc. 10th Canad.

3Personal communication, June 2020.

Conf. Comput. Geom., pages 70–71, 1998.
Full version in Elec. Proc.: http://cgm.

cs.mcgill.ca/cccg98/proceedings/

cccg98-biedl-unfolding.ps.gz.

[DDL+10] Erik D. Demaine, Martin L. Demaine, Anna
Lubiw, Arlo Shallit, and Jonah Shallit. Zip-
per unfoldings of polyhedral complexes. In
Proc. 22nd Canad. Conf. Comput. Geom.,
pages 219–222, August 2010.

[DDU13] Erik D. Demaine, Martin L. Demaine, and
Ryuhei Uehara. Zipper unfoldability of
domes and prismoids. In Proc. 25th Canad.
Conf. Comput. Geom., August 2013.

[DF18] Mirela Damian and Robin Flatland. Un-
folding orthotrees with constant refinement.
http://arxiv.org/abs/1811.01842, 2018.

[GDG18] Amanda Ghassaei, Erik D. Demaine, and
Neil Gershenfeld. Fast, interactive origami
simulation using GPU computation. In
Origami 7: 7th Internat. Mtg. Origami Sci-
ence, Mathematics and Education (OSME),
2018.

[O’R10] Joseph O’Rourke. Flat zipper-unfolding
pairs for Platonic solids. http://arxiv.

org/abs/1010.2450, October 2010.

[O’R19] Joseph O’Rourke. Unfolding polyhedra. In
Proc. 31st Canad. Conf. Comput. Geom.,
August 2019.

[She75] Geoffrey C. Shephard. Convex polytopes
with convex nets. Math. Proc. Camb. Phil.
Soc., 78:389–403, 1975.

105

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Acutely Triangulated, Stacked, and Very Ununfoldable Polyhedra

Erik D. Demaine∗ Martin L. Demaine∗ David Eppstein†

Abstract

We present new examples of topologically convex edge-
ununfoldable polyhedra, i.e., polyhedra that are combi-
natorially equivalent to convex polyhedra, yet cannot be
cut along their edges and unfolded into one planar piece
without overlap. One family of examples is acutely
triangulated, i.e., every face is an acute triangle. An-
other family of examples is stacked, i.e., the result of
face-to-face gluings of tetrahedra. Both families achieve
another natural property, which we call very unun-
foldable : for every k, there is an example such that
every nonoverlapping multipiece edge unfolding has at
least k pieces.

1 Introduction

Can every convex polyhedron be cut along its edges
and unfolded into a single planar piece without overlap?
Such edge unfoldings or nets are useful for construct-
ing 3D models of a polyhedron (from paper or other ma-
terial such as sheet metal): cut out the net, fold along
the polyhedron’s uncut edges, and re-attach the poly-
hedron’s cut edges [25]. Unfoldings have also proved
useful in computational geometry algorithms for find-
ing shortest paths on the surface of polyhedra [3, 5, 9].

Edge unfoldings were first described in the early 16th
century by Albrecht Dürer [16], implicitly raising the
still-open question of whether every convex polyhedron
has one (sometimes called Dürer’s conjecture). The
question was first formally stated in 1975 by G. C. Shep-
hard, although without reference to Dürer [17, 23]. It
has been heavily studied since then, with progress of
two types [15,22]:

1. finding restricted classes of polyhedra, or general-
ized types of unfoldings, for which the existence of
an unfolding can be guaranteed; and

2. finding generalized classes of polyhedra, or re-
stricted types of unfoldings, for which counterex-
amples — ununfoldable polyhedra — can be
shown to exist.

∗Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, {edemaine,mdemaine}
@mit.edu
†Computer Science Department, University of California,

Irvine, eppstein@uci.edu. This work was supported in part by
the US National Science Foundation under grant CCF-1616248.

Results guaranteeing the existence of an unfolding in-
clude:

• Every pyramid, prism, prismoid, and dome has an
edge unfolding [15].

• Every sufficiently flat acutely triangulated convex
terrain has an edge unfolding [21]. Consequentially,
every acutely triangulated convex polyhedron can
be unfolded into a number of planar pieces that is
bounded in terms of the “acuteness gap” of the
polyhedron, the minimum distance of its angles
from a right angle.

• Every convex polyhedron has an affine transforma-
tion that admits an edge unfolding [18].

• Every convex polyhedron can be unfolded to a sin-
gle planar piece by cuts interior to its faces [3, 14].

• Every polyhedron with axis-parallel sides can be
unfolded after a linear number of axis-parallel cuts
through its faces [10].

• Every triangulated surface (regardless of genus) has
a “vertex unfolding”, a planar layout of triangles
connected through their vertices that can be folded
into the given surface [13].

• For ideal polyhedra in hyperbolic space, unlike Eu-
clidean convex polyhedra or non-ideal hyperbolic
polyhedra, every spanning tree forms the system
of cuts of a convex unfolding into the hyperbolic
plane.

Previous constructions of ununfoldable polyhedra in-
clude the following results. A polyhedron is topolog-
ically convex if it is combinatorially equivalent to a
convex polyhedron, meaning that its surface is a topo-
logical sphere and its graph is a 3-vertex-connected pla-
nar graph.

• Some orthogonal polyhedra and topologically con-
vex orthogonal polyhedra have no edge unfolding,
and it is NP-complete to determine whether an
edge unfolding exists in this case [1, 8].

• There exists a convex-face star-shaped topolog-
ically convex polyhedron with no edge unfold-
ing [20,24].

106

32nd Canadian Conference on Computational Geometry, 2020

• There exists a triangular-face topologically convex
polyhedron with no edge unfolding [7].

• There exist edge-ununfoldable topologically convex
polyhedra with as few as 7 vertices and 6 faces, or
6 vertices and 7 faces [4].

• There exists a topologically convex polyhedron that
does not even have a vertex unfolding [2].

• There exist domes that have no Hamiltonian un-
folding, in which the cuts form a Hamiltonian path
through the graph of the polyhedron [12]. Simi-
larly, there exist polycubes that have no Hamilto-
nian unfolding [11].

• There exists a convex polyhedron, equipped with
3-vertex-connected planar graph of geodesics par-
titioning the surface into regions metrically equiv-
alent to convex polygons, that cannot be cut and
unfolded along graph edges [6].

In this paper, we consider two questions left open
by the previous work on edge-ununfoldable polyhe-
dra with triangular faces [7], and strongly motivated
by O’Rourke’s recent results on unfoldings of acutely-
triangulated polyhedra [21]. First, the previous coun-
terexample of this type involved triangles with highly
obtuse angles. Is this a necessary feature of the con-
struction, or does there exist an ununfoldable polyhe-
dron with triangular faces that are all acute? Second,
how far from being unfoldable can these examples be?
Is it possible to cut the surfaces of these polyhedra into
a bounded number of planar pieces (instead of a single
piece) that can be folded and glued to form the polyhe-
dral surface? (Both questions are motivated by previ-
ously posed analogous questions for convex polyhedra,
as easier versions of Dürer’s conjecture [15, Open Prob-
lems 22.12 and 22.17].)

We answer both of these questions negatively, by find-
ing families of topologically convex edge-ununfoldable
polyhedra with all faces acute triangles, in which any
cutting of the surface into regions that can be unfolded
to planar pieces must use an arbitrarily large number
of pieces. Additionally, we use a similar construction
to prove that there exist edge-ununfoldable stacked
polyhedra [19], formed by gluing tetrahedra face-to-
face with the gluing pattern of a tree, that also re-
quire an arbitrarily large number of pieces to unfold.
We leave open the question of whether there exists
an edge-ununfoldable stacked polyhedron with acute-
triangle faces.

2 Hats

Our construction follows that of Bern et al. [7] in being
based on certain triangulated topological disks, which

Figure 1: Combinatorial structure of a hat

they called hats. The combinatorial structure of a hat
(in top view, but with different face angles than the hat
we use in our proof) is shown in Figure 1: It consists
of nine triangles, three of which (the brim, blue in the
figure) have one edge on the outer boundary of the disk.
The next three triangles, yellow in the figure, have a
vertex but not an edge on the disk boundary; we call
these the band of the hat. The central three triangles,
pink in the figure, are disjoint from the boundary and
meet at a central vertex; we call these the crown of the
hat.

In both the construction of Bern et al. [7] and in our
construction, the three vertices of the hat that are inte-
rior to the disk but not at the center all have negative
curvature, meaning that the sum of the angles of the
faces meeting at these vertices is greater than 2π. The
center vertex, on the other hand, has positive curvature,
a sum of angles less than 2π. When this happens, we
can apply the following lemmas:

Lemma 2.1 At any negatively-curved vertex of a poly-
hedron, any unfolding of the polyhedron that cuts only its
edges and separates its surface into one or more simple
polygons must cut at least two edges at each negatively-
curved vertex.

Proof. If only one edge were cut then the faces sur-
rounding that vertex could not unfold into the plane
without overlap. �

Lemma 2.2 Let D be a subset of the faces of a polyhe-
dron, such that the polyhedron is topologically a sphere
and D is topologically equivalent to a disk (such as a
hat). Then in any unfolding of the polyhedron (possible
cutting it into multiple pieces), either D is separated

107

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 2: Two paths from a boundary vertex of a hat,
through all three negatively curved vertices, to the cen-
ter vertex

into multiple pieces by a path of cut edges from one
boundary vertex of D to another or by a cycle of cut
edges within D, or the set of cut edges within D forms
a forest with at most one boundary vertex for each tree
in the forest.

Proof. If the cut edges within D do not form a forest,
they contain a cycle and the Jordan Curve Theorem
implies that this cycle separates an interior part of the
boundary from the exterior. If they form a forest in
which some tree contains two boundary vertices, then
they contain a boundary-to-boundary path within D,
again separating D by the Jordan Curve Theorem. The
only remaining possibility is a forest with at most one
boundary vertex per tree. �

Lemma 2.3 For a hat combinatorially equivalent to
the one in Figure 1, with positive curvature at the center
vertex and negative curvature at the other three interior
vertices, any unfolding that does not cut the hat into
multiple pieces must cut a set of edges along a single
path from a boundary vertex to the center vertex.

Proof. By Lemma 2.2, each component of cut edges
must form a tree with at most one boundary vertex
within the hat. But every tree with one or more edges
has at least two leaves, and every tree that is not a path
has at least three leaves. By Lemma 2.1, the only non-
boundary leaf can be the center vertex, so each com-
ponent must be a path from the boundary to this ver-
tex. �

Up to symmetries of the hat, there are only two
distinct shapes that the path of Lemma 2.3 from the
boundary to the center of a hat can have (Figure 2).
These two cuttings differ in how the crown triangles are
attached to the band and to each other, but they both
cut the brim and band triangles in the same way, into
a strip of triangles connected edge-to-edge around the
boundary of the hat.

Our key new construction is depicted in unfolded (but
self-overlapping) form in Figure 3. It is a hat in which
all triangles are acute and isosceles:

• The three brim triangles have apex angle 85◦ and
base angle 47.5◦.

• The three band triangles have base angle 85◦ and
apex angle 10◦.

• The three crown triangles are congruent to the
band triangles, with base angle 85◦ and apex angle
10◦.

As in the construction of Bern et al. [7], this leaves neg-
ative curvature (total angle 425◦ from five 85◦ angles)
at the three non-central interior angles of the hat, and
positive curvature (total angle 30◦) at the center vertex,
allowing the lemmas above to apply. The cut edges of
the figure form a tree with a degree-three vertex at one
of the negatively curved vertices of the hat, and a leaf
at another negatively curved vertex, the one at which
the self-overlap of the figure occurs, So the cutting in
the figure does not match in detail either of the two
path cuttings of Figure 2. Nevertheless, the brim and
band triangles are unfolded as they would be for either
of these two path cuttings. It is evident from the fig-
ure that this unfolding of the brim and band triangles
cannot be extended to a one-piece unfolding of the en-
tire hat: if a crown triangle is attached to the middle
of the three unfolded band triangles (as it is in the fig-
ure) then there is no room on either side of it to attach
the other two crown triangles, and a crown triangle at-
tached to either of the other two band triangles would
overlap the opposite band triangle. We prove this visual
observation more formally below.

Lemma 2.4 The hat with acute triangles described
above has no single-piece unfolding.

Proof. As we have already seen in Lemma 2.3, any un-
folding (if it exists) must be along one of the two cut
paths depicted in Figure 2. As a result, the unfolding of
the brim and band triangles (but not the crown trian-
gles) must be as depicted in Figure 3. In this unfolding,
the three base sides of the unfolded band triangles form
a polygonal chain whose interior angles (surrounding
the central region of the figure where the pink crown
triangles are attached) can be calculated as 105◦.

A regular pentagon has interior angles of 108◦, and
has the property that each vertex lies on the perpendic-
ular bisector of the opposite edge. Because the interior
angles of the chain of base sides of band triangles are
105◦, less than this 108◦ angle, it follows that the band
triangle at one end of the chain extends across the per-
pendicular bisector of the base edge at the other end
of the chain. Further, it does so at a point closer than
the vertex of a regular pentagon sharing this same base
edge (Figure 4).

If a crown triangle were attached to one of the two
base edges at the ends of the chain of three base edges,

108

32nd Canadian Conference on Computational Geometry, 2020

Figure 3: A hat made with acute isosceles triangles. Un-
like Figure 2, the cuts made to form the self-overlapping
unfolding shown do not form a path.

Figure 4: Each vertex of a regular pentagon lies on the
perpendicular bisector of the opposite side; in a path of
three equal edges with the tighter angle 105◦, the last
edge overlaps the perpendicular bisector of the first.

its altitude would lie along the perpendicular bisector of
the base edge. And because the crown triangle has an
apex angle of 10◦, sharper than the angle of an isosceles
triangle inscribed within a regular pentagon, its altitude
extends across the perpendicular bisector farther than
the regular pentagon vertex, causing it to overlap with
the band triangle at the other end of the chain of three
base edges.

Therefore, attaching a crown triangle to either the
first or last of the band triangle base edges in the

Figure 5: Tetrahedron with faces replaced by hats

chain of these three edges necessarily leads to a self-
overlapping unfolding. However, these two ways of at-
taching a crown triangle are the only ones permitted by
the two cases depicted in Figure 2. Attaching a crown
triangle to the middle of the three base edges, as in Fig-
ure 3, can only be done by cutting along a tree that is
not a path. Therefore, no unfolding exists. �

The following construction is straightforward, and
will allow us to construct polyhedra with multiple hats
while keeping the hats disjoint from each other.

Lemma 2.5 The hat with acute triangles described
above can be realized in three-dimensional space, lying
within a right equilateral-triangle prism whose base is
the boundary of the hat.

3 Acute Ununfoldable Polyhedra

We now use these hats to construct a topologically con-
vex ununfoldable polyhedron.

Theorem 3.1 There exists a topologically convex un-
unfoldable polyhedron whose faces are all acute isosceles
triangles.

Proof. Replace the four faces of a regular tetrahedron
by acute-triangle hats, all pointing outward, as shown
in Figure 5. Because each lies within a prism having
the tetrahedron face as a base, they do not overlap each
other in space. By Lemma 2.4, no hat can be unfolded
into a single piece, so any possible unfolding (even one
into multiple pieces) must cut each hat along some path
between two of its three boundary vertices (at least;
there may be more cuts besides these). The four paths

109

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 6: Hat for stacked polyhedra (top view, left, and
exploded view as a stacked polyhedron, right)

formed in this way are disjoint except at their ends, and
connect the four vertices of the tetrahedron, necessarily
forming at least one cycle that separates the tetrahedron
into at least two pieces. �

Like the examples of Tarasov, Grünbaum, and Bern
et al. [7, 20, 24], the resulting polyhedron is also star-
shaped, with the center of the tetrahedron in its kernel.

4 Stacked Ununfoldable Polyhedra

A stacked polyhedron is a polyhedron that can be
formed by repeatedly gluing a tetrahedron onto a single
triangular face of a simpler stacked polyhedron, starting
from a single tetrahedron [19]. To make ununfoldable
stacked polyhedra, we use a similar strategy to our con-
struction of ununfoldable polyhedra with acute-triangle-
faces, in which we replace some faces of a convex poly-
hedron by hats. However, the acute-triangle hat that we
used earlier cannot be used as part of a stacked polyhe-
dron: in a stacked polyhedron, every non-face triangle is
subdivided into three smaller triangles, but that is not
true of the outer triangle of Figure 1. Instead, we use the
hat shown in Figure 6. As before, it has three brim tri-
angles, three band triangles, and three crown triangles,
but they are arranged differently and less symmetrically.
We make the brim and band triangles nearly coplanar,
with shapes approximating those shown in the figure,
but projecting slightly out of the figure so that the result
can be constructed as a stacked polyhedron. We choose
the crown triangles to be isosceles, and taller than the
isosceles triangles inscribed in regular pentagons, as in
our acute-triangle construction, so that (as viewed in
Figure 6) they project out of the figure.

Lemma 4.1 The hat described above has no single-
piece unfolding.

Proof. As with our other hat, the center vertex of this
hat has positive curvature, and the other three interior
vertices have negative curvature, so by Lemma 2.3 any
unfolding of the hat that leaves it in one piece must
form a path consisting of a single edge cutting from the

boundary to the crown, two edges cutting between the
band and the crown, and one edge cutting to the center
of the crown.

There are many more cases than there were in Fig-
ure 2, but we can avoid case-based reasoning by arguing
that in each case, the brim and band triangles unfold in
such a way that the three edges between the band and
crown triangles form a polygonal chain with interior an-
gles less than the 108◦ angles of the regular pentagon
(in fact, close to 60◦, because of the way we have con-
structed this part of the hat to differ only by a small
amount from the top view shown in Figure 6. There-
fore, just as in Figure 4, each edge at one end of this
chain of three edges overlaps the perpendicular bisector
of the edge at the other end of the chain.

Cutting along a path from a boundary edge of the hat
to its center vertex forces the three crown triangles to
be attached to the unfolded brim and band triangles on
one of the two edges at the end of this path. However,
our construction makes the three crown triangles tall
enough to ensure that, no matter which of these two
edges they are attached to, they will overlap the edge
at the other end of the path at the point where it crosses
the perpendicular bisector. �

Theorem 4.2 There exists an ununfoldable stacked
polyhedron.

Proof. We replace the four faces of a regular tetrahe-
dron with the hat described above. Each such replace-
ment can be realized as a stacking of four tetrahedra
onto the face, so the result is a stacked polyhedron. As
in Theorem 3.1, each hat lies within a prism having the
tetrahedron face as a base, so they do not overlap each
other in space; and the set of edges cut in any unfolding
must include at least four paths between the four tetra-
hedron vertices, necessarily forming a cycle that cuts
one part of the polyhedron surface from the rest. �

A stacked hat with the same combinatorial structure
as the one used in this construction, with the center ver-
tex positively curved and the surrounding three vertices
negatively curved, cannot be formed from acute trian-
gles, because that would leave the degree-four vertex
with positive curvature. We leave as an open question
whether it is possible for an ununfoldable stacked poly-
hedron to have all faces acute.

5 Very Ununfoldable Polyhedra

Both families of examples above can be made into very
ununfoldable families. In both cases, the approach is the
same: instead of starting from a tetrahedron, we start
from a polyhedron with many triangular faces, and show
that attaching hats to more and more triangles requires
more and more unfolded pieces.

110

32nd Canadian Conference on Computational Geometry, 2020

Theorem 5.1 There exist topologically convex polyhe-
dra with acute isosceles triangle faces such that any un-
folding formed by cutting along edges into multiple non-
self-overlapping pieces requires an unbounded number of
pieces.

Proof. For any integer k ≥ 1, refine the regular tetra-
hedron by subdividing each edge into k equal-length
edges and subdivide each face into a regular grid of∑k

i=1(2i − 1) = k2 equilateral triangles of side length
1/k, for a total of 4k2 faces and (by inclusion-exclusion)∑k+1

i=1 i − 6(k + 1) + 4 = 2k2 + 2 vertices. Replace
each equilateral triangular face by an acute-triangle hat
pointing outward. As in Theorem 3.1, each hat lies
within a prism having the face of the tetrahedron as a
base, so they do not overlap each other in space; and
any unfolding into multiple pieces must, in each hat, ei-
ther cut along a cycle within the hat or cut along some
path connecting two of its three boundary vertices. Let
c be the number of cycles within hats cut in this way, so
that we have a system of at least 4k2 + c disjoint paths
connecting pairs of subdivided-tetrahedron vertices.

Now consider cutting the polyhedron surface along
these paths, one by one. Each cut either connects
two subdivided-tetrahedron vertices that were not pre-
viously connected along the system of cuts, or two
subdivided-tetrahedron vertices that were previously
connected. If cutting along a path connects two ver-
tices that were not previously connected, it reduces the
number of connected components among these vertices;
this case can happen at most 2k2 + 1 times. If cut-
ting along a path connects two vertices that were previ-
ously connected, then that path and the path through
which they were previously connected form a Jordan
curve that separates off two parts of the surface from
each other. Because there are 4k2 − c paths connecting
pairs of subdivided-tetrahedron vertices, only 2k2 +1 of
which can form new connections, this case must happen
at least 2k2 − 1 − c times. Because the surface started
with a single piece and undergoes at least 2k2 − 1 − c
separations, it ends up with at least 2k2−c pieces, which
together with the c additional pieces formed by cycles
within hats, form a total of at least 2k2 pieces. �

Theorem 5.2 There exist topologically convex stacked
polyhedra such that any unfolding formed by cutting
along edges into multiple non-self-overlapping pieces re-
quires an unbounded number of pieces.

Proof. For any integer k ≥ 0, refine the regular tetra-
hedron by choosing any face and attaching to the face
a very shallow tetrahedron whose apex is near the in-
center of the face, effectively splitting the face into three
faces, and repeating this process a total of k times. Be-
cause each attachment increases the number of faces by
2 and the number of vertices by 1, the result is a stacked

polyhedron with 4+2k triangular faces (not necessarily
equilateral) and 4 + k vertices. Replace each triangle
with a version of the hat from Section 4 pointed out-
ward, using the availability flexibility to make the inter-
face between the band and crown an equilateral triangle
near the in-center of the original triangle. As in Theo-
rem 4.2, the result is a stacked polyhedron; each hat lies
within a prism having the face of the tetrahedron as a
base, so they do not overlap each other in space; and any
unfolding into multiple pieces must cut each hat along
some path connecting two of its three boundary vertices.
As in Theorem 5.1, at most 3 + k such paths can de-
crease the number of connected components among the
4 + k vertices, leaving at least 1 + k paths that separate
the surface into at least 2 + k pieces. �

Acknowledgments

This research was initiated during the Virtual Workshop
on Computational Geometry organized by E. Demaine
on March 20–27, 2020. We thank the other participants
of that workshop for helpful discussions and providing
an inspiring atmosphere.

References

[1] Zachary Abel and Erik D. Demaine.
Edge-Unfolding Orthogonal Polyhedra is Strongly
NP-Complete. In Proceedings of the 23rd Annual
Canadian Conference on Computational Geometry
(CCCG 2011), 2011. URL: https://www.cccg.ca/
proceedings/2011/papers/paper43.pdf.

[2] Zachary Abel, Erik D. Demaine, and Martin L.
Demaine. A topologically convex
vertex-ununfoldable polyhedron. In Proceedings of
the 23rd Canadian Conference on Computational
Geometry (CCCG 2011), Toronto, August 10–12,
2011, 2011. URL: https:
//cccg.ca/proceedings/2011/papers/paper85.pdf.

[3] Pankaj K. Agarwal, Boris Aronov, Joseph
O’Rourke, and Catherine A. Schevon. Star
unfolding of a polytope with applications. SIAM
Journal on Computing, 26(6):1689–1713, 1997.
doi:10.1137/S0097539793253371.

[4] Hugo A. Akitaya, Erik D. Demaine, David
Eppstein, Tomohiro Tachi, and Ryuhei Uehara.
Minimal ununfoldable polyhedron. In Abstracts
from the 22nd Japan Conference on Discrete and
Computational Geometry, Graphs, and Games
(JCDCGGG 2019), pages 27–28, Tokyo, Japan,
September 2019. URL: https://erikdemaine.org/
papers/MinimalUnunfoldable JCDCGGG2019/.

111

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[5] Boris Aronov and Joseph O’Rourke. Nonoverlap
of the star unfolding. Discrete & Computational
Geometry, 8(3):219–250, 1992.
doi:10.1007/BF02293047.

[6] Nicholas Barvinok and Mohammad Ghomi.
Pseudo-edge unfoldings of convex polyhedra.
Discrete & Computational Geometry, 2019.
doi:10.1007/s00454-019-00082-1.

[7] Marshall Bern, Erik D. Demaine, David Eppstein,
Eric Kuo, Andrea Mantler, and Jack Snoeyink.
Ununfoldable polyhedra with convex faces.
Computational Geometry: Theory & Applications,
24(2):51–62, 2003.
doi:10.1016/S0925-7721(02)00091-3.

[8] Therese C. Biedl, Erik D. Demaine, Martin L.
Demaine, Anna Lubiw, Mark H. Overmars,
Joseph O’Rourke, Steve Robbins, and Sue
Whitesides. Unfolding some classes of orthogonal
polyhedra. In Proceedings of the 10th Canadian
Conference on Computational Geometry (CCCG
1998), 1998. URL: https://cgm.cs.mcgill.ca/
cccg98/proceedings/cccg98-biedl-unfolding.ps.gz.

[9] Jindong Chen and Yijie Han. Shortest paths on a
polyhedron. In Proceedings of the 6th Annual
Symposium on Computational Geometry (SoCG
1990). ACM Press, 1990.
doi:10.1145/98524.98601.

[10] Mirela Damian, Erik D. Demaine, Robin Flatland,
and Joseph O’Rourke. Unfolding genus-2
orthogonal polyhedra with linear refinement.
Graphs and Combinatorics, 33(5):1357–1379,
2017. doi:10.1007/s00373-017-1849-5.

[11] Erik D. Demaine, Martin L. Demaine, David
Eppstein, and Joseph O’Rourke. Some polycubes
have no edge-unzipping. Electronic preprint
arxiv:1907.08433, 2019.

[12] Erik D. Demaine, Martin L. Demaine, and Ryuhei
Uehara. Zipper unfoldability of domes and
prismoids. In Proceedings of the 25th Canadian
Conference on Computational Geometry (CCCG
2013), Waterloo, Ontario, Canada August
8th–10th, 2013, 2013. URL: https:
//cccg.ca/proceedings/2013/papers/paper 10.pdf.

[13] Erik D. Demaine, David Eppstein, Jeff Erickson,
George W. Hart, and Joseph O’Rourke.
Vertex-unfoldings of simplicial manifolds. In
Discrete Geometry: In honor of W. Kuperberg’s
60th birthday, volume 253 of Pure and Applied
Mathematics, pages 215–228. Marcel Dekker,
2003.

[14] Erik D. Demaine and Anna Lubiw. A
generalization of the source unfolding of convex
polyhedra. In Alberto Márquez, Pedro Ramos,
and Jorge Urrutia, editors, Revised Papers from
the 14th Spanish Meeting on Computational
Geometry, volume 7579 of Lecture Notes in
Computer Science, pages 185–199, Alcalá de
Henares, Spain, June 2011.
doi:10.1007/978-3-642-34191-5 18.

[15] Erik D. Demaine and Joseph O’Rourke.
Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press,
July 2007.

[16] Albrecht Dürer. The Painter’s Manual: A
Manual of Measurement of Lines, Areas, and
Solids by Means of Compass and Ruler Assembled
by Albrecht Dürer for the Use of All Lovers of Art
with Appropriate Illustrations Arranged to be
Printed in the Year MDXXV. Abaris Books, Inc.,
New York, 1977. English translation of
Unterweysung der Messung mit dem Zirkel un
Richtscheyt in Linien Ebnen und Gantzen
Corporen, 1525.

[17] Michael Friedman. A History of Folding in
Mathematics: Mathematizing the Margins.
Birkhäuser, 2018. See in particular page 47.
doi:10.1007/978-3-319-72487-4.

[18] Mohammad Ghomi. Affine unfoldings of convex
polyhedra. Geometry & Topology, 18:3055–3090,
2014. doi:10.2140/gt.2014.18.3055.

[19] Branko Grünbaum. A convex polyhedron which is
not equifacettable. Geombinatorics,
10(4):165–171, 2001. URL:
https://sites.math.washington.edu/∼grunbaum/
Nonequifacettablesphere.pdf.

[20] Branko Grünbaum. No-net polyhedra.
Geombinatorics, 11:111–114, 2002. URL:
https://www.math.washington.edu/∼grunbaum/
Nonetpolyhedra.pdf.

[21] Joseph O’Rourke. Edge-unfolding nearly flat
convex caps. In Bettina Speckmann and Csaba D.
Tóth, editors, Proceedings of the 34th
International Symposium on Computational
Geometry (SoCG 2018), volume 99 of LIPIcs,
pages 64:1–64:14, 2018.
doi:10.4230/LIPIcs.SoCG.2018.64.

[22] Joseph O’Rourke. Unfolding polyhedra.
Electronic preprint arxiv:1908.07152, 2019.

112

32nd Canadian Conference on Computational Geometry, 2020

[23] G. C. Shephard. Convex polytopes with convex
nets. Mathematical Proceedings of the Cambridge
Philosophical Society, 78(3):389–403, 1975.
doi:10.1017/s0305004100051860.

[24] A. S. Tarasov. Polyhedra that do not admit
natural unfoldings. Uspekhi Matematicheskikh

Nauk, 54(3):185–186, 1999.
doi:10.1070/rm1999v054n03ABEH000171.

[25] Magnus J. Wenninger. Polyhedron Models.
Cambridge University Press, 1971.

113

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Nets of higher-dimensional cubes

Kristin DeSplinter∗ Satyan L. Devadoss† Jordan Readyhough‡ Bryce Wimberly§

Abstract

In this extended abstract, we show that every ridge un-
folding of an n-cube is without self-overlap, yielding a
valid net. The results are obtained by developing ma-
chinery that translates cube unfolding into combinato-
rial frameworks. The bounding boxes of these cube nets
are also explored using integer partitions.

1 Introduction

The study of unfolding polyhedra was popularized by
Albrecht Dürer in the early 16th century in his influ-
ential book The Painter’s Manual. It contains the first
recorded examples of polyhedral nets, connected edge
unfoldings of polyhedra that lay flat on the plane with-
out overlap. Motivated by this, Shephard [6] conjectures
that every convex polyhedron can be cut along certain
edges and admits a net. This claim remains tantaliz-
ingly open.

We consider this question for higher-dimensional con-
vex polytopes. The codimension-one faces of a polytope
are facets and its codimension-two faces are ridges. The
analog of an edge unfolding of polyhedron is the ridge
unfolding of an n-dimensional polytope: the process of
cutting the polytope along a collection of its ridges so
that the resulting (connected) arrangement of its facets
develops isometrically into an Rn−1 hyperplane.

There is a rich history of higher-dimensional unfold-
ings of polytopes, with the collected works of Alexan-
drov [1] serving as seminal reading. In 1984, Turney [7]
enumerates the 261 ridge unfoldings of the 4-cube, and
in 1998, Buekenhout and Parker [2] extend this enumer-
ation to the other five regular convex 4-polytopes. Both
of these works focus on enumerative rather than geo-
metric unfolding results. Miller and Pak [4] construct
an algorithm which provides an unfolding of polytopes
without overlap. However, their method allows cuts in-
terior to facets, not just along ridges.

Our work targets ridge unfoldings of the n-cube. For
the 3-cube, Figure 1 shows the 11 different unfoldings

∗Department of Mathematics, University of Utah,
desplinter.k@utah.edu
†Department of Mathematics, University of San Diego,

devadoss@sandiego.edu
‡School of Architecture, Columbia University,

jhr2150@columbia.edu
§Trident Seafood Analysis, bwimberly2@gmail.com

(up to symmetry), all of which yield nets. Section 2 gen-
eralizes this into our main result: every ridge unfolding
of the n-cube results in a net. Section 3 considers pack-
ing these cube nets into boxes using integer partitions.
Finally, we form a conjecture concerning regular convex
polytopes in Section 4.

Figure 1: The 11 edge unfoldings of the 3-cube.

2 Rolling and Unfolding

We explore ridge unfoldings of a convex polytope P by
focusing on the combinatorics of the arrangement of its
facets in the unfolding. In particular, a ridge unfolding
induces a tree whose nodes are the facets of the polytope
and whose edges are the uncut ridges between the facets
[5]. Indeed, this is a spanning tree in the 1-skeleton of
the dual of P .

The dual of the n-cube is the n-orthoplex, whose 1-
skeleton forms the n-Roberts graph. The 2n nodes of
this graph (corresponding to the 2n facets of the n-cube)
can arranged on a circle so that antipodal nodes repre-
sent opposite facets of the cube. Thus, unfoldings of
an n-cube are in bijection with spanning trees of the
n-Roberts graph.

Example 1 Figure 2(a) considers an edge unfolding of
the 3-cube with its underlying dual tree. This appears as
a spanning tree on the 1-skeleton of the octahedral dual
(b), redrawn on the 3-Roberts graph (c).

(a)

1

23

1*

2*

3*

(b) (c)

1

2

3

1*

2*

3*

1

2

3
1*

2*

3*

Figure 2: An unfolding of a 3-cube with its correspond-
ing spanning tree on the 3-Roberts graph.

114

32nd Canadian Conference on Computational Geometry, 2020

Recall that a ridge unfolding of an n-cube is a con-
nected arrangement of its 2n facets, developed isomet-
rically into hyperplane Rn−1. Begin the unfolding by
choosing a (base) facet b of the n-cube, placing it on
the hyperplane. Then the normal vector nb to b be-
comes normal to the hyperplane. Consider an adjacent
facet c to b, and roll the cube along the ridge between
these facets, with facet c now landing on the hyper-
plane. Figure 3 shows a rendering of the orthogonal
projection of such a roll, with c∗ and b∗ corresponding
to the antipodal facets of c and b, and the marked red
edge representing the ridge between c and b.

initial position rolling final position

b

b*

c* c

c*

b b*

c

Figure 3: Rolling a cube on a hyperplane.

Since we rotate only along the plane spanned by the
normal vectors nb and nc, the remaining directions stay
fixed in the development. This is captured combinato-
rially as a rotation of a subgraph of the Roberts graph:

Definition 1 A roll from base facet b towards an ad-
jacent facet c rotates the four nodes {b, c, b∗, c∗} of the
Roberts graph along the quadrilateral (keeping the re-
maining nodes fixed), making c the new base facet.

Figure 4 shows an example for the 5-cube, where the
highlighted quadrilateral (depicting the roll) is invoking
the colored square of Figure 3.

1

2

4

5 2*

4*

5*

3

1*

3*

2

4

5 2*

4*

5*

1

3

1*

3*

2

4

5 2*

4*

5*

3

1

1*

3*

Figure 4: Rotating facet 1 towards 3∗ on a 5-cube.

The advantage of unfolding a cube (compared to an
arbitrary convex polytope) into hyperplane Rn−1 is that
its (n−1)-cube facets naturally tile this hyperplane. We
exploit this by recasting the unfolding in the language
of lattices. Without loss of generality, we can situate
a ridge unfolding of the n-cube so that the centroid of
each facet occupies a point of the integer lattice Zn−1

of Rn−1. To see the lattice structure manifest in the
n-Roberts graph, we imbue the latter with a coordi-
nate system: arbitrarily label the 2n − 2 edges of the

n-Roberts graph incident to the base node with the di-
rections

{x1,−x1, x2,−x2, . . . , xn−1,−xn−1} ,

where edges incident to antipodal nodes get opposite
directions.1 Figure 5 shows examples of coordinate sys-
tems for the 3D, 4D, and 5D cases.

x2

-x2

-x1

x1
x1

x2-x2

-x1 x3

-x3

x1

x2

x3

x4-x1

-x2

-x3

-x4

Figure 5: Coordinate systems for 3D, 4D, and 5D cubes.

These n− 1 directions are mapped to the axes of the
Rn−1 hyperplane into which the n-cube unfolds. In par-
ticular, the 2n − 2 ridges of the n-cube incident to the
base facet are in bijection with these coordinate direc-
tions, with opposite directions corresponding to parallel
ridges of the facet. The roll keeps track of the combina-
torics, whereas the coordinate system shows the direc-
tion of unfolding in the lattice. This is made precise:

Lemma 1 Let T be a spanning tree of the n-Roberts
graph with a coordinate system. The unfolding of the
n-cube along T into Rn−1 can be obtained by mapping
T to the lattice Zn−1 through a sequence of rolls.

Proof. Choose some base facet b of T and map it to
some point pb ∈ Zn−1. Let node c be adjacent to b
along T with associated direction x from the coordinate
system. The roll from b towards c maps node c to the
point in Zn−1 that is adjacent to pb in direction x. The
four facet labels {b, c, b∗, c∗} permute with the roll of
the cube whereas the coordinate system directions are
always anchored to the base facet. In particular, after
the roll, facet b∗ lies in the x direction with respect to
the new base facet c, since the plane spanned by normal
vectors nb and nc was rotated.

Given any node t of T , traverse the path between
b and t through a series of rolls as described above;
this maps all the nodes of T into Zn−1. To obtain the
unfolding of the n-cube, simply replace each mapped
point of the lattice with an (n− 1)-cube. �

Example 2 Figure 6 shows an unfolding of the 3-cube
along a spanning path using Lemma 1. At each itera-
tion, there is a roll of the Roberts graph and a direction
of unfolding based on the given coordinate system. The
unfolded facets are colored white, and the unfolded ridges

1The isometry group of the cube acts simply transitively on
these labelings. Thus, without loss of generality, we can choose a
counterclockwise labeling of the edges in cyclic order.

115

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

become dashed-lines. Figure 7 showcases a 3-cube un-
folding along a spanning tree. Given any two nodes of
this tree, we unfold along the path between these nodes
by rolls using Lemma 1. Figure 8 provides an example
of an unfolding of the 4-cube along a spanning path.

x2

-x2

-x1

x1

2

3

1

1*

2*

3*

1

2

3

1*

2*

3*

(a) (b)

1

2 3

1*

2*3* 1

2

31*

2*

3*

(c) (d)

1

2

3

1*

2*

3*

1

2

3

1*

2*

3*(e) (f)

Figure 6: Unfolding a 3-cube along a spanning path.

Lemma 2 Let T be a spanning tree of the n-Roberts
graph with a coordinate system. If direction x is used
in the unfolding along some path of T , direction −x will
not be used in the unfolding along this path.

Proof. Assume we roll along a path in the x direction,
moving the current base facet b into the −x direction.
Since b has now been visited, it cannot be used again in
the unfolding. Thus, the only way a roll along direction

x2

-x2

-x1

x1

1

3

1*

2*

3*

2

1

2

3

1*

2*

3*

(a) (b)

2 1

3

1* 2*

3*1

2 3

1*

2*3*

(c) (d)

Figure 7: Unfolding a 3-cube along a spanning tree.

−x can occur is if b is rotated out of that direction. How-
ever, the only moves that can displace b are rolls along
the x and −x directions. The latter is not possible and
the former simply replaces b with another visited facet,
continuing to obstruct motion in the −x direction. �

Example 3 Figure 6(ab) shows an example where the
first roll is in direction x1, moving facet 1 into the −x1
position, and facet 3∗ into the base position. Since facet
1 has been visited, rolling in direction −x1 is restricted.
Another roll in Figure 6(bc) displaces 1 but simply re-
places it with facet 3∗, which has now been visited.

Theorem 3 Every ridge unfolding of an n-cube yields
a net.

Proof. Consider an unfolding of the n-cube, given by a
spanning tree T on the n-Roberts graph. By Lemma 2,
antipodal directions will never appear in unfolding of
paths. Thus, as the combinatorial distance between any
two nodes of a path along the spanning tree T increases,
the Euclidean distance of their respective facets in the
hyperplane Rn−1 (under the mapping to the integer lat-
tice from Lemma 1) strictly increases. Since the facets

116

32nd Canadian Conference on Computational Geometry, 2020

x2

x3

-x2

-x3

-x1

x1

2*

3*

1

1*

2

3

4*

4

1

1*

2

2*

3 3*

4*

4

2*

3*

2

3

1

1*

4*

4 3*

3

2*2

1

1*

4*

4

3*3

2*

2

1

1* 4*

4

3*

3

2*2

1

1* 4*

4

1

1*2

3

2*

3*

4*

4

2

3

1

1*

2*

3*

4*

4

Figure 8: Unfolding a 4-cube along a spanning path.

in the unfolding along any path of T do not overlap, the
unfolding of the entire tree T results in a net. �

3 Packings and Partitions

Having unfolded cubes into their nets, we now turn to
packing these nets into boxes. A box (or orthotope) is
the Cartesian product of intervals, and the bounding box
of a net is the smallest box containing the net, with box
sides parallel to the ridges of the net.

Definition 2 An n-cube partition is an integer parti-
tion of 3n − 2 into n − 1 parts, where each part is at
least two.

4 . 4 . 25 . 3 . 2 4 . 3 . 36 . 2 . 2

Figure 9: Spanning trees and bounding boxes.

Example 4 Figure 9 displays four spanning trees of the
4-cube and their corresponding nets in bounding boxes.
Notice that the dimensions of each bounding box form a
4-cube partition. In particular, these are all the possible
4-cube partitions. Theorem 4 below claims that all 261
nets of the 4-cube must fit into one of these four boxes.

Theorem 4 For every net of an n-cube, the dimen-
sions of its bounding box is an n-cube partition.

Proof. Each net of the n-cube has 2n facets that need
to be unfolded in Rn−1. Since each facet is an (n− 1)-
cube, the placement of the first facet in the unfolding
contributes n−1 to the bounding box number of the net,
one for each of its n−1 dimensions. We show that each
of the remaining 2n−1 facets of the unfolding increases
the bounding box number by exactly 1, resulting in a
total box number of 1 · (n− 1) + (2n− 1) · 1 = 3n− 2.

Suppose (by contradiction) that in the unfolding, the
roll from facet b to adjacent facet c in direction x does
not increase the bounding box number of the current
net. Assume the ridge between b and c is supported
by some hyperplane H of Rn−1. Since the box number
did not increase, there must be another facet (call it
d) in the current unfolding that lies on the same side
of hyperplane H as c. Thus, the unfolding of the path
between facets c and d must have crossed H at least
twice, moving along x in both the positive and negative
directions, contradicting Lemma 2.

117

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

x1 x2 x3 x4

x1

x2

x3

x4

x1

x2

x3

x4

x1 x2 x3 x4

x1

x2

x3

x4

x1 x2 x3 x4

x1

x2

x3

x4

x1 x2 x3 x4

x1

x2

x3

x4

x1 x2 x3 x4

Figure 10: Rolls on the Roberts graphs reinterpreted as a token sliding game.

Finally, it needs to be shown that our cube will roll
in all n−1 unfolding dimensions (satisfying the require-
ment that each part of a cube partition is a least two).
But the cube net is a spanning tree of the Roberts graph,
with the unfolding forced to visit all the nodes. And
such visits can only be accomplished by rolling along
each of the n− 1 distinct directions. �

The converse of Theorem 4 also holds: given an in-
teger partition of 3n − 2 into n − 1 parts, there exists
an unfolding of an n-cube whose bounding box dimen-
sions match the partition. The remainder of this section
is devoted to proving this result. As discussed earlier,
the placement of the first facet in the unfolding of the
n-cube contributes n− 1 to the bounding box number.
Thus, the cube partition can be reinterpreted as an in-
teger partition of 2n−1 (the remaining facets) into n−1
parts (the possible directions), with each part at least
one. For such a partition, our task is to find a sequence
of rolls along the n−1 directions so that the 2n−1 facets
are unfolded into their respective partitioned directions.
Without loss of generality, we consider rolls only in the
positive directions.

In order to construct cube unfoldings for such parti-
tions, we reinterpret the Roberts graph as a token slid-
ing game, with Figure 10 serving as a Rosetta stone.
Consider the first column of this figure, where the n-
Roberts graph on top is unraveled below into a game
board with n − 1 slides (appropriately color-coded).
Here, the base node of the Roberts graph is replaced
by our given partition, one for each direction, with the
2n− 1 positions represented by black tokens. The goal
of this game is to move these tokens into the 2n − 1
empty slots on the game board above by a sequence of
slides, corresponding to rolls of the Roberts graph.

The top row of Figure 10 shows a 5-cube rolling twice
in the x1 direction, followed by a roll in the x4 direc-

tion, and a roll in the x3 direction. The bottom row
displays the corresponding tokens moving along their
appropriate slides, leaving the partition box and occu-
pying empty slots on the game board above. The fea-
tures of the token game, inherited from the properties
of rolls, are as follows:

1. Each roll of the Roberts graph in a particular direc-
tion slides all the tokens along that direction one
place up.

2. When a token reaches the end of its slide (eg, di-
rection x4, as displayed by the fourth column of
Figure 10), it can no longer use that direction.

3. The antipode to the base (topmost on the Roberts
graph) acts as a transfer point, moving tokens from
one directional slide into another.

Theorem 5 For any n-cube partition, there exists a
path unfolding of an n-cube whose bounding box dimen-
sions matches the partition.

Proof. We provide an unfolding algorithm by rolling
along directions satisfying a given partition. Parts in
the partition with more than one token are called tow-
ers, whereas parts with exactly one token are dubbed
singletons. Begin by decomposing the 2n−1 tokens into
four groups:

1. The set S of tokens in the singletons.

2. The set B of bottom tokens in each tower.

3. The set T of top tokens in each tower.

4. The remaining set M of (middle) tokens.

It follows that |T | = |B| = (n− 1)− |S| and

|M | = (2n− 1)− |T | − |B| − |S| = |S|+ 1.

118

32nd Canadian Conference on Computational Geometry, 2020

Example 5 Figure 11 shows two distinct partitions of
15 tokens into 7 parts (when n = 8), labeled according
to the terminology above. In these cases, it is clear that
|T | = |B| and |M | = |S|+ 1.

T

M

T T T T T T

B

B B B B B B

T

M

M

M

M M

T T S S S S

B

B

B

Figure 11: Two distinct partitions when n = 8.

Our algorithm is broken into three steps:

Step 1: Perform one slide in each direction of a to-
ken from B. This is possible since the transfer point is
empty; see Figure 12(abc).

Step 2: Perform alternating slides between tokens
from M and S, starting and ending with M , until all
such tokens depleted. This is well-defined since |M | =
|S|+1. Since the first position on the game board along
any element of M already contains a token from Step
1, a slide along its direction moves this token into the
transfer point; see Figure 12(d). Now, sliding a token of
S fills the first and last positions along this directional
track with tokens, making this direction unusable; see
Figure 12(e). This is ideal, for S contains only one token
in each direction. After alternating between M and S,
depleting all elements of S, slide one final time along
the last element of M , loading a token onto the transfer
point; see Figure 12(f).

Step 3: Perform one slide in each direction of a to-
ken from T . Each slide moves the token of the transfer
point to the end of the track, which replenishing the
transfer point with another token. This fills all the po-
sitions, as these are the final elements in each tower; see
Figure 12(ghi). �

Observation 1 Theorem 5 shows that the n-cube can
be unfolded into extremes: a long thin 2 × · · · × 2 ×
(n + 2) box and a cubelike 3 × · · · × 3 × 4 box, with a
spectrum of sizes in between. It would be interesting
to explore the distribution of cube partitions over all
possible unfoldings of the n-cube.

Observation 2 Up to symmetry, there are 11 nets of
the 3-cube and 261 nets of the 4-cube. For a general
n-cube, it is an open problem to enumerate its distinct
nets. The theorem above provides a (very weak) lower
bound to this problem.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: The partition slide algorithm.

4 Conclusion

The work of Horiyama and Shoji [3] show that every
edge unfolding of the five Platonic solids results in a
net. The higher-dimensional analogs of the Platonic
solids are the regular convex polytopes: three classes of
such polytopes exist for all dimensions (simplex, cube,
orthoplex) and three additional ones only appear in 4D
(24-cell, 120-cell, 600-cell). We have considered all un-
foldings of cubes, and a similar result for simplices easily
follows. We are encouraged to claim the following:

Conjecture 1 Every ridge unfolding of a regular con-
vex polytope yields a net.

References

[1] A. D. Aleksandrov. Intrinsic Geometry of Convex Sur-
faces, Volume II (English translation), Chapman and
Hall/CRC Press, 2005.

[2] F. Buekenhout and M. Parker. The number of nets of
the regular convex polytopes in dimension ≤ 4, Discrete
Mathematics 186 (1998) 69–94.

[3] T. Horiyama and W. Shoji. Edge unfoldings of Platonic
solids never overlap, Canadian Conference on Compu-
tational Geometry (2011).

119

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[4] E. Miller and I. Pak. Metric combinatorics of convex
polyhedra: cut loci and nonoverlapping unfoldings, Dis-
crete and Computational Geometry (2008) 39 339–388.

[5] G. Shephard. Angle deficiencies of convex polytopes,
Journal of the London Mathematical Society 43 (1969)
325–336.

[6] G. Shephard. Convex polytopes with convex nets,
Mathematical Proceedings of the Cambridge Philosoph-
ical Society 78 (1975) 389–403.

[7] P. Turney. Unfolding the tesseract, Journal of Recre-
ational Mathematics 17 (1984) 1–16.

120

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Efficient Folding Algorithms for Regular Polyhedra

Tonan Kamata∗ Akira Kadoguchi† Takashi Horiyama‡ Ryuhei Uehara§

Abstract

We investigate the folding problem that asks if a poly-
gon P can be folded to a polyhedron Q for given P and
Q. Recently, an efficient algorithm for this problem is
developed when Q is a box. We extend this idea to two
different cases; (1) Q is a regular dodecahedron, and (2)
Q is a convex polyhedron such that each face is formed
by regular triangles. Combining the known result, we
can conclude that the folding problem can be solved ef-
ficiently when Q is a regular polyhedron, also known as
a Platonic solid.

1 Introduction

In 1525, the German painter Albrecht Dürer published
his masterwork on geometry [7], whose title translates
as “On Teaching Measurement with a Compass and
Straightedge for lines, planes, and whole bodies.” In
the book, he presented each polyhedron by drawing a
net for it: an unfolding of the surface to a planar layout
by cutting along its edges. To this day, it remains an im-
portant open problem whether every convex polyhedron
has a (non-overlapping) net by cutting along its edges.
On the other hand, when we allow to cut anywhere, any
convex polyhedron can be unfolded to a planar layout
without overlapping. There are two known algorithms;
one is called source unfolding, and the other is called
star unfolding (see [6]).

1/2

1/2
x 2-x

Figure 1: A Latin cross made by six unit squares. For
any real number x with 0 < x < 1, folding along dotted
lines, we can obtain a doubly-covered fat cross.

∗School of Information Science, JAIST, kamata@jaist.ac.jp
†School of Information Science, JAIST,

s1810041@jaist.ac.jp
‡Faculty of Information Science and Technology, Hokkaido

University, horiyama@ist.hokudai.ac.jp
§School of Information Science, JAIST, uehara@jaist.ac.jp

To understand unfolding, it is interesting to look at
the inverse: what kind of polyhedra can be folded from a
given polygonal sheet of paper? For example, the Latin
cross, which is one of the eleven nets of a cube, can fold
to 23 different convex polyhedra by 85 distinct ways
of folding [6] and an infinite number of doubly covered
concave polygons (Figure 1). Comprehensive surveys of
folding and unfolding can be found in [6].

We investigate the folding problem when a polygon
P and a polyhedron Q are given. That is, for a given
polygon P and a polyhedron Q, the folding problem
asks if P can fold to Q or not. This is a natural prob-
lem, however, there are few results so far. When Q is a
regular tetrahedron, we have a mathematical character-
ization of its net [4]; according to this result, P should
be a kind of tiling, and hence the folding problem can
be solved efficiently. Abel et al. investigated the fold-
ing problem of bumpy pyramids [1]: For a given petal
polygon P (convex n-gon B with n triangular petals),
it asks if we can fold to a pyramid (with flat base B)
or a convex bumpy pyramid by folding along a certain
triangulation of B. In [1], they gave nontrivial linear
time algorithms for the problem. Recently, the fold-
ing problem was investigated for the case that Q is a
box. Some special cases were investigated in [8] and
[11], and the problem for a box Q is solved in [10] in
general case. The running time of the algorithm in [10]
is O(D11n2(D5 + log n)), where D is the diameter of P .
In these algorithms, Q is given as just a “box” without
size, and the algorithms try all possible sizes. If Q is
explicitly given, the running time of the algorithm in
[10] is reduced to O(D7n2(D5 + log n)) time.

In this paper, we investigate two other cases. In the
first case, we assume that Q is a regular dodecahedron.
This is a very special case, however, it is one of the five
regular polyhedra. The second case is that Q is a con-
vex deltahedron whose faces consist of regular triangles.
A deltahedron is said to be strictly convex if it is con-
vex and no two adjacent faces are coplanar. It is known
that there are eight strictly convex deltahedra1: a regu-
lar tetrahedron, a regular octahedron, a regular icosahe-
dron, a triangular bipyramid, a pentagonal bipyramid, a
snub disphenoid, a triangulated triangular prism, and a
gyroelongated square bipyramid. In this paper, we also
consider non-strictly-convex cases as a kind of deltahe-
dron. That is, we allow each face to consist of coplanar

1See, e.g., https://en.wikipedia.org/wiki/Deltahedron.

121

32nd Canadian Conference on Computational Geometry, 2020

regular triangles like a regular hexagon. Then there are
infinite number of non-strictly-convex deltahedra. For
these two cases, we give pseudo-polynomial time algo-
rithms:

Theorem 1 Let P be a simple polygon with n vertices.
We denote by L the perimeter of P . Then the folding
problem of a regular dodecahedron from P can be solved
in O(n2(n+ L)4) time.

Theorem 2 Let P be a simple polygon with n vertices
of perimeter L. Let Q be a non-concave deltahedron2

with m vertices. Then the folding problem of Q from P
can be solved in O(n2m(L+ n)2) time.

Combining with the result in [10], we have the following:

Corollary 3 The folding problem for the five regular
polyhedra (also known as Platonic solids) can be solved
in pseudo-polynomial time.

We here note that we use real RAM model, and the time
complexity is evaluated by the number of mathematical
operations.

2 Preliminaries

We first state the folding problem: the input is a poly-
gon P = (p0, p1, . . . , pn−1, pn = p0) and a polyhedron
Q, and the problem asks if P can fold to Q or not.
Let xi and yi be the x-coordinate and y-coordinate of a
point pi, respectively. We assume the real RAM model
for computation; each coordinate is an exact real num-
ber, and the running time is measured by the number
of mathematical operations.

When Q is a regular dodecahedron, we do not need
to give it explicitly as a part of input. The length of
the edges of Q can be computed from the area of P .
Without loss of generality, we assume that the length
of an edge of Q is 1. When Q is a non-concave deltahe-
dron, Q is represented in the standard form in compu-
tational geometry (see [5]). Precisely, Q consists of ver-
tices qi = (xi, yi, zi), edges {qi, qj}, and faces f1, . . . , fk,
where each fi is represented by a cycle of vertices in
counterclockwise-order in relation to the normal vector
of the face.

Let Q be a convex polyhedron. Let q be a vertex of
Q. The curvature at q is the angle defined by the value
360◦ − a, where a is the angle surrounding q when it is
unfolded on a plane.

Theorem 4 ([Gauss-Bonnet Theorem]) The total
sum of the curvature of all vertices of a convex poly-
hedron is 720◦.

2For simplicity, we call “non-concave deltahedron” a polyhe-
dron that is either a convex deltahedron or a non-strictly-convex
deltahedron.

See [6, Sec. 21.3] for details.

Let Q be a convex polyhedron. A development of Q
results when we cut Q along a set of polygonal lines,
unfold on a plane, and obtain a polygon P . We assume
that any cut ends at a point with curvature less than
360◦. Otherwise, since Q is convex, it makes a redun-
dant cut on P , which can be eliminated (the proof can
be found in [9, Theorem 3]). The polygon P is called a
net of Q if and only if P is a connected simple polygon,
i.e., without self-overlap or hole. Let T be the set of cut
lines on Q to obtain a net P . Then the following is well
known (see [6, Sec. 22.1.3] for details):

Theorem 5 T is a spanning tree of the vertices of Q.

2.1 Properties of Unfolding

A tetramonohedron is a tetrahedron that consists of four
congruent triangles. This polyhedron is exceptional in
the context of unfolding. To avoid this case, we first
show the following lemma.

Lemma 6 Let Q be a convex polyhedron. Then Q is
a tetramonohedron if and only if the curvature of every
vertex is 180◦.

Proof. If Q is a tetramonohedron, by its symmetric
property, each vertex q consists of three distinct angles
of a congruent triangle. Thus the curvature at q is 180◦.
In order to show the opposite, we assume that every
vertex of a polyhedron Q has curvature 180◦. Then,
by Theorem 4, Q has four vertices. Let q0, q1, q2, q3 be
these four vertices. We cut along three straight lines
q0q1, q0q2, q0q3 on Q, respectively. Since the curvature
at any point on Q except q0, q1, q2, q3 is 360◦, we can
take three non-crossing straight lines from q0 to q1, q2,
and q3 on Q and they are the shortest lines from q0 to
them. By developing Q from q0 along these three cut
lines, we obtain a polygon P = (q0, q1, q

′
0, q2, q

′′
0 , q3, q0).

Then, by assumption, curvatures at q1, q2, q3 are all
180◦. That is, P is a triangle with three vertices q0, q′0,
and q′′0 . Moreover, each edge of the triangle consists of
two cut lines which form an edge on Q. Therefore, q1,
q2, and q3 are all the middle points of three edges q0q

′
0,

q′0q
′′
0 , and q′′0 q0 of the triangle P , respectively. Thus all

four triangles q0q1q3, q1q
′
0q2, q3q2q

′′
0 , and q2q3q1 are con-

gruent, which implies that Q is a tetramonohedron. �

We note that there is a mathematical characterization
of a net of a tetramonohedron by a tiling (see [3, Chap-
ter 3]3). Using this property, the folding problem for a
tetramonohedron Q can be solved in pseudo-polynomial
time (the details are omitted in this conference version).

In this paper, the following theorem is useful:

3In [3], a tetramonohedron is called an isotetrahedron.

122

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Theorem 7 Let Q be a convex polyhedron that is not
a tetramonohedron, and P be a net of Q. Then (1) all
vertices of Q appear on the boundary of P , and (2) P
has at least two vertices of angle not equal to 180◦ that
correspond to distinct vertices of Q.

Proof. A vertex of Q has positive curvature. Hence it
cannot correspond to an interior point of P . Thus we
have the claim (1). Now we focus on the claim (2). We
first show that Q has at least two vertices of curvature
not equal to 180◦. Let q0, . . . , qk be the vertices of Q.
Since Q is a convex polyhedron, k ≥ 3. When k =
3, the only possible solid is a doubly covered triangle.
Then it is easy to see that Q satisfies the claim (2). If
k > 4, by Theorem 4, it is easy to see that at least
two vertices have curvature not equal to 180◦. Thus
we consider the case that k = 4. By Lemma 6, since
Q is not a tetramonohedron, four vertices cannot have
curvatures equal to 180◦. By Theorem 4, it is impossible
that three vertices have curvature 180◦, and one vertex
does not. Thus Q has at least two vertices q and q′

of curvature not equal to 180◦. Then, by (1), q and q′

correspond to distinct vertices of P . Now consider the
set Sq of vertices of P that are glued together to form
q. Then, since the curvature of q is not equal to 180◦,
at least one of the elements in Sq has an angle not equal
to 180◦. Thus q produces at least one vertex on P of
angle not equal to 180◦. We have another vertex on P
produced by q′ by the same argument. Thus we have
the theorem. �

3 Algorithms

In this section, we first describe the common outline of
algorithms and show the details for each case.

3.1 Outline of Algorithm

The outline of our algorithm is simple:

That is, the algorithm checks all possible combina-
tions of pairs {pi, pi′} and qj . By Theorem 7, if Q can
be folded from P , there are at least two vertices pi, pi′

of P that correspond to qj , qj′ of Q for some qj′ , respec-
tively, with i 6= i′ and j 6= j′. Hereafter, we assume that
the vertex p0 of P corresponds to the vertex q0 of Q, and
pi of P corresponds to the vertex qj of Q, respectively,
without loss of generality.

The key point is how to decide the relative orientation
of Q and P , which has an influence of time complexity of
the algorithm. Intuitively, for this issue, we also try all
possible cases. The time complexity (or the number of
trials) is different depending on the shape of Q. For the
remainder of Section 3.1, we assume that the orientation
of Q relative to P is fixed. We give the details of the
two phases in the algorithm.

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
and a convex polyhedron Q

Output: All ways of folding P to Q (if one
exists)

Let {q0, . . . , qm−1} be the set of vertices of Q;
foreach pair of two vertices {pi, pi′} of P do

foreach vertex qj of Q do
Check if Q is reachable from pi to pi′ on
P by stamping Q so that pi and pi′

correspond to qj and qj′ , respectively, for
some qj′ with j 6= j′ on Q;

Check if P is a net of Q by folding and
gluing P based on the partition of Q by
stamping;

end

end

Figure 2: An example of stamping.

3.1.1 The first phase: stamping

When we have the correspondence of p0 and q0, we
imagine placing Q on P at p0 = q0. Then we “roll” Q
on P from the initial position in the depth first search
(DFS) manner. This idea is called stamping in [2]. In
[2], Akiyama rolled a regular tetrahedron on a plane
as a stamper and obtained a tiling by the stamping.
The key property of the stamping in [2] is that a reg-
ular tetrahedron has the same orientation and position
when it returns to the original position, no matter what
the route was. Therefore, the cut lines of any net on
the surface of a regular tetrahedron tile the plane as a
p2 tiling (see [2] for the details of p2 tiling).

In our case, we use a polyhedron Q as a stamper
on P . We first put Q on P so that p0 = q0. Then
the intersection of P and F0 can be a set of polygons.
Among them, we take a polygon P0 that contains p0 =
q0 as a vertex of P0. (If two or more such polygons exist,
we can take any one of them.) Then, if P0 properly
contain a vertex of F0, we reject this position. It is not
difficult to see that F0 should have a part of edges e of
F0 that is inside of P . Then we can roll Q along the edge
e, and the next face F1 of Q is put on P , which shares
the edge e with F0. Then the intersection of F1 and P

123

32nd Canadian Conference on Computational Geometry, 2020

Figure 3: Tree structure of P : Each face of Q is cut
into “patches”. Then the adjacent relationship of the
patches induces a tree on P .

gives the new set of polygons. Among them, we take P1

that shares a part of e with P0. (If two or more such
polygons exist, we can take any one of them again.)
If P1 properly contains a vertex of F1, this stamping
fails. Repeating this process, we can stamp Q on P .
See Figure 2 for a simple example. Precise description
of this stamping can be found in [10]. In our algorithm,
pi′ can be used as a check point. if pi′ does not match
a certain qj′ , this stamping fails immediately.

Then, in our context, if P is a net of Q, we have the
following properties by Theorem 7(1): (1) all (copies
of) vertices of Q are on the boundary of P , and (2) for
each vertex qj of Q, the curvatures corresponding to the
points on the boundary of P sum up to the angle at qj on
Q. In other words, no vertex of Q exists inside of P . On
the other hand, since P has no hole, each point in P is
stamped by a face of Q (or an edge of Q) exactly once.
We will use the tree structure of P defined as follows
(Figure 3). Each face of Q is cut into “patches” when it
is developed to P . In other words, P is partitioned into
patches by the edges of Q (or folding lines of P). On the
tree, the patches of P correspond to the vertices, and
two vertices are adjacent if and only if the corresponding
patches share a part of an edge of positive length on
Q. Then since P is a simple polygon (without hole)4

and all vertices of Q are on the boundary of P , the
resulting graph induces a tree. Essentially, the sequence
of stamping of Q on P is a search algorithm on this tree
structure, or it gives the partition of P into the patches
by stamping of Q. We can traverse the tree by rolling Q.
Hereafter, for simplicity, we assume that the algorithm
traverses this tree by rolling Q on P in a DFS manner.
Formally, we have the following lemma:

Lemma 8 ([10]) Assume that Q gives us a feasible

4Precisely speaking, it is enough that P is a weakly simple
polygon (see https://en.wikipedia.org/wiki/Simple_polygon#

/media/File:Weakly_simple_polygon.svg) to obtain this tree
structure.

stamping of P . We also assume that P is a net of Q.
Then, the stamping gives us a mapping from each point
p in P to a point q in a face of Q, or p is glued to the
point q in a face of Q (except on the edges of Q; in this
case, the point p of P is glued to a point q on the edge
of Q). That is, the stamping gives us a partition of P
by the edges of Q.

In [10], they give a proof of Lemma 8 when Q is a box.
However, the arguments in [10] use only the fact that Q
is convex. Thus, we can obtain Lemma 8 as a natural
extension of the result in [10].

We note that each feasible stamping gives us all the
vertices qi of Q on the boundary of P . Therefore, we can
check if each vertex qi has a certain curvature in total
in linear time of n in this phase. Therefore, after the
first phase, we know that P is partitioned into patches
of faces of Q with their correspondence (i.e., each patch
knows its corresponding face of Q) and each vertex qi
has a correct curvature in total.

3.1.2 The second phase: gluing

After the first phase, we obtain a set of patches of faces
of Q, and corresponding vertices produce certain cur-
vatures, however, we have not yet checked if each set
of patches really forms the corresponding face of Q by
gluing. In other word, we have to check if the mapping
in 8 is one-to-one mapping or not. Thus, in the second
phase, we check if we fold to Q by P along the crease
lines computed in the first phase. Hereafter, we some-
times consider the polygon P = (p0, p1, . . . , pn−1, p0)
consists of vectors −−→p0p1,−−→p1p2, . . . ,−−−−→pn−1p0 for the sake of
simplicity. Then we can deal with “gluing of two edges”
by an operation of vectors. For example, we assume
that we glue two edges p0p1 and p0pn−1. Then, we have
three cases after gluing:
(1) |p0p1| > |p0pn−1|: We obtain −−−−→pn−1p1 such that
|pn−1p1| = |p0p1| − |p0pn−1|.
(2) |p0p1| < |p0pn−1|: We obtain −−−−→pn−1p1 such that
|pn−1p1| = |p0pn−1| − |p0p1|.
(3) |p0p1| = |p0pn−1|: We obtain pn−1 = p1.

Recall that if P is a net of Q, the set of line segments
of cut on Q forms a spanning tree T (Theorem 5). More-
over, each edge of T appears twice on the boundary of
P . Now we know that v0 = p0 is a vertex of Q, and the
orientation of Q with respect to P is fixed, then along
the tree produced by stamping, we can check the gluing
one by one from the leaves of T . Since T is a tree, we
always have a pair of edges to be glued. The details of
this part can be found in [8].

3.2 Case 1: Q is a Regular Dodecahedron

In this section, we assume that Q is a regular dodeca-
hedron and the length of each edge is 1. Since the area

124

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

of a pentagon of unit edge is

√
25+10

√
5

4 , we assume the

area of P is 12×
√

25+10
√
5

4 = 3
√

25 + 10
√

5 without loss
of generality. Since we know Q, the input of this prob-
lem is just a polygon P = (p0, p1, . . . , pn−1, p0) of area

3
√

25 + 10
√

5, and we will decide if P can be folded to
a unit-size regular dodecahedron Q. By the argument
in Section 3.1, we also know that two vertices p0 and pi
of P correspond to two distinct vertices, say q0 and qj ,
of Q.

Figure 4: An example of overlapping stamping. Some
pentagons are overlapping by stamping of Q along a
feasible net P .

Stamping By assumption, Q can reach from p0 to
pi on P by stamping Q such that p0 and pi are cor-
responding to two different vertices of Q. By rota-
tion of P , we have a sequence of regular pentagons
(P̂0, P̂1, . . . , P̂k) such that (1) P̂0 contains the edge join-
ing points p0 = (0, 0) and (1, 0) as its base edge, (2)
pi = (xi, yi) is a vertex of P̂k, and (3) two consecutive
pentagons P̂j′ and P̂j′+1 share an edge for each j′ with
0 ≤ j′ < k. We note that two consecutive pentagons do
not overlap (without their shared edge), but nonconsec-
utive pentagons can overlap by stamping (see Figure 4).

Figure 5: Four unit vectors for a unit pentagon.

Intuitively, if we put Q on P with a proper relative
angle, Q can be unfolded along P , and we can reach
from p0 to pi by traversing the edges of these regu-
lar pentagons. If we consider each edge of the pen-
tagons as a unit vector, this traverse can be represented
by a linear combination of the following four vectors:

−→
b0 = (0, 1),

−→
b1 = (cos π5 , sin

π
5),
−→
b2 = (cos 2π

5 , sin
2π
5),

and
−→
b3 = (cos 3π

5 , sin
3π
5). Note that (cos 4π

5 , sin
4π
5) =

−−→b0 +
−→
b1 −

−→
b2 +

−→
b3 . Thus, Q can be folded from P only

if we have four integers B0, B1, B2, B3 such that

−−−−→
(p0, pi) = B0

−→
b0 +B1

−→
b1 +B2

−→
b2 +B3

−→
b3 ,

and hence
∣∣∣
−−−−→
(p0, pi)

∣∣∣ =
∣∣∣B0
−→
b0 +B1

−→
b1 +B2

−→
b2 +B3

−→
b3

∣∣∣.

It is clear that |B0| + |B1| + |B2| + |B3| is at most

L, where L =
∑n−1
i=0

∣∣∣
−−−−−−→
(pi, pi+1)

∣∣∣ is the perimeter of P .

Thus, in our algorithm, we check O((L+n)4) combina-
tions of four integers B0, B1, B2, B3. For each possible
integers B0, B1, B2, B3, we can compute pi = (xi, yi) by
rotation of P . After putting P on the proper place so
that p0 = (0, 0) and pi = (xi, yi), we perform the stamp-
ing of Q on P and obtain the partition of P . We here
note that we use the commutative law of vectors. Thus
the first relative position of Q is one of four positions

along
−→
b0 ,
−→
b1 ,
−→
b2 ,
−→
b3 . For each position, we perform the

second phase for checking gluing.

Gluing By stamping of Q on P , P is partitioned into
patches P = {P0, P1, . . . , Ph−1}. More precisely, P0

is the intersection of P and Q on an initial position
such that p0 = q0 = (0, 0). Since it is a valid stamp-
ing, there are no vertices of Q inside of P0. When we
roll Q on P along an edge e of Q, the other face is
on P , and we have the next patch P1 by the inter-
section of P and Q. We note that P1 is the compo-
nent of the intersection of P and Q that contains the
edge e (can be partial, but not just a point). That
is, even if we have non-empty intersection polygons of
P and Q, we do not count them if they do not in-
clude any non-empty set of e. By repeating this pro-
cess in the DFS manner, we obtain a set of patches
P = {P0, P1, . . . , Ph−1} that forms a partition of P . We
now define the graph T = (P, E) by E = {{Pi, Pj} |
Pi, Pj share a non-empty edge inside P}. Intuitively,
Pi and Pj share a non-empty edge inside P , and Pj
is put in P by rolling Q from Pi along the edge or vice
versa. As discussed in Section 3.1.1, the graph T is a
tree. For notational convenience, we consider P0 is the
root of T , and the elements in P are numbered from P0

in the way of the DFS manner.
First, we glue P0 on Q so that the corresponding ver-

tex p0 on P (or P0) comes to a vertex q0 of Q. Then
the gluing process is done on Q from P0 in the DFS
manner. This can be done in O(

∑h−1
i=0 |Pi|) time, where

|Pi| is the number of vertices of Pi. The number (h−1)
is given by the number of stampings made by Q. For
this number, we have the following upper bound:

Theorem 9 h = O(L+ n).

125

32nd Canadian Conference on Computational Geometry, 2020

Proof. The number of stampings of Q on P is given
by the total number of visits of each Pi. On the other
hand, h is the number of Pis. Thus, precisely, (h − 1)
is the number of the first visiting each Pi by Q except
P0. The stamping of Q is done along the DFS tree.
Therefore, since each edge of the DFS tree is traversed
twice, the number of stampings made by Q is 2(h− 1).
Thus h is proportional to the number of stampings.

Figure 6: An edge e can be covered by O(|e|) pentagons
since each angle of a pentagon is 108◦.

Let e be an edge of P . By stamping of Q along the
edge e, since each pentagonal face of Q has unit size, the
number of pentagons P̂i to cover e is O(|e|), where |e| is
the length of e (Figure 6; see also [10]). Thus, we have
the number of pentagonal faces of Q as stamps to cover
all the edges e of P is O(L+ n) in total. Therefore, we
obtain h = O(L+ n). �

Time complexity Now we consider the time complex-
ity of our algorithm for a regular dodecahedron. For a
given polygon P = (p0, p1, . . . , pn−1, p0), the algorithm
first guesses all possible combinations of (pi, pi′), which
produce O(n2) cases. We here note that we essentially
have one way of choosing q0 by symmetry of Q. For
this q0, we have a constant number (precisely, it is 7)
of cases of qj . Thus we do not need to consider this
constant factor for a regular dodecahedron. For each

pair (pi, pi′), we construct a vector
−−−−→
(pi, pi′) = B0

−→
b0 +

B1
−→
b1 +B2

−→
b2 +B3

−→
b3 by finding B0, B1, B2, B3. This step

checks O((L + n)4) combinations if we check all com-
binations. However, when B0, B1, B2 are fixed, since∣∣∣
−−−−→
(p0, pi)

∣∣∣ =
∣∣∣B0
−→
b0 +B1

−→
b1 +B2

−→
b2 +B3

−→
b3

∣∣∣, we have two

possible values depending on B3 ≥ 0 or B3 < 0, and
they can be computed in a constant time. Thus it is
enough to check O((L + n)3) combinations. For each
case, the algorithm performs stamping of Q. During
the stamping, we check if each vertex of a face of Q is
inside P or not. It is done along the traverse of the tree
in DFS manner, and hence it can be done in O(n) time
in total. Thus the running time of stamping is O(n+h),
where (h− 1) is the number of stampings. By Theorem
9, we have h = O(L + n). After the (valid) stamp-
ing, we obtain a partition P = {P0, P1, . . . , Ph−1} of
P . Checking the gluing of elements in P onto Q takes
O(
∑h−1
i=0 |Pi|) time. Since the tree T = (P, E) has h

vertices and h−1 edges, we have
∑h−1
i=0 |Pi| = O(n+h).

Therefore, in total, the algorithm runs in O(n2(n+L)4)

time, which completes the proof of Theorem 1.

3.3 Case 2: Q is a Non-concave Deltahedron

In this section, we assume that Q is a non-concave delta-
hedron. We assume that each face of Q consists of some
unit regular triangles; each unit triangle has three edges

of unit length 1 and area
√
3
4 . Let t be the total num-

ber of unit triangles on the surface of Q. That is, the

surface area of Q is
√
3
4 t. Let {q0, q1, . . . , qm−1} be the

set of vertices of Q. We assume that (1) the set of faces
{F0, F1, . . . , Ff−1} of Q is given, where f is the num-
ber of faces of Q, (2) each vertex qj has its coordinate
(xj , yj , zj), and (3) each face has its vertices in clock-
wise order. The basic idea of the algorithm is the same
as in Section 3.2; we here consider the differences.

We still have the property that we can reach from p0
to pi on P by stamping Q on it. However, now we have
O(n2m) combinations for pairs of pair (pi, pi′) and qj .
Hereafter, we assume that the vertex pi of P forms a
vertex qj on Q and the vertex pi′ forms some vertex qj′
on Q. In the same argument in the pentagonal case,

for two vectors
−→
b0 = (1, 0) and

−→
b′1 = (cos π3 , sin

π
3) =

(1
2 ,
√
3
2), Q can be folded from P only if we have two

integers B′0 and B′1 such that

∣∣∣
−−−−→
(pi, pi′)

∣∣∣ =
∣∣∣B′0
−→
b0 +B′1

−→
b′1

∣∣∣.

We again have that |B′0|+ |B′1| is at most L, and hence
we have O((L+n)2) combinations to be checked. How-
ever, once we fix B′0, then B′1 has two possible values.
Thus this step requires O(L + n) combinations. Each
partition of P by stamping of Q takes O(L+n) time by
the same argument in the case of dodecahedron.

For gluing, almost all arguments are the same as pen-
tagonal case since they do not use the fact that the
shape of a face is a pentagon. The only difference is
that we stamp all (possibly different) faces of Q; this
fact gives us an additional lower bound f of the num-
ber of stampings. Therefore, the time complexity of
our second algorithm for a non-concave deltahedron is
O(n2m(n+ L)(n+ f + L)). Here, by the Euler charac-
teristic, we have f = 2+e−m, where e is the number of
edges of Q. When we consider Q as a graph, it is a pla-
nar graph, which implies that e = O(m), or f = O(m).
By Theorem 4, Q has at most four vertices of curvature
180◦. Thus we have m = O(n). Therefore, the time
complexity of the second algorithm is O(n2m(n+L)2),
which completes the proof of Theorem 2.

4 Concluding Remarks

In this paper, we developed efficient folding algorithms
for some classes of convex polyhedra. The next step is
the extension to general convex polyhedra. In this case,

126

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

the number of unit vectors cannot be bounded by a con-
stant number. Thus we need some different approaches.
Additional future work is the extension to non-convex
polyhedra. In this case, we cannot use Theorem 4 or
Theorem 7 any longer. Is there any reasonable class
of non-convex polyhedra such that the folding problem
can be solved efficiently?

References

[1] Z. R. Abel, E. D. Demaine, M. L. Demaine, H. Ito,
J. Snoeyink, and R. Uehara. Bumpy Pyramid Fold-
ing. Computational Geometry: Theory and Applica-
tions, 75:22–31, 2018.

[2] J. Akiyama. Tile-Makers and Semi-Tile-Makers.
The Mathematical Association of Amerika, Monthly
114:602–609, August-September 2007.

[3] J. Akiyama and K. Matsunaga. Treks into Intuitive
Geometry. Springer, 2015.

[4] J. Akiyama and C. Nara. Developments of Polyhedra
Using Oblique Coordinates. J. Indonesia. Math. Soc. ,
13(1):99–114, 2007.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer, 3rd edition, 1998.

[6] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

[7] A. Dürer. Underweysung der messung, mit den zirckel
un richtscheyt, in Linien ebnen unnd gantzen corporen.
1525.

[8] T. Horiyama and K. Mizunashi. Folding Orthogonal
Polygons into Rectangular Boxes. In In Proc. of 19th
Japan-Korea Joint Workshop on Algorithms and Com-
putation (WAAC 2016), 2016.

[9] J. Mitani and R. Uehara. Polygons folding to plural in-
congruent orthogonal boxes. In 20th Canadian Confer-
ence on Computational Geometry (CCCG 2008), pages
31–34, 2008.

[10] K. Mizunashi, T. Horiyama, and R. Uehara. Efficient
Algorithm for Box Folding. Journal of Graph Algo-
rithms and Applications, 24(2):89–103, February 2020.

[11] D. Xu, T. Horiyama, T. Shirakawa, and R. Ue-
hara. Common Developments of Three Incon-
gruent Boxes of Area 30. Computational Ge-
ometry: Theory and Applications, 64:1–17, 2017.
DOI:10.1016/j.comgeo.2017.03.001.

127

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Vertex-Transplants on a Convex Polyhedron

Joseph O’Rourke

Abstract

Given any convex polyhedron P of sufficiently many ver-
tices n, and with no vertex’s curvature greater than π,
it is possible to cut out a vertex, and paste the excised
portion elsewhere along a vertex-to-vertex geodesic, cre-
ating a new convex polyhedron P ′ of n+ 2 vertices.

1 Introduction

The goal of this paper is to prove the following theorem:

Theorem 1 For any convex polyhedron P of n > N
vertices, none of which have curvature greater than π,
there is a vertex v0 that can be cut out along a digon
of geodesics, and the excised surface glued to a geodesic
on P connecting two vertices v1, v2. The result is a
new convex polyhedron P ′ with n + 2 vertices. N = 16
suffices.

I conjecture that N can be reduced to 4 so that the
theorem holds for all convex polyhedra with the stated
curvature condition. Whether this curvature condition
is necessary is unclear.

I have no particular application of this result, but
it does raise interesting questions (Sec. 8), including:
What are the limiting shapes if vertex-transplants are
repeated indefinitely?

2 Examples

Before detailing the proof, we provide several examples.

We rely on Alexandrov’s celebrated gluing theorem
[Ale05, p.100]: If one glues polygons together along their
boundaries1 to form a closed surface homeomorphic to
a sphere, such that no point has more than 2π incident
surface angle, then the result is a convex polyhedron,
uniquely determined up to rigid motions. Although we
use this theorem to guarantee that transplanting a ver-
tex on P creates a new convex polyhedron P ′, there is
as yet no effective procedure to actually construct P ′,
except when P ′ has only a few vertices or special sym-
metries.

In the examples below, we use some notation that will
not be fully explained until Sec. 3.

1To “glue” means to identify boundary points.

Regular Tetrahedron. Let the four vertices of a regu-
lar tetrahedron of unit edge length be v1, v2, v3 forming
the base, and apex v0. Place a point x on the v3v0 edge,
close to v3. Then one can form a digon starting from x
and surrounding v0 with geodesics γ1 and γ2 to a point y
on 4v1v2v0, with |γ1| = |γ2| = 1. See Fig. 1(a,b). This
digon can then be cut out and its hole sutured closed.
The removed digon surface can be folded to a doubly
covered triangle, and pasted into edge v1v2. The re-
sulting convex polyhedron guaranteed by Alexandrov’s
Theorem is a 6-vertex irregular octahedron P ′.

Figure 1: (a) Unfolding of tetrahedron, apex v0.
(b) Digon γi connects x to y, surrounding v0. (c) After
removal of the digon. (d) Digon doubly covered triangle
sutured along edge v1v2.

Cube. Fig. 2 shows excising a unit-cube corner v0 with
geodesics γ1 and γ2, each of length 1, and then suturing
this digon, folded to a doubly covered triangle, into the
edge v1v2. After closing the digon hole, the result is a
10-vertex, 16-triangle polyhedron P ′.

Doubly Covered Square. Alexandrov’s theorem holds
for doubly covered, flat convex polygons, and vertex-
transplanting does as well. A simple example is cut-
ting off a corner of a doubly covered unit square with a
unit length diagonal, and pasting the digon onto another

128

32nd Canadian Conference on Computational Geometry, 2020

Figure 2: Left: Digon xy surrounding v0. Right: v0
transplanted to v1v2; v0 is the apex of a doubly covered
triangle, the digon flattened. Hole to be sutured closed
to form P ′.

edge. The result is another doubly covered polygon: see
Fig. 3.

Figure 3: A doubly covered square P (front F , back K)
converted to a doubly covered hexagon P ′.

A more interesting example is shown in Fig. 4. The
indicated transplant produces a 6-vertex polyhedron
P ′—combinatorially an octahedron—whose symmetries
make exact reconstruction feasible. Vertices v0 and v3
retain their curvature π, and the remaining four vertices
of P ′, v1, v2, x, y, each have curvature π/2.

Figure 4: Transplanting v0 to v1v2 on a doubly covered
square (front F , back K) leads to a non-flat polyhedron
P ′.

Doubly Covered Equilateral Triangle. The only poly-
hedron for which I am certain Theorem 1 (without re-
strictions) fails is the doubly covered, unit side-length
equilateral triangle. The diameter D = 1 is realized by
the endpoints of any of its three unit-length edges. Any

other shortest geodesic is strictly less than 1 in length,
as illustrated in Fig. 5. Thus there is no opportunity

y

r=1

x

Figure 5: Point x is on the front, y on the back. Three
images of y are shown, corresponding to the three paths
from x to y. The shortest of these paths is never ≥ 1
unless both x and y are (different) corners.

to create a digon of length 1 surrounding a vertex, but
length 1 would be needed to glue into an edge.

3 Preliminaries

Let the vertices of P be vi, and let the curvature (angle
gap) at vi be ωi. We assume all vertices are corners in
the sense that ωi > 0. Let v0, v1, v2 be three vertices,
labeled so that ω0 is smallest among the three, ≤ ω1, ω2.
Let v1v2 be the shortest geodesic on P connecting v1
and v2, with |v1v2| = c its length. Often such a shortest
geodesic is called a segment. A digon is a pair of shortest
geodesics γ1, γ2 of the same length, |γ1| = |γ2| = c,
connecting two points on P. For us, digons will always
surround one vertex v0. Since shortest paths cannot
go through v0, geodesics slightly left and right of v0
meet on the “other side” of v0. We will show that, with
careful choice of v0, v1, v2, we can cut out a digon X
surrounding v0, fold it to a doubly covered triangle and
paste it into v1v2 slit open.

The technique of gluing a triangle along a geodesic
v1v2 on P was introduced by [Ale05, p.240], and em-
ployed in [OV14] to merge vertices. Excising a digon
surrounding a vertex is used in [INV11, Lem. 2]. What
seems to be new is excising from one place on P and
inserting elsewhere on P.

Let C(x) be the cut locus on P with respect to point
x ∈ P. (In some computer science literature, this is
called the ridge tree [AAOS97].) C(x) is the set of points
on P with at least two shortest paths from x. It is a
tree composed of shortest paths; in general, each vertex
of P is a degree-1 leaf of the closure of C(x).

We will need to exclude positions of x that are non-
generic in that C(x) includes one or more vertices. It
was shown in [AAOS97, Lem. 3.8] that the surface of P
may be partitioned into O(n4) ridge-free regions, deter-

129

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

mined by overlaying the cut loci of all vertices:
⋃

i C(vi).
Say that x ∈ P is generic if it is not a vertex and lies
strictly inside a ridge-free region. For later reference,
we state this lemma:

Lemma 2 Within every neighborhood of any point p ∈
P, there is a generic x ∈ P .

Proof. This follows because ridge-free regions are
bounded by cut-loci arcs, each of which is a 1-
dimensional geodesic. �

For generic x, the cut locus in the neighborhood of a
vertex v0 consists of a geodesic segment s open at v0 and
continuing for some positive distance before reaching a
junction u of degree-3 or higher. Let δ(x, u) = δ be the
length of s; see Fig. 6.

Figure 6: Geodesic segment s of C(x) (red) incident to
vertex v0. A pair of shortest geodesics from x to y ∈ s
are shown (green).

4 Surgery Procedure

We start with and will describe the procedure for any
three vertices v0, v1, v2, but later (Sec. 5) we will chose
specific vertices.

Let x be a generic point on P and γ a shortest
geodesic to v0 with length |γ| = |v1v2| = c. The ex-
istence of such an x is deferred to Sec. 5. If we move
x along γ toward v0, γ splits into two geodesics γ1, γ2
connecting x to a point y ∈ C(x), with x and y moving
in concert while maintaining |γ1| = |γ2| = c. If we move
x a small enough distance ε, then y will lie on the seg-
ment s ⊂ C(x) as in Fig. 6. Because Lemma 2 allows
us to choose x to lie in a ridge-free region R, we can
ensure that s has a length |s| = δ > 0. Now γ1, γ2 form
a digon X surrounding v0. With sufficiently small ε, we
can ensure that X is empty of other vertices, and that
y is generic as well. See Fig. 7.

Let the surface angles inside the digon at x and at
y be α and β respectively. By Gauss-Bonnet, we have
α+ β = ω0:

τ + ω0 = 2π = ((π − α) + (π − β)) + ω0 = 2π ,

where the turn angle τ is only non-zero at the endpoints
x and y. In particular, 0 < α, β < ω0. These inequali-
ties are strict because the digon wraps around v0 after
moving x toward v0, so α > 0.

v0

c

x

x

½β

½β

α
ω0

y

v0

yy

yy

γ

(a)

(b)

Figure 7: (a) Flattened digon surrounding v0: α+ β =
ω0. (b) Sliding x along γ toward v0, and y along s, while
maintaining length c constant.

Now we can suture-in the digon X to a slit along v1v2
because:

� The lengths match: |v1v2| = c and |γ1| = |γ2| = c.

� The curvatures at v1, v2 remain positive: α, β <
ω0 ≤ ω1, ω2, so ω1 − α > 0 and ω2 − β > 0.

We then close up the digon on the surface of P and in-
voke Alexandrov’s theorem to obtain P ′. We now detail
the curvature consequences at the five points involved
in the surgery: v0, v1, v2, x, y.

� v0 is unaltered, just moved, i.e, transplanted.

� Both x and y become vertices after the transplant,
of curvatures α and β respectively. Because neither
was a vertex (both generic), this accounts for the
increase from n to n+ 2 vertices in P ′.

� Because α < ω0 ≤ ω1, the change at v1 cannot
flatten v1. So v1 remains a vertex, as does v2.

We note that the condition that ω0 ≤ ω1, ω2 is in
fact more stringent that what is required to ensure that
the curvatures at v1, v2 remain non-negative. The lat-
ter implies that ω0 ≤ ω1 + ω2, a considerably weaker
condition. Moreover, our restriction to generic x and y
is also not necessary: either or both of x and y could be
vertices without obstructing the transplant. Our strict
conditions are aimed at guaranteeing a transplant. We
leave exploring loosenings to the open problems.

5 Existence of v0, v1, v2

In order to apply the procedure just detailed, we need
several conditions to be simultaneously satisfied:

(1) ω0 ≤ ω1, ω2.

(2) |v1v2| = |γ1| = |γ2| = c.

(3) v1v2 should not cross the digon X.

130

32nd Canadian Conference on Computational Geometry, 2020

Although (1) is satisfied by any three vertices, just by
identifying v0 with the smallest curvature, the difficulty
is that if v1v2 is long—say, realizing the diameter of P—
then we need there to be an equally long geodesic from
x to v0, to satisfy (2). A solution is to choose v1 and
v2 to be the nearest neighbors on P, so that |v1v2| is
small. But then if ω1, ω2 are both small, we may not be
able to locate a v0 with a smaller ω0. We resolve these
tensions as follows:

1. We choose v0 to be a vertex with minimum curva-
ture over all vertices of P, so automatically ω0 ≤
ω1, ω2 for any choices for v1 and v2.

2. Several steps to achieve (2):

(a) We choose v1, v2 to achieve the smallest
nearest-neighbor distance NNmin = r over all
pairs of vertices (excluding v0), so v1v2 is as
short as possible.

(b) We prove that the nearest neighbor distance r
satisfies r < 1

2D, where D is the diameter of
P.

(c) We prove that there is an x such that
d(x, v0) ≥ 1

2D.

Together these imply that we can achieve |v1v2| =
|γ1| = |γ2|.

3. We show that if v1v2 crosses X, then another point
x may be found that avoids the crossing. This last
claim is the only use of the assumption that ωi ≤ π
for all vertices vi.

The next section addresses items (1) and (2) above, and
Sec. 7 addresses item (3).

6 Relationship to Diameter D

The diameter D(P) of P is the length of the longest
shortest path between any two points. The lemma be-
low ensures we can find a long-enough geodesic γ = xv0.

Lemma 3 For any x ∈ P, the distance ρ to a point
f(x) furthest from x is at least 1

2D, where D = D(P)
is the diameter of P.

Proof. 2 Let points y, z ∈ P realize the diameter:
d(y, z) = D. For any x ∈ P,

D = d(y, z) ≤ d(y, x) + d(x, z)

by the triangle inequality on surfaces [Ale06, p.1]. Also
we have ρ ≤ d(x, y) and ρ ≤ d(x, z) because ρ is the fur-
thest distance. So D = d(y, z) ≤ 2ρ, which establishes
the claim. �

2Proof suggested by Alexandre Eremenko. https://

mathoverflow.net/a/340056/6094. See also [IRV19].

Next we establish that the smallest distance (via
a shortest geodesic) between a pair of vertices of P,
NNmin—the nearest neighbor distance—cannot be large
with respect to the diameter D = D(P).

6.1 Nearest-Neighbor Distance

Here our goal is to show that sufficiently many points
on P cannot all have large nearest-neighbor (NN) dis-
tances. First we provide two examples.

1. Let P be a regular tetrahedron with unit edge
lengths. D is determined by a point in the center of

the base connecting to the apex, soD = 4
3

√
3
2 = 2√

3
.

The NN-distance is 1 =
√
3
2 D = 0.866D.

2. Let P be a doubly covered regular hexagon, with
unit edge lengths. Then D = 2, connecting oppo-
site vertices, and the NN-distance is 1 = 1

2D.

Our goal is to ensure the NN distance is at most 1
2D,

which is not achieved by the regular tetrahedron but is
for the hexagon. We achieve this by insisting P have
many vertices.

Lemma 4 Let P be a polyhedron with diameter D. Let
S be a set of distinguished points on P, with |S| ≥ N .
Let r be the smallest NN-distance between any pair of
points of S. Then r < D/(

√
N/2). In particular, for

N = 16, r < 1
2D.

Proof.

1. Let a geodesic from x to y realize the diameter D
of P. Let U be the source unfolding of P from
source point x [DO07, Chap.24.1.1]. U does not
self-overlap, and fits inside a circle of radius D; see
Fig. 8. Thus the surface area of P is at most πD2.

2. Let r be the smallest NN-distance, the smallest sep-
aration between a pair of points in S. Then disks of
radius r/2 centered on points of S have disjoint in-
teriors. For suppose instead two disks overlapped.
Then they would be separated by less than r, a
contradiction.

3. N non-overlapping disks of radius r/2 cover an area
of Nπ(r/2)2, which must be less than3 the surface
area of P:

Nπ(r/2)2 < πD2 (1)

r <
D√
N/2

(2)

Thus, for N = 16, r < 1
2D.

�

3Strictly less than because disk packings leave uncovered gaps.

131

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 8: Source unfolding of a regular tetrahedron. xy
realizes D.

7 Crossing Avoidance

Although Lemma 3 ensures that we can find an x on
the geodesic from f(v0) to v0 far enough from v0 so
that we can match |γ| with |v1v2|, if γ crosses v1v2,
the procedure in Sec. 4 fails. We now detail a method
to locate another x in this circumstance. We partition
crossings into two cases, long and short.

Recall that v0 was excluded from the NN calculation
of r, so v0 could be closer to v1 and/or v2 than r =
|v1v2|.

Case (1) [long]. Case: d(v0, vi) > r for either i = 1
or i = 2. Assume d(v0, v2) > r. Then choose γ = v0v2.
We can locate x near v2 on γ to achieve |xv0| = r. See
Fig. 9.

Figure 9: Crossing avoided: d(v0, v2) > r (v0 is outside
v2’s r-disk).

Case (2) [short]. If d(v0, vi) ≤ r for i = 1, 2, then v0 is
located in the half-lune to the opposite side of (below)
v1v2 from f(v0). It is possible that with large curvatures
ω1 and ω2 that there is no evident “room” below v1v2
to locate an x far enough away so that d(x, v0) ≥ r.
However, with assumptions on the maximum curvature
per vertex, room can be found.

The main idea is illustrated in Fig. 10. Although
there might not be room either right or left or below
for an x achieving |xv0| = r, we can “wrap around” the
cone whose apex is v1 or v2 to avoid crossing v1v2.

Figure 10: Curvatures ω1 = ω2 = π/2. Here xv0 wraps
around v1.

With larger curvatures at v1 and v2, the situation
could resemble a doubly covered equilateral triangle
with ωi = 4

3π, which we saw in Sec. 2 violates The-
orem 1. However, if we assume ωi ≤ π for all i, a
long-enough γ to v0 can be found.

Assume the worst case, ω1 = ω2 = π. As illustrated
in Fig. 11, an r-long segment left of v0 re-enters above
v1v2 (red), and similarly right of v0 (green). In fact, it is
easy to see that the red and green segments above and
below have total length 2r, regardless of the orientation
of the semicircle bounding the angle-gap lines through
v1 and v2. So there is always enough room to locate x
above v1v2 connecting “horizontally” to v0 below.

Figure 11: Crossing avoided: Both the red and green
segments have total length r each.

8 Open Problems

1. Extend Theorem 1 to all convex polyhedra, i.e.,
lower N = 16 to N = 4, and remove the ωi ≤ π
restriction.

132

32nd Canadian Conference on Computational Geometry, 2020

2. Establish conditions that allow more freedom in the
selection of the three vertices v0, v1, v2. Right now,
Thm. 1 requires following the restrictions detailed
in Sec. 5, but as we observed, these restrictions are
not necessary for a successful transplant. Addi-
tional freedom might permit controlling the shape
changes, allowing one to “aim” from P to some de-
sired Q.

3. Study doubly covered convex polygons as a special
case. When does a vertex transplant on a dou-
bly covered polygon produce another doubly cov-
ered polygon? See again Sec. 2. (There is a pro-
cedure for identifying flat polyhedra [O’R10]; and
see [INV11, Lem. 4].)

4. What limit shapes are realized under repeated
vertex-transplanting, as n → ∞? Note that be-
cause α, β < ω0, new smaller-curvature vertices are
created at x and y at each step.

5. Does the transplant guaranteed by Thm. 1 always
increase the volume of P? Note that a transplant
flattens v1 and v2 by α and β, and creates new
smallest curvature vertices, α, β < ω0. So the over-
all effect seems to “round” P.

6. Can Thm. 1 be generalized to transplant several
vertices within the same digon? For example, one
can excise both endpoints of an edge of a unit cube
with a digon of length

√
2 and suture that into a

face diagonal.

Related work is under preparation [OV20].

Acknowledgement. I benefitted from the advice of
Anna Lubiw and Costin Vı̂lcu, and suggestions by the
referees.

References

[AAOS97] Pankaj K. Agarwal, Boris Aronov, Joseph
O’Rourke, and Catherine A. Schevon. Star
unfolding of a polytope with applications.
SIAM J. Comput., 26:1689–1713, 1997.

[Ale05] Aleksandr D. Alexandrov. Convex Polyhe-
dra. Springer-Verlag, Berlin, 2005. Mono-
graphs in Mathematics. Translation of the
1950 Russian edition by N. S. Dairbekov,
S. S. Kutateladze, and A. B. Sossinsky.

[Ale06] Aleksandr D. Alexandrov. Intrinsic geome-
try of convex surfaces. In S. S. Kutateladze,
editor, A. D. Alexandrov: Selected Works:
Part II, pages 1–426. Chapman & Hall, Boca
Raton, 2006.

[DO07] Erik D. Demaine and Joseph O’Rourke.
Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University
Press, 2007. http://www.gfalop.org.

[INV11] Jin-ichi Itoh, Chie Nara, and Costin Vı̂lcu.
Continuous flattening of convex polyhedra.
In Centre de Recerca Matemàtica Docu-
ments, volume 8, pages 95–98, 2011. XIV
Spanish Meeting on Computational Geome-
try.

[IRV19] Jin-ichi Itoh, Jöel Rouyer, and Costin Vı̂lcu.
Some inequalities for tetrahedra. https://

arxiv.org/abs/1906.11965, 2019.

[O’R10] Joseph O’Rourke. On flat polyhedra deriving
from Alexandrov’s theorem. http://arxiv.
org/abs/1007.2016v2, July 2010.

[OV14] Joseph O’Rourke and Costin Vı̂lcu. Devel-
opment of curves on polyhedra via conical
existence. Comput. Geom.: Theory & Appl.,
47:149–163, 2014.

[OV20] Joseph O’Rourke and Costin Vı̂lcu. Tailor-
ing for every body: Reshaping convex poly-
hedra. In preparation, August 2020.

133

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Fitting a Graph to One-Dimensional Data∗

Siu-Wing Cheng† Otfried Cheong‡ Taegyoung Lee†

Abstract

Given n data points in Rd, an appropriate edge-weighted
graph connecting the data points finds application in
solving clustering, classification, and regresssion prob-
lems. The graph proposed by Daitch, Kelner and Spiel-
man (ICML 2009) can be computed by quadratic pro-
gramming and hence in polynomial time. While a
more efficient algorithm would be preferable, replac-
ing quadratic programming is challenging even for the
special case of points in one dimension. We develop a
dynamic programming algorithm for this case that runs
in O(n2) time.

1 Introduction

Many interesting data sets can be interpreted as point
sets in Rd, where the dimension d is the number of fea-
tures of interest of each data point, and the coordinates
are the values of each feature. Given such a data set,
graph-based semi-supervised learning is a paradigm for
making predictions on the unlabelled data using the prox-
imity among the data points and possibly some labelled
data (e.g. [2, 5, 8, 10, 12, 13, 14]). Classification, regres-
sion, and clustering are some popular applications. The
graph has to be set up first in order to perform the subse-
quent processing. This requires the determination of the
graph edges and the weights to be associated with the
edges. For example, let wij denote the weight determined
for the edge that connects two points pi and pj , and
regression can be performed to predict function values
fi’s at the points pi’s by minimizing

∑
i,j wij(fi − fj)2,

subject to fixing the subset of known fi’s [2]. To allow
efficient data analysis, it is important that the weighted
graph is sparse.

The graph connectivity should satisfy the property
that similar discrete samples are connected. To this
end, different proximity graphs have been suggested for
connecting proximal points. The kNN -graph connects

∗Cheng is supported by Research Grants Council, Hong Kong,
China (project no. 16200317). Cheong was supported by ICT R&D
program of MSIP/IITP [R0126-15-1108]. Lee received support
from both Research Grants Council, Hong Kong, China (project
no. 16200317) and ICT R&D program of MSIP/IITP [R0126-15-
1108].
†Department of Computer Science and Engineering, HKUST,

scheng@cse.ust.hk, tleeaf@cse.ust.hk.
‡Korea Advanced Institute of Science & Technology,

otfried@kaist.airpost.net.

each point to its k nearest neighbors. The ε-ball graph
connects each point to all other points that are within a
distance ε. After fixing the graph connectivity, edges to
“near” points are given large weights and edges to “far
away” points are given small weights. That is, the larger
the weight of an edge between points p and q, the higher
the influence of q on p and vice versa. It is thus inappro-
priate to use the Euclidean distances among the points
as edge weights. Naively setting an edge weight as the re-
ciprocal of the edge length does not work either because
the influence of a point is required to fall much more
rapidly as that point moves farther away. It has been
proposed to associate a weight of exp(−`2/2σ2) to an
edge of Euclidean length ` for some a priori determined
parameter σ (e.g. [10]). A well-tuned σ is important.
A slight change in σ may greatly affect the processing
outcomes as observed in some previous work (e.g. [12]).
Several studies have found the kNN -graph and the ε-ball
graphs to be inferior to other proximity graphs [2, 3, 13]
for which both the graph connectivity and the edge
weights are determined simultaneously by solving an
optimization problem.

We consider the graph proposed by Daitch, Kelner,
and Spielman [2]. It is provably sparse, and experi-
ments have shown that it offers good performance in
classification, clustering and regression. This graph
is defined via quadratic optimization as follows: Let
P = {p1, p2, . . . , pn} be a set of n points in Rd. We as-
sign weights wij > 0 to each pair of points (pi, pj), such
that wij = wji and wii = 0. These weights determine
for each point pi a vector ~vi, as follows:

~vi =

n∑

j=1

wij(pj − pi).

Let vi denote ‖~vi‖. The weights are chosen so as to
minimize the sum

Q =
n∑

i=1

v2i ,

under the constraint that the weights for each point add
up to at least one (to prevent the trivial solution of
wij = 0 for all i and j):

n∑

j=1

wij > 1 for 1 6 i 6 n.

134

32nd Canadian Conference on Computational Geometry, 2020

The resulting graph contains an edge connecting pi and
pj if and only if wij > 0.

Daitch et al. [2] showed that there is an optimal so-
lution where at most (d + 1)n weights are non-zero.
Moreover, in two dimensions, optimal weights can be
chosen such that the graph is planar.

The optimal weights can be computed by quadratic
programming. A quadratic programming problem with
m variables can be solved in Õ(m3) time in the worst
case [9]. In our case, there are n(n−1)/2 variables, which
gives a worst-case running time of Õ(n6). Graphs based
on optimizing other convex quality measures have also
been considered [5, 13]. Our goal is to design an algo-
rithm to compute the optimal weights in Daitch et al.’s
formulation that is significantly faster than quadratic
programming. Perhaps surprisingly, this problem is chal-
lenging even for points in one dimension, that is, when
all points lie on a line. In this case, it is not difficult to
show (Lemma 1) that there is an optimal solution such
that wij > 0 if and only if pi and pj are consecutive.

Despite its simplicity, the one-dimensional problem
can model the task of detecting change points and con-
cept drift in a time series (e.g. [1, 4, 6, 7, 11]); for example,
seasonal changes in sales figures and customer behavior.
A time series of multi-dimensional data (z1, z2, · · ·) is
given, and the problem is to decide the time steps t
at which there is a “significant change” from zt−1 to
zt. Suppose that the “distance” between zt−1 and zt
can be computed according to some formula appropriate
for the application (e.g. [4]). By forming a path graph
with vertices corresponding to the data points and edge
weights determined as mentioned previously, one apply
clustering algorithms (e.g. [2, 10]) to group “similar” ver-
tices and detect the change points as the boundaries of
adjacent clusters. This gives a potential application of
the graph fitting problem in one dimension.

In general, although there are only n− 1 variables in
one dimension, the weights in an optimal solution do
not seem to follow any simple pattern as we illustrate in
the following two examples.

Some weights in an optimal solution can be arbitrarily
high. Consider four points p1, p2, p3, p4 in left-to-right
order such that p2 − p1 = p4 − p3 = 1 and p3 − p2 = ε.
By symmetry, w12 = w34, and so v1 = v4 = w12. Since
w12 + w23 > 1 and w23 + w34 > 1 are trivially satisfied
by the requirement that w12 = w34 > 1, we can make
v2 zero by setting w23 = w12/ε. In the optimal solution,
w12 = w34 = 1 and w23 = 1/ε. So w23 can be arbitrarily
large.

Given points p1, · · · , pn in left-to-right order, it seems
ideal to make vi a zero vector. One can do this for i ∈
[2, n−1] by setting wi−1,i/wi,i+1 = (pi+1−pi)/(pi−pi−1),
however, some of the constraints wi + wi+1 > 1 may
be violated. Even if we are lucky that for i ∈ [2, n −
1], we can set wi−1,i/wi,i+1 = (pi+1 − pi)/(pi − pi−1)

without violating wi + wi+1 > 1, the solution may not
be optimal as we show below. Requiring vi = 0 for
i ∈ [2, n − 1] gives v1 = vn = w12(p2 − p1). In general,
we have p2 − p1 6= pn − pn−1, so we can assume that
p2−p1 > pn−pn−1. Then, wn−1,n = w12(p2−p1)/(pn−
pn−1) > 1 as w12 > 1. Since wn−1,n > 1, one can
decrease wn−1,n by a small quantity δ while keeping
its value greater than 1. Both constraints wn−1,n > 1
and wn−2,n−1 + wn−1,n > 1 are still satisfied. Observe
that vn drops to w12(p2 − p1)− δ(pn − pn−1) and vn−1
increases to δ(pn − pn−1). Hence, v2n−1 + v2n decreases
by 2δw12(p2 − p1)(pn − pn−1) − 2δ2(pn − pn−1)2, and
so does Q. The original setting of the weights is thus
not optimal. If wn−3,n−2 + wn−2,n−1 > 1, it will bring
further benefit to decrease wn−2,n−1 slightly so that vn−1
decreases slightly from δ(pn − pn−1) and vn−2 increases
slightly from zero. Intuitively, instead of concentrating
w12(p2 − p1) at vn, it is better to distribute it over
multiple points in order to decrease the sum of squares.
But it does not seem easy to determine the best weights.

Although there are only n− 1 variables in one dimen-
sion, quadratic programming still yields a running time
of Õ(n3). We present a dynamic programming algorithm
that computes the optimal weights in O(n2) time in the
one-dimensional case. The intermediate solution has an
interesting structure such that the derivative of its qual-
ity measure depends on the derivative of a subproblem’s
quality measure as well as the inverse of this derivative
function. This makes it unclear how to bound the size
of an explicit representation of the intermediate solu-
tion. Instead, we develop an implicit representation that
facilitates the dynamic programming algorithm.

2 A single-parameter quality measure function

We will assume that the points are given in sorted order,
so that p1 < p2 < p3 < · · · < pn. We first argue
that the only weights that need to be non-zero are the
weights between consecutive points, that is, weights of
the form wi,i+1.

Lemma 1 For d = 1, there is an optimal solution where
only weights between consecutive points are non-zero.

Proof. Let the width of an optimal solution S be
max{|i − k| : wik > 0 in S}. Among all optimal solu-
tions, consider the solution O with the minimum width,
and in case of ties, pick O to minimize the number of
non-zero weights that achieve the minimum width.

Assume to the contrary that the width of O is at least
two, achieved by wik > 0 for some i < k−1. Let j be an
arbitrary index strictly between i and k. We construct
a new optimal solution as follows: Let a = pj − pi,
b = pk − pj , and w = wik. In the new solution, we
set wik = 0, increase wij by a+b

a w, and increase wjk
by a+b

b w. Note that since a + b > a and a + b > b,

135

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

the sum of weights at each vertex increases, and so the
weight vector remains feasible. The value vj changes
by −a× a+b

a w + b× a+b
b w = 0, the value vi changes by

−(a+ b)×w + a× a+b
a w = 0, and the value vk changes

by +(a + b) × w − b × a+b
b w = 0. It follows that the

new solution has the same quality as the original one,
and is therefore also optimal. But then we should have
preferred this optimal solution to O, a contradiction. �

To simplify the notation, we set di = pi+1 − pi, for
1 6 i < n, rename the weights as wi := wi,i+1, again for
1 6 i < n, and observe that

v1 = w1d1,

vi = |widi − wi−1di−1| for 2 6 i 6 n− 1,

vn = wn−1dn−1.

For i ∈ [2, n− 1], we introduce the quantity

Qi = d2iw
2
i +

i∑

j=1

v2j

= d2iw
2
i + d21w

2
1 +

i∑

j=2

(djwj − dj−1wj−1)2,

and note that Qn−1 =
∑n
i=1 v

2
i = Q. Thus, our goal is

to choose the n− 1 non-negative weights w1, . . . , wn−1
such that Qn−1 is minimized, under the constraints

w1 > 1,

wj + wj+1 > 1 for 2 6 j 6 n− 2,

wn−1 > 1.

The quantity Qi depends on w1, w2, . . . , wi. We con-
centrate on wi and consider the function

wi 7→ Qi(wi) = min
w1,...,wi−1

Qi(w1, w2, . . . , wi−1, wi),

where the minimum is taken over all choices of
w1, . . . , wi−1 that respect the constraints w1 > 1 and
wj +wj+1 > 1 for 2 6 j 6 i− 1. The function Qi(wi) is
defined on [0,∞).

We denote the derivative of the function wi 7→ Qi(wi)
by Ri. We will see shortly that Ri is a continuous,
piecewise linear function. Since Ri is not differentiable
everywhere, we define Si(x) to be the right derivative
of Ri, that is

Si(x) = lim
y→x+

R′i(y).

The following result discusses Ri and Si. The shorthand

ξi := 2didi+1, for 1 6 i < n− 1,

will be convenient in its proof and the rest of the paper.

Theorem 2 The function Ri is strictly increasing, con-
tinuous, and piecewise linear on the range [0,∞). We
have Ri(0) < 0, Si(x) > (2 + 2/i)d2i for all x > 0, and
Ri(x) = (2 + 2/i)d2ix for sufficiently large x > 0.

Proof. We prove all claims by induction over i. The
base case is i = 2. Observe that

Q2 = v21 + v22 + d22w
2
2 = 2d21w

2
1 − 2d1d2w1w2 + 2d22w

2
2.

The derivative with respect to w1 is

∂

∂w1
Q2 = 4d21w1 − 2d1d2w2, (1)

which implies that Q2 is minimized for w1 = d2
2d1

w2. This
choice is feasible (with respect to the constraint w1 > 1)
when w2 > 2d1

d2
. If w2 <

2d1
d2

, then ∂
∂w1

Q2 is positive for
all values of w1 > 1, so the minimum occurs at w1 = 1.
It follows that

Q2(w2) =

{
3
2d

2
2w

2
2 for w2 > 2d1

d2
,

2d22w
2
2 − ξ1w2 + 2d21 otherwise,

and so we have

R2(w2) =

{
3d22w2 for w2 > 2d1

d2
,

4d22w2 − ξ1 otherwise.
(2)

In other words, R2 is piecewise linear and has a sin-
gle breakpoint at 2d1

d2
. The function R2 is continuous

because 3d22w2 = 4d22w2 − ξ1 when w2 = 2d1
d2

. We

have R2(0) = −ξ1 < 0, S2(x) > 3d22 for all x > 0,
and R2(x) = 3d22x for x > 2d1

d2
. The fact that S2(x) >

3d22 > 0 makes R2 strictly increasing.
Consider now i > 2, assume that Ri and Si satisfy the

induction hypothesis, and consider Qi+1. By definition,
we have

Qi+1 = Qi − ξiwiwi+1 + 2d2i+1w
2
i+1. (3)

For a given value of wi+1 > 0, we need to find the value
of wi that will minimize Qi+1. The derivative is

∂

∂wi
Qi+1 = Ri(wi)− ξiwi+1.

The minimum thus occurs when Ri(wi) = ξiwi+1.
Since Ri is a strictly increasing continuous function

with Ri(0) < 0 and limx→∞Ri(x) = ∞, for any given
wi+1 > 0, there exists a unique value wi = R−1i (ξiwi+1).
However, we also need to satisfy the constraint wi +
wi+1 > 1.

We first show that Ri+1 is continuous and piecewise
linear, and that Ri+1(0) < 0. We will distinguish two
cases, based on the value of w◦i := R−1i (0).

136

32nd Canadian Conference on Computational Geometry, 2020

Case 1: w◦i > 1. This means that R−1i (ξiwi+1) > 1 for
any wi+1 > 0, and so the constraint of wi + wi+1 > 1 is
satisfied for the optimal choice of wi = R−1i (ξiwi+1). It
follows that

Qi+1(wi+1) = Qi
(
R−1i (ξiwi+1)

)
− ξiwi+1R

−1
i (ξiwi+1)

+ 2d2i+1w
2
i+1.

The derivative Ri+1 is therefore

Ri+1(wi+1) = Ri(R
−1
i (ξiwi+1))

ξi

R′i(R
−1
i (ξiwi+1))

− ξiR−1i (ξiwi+1)

− ξiwi+1
ξi

R′i(R
−1
i (ξiwi+1))

+ 4d2i+1wi+1

= 4d2i+1wi+1 − ξiR−1i (ξiwi+1). (4)

Since Ri is continuous and piecewise linear, so is R−1i ,
and therefore Ri+1 is continuous and piecewise linear.
We have Ri+1(0) = −ξiw◦i < 0.

Case 2: w◦i < 1. Consider the function x 7→ f(x) =
x + Ri(x)/ξi. Since Ri is continuous and strictly in-
creasing by the inductive assumption, so is the function
f . Observe that f(w◦i) = w◦i < 1. As w◦i < 1, we
have Ri(1) > Ri(w

◦
i) = 0, which implies that f(1) > 1.

Thus, there exists a unique value won
i ∈ (w◦i , 1) such that

f(won
i) = won

i +Ri(w
on
i)/ξi = 1.

For wi+1 > 1 − won
i = Ri(w

on
i)/ξi, we have

R−1i (ξiwi+1) > won
i , and so R−1i (ξiwi+1) + wi+1 > 1.

This implies that the constraint wi + wi+1 > 1 is sat-
isfied when Qi+1(wi+1) is minimized for the optimal
choice of wi = R−1i (ξiwi+1). So Ri+1 is as in (4) in
Case 1.

When wi+1 < 1 − won
i , the constraint wi + wi+1 > 1

implies that wi > 1 − wi+1 > won
i . For any wi > won

i

we have ∂
∂wi

Qi+1 = Ri(wi)− ξiwi+1 > Ri(w
on
i)− ξi(1−

won
i) = 0. So Qi+1 is increasing, and the minimal value

is obtained for the smallest feasible choice of wi, that is,
for wi = 1− wi+1. It follows that

Qi+1(wi+1) = Qi(1− wi+1)− ξiwi+1(1− wi+1)

+ 2d2i+1w
2
i+1

= Qi(1− wi+1)− ξiwi+1

+ (ξi + 2d2i+1)w2
i+1,

and so the derivative Ri+1 is

Ri+1(wi+1) = −Ri(1− wi+1)

+ (2ξi + 4d2i+1)wi+1 − ξi. (5)

Combining (4) and (5), we have

• If wi+1 < 1− won
i , then

Ri+1(wi+1) = −Ri(1− wi+1)

+ (2ξi + 4d2i+1)wi+1 − ξi. (6)

• If wi+1 > 1− won
i , then

Ri+1(wi+1) = 4d2i+1wi+1 − ξiR−1i (ξiwi+1). (7)

For wi+1 = 1−won
i , we have Ri(1−wi+1) = Ri(w

on
i) =

ξi(1− won
i) and R−1i (ξiwi+1) = R−1i (ξi(1− won

i)) = won
i ,

and so both expressions have the same value:

−Ri(1− wi+1) + (2ξi + 4d2i+1)wi+1 − ξi
= ξiw

on
i − ξi + 2ξi − 2ξiw

on
i + 4d2i+1(1− won

i)− ξi
= 4d2i+1(1− won

i)− ξiwon
i

= 4d2i+1(1− won
i)− ξiR−1i (ξiwi+1).

Since Ri is continuous and piecewise linear, this implies
that Ri+1 is continuous and piecewise linear. We have
Ri+1(0) = −Ri(1)− ξi. Since w◦i < 1, we have Ri(1) >
Ri(w

◦
i) = 0, and so Ri+1(0) < 0.

Next, we show that Si+1(x) > (2 + 2/i+1)d2i+1 for all
x > 0, which implies that Ri+1 is strictly increasing. If
w◦i < 1 and x < 1− won

i , then by (6),

Si+1(x) = Si(1− x) + 2ξi + 4d2i+1

> 4d2i+1

> (2 + 2/i+1)d2i+1.

If w◦i > 1 or x > 1 − won
i , we have by (4)and (7) that

Ri+1(x) = 4d2i+1x − ξiR−1i (ξix). By the inductive as-
sumption that Si(x) > (2 + 2/i)d2i for all x > 0, we get
∂
∂xR

−1
i (x) 6 1/

(
(2 + 2/i)d2i

)
. It follows that

Si+1(x) > 4d2i+1 −
(2didi+1)2

(2 + 2/i)d2i
=
(

4− 4

2 + 2/i

)
d2i+1

=
(

4− 2i

i+ 1

)
d2i+1

=
(

2 +
2

i+ 1

)
d2i+1.

This establishes the lower bound on Si+1(x).
Finally, by the inductive assumption, when x is large

enough, we have R−1i (x) = x/
(
(2 + 2/i)d2i

)
, and so

Ri+1(x) = 4d2i+1x−
(2didi+1)2

(2 + 2/i)d2i
x

=
(

2 +
2

i+ 1

)
d2i+1x,

completing the inductive step and therefore the
proof. �

137

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

3 The algorithm

Our algorithm progressively constructs a representation
of the functions R2, R3, . . . , Rn−1. The function repre-
sentation supports the following three operations:

• Op 1: given x, return Ri(x);

• Op 2: given y, return R−1i (y);

• Op 3: given ξ, return xon such that xon + Ri(x
on)

ξ = 1.

The proof of Theorem 2 gives the relation between
Ri+1 and Ri. This will allow us to construct the func-
tions one by one—we discuss the detailed implementation
in Sections 3.1 and 3.2 below.

Once all functions R2, . . . , Rn−1 are constructed, the
optimal weights w1, w2, . . . , wn−1 are computed from
the Ri’s as follows. Recall that Q = Qn−1, so wn−1
is the value minimizing Qn−1(wn−1) under the con-
straint wn−1 > 1. If R−1n−1(0) > 1, then R−1n−1(0) is
the optimal value for wn−1; otherwise, we set wn−1 to 1.

To obtain wn−2, recall from (3) that Q = Qn−1 =
Qn−2(wn−2) − ξn−2wn−2wn−1 + 2d2n−1w

2
n−1. Since we

have already determined the correct value of wn−1, it
remains to choose wn−2 so thatQn−1 is minimized. Since

∂

∂wn−2
Qn−1 = Rn−2(wn−2)− ξn−2wn−1,

Qn−1 is minimized when Rn−2(wn−2) = ξn−2wn−1, and
so wn−2 = R−1n−2(ξn−2wn−1).

In general, for i ∈ [2, n−2], we can obtain wi from wi+1

by observing that

Qn−1 = Qi(wi)− ξiwiwi+1 + g(wi+1, . . . , wn−1),

where g is function that only depends on wi+1, . . . , wn−1.
Taking the derivative again, we have

∂

∂wi
Qn−1 = Ri(wi)− ξiwi+1,

so choosing wi = R−1i (ξiwi+1) minimizes Qn−1. To also
satisfy the constraint wi + wi+1 > 1, we need to choose
wi = max{R−1i (ξiwi+1), 1 − wi+1} for i ∈ [2, n − 2].
Finally, from the discussion that immediately follows (1),
we set w1 = max{ d22d1

w2, 1}. To summarize, we have

wn−1 = max{R−1n−1(0), 1},
wi = max{R−1i (ξiwi+1), 1− wi+1}, for i ∈ [2, n− 2],

w1 = max{ d22d1
w2, 1}.

It follows that we can obtain the optimal weights using
a single Op 2 on each Ri.

3.1 Explicit representation of piecewise linear func-
tions

Since Ri is a piecewise linear function, a natural rep-
resentation is a sequence of linear functions, together
with the sequence of breakpoints. Since Ri is strictly
increasing, all three operations can then be implemented
to run in time O(log k) using binary search, where k is
the number of function pieces.

We construct the functions Ri, for i = 2, . . . , n − 1,
one by one.

The function R2 consists of exactly two pieces. We
construct it directly from d1, d2, and ξ1 using (2).

To construct Ri+1, we make use of the explicit repre-
sentation of Ri that we have already computed. We first
compute w◦i = R−1i (0) using Op 2 on Ri. If w◦i > 1, then
by (4) each piece of Ri, starting at the x-coordinate w◦i ,
gives rise to a linear piece of Ri+1, so the number of
pieces of Ri+1 is at most that of Ri.

If w◦i < 1, then we compute won
i using Op 3 on Ri.

The new function Ri+1 has a breakpoint at 1− won
i by

(6) and (7). Its pieces for x > 1 − won
i are computed

from the pieces of Ri starting at the x-coordinate won
i .

Its pieces for 0 6 x < 1 − won
i are computed from the

pieces of Ri between the x-coordinates 1 and won
i . (In-

creasing wi+1 now corresponds to a decreasing wi.) This
implies that every piece of Ri that covers x-coordinates
in the range [won

i , 1] will give rise to two pieces of Ri+1,
so the number of pieces of Ri+1 may be twice the number
of pieces of Ri.

Therefore, although this method works, it is unclear
whether the number of linear pieces of Ri is bounded by
a polynomial in i.

3.2 A quadratic time implementation

Since we have no polynomial bound on the number of
linear pieces of the function Rn−1, we turn to an implicit
representation of Ri.

The representation is based on the fact that there is a
linear relationship between points on the graphs of the
functions Ri and Ri+1. Concretely, let yi = Ri(xi), and
yi+1 = Ri+1(xi+1). Recall the following relation from
(4) for the case of w◦i > 1:

Ri+1(wi+1) = 4d2i+1wi+1 − ξiR−1i (ξiwi+1).

We can express this relation as a system of two equations:

yi+1 = 4d2i+1xi+1 − ξixi,
yi = ξixi+1.

This can be rewritten as

yi+1 = 4d2i+1yi/ξi − ξixi,
xi+1 = yi/ξi,

138

32nd Canadian Conference on Computational Geometry, 2020

or in matrix notation


xi+1

yi+1

1


 = Mi+1 ·



xi
yi
1


 , (8)

where

Mi+1 =




0 1/ξi 0
−ξi 4d2i+1/ξi 0
0 0 1


 .

On the other hand, if w◦i < 1, then Ri+1 has a break-
point at 1 − won

i . The value won
i can be obtained by

appying Op 3 to Ri. We compute the coordinates of
this breakpoint: (1 − won

i , Ri+1(1 − won
i)). Note that

Ri+1(1 − won
i) = 4d2i+1(1 − won

i) − ξiR
−1
i (ξi(1 − won

i))
which can be computed by applying Op 2 to Ri. For
xi+1 > 1 − won

i , the relationship between (xi, yi) and
(xi+1, yi+1) is given by (8). For 0 6 xi+1 < 1 − won

i ,
recall from (5) that

Ri+1(wi+1) = −Ri(1− wi+1)

+ (2ξi + 4d2i+1)wi+1 − ξi.

We again rewrite this as

yi+1 = −yi + (2ξi + 4d2i+1)xi+1 − ξi,
xi = 1− xi+1,

which gives

yi+1 = −yi + (2ξi + 4d2i+1)(1− xi)− ξi,
xi+1 = 1− xi,

or in matrix notation:


xi+1

yi+1

1


 = Li+1 ·



xi
yi
1


 ,

where

Li+1 =




−1 0 1
−2ξi − 4d2i+1 −1 ξi + 4d2i+1

0 0 1


 .

We will make use of this relationship to store the
function Ri+1, for i > 2, by storing the break-
point (x∗i+1, y

∗
i+1) = (1 − won

i , Ri+1(1 − won
i)) as well

as the two matrices Li+1 and Mi+1. The function R2 is
simply stored explicitly.

We now discuss how the three operations Op 1, Op 2,
and Op 3 are implemented on this representation of a
function Ri. For an operation on Ri, we progressively
build transformation matrices T ii , T

i
i−1, T

i
i−2, . . . , T

i
3, T

i
2

such that (xi, yi, 1) = T ij × (xj , yj , 1) for every 2 6 j 6 i
in a neighborhood of the query. Once we obtain T i2, we
use our explicit representation of R2 to express yi as

a linear function of xi in a neighborhood of the query,
which then allows us to answer the query.

The first matrix T ii is the identity matrix. We obtain
T ij from T ij+1, for j ∈ [2, i − 1], as follows: If Rj+1

has no breakpoint, then T ij = T ij+1 · Mj+1. If Rj+1

has a breakpoint (x∗j+1, y
∗
j+1), then either T ij = T ij+1 ·

Mj+1 or T ij = T ij+1 · Lj+1, depending on which side
of the breakpoint applies to the answer of the query.
We can decide this by comparing (x′, y′, 1)t = T ij+1 ·
(x∗j+1, y

∗
j+1, 1)t with the query. More precisely, for Op 1

we compare the input x with x′, for Op 2 we compare
the input y with y′, and for Op 3 we compute x′ + y′/ξ
and compare with 1.

Assuming the Real-RAM model common in computa-
tional geometry, where arithmetic on real numbers takes
constant time, it follows that the implicit representation
of Ri supports all three operations on Ri in time O(i).

Finally, we discuss how the representation of all func-
tions Ri is obtained. We again build it iteratively, con-
structing R2, R3, R4, . . . , Rn−1, one-by-one in this order.
The first function R2 is stored explicitly. To construct
the implicit representation of Ri+1, we only need to
perform on our representation of Ri (that we already
computed) one Op 2 to get w◦i = R−1i (0), one Op 3 to get
won
i , and one Op 2 to get R−1i (ξi(1−won

i)), which allows
us to determine the breakpoint (1−won

i , Ri+1(1−won
i)),

if there is one (when w◦i < 1). The two matrices Li+1

and Ri+1 can be computed in O(1) time.

Since operations on Ri take time O(i), the total time
to construct Rn−1 is O(n2).

Theorem 3 Given n points on a line, we can compute
an optimal set of weights for minimizing the quality
measure Q in O(n2) time under the Real-RAM model.

4 Conclusion

We do not have a polynomial time bound on the running
time using the explicit representation of the functions
Ri. Future work should determine if there is good bound
on the number of pieces in the explicit representation,
or an example in which the number of pieces is large.

It would also be nice to obtain an algorithm for higher
dimensions that is not based on a quadratic programming
solver.

In two dimensions, we have conducted some exper-
iments that indicate that the Delaunay triangulation
of the point set contains a well-fitting graph. If we
choose the graph edges only from the Delaunay edges
and compute the optimal edge weights, the resulting
quality measure is very close to the best quality measure
in the unrestricted case. It is conceivable that one can ob-
tain a provably good approximation from the Delaunay
triangulation.

139

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] S. Aminikhanghahi and D.J. Cook. A survey of methods
for time series change point detection. Knowledge and
Information Systems, 51 (2017), 339–367.

[2] S.I. Daitch, J.A. Kelner, and D.A. Spielman. Fitting a
graph to vector data. Proceedings of the 26th Interna-
tional conference on Machine Learing, 2009, 201–208.

[3] S. Han, H. Huang, H. Qin, and D. Yu. Locality-
preserving L1-graph and its application in clustering.
Proceedings of the 30th Annual ACM Symposium on
Applied Computing, 2015, 813–818.

[4] S. Hido, T. Idé, H. Kahsima, H. Kubo, and H. Mat-
suzawa. Unsupervised change analysis using supervised
learning. Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2008, 148–159.

[5] T. Jebara, J. Wang, and S.-F. Chang. Graph construc-
tion and b-matching for semi-supervised learning. Pro-
ceedings of the 26th International conference on Machine
Learing, 2009, 441–448.

[6] R. Klinkenberg and T. Joachims. Detecting concept drift
with support vector machines. Proceedings of the 17th
International Conference on Machine Learning, 2000,
487–494.

[7] W.-H. Lee, J. Ortiz, B. Ko, and R. Lee. Time se-
ries segmentation through automatic feature learning.
arXiv:1801.05394v2, 2018.

[8] W. Liu, J. He, and S.-F. Chang. Large graph construc-
tion for scalable semi-supervised learning. Proceedings of
the 27th International Conference on Machine Learning,
2010, 679–686.

[9] R.D.C. Monteiro and I. Adler. Interior path following
primal-dual algorithms. Part II: convex quadratic pro-
gramming. Mathematical Programming, 44:43–66, 1989.

[10] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clus-
tering: analysis and an algorithm. Proceedings of the
14th International Conference on Neural Information
Processing Systems, 2001, 849–856.

[11] M. Scholz and R. Klinkenberg. Boosting classfiers for
drifting concepts. Intelligent Data Analysis - Knowledge
Discovery from Data Streams, 11 (2007), 3–28.

[12] S. Xiang, F. Nie, and C. Zhang. Semi-supervised classifi-
cation via local spline regression. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32 (2010),
2039–2053.

[13] Y.-M. Zhang, K. Huang, and C.-L. Liu. Learning local-
ity preserving graph from data. IEEE Transactions on
Cybernetics, 44 (2014), 2088–2098.

[14] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B.
Schölkopf. Learning with local and global consistency.
Proceedings of the 16th International Conference on
Neural Information Processing Systems, 2003, 321–328.

140

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Planar Emulators for Monge Matrices

Hsien-Chih Chang∗ Tim Ophelders†

Abstract

We constructively show that any cyclic Monge distance
matrix can be represented as the graph distances be-
tween vertices on the outer face of a planar graph. The
structure of the planar graph depends only on the num-
ber of rows of the matrix, and the weight of each edge
is a fixed linear combination of constantly many matrix
entries. We also show that the size of our constructed
graph is worst-case optimal among all planar graphs.

1 Introduction

Monge property, named after the 18th century math-
ematician Gaspard Monge, roughly say that the sum
of shortest-path distances between two crossing pairs
of points (x, y) and (z, w) is at least the sum of the
ones between corresponding non-crossing pairs (x, z)
and (y, w). The original motivation is to study the opti-
mal transport of masses in the plane [31,40]. As a simple
consequence of the Jordan curve theorem, Monge prop-
erty has been tremendously helpful in designing efficient
algorithms for planar optimization problems—whether
the input is a planar graph or geometric objects lying
in the plane [12, 25, 26, 39, 43]. Most famously, Monge
property is central to the design of the SMAWK algo-
rithm [2] for row-minimum queries in totally monotone
matrices and the Monge heap data structure [28] for
speeding up various optimization algorithms on planar
and surface graphs [15, 28, 30, 33, 35, 41]. In some prob-
lems where Monge property is evident, it is not clear
whether the problem has an obvious connection to pla-
nar metrics. Examples are fast dynamic programming
using quadrangle inequalities [6, 29], as well as string
problems such as the edit distance and longest com-
mon subsequence [46, 50]. (See Burkard et al. [11, 12],
Park [43], and the citations within for additional ap-
plications of the Monge properties.) A characteriza-
tion of matrices satisfying the Monge property is known
to exist [7, 10, 45], but the following fundamental ques-
tion relating planar metric to Monge property remains
unanswered: Given a metric between a finite number
of points satisfying some Monge property, is the metric
planar?

We answer this question affirmatively. We show that

∗Duke University, USA.
†Michigan State University, USA.

given any distance matrix satisfying the (cyclic) Monge
property, one can construct an edge-weighted planar
graph realizing entries of the matrix exactly as graph
distances between some subset of vertices (called ter-
minals). In other words, we construct a planar emu-
lator for any (cyclic) Monge matrix with zero diago-
nals. Moreover, the construction is optimal in size and
takes time linear in the size of the distance matrix. In
fact, each edge in the graph along with its weight is
determined by a constant number of entries in the ma-
trix. Such property is of independent interest and might
be useful in designing efficient algorithms under various
computation models.

1.1 Related work

Sketching graph distances. Emulators—arbitrary
graphs that preserve distances between terminals in
the input graph—are known to exist in general [8, 9,
19]. But without additional assumptions on the in-
put graph there is a linear lower-bound on the size
of the emulator (with respect to the size of the input
graph) when the number of terminals is a polynomial
Θ(nα) for some range of α strictly less than 1 [19].1

Chang, Gawrychowski, Mozes, and Weimann [14] con-
structed the first sub-linear size emulator for any undi-
rected unweighted planar graph: given any k-terminal
planar graph with n vertices, an emulator of size
Õ(min{k2, (kn)1/2}) can be constructed in Õ(n) time,
which is optimal up to logarithmic factors.

A related structure, called a spanner, which preserves
the distances approximately up to additive or multi-
plicative errors, is relatively well-understood for gen-
eral graphs [9, 32, 44, 49, 51]. Spanners with stronger
guarantees exist for geometrically/topologically con-
strained graphs [4, 13, 24, 38]. Similarly, distance or-
acles that answer distance queries exactly or approx-
imately are known to exist for planar and surface
graphs [1,5,16,28,36,37,42,47,48]. (See Ahmed et al. [3]
for a recent survey on distance sketching.)

Circular planar graphs. One of the central problems
in the theory of circular planar graphs considers the
following problem: Given measures of effective resis-
tances between all pairs of terminals, can we reconstruct

1Interestingly, when the number of terminals is barely sublin-
ear (say n/2Θ(log∗ n)) in an undirected unweighted graph, there
is a strictly sublinear-size emulator [8].

141

32nd Canadian Conference on Computational Geometry, 2020

a planar resistor network realizing the measures where
the terminals lie on the boundary? Colin de Verdière
et al. [17, 18] and Curtis et al. [21, 22] showed that the
reconstruction problem can be solved precisely when the
effective resistance matrix is totally non-negative. The
problem sounds similar to ours in spirit; in fact, when
looking closer, the planar emulator problem is equiv-
alent to their reconstruction problem in the (min,+)-
semiring instead of the standard (+,×)-ring. The tech-
niques involved in proving their theorem rely crucially
on the fact that the weights are over a (+,×)-ring and
therefore do not apply to our problem.

1.2 Preliminaries

Monge properties. A matrix M satisfies the Monge
property if for any two rows i < i′ and two columns
j < j′, one has

M [i, j] +M [i′, j′] ≤M [i′, j] +M [i, j′].

Matrix M satisfies the anti-Monge property if the sign
of the above inequality flipped. We often reorder the
terms in the inequality to emphasize the monotonicity
on the entry differences:

M [i′, j′]−M [i, j′] ≤M [i′, j]−M [i, j].

For the purpose of this paper we only consider dis-
tance matrices, where the diagonal entries are all ze-
ros, the entries are symmetric and satisfy the triangle
inequality. A distance matrix M is cyclic Monge2 if
for any four indices i, i′, j, j′ in cyclic order (that is,
i ≤ i′ ≤ j ≤ j′ after some cyclic reordering of [i, i′, j, j′]),
one has

M [i, j′] +M [i′, j] ≤M [i, j] +M [i′, j′].

(Notice the inequality sign flipped comparing to the
standard Monge property.) Let M be a cyclic Monge
distance matrix and let A and B be two disjoint sub-
intervals of the index set of M . Then the submatrix of
M between A and B must be an (anti-)Monge matrix.

Planar emulators. Consider an undirected planar
graph G with edge weights and let ∂G be the vertices
on the boundary of the outer face of G. We consider
the distance matrix M between vertices in ∂G: for any
pair of vertices i and j in ∂G, we set M [i, j] to be the
distance between i and j in G.

It is not immediately clear that any cyclic Monge dis-
tance matrix M comes as a distance matrix generated
from some planar graph G. A planar emulator for a
distance matrix M is a graph G whose vertex set V (G)

2This is known as the Kalmanson matrix [23, 34], which is
slightly more restricted than a triangular Monge matrix [12] or
the convex quadrangle inequality [27].

contains the indices of M (and possibly others), and the
graph distance dG(u, v) between any pair of vertices u
and v in G is equal to M [u, v]. Planarity and the Jordan
curve theorem ensures that any distance matrix M of
a planar emulator must satisfy the cyclic Monge prop-
erty. Our main result shows that the converse is also
true: any cyclic Monge distance matrix admits a planar
emulator.

In Section 2 we describe the construction and prove
its correctness. We show that the size of the construc-
tion is optimal in Section 3, and conclude the paper in
Section 4.

2 Constructing a planar emulator

The goal of this section is to construct planar emulators
for arbitrary cyclic Monge distance matrices.

Theorem 1 Given any n × n cyclic Monge distance
matrix M , there is a planar emulator for M with

(
n
2

)

edges.

For any given positive integer n, we define a pla-
nar graph Gn as follows (see Figure 1). Let the ver-
tices of Gn be the set {vi,j}, where i ranges in [1 : n]
and j ranges in [1 : min{i, n − i + 1}]. Define termi-
nal pi to be vi,min{i,n−i+1}. The edges of Gn consist
of horizontal edges and vertical edges. A horizontal
edge e↔i,j lies between each vi,j and vi+1,j where j ranges
in [1 : bn/2c] and i ranges in [j : n − j]. A vertical

edge e
l
i,j lies between each vi,j and vi,j+1 where j ranges

in [1 : min{i, n+ 1− i} − 1] and i ranges in [2 : n− 1].

p1

p2

p3 p4

p5

p6

v3,2

v3,1v2,1 v4,1

v4,2

v5,1
e
l
5,1e

l
4,1

e
l
4,2

e
l
3,1e

l
2,1

e
l
3,2

e↔4,2e↔2,2 e↔3,2

e↔3,3

e↔2,1e↔1,1 e↔3,1 e↔4,1 e↔5,1

Figure 1: Graph G6.

Consider a cyclic Monge distance matrix M and for
brevity denote Mi,j := M [i, j]. We define the graph GnM
as an edge-weighted copy of Gn, where the weight of a
horizontal edge e↔i,j is

ω(e↔i,j) :=
1

2
(Mi+1,j −Mi,j +Mi,n−j+1 −Mi+1,n−j+1) ,

and the weight of a vertical edge e
l
i,j is

ω(e
l
i,j) :=

1

2

(
Mi,j −Mi,j+1 +Mi,n−j+1 −Mi,n−j+

Mj+1,n−j −Mj,n−j+1

)
.

142

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

pi+1pi

pn−j+1

pj Mi+1,n−j+1

Mi,n−j+1

Mi,j

Mi+1,j

e↔i,j

e
l
i,j

pi

pj

Mj,n−j+1

Mj+1,n−j

pj+1 pn−j

Mi,n−j+1Mi,j

Mi,j+1 Mi,n−j

pn−j+1

Figure 2: Values used to assign weights to e↔i,j and e
l
i,j .

(See Figure 2.) Henceforth, we will refer to the edge-
weighted graph GnM as the canonical realization of M .

For the rest of the section, we show that G := GnM
is a planar emulator of M . For this, it suffices to show
that dG(pi, pj) = M [i, j] for all pairs of terminals pi and
pj . First, we derive some properties of G using the fact
that M is a cyclic Monge matrix.

Lemma 2 If M is a cyclic Monge matrix, then all edge
weights of GnM are non-negative.

Proof. An edge of GnM is either horizontal or vertical.
For any horizontal edge e↔i,j , the cyclic Monge property
states that Mi,j + Mi+1,n−j+1 ≤ Mi+1,j + Mi,n−j+1,
and therefore 2ω(e↔i,j) = Mi+1,j − Mi,j + Mi,n−j+1 −
Mi+1,n−j+1 ≥ 0.

For any vertical edge e
l
i,j , the cyclic Monge property

states that (1) Mi,j+1 +Mj,n−j ≤Mi,j +Mj+1,n−j and
(2) Mi,n−j + Mj,n−j+1 ≤ Mj,n−j + Mi,n−j+1. Com-

bining (1) and (2) gives 2ω(e
l
i,j) = Mi,j − Mi,j+1 +

Mi,n−j+1 −Mi,n−j +Mj+1,n−j −Mj,n−j+1 ≥ 0. �

It follows that the minimum-weight path from pi to pj
in G is simple.

Next, we show that there is at least one path from pi
to pj achieving the cost M [i, j]. For i ≤ i′, the path of
horizontal edges between vi,j and vi′,j in G has weight

∑

x∈[i:i′−1]
ω(e↔x,j) =

1

2

∑

x∈[i:i′−1]

(
Mx+1,j −Mx,j +Mx,n−j+1

−Mx+1,n−j+1

)

=
1

2
(Mi′,j −Mi,j +Mi,n−j+1 −Mi′,n−j+1) ,

and for j ≤ j′, the path of vertical edges between vi,j

and vi,j′ has weight

∑

y∈[j:j′−1]
ω(e
l
i,y) =

1

2

∑

y∈[j:j′−1]

(
Mi,y −Mi,y+1 +Mi,n−y+1

−Mi,n−y +My+1,n−y −My,n−y+1

)

=
1

2

(
Mi,j −Mi,j′ +Mi,n−j+1 −Mi,n−j′+1

+Mj′,n−j′+1 −Mj,n−j+1

)
.

Consider two terminals pi and pj and assume that
min{i, n − i + 1} ≥ min{j, n − j + 1}. Let πj,i be the
unique L-shaped (simple) path from pj to pi that con-
sists of a path π↔j,i of horizontal edges followed by a
path π

l
j,i of vertical edges (both paths might possibly

be empty). When min{i, n− i+ 1} > min{j, n− j + 1}
we define πj,i := πi,j .

Lemma 3 Let M be a cyclic Monge distance matrix.
The weight of πj,i in GnM is Mi,j.

Proof. We assume that j ≤ dn/2e (the other case is
symmetric). The vertex at the end of π↔j,i (and at the
start of π

l
j,i) is vi,j . Let i′ := min{i, n− i+ 1}, then the

weight of πj,i is

ω(πj,i) =
∑

x∈[j:i−1]
ω(e↔x,j) +

∑

y∈[j:i′−1]
ω(e
l
i,y)

=
1

2

(
(Mi,j −Mj,j +Mj,n−j+1 −Mi,n−j+1)+

(Mi,j −Mi,i′ +Mi,n−j+1 −Mi,n−i′+1+

Mi′,n−i′+1 −Mj,n−j+1)
)

=
1

2
(Mi,j +Mi,j −Mi,i′ −Mi,n−i′+1 +Mi′,n−i′+1),

where either Mi,i′ = 0 and Mi,n−i′+1 = Mi′,n−i′+1, or
Mi,n−i′+1 = 0 and Mi,i′ = Mi′,n−i′+1; so ω(πj,i) =
Mi,j . �

By Lemma 3 we have dG(pi, pj) ≤Mi,j , so it remains
to show that dG(pi, pj) ≥Mi,j . Define the y-coordinate
of a horizontal edge e↔i,j as j, and the x-coordinate of a
vertical edge e

l
i,j as i. We next show that G contains

a minimum-weight path from pi to pj whose horizontal
edges all have the same y-coordinate. It follows that
there is a minimum-weight path consisting of at most
one subpath of horizontal edges.

Lemma 4 Let M be a cyclic Monge distance matrix.
For any pair of terminals p and p′, GnM has a minimum-
weight path from p to p′ whose horizontal edges all have
the same y-coordinate.

Proof. For a path π, let σ(π) be the sum of y-
coordinates of its horizontal edges. Let α be a
minimum-weight path from p to p′ that minimizes σ(α)
(over all minimum-weight paths from p to p′). We

143

32nd Canadian Conference on Computational Geometry, 2020

pj+1

pj

pi pi+1

pn−j

pn−j+1

pj+1

pj

pi pi+1

pn−j

pn−j+1

2ω(e
l
i,j) + 2ω(e↔i,j+1) ≥ 2ω(e↔i,j) + 2ω(e

l
i+1,j)

e
l
i,j

e↔i,j+1

e↔i,j
e
l
i+1,j

Figure 3: The sum of weights of e↔i,j and e
l
i+1,j is at most that of e

l
i,j and e↔i,j+1.

2ω(e
l
i,j) + 2ω(e

l
i′,j) + 2

∑i′−1
x=i ω(e↔x,j) ≥ 2

∑i′−1
x=i ω(e↔x,j+1)

Figure 4: The weight of the horizontal path from vi,j+1 to vi′,j+1 is at most the total weight of e
l
i,j , e

l
i′,j , and the

horizontal path from vi,j to vi′,j .

claim that all horizontal edges of α have the same y-
coordinate. Suppose not, then α contains a two-edge

subpath consisting of a vertical edge e
l
i,j and a hori-

zontal edge e↔i,j+1 or e↔i−1,j+1. We consider only the

case where the subpath has edges e
l
i,j and e↔i,j+1 (the

other case is symmetric). Consider the path β obtained

from α by replacing this subpath by e↔i,j and e
l
i+1,j .

Then σ(β) < σ(α), so by assumption β cannot be a
minimum-weight path. However, Figure 3 shows that
the weight of β is at most that of α, contradicting that α
is a minimum-weight path that minimizes σ. �

Finally, we show that there is a minimum-weight path
for which additionally, its vertical edges all have the
same x-coordinate. Together with the fact that all edge
weights are non-negative (Lemma 2), it follows that πj,i
is a minimum-weight path between pj and pi.

Lemma 5 Let M be a cyclic Monge distance matrix.
For any pair of terminals p and p′, GnM has a minimum-
weight path from p to p′ whose horizontal edges all have
the same y-coordinate, and whose vertical edges all have
the same x-coordinate.

Proof. By Lemma 4, there is a minimum-weight path
from p to p′ whose horizontal edges all have the same y-
coordinate, and without loss of generality assume that
this y-coordinate is maximal over all such paths. Be-
cause all edges have nonnegative weights by Lemma 2,
we may assume that this path consists of a path of
vertical edges (with decreasing y-coordinates), followed
by a path of horizontal edges whose x-coordinates are

increasing or decreasing, and finally a path of vertical
edges with increasing y-coordinates. Suppose that the
subpath of horizontal edges is surrounded by vertical

edges e
l
i,j and e

l
i′,j with i < i′ (the case i > i′ is sym-

metric). Let α be the path consisting of e
l
i,j , the edges

e↔x,j for i ≤ x < i′, and e
l
i′,j ; let β be the path of edges

e↔x,j+1 for i ≤ x < i′. Apply cyclic Monge property
twice, one can show that 2Mi′,j+2Mj+1,n−j−Mi′,j+1+
2Mi,n−j+1 − 2Mj,n−j+1 −Mi,n−j ≥ Mi′,j+1 + Mi,n−j ,
which implies that the weight of β is at most that of α,
so replacing α by β yields a shortest path whose hor-
izontal edges all have the same y-coordinate, but one
bigger than that of the horizontal edges of α, which is
a contradiction. (See Figure 4.) �

As an immediate corollary of Lemmas 2, 3, and 5,
every n× n cyclic Monge distance matrix has a planar
emulator of size

(
n
2

)
, proving Theorem 1.

3 Lower bound on the size of planar emulators

In this section we show that some Monge distance ma-
trices requires

(
n
2

)
edges in any of its planar emulator. A

similar result by Cossarini [20] says that any planar em-
ulator of some cyclic Monge matrix requires

(
n
2

)
edges.

Therefore, our canonical realization is worst-case opti-
mal in size.

Theorem 6 Some n×n Monge distance matrices have
no planar emulator with fewer than

(
n
2

)
edges.

Proof. Let M be a Monge distance matrix. The vec-

tor (Mi,j)i<j ∈ R(n
2) completely determines M since

144

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Mi,i = 0 and Mi,j = Mj,i as d is a graph metric on the
canonical realization of M . The set of such vectors over
all Monge distance matrices yields a convex polytope P,
as it is bounded only by the hyperplanes arising from the
linear inequalities of the triangle inequality and cyclic
Monge property. We show that P is

(
n
2

)
-dimensional.

For this, we define a family of
(
n
2

)
sets (Ee)e∈E(G) of

edges indexed by the edges of GnM . For each horizontal
edge e↔i,j , let Ee↔i,j := {e↔i,j′ | j′ ≤ j}. For each vertical

edge e
l
i,j , let E

e
l
i,j

:= {eli,j} ∪ Ee↔i,j ∪ Ee↔i+1,j
. For each

edge e, define the weight function ωe as the character-
istic function of Ee; in other words, let ωe : E → {0, 1},
with ωe(e

′) = 1 if e′ ∈ Ee, and ωe(e
′) = 0 otherwise. We

show that the
(
n
2

)
weight functions (ωe)e∈E(G) are lin-

early independent. For each horizontal edge e↔i,1, ωe↔i,1
sets only the weight of edge e↔i,1 to one, and all other
edges to zero. Similarly, for each horizontal edge e↔i,j
with j > 1, e 7→ ωe↔i,j (e)−ωe↔i,j−1

(e) sets only the weight

of edge e↔i,j to one. Finally, for each vertical edge e
l
i,j ,

e 7→ ω
e
l
i,j

(e) − ωe↔i,j (e) − ωe↔i+1,j
(e) sets only the weight

of edge e
l
i,j to one. Since each of the

(
n
2

)
edges can be

set to weight one while all other edges are set to zero,
the defined weight functions are linearly independent,
and moreover, any weight function can be obtained as
a linear combination of (ωe)e∈E(G).

Since the polytope P is
(
n
2

)
-dimensional, there exists

a Monge distance matrix whose entries are in general
position: there is no indexed family S of fewer than

(
n
2

)

real numbers such that each of the
(
n
2

)
distances can be

written as the sum of a subset of S. Since the length
of each shortest path in a nonnegatively edge-weighted
graph is the sum of a subset of its edge-weights, there
is a Monge distance matrix that does not have a planar
emulator with fewer than

(
n
2

)
edges. �

The argument of Theorem 6 relies on the fact that the
set of distances can be chosen to lie in general position.
We present a different, but slightly weaker lower bound
for the more general setting where the weights are inte-
gers up to dn/2e. A Monge matrix M is unit-Monge if
for all i and j,

M [i+ 1, j]−M [i, j] ∈ {−1, 0, 1}, and

M [i, j]−M [i, j + 1] ∈ {−1, 0, 1}.

Theorem 7 Some n×n unit-Monge distance matrices
have no planar emulator with fewer than n2/8 + n/2
edges.

Proof. Let M be a distance matrix defined as fol-
lows. Consider a rectangular grid graph with vertex
set {0, . . . , w} × {0, . . . , h} and edges between vertices
at distance 1, so that vertex (x, y) has (unit-weight)
edges to (x ± 1, y) and (x, y ± 1). For all y and k, we
have d((0, y), (w, y ± k)) = w + k, and symmetrically

d((x, 0), (x±k, h)) = h+k for all x and k. Let M be the
distance matrix from the set of vertices {(x, 0)}∪{(0, y)}
to the set of vertices {(x, h)}∪{(w, y)}; distance matrix
M must be unit-Monge.

Consider an arbitrary planar emulator G of M . Let
dG denote the shortest-path metric on G. For vertices
i, j, k, ` in clockwise-order along the outer face, we have
dG(i, `) + dG(j, k) ≤ dG(i, k) + dG(j, `). On the other
hand, for any pair of points p and q where p is on a
shortest path from i to ` and q on a shortest path from
j to k, we have dG(i, `)+dG(j, k)+2dG(p, q) ≥ dG(i, k)+
dG(j, `).

Denote by π↔y a shortest path in G between (0, y) and

(w, y), and by π
l
x a shortest path in G between (x, 0)

and (x, h). We will show that the paths π
l
x are disjoint

and have h edges each. Recall that dG(i, `) + dG(j, k) +
2dG(p, q) ≥ dG(i, k) + dG(j, `), so

‖π↔y ‖+ ‖π↔y+k‖+ 2dG(π↔y , π
↔
y+k)

= 2w + 2dG(π↔y , π
↔
y+k)

≥ dG((0, y), (w, y + k)) + dG((0, y + k), (w, y))

= 2(w + k),

and thus any pair of points p ∈ π↔y and q ∈ π↔y+k on
distinct paths have distance at least k ≥ 1, so different

such paths are vertex-disjoint. Any path π
l
x must cross

all the (vertex-disjoint) paths π↔0 , . . . π
↔
h , and thus have

at least h edges (not shared with any path π↔y) of length
at least 1. Therefore, the paths π

l
x and π↔y (over all x

and by symmetric argument y) contain at least (w +
1)h+ (h+ 1)w edges. We have n = 2(w+ h); by taking
w = h = n/4, this yields a lower bound of

2(n/4 + 1)(n/4) = n2/8 + n/2

edges for any planar emulator of M . �

We remark that the argument of Theorem 7 depends
only on distances between opposite sides of the grid,
and can be made to depend only on the linearly many
distances d((0, y), (w, y+k)) and d((x, 0), (x+k, h)) with
k ∈ {−1, 0, 1}.

Cossarini [20] proved that any planar emulator for
some n×n cyclic unit-Monge matrix must have at least(
n
2

)
edges. Our result, while slightly weaker in compari-

son, applies to general unit-Monge matrices, which can
be viewed as the directed version of the problem.

4 Discussion

In this paper we have shown that any cyclic Monge dis-
tance matrix admits a quadratic-size planar emulator.
Our construction is universal in the sense that the un-
derlying graph does not depend on the entries of the
matrix. And there are metrics for which each edge must

145

32nd Canadian Conference on Computational Geometry, 2020

be used by some shortest path. We also showed that al-
ready for planar emulators of unit-Monge distance ma-
trices (which can be represented in linear space), Ω(n2)
edges are sometimes necessary.

The cyclic-Monge distance matrices considered in this
paper are closely connected to the set of intrinsic metrics
of topological disks. In particular, a given metric on
points in a circle can be realized as a metric intrinsic
to a topological disk bounded by that circle if and only
if the metric is a cyclic-Monge distance matrix. We
conclude with an open problem.

• Under what conditions do surfaces other than the
disk (such as the Möbius strip, or a torus with
holes) realize a given metric between points on their
boundary? Do such surfaces also have a universal
emulator, and if so, one with at most

(
n
2

)
edges?

References

[1] A. Abboud, P. Gawrychowski, S. Mozes, and
O. Weimann. Near-optimal compression for the planar
graph metric. In Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 530–549, 2018.

[2] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor,
and R. Wilber. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2:195–208, Nov.
1987.

[3] R. Ahmed, G. Bodwin, F. D. Sahneh, K. Hamm,
M. J. L. Jebelli, S. Kobourov, and R. Spence. Graph
spanners: A tutorial review. Sept. 2019.

[4] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete & Computational Geometry, 9(1):81–100, Jan.
1993.

[5] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid,
and C. D. Zaroliagis. Planar spanners and approximate
shortest path queries among obstacles in the plane. In
Algorithms — ESA ’96, pages 514–528, Berlin, Heidel-
berg, 1996. Springer Berlin Heidelberg.

[6] W. Bein, M. J. Golin, L. L. Larmore, and Y. Zhang.
The Knuth-Yao quadrangle-inequality speedup is a con-
sequence of total monotonicity. ACM Transactions on
Algorithms, 6(1):1–22, Dec. 2009.

[7] W. W. Bein and P. K. Pathak. A characterization of
the Monge property and its connection to statistics.
Demonstratio Mathematica, 29(2):451–457, Apr. 1996.

[8] G. Bodwin. Linear Size Distance Preservers. In Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 600–615. Society
for Industrial and Applied Mathematics, Jan. 2017.

[9] G. Bodwin and V. V. Williams. Better distance pre-
servers and additive spanners. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 855–872. Society for Indus-
trial and Applied Mathematics, Jan. 2016.

[10] V. Y. Burdyuk and V. Trofimov. Generalization of re-
sults of Gilmore and Gomory on solution of traveling
salesman problem. Engineering Cybernetics, 14(3):12–
18, 1976.

[11] R. E. Burkard. Monge properties, discrete convexity
and applications. European Journal of Operational Re-
search, 176(1):1–14, Jan. 2007.

[12] R. E. Burkard, B. Klinz, and R. Rudolf. Perspectives
of Monge properties in optimization. Discrete Applied
Mathematics, 70(2):95–161, Sept. 1996.

[13] N. Catusse, V. Chepoi, and Y. Vaxès. Planar hop span-
ners for unit disk graphs. In C. Scheideler, editor, Algo-
rithms for Sensor Systems, volume 6451, pages 16–30.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[14] H.-C. Chang, P. Gawrychowski, S. Mozes, and
O. Weimann. Near-optimal distance emulator for pla-
nar graphs. In 26th Annual European Symposium on
Algorithms (ESA 2018), volume 112 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 16:1–
16:17, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[15] J. Lacki and P. Sankowski. Min-cuts and shortest cycles
in planar graphs in O(n log log n) time. In Algorithms –
ESA 2011, volume 6942, pages 155–166. Springer Berlin
Heidelberg, 2011.

[16] V. Cohen-Addad, S. Dahlgaard, and C. Wulff-Nilsen.
Fast and compact exact distance oracle for planar
graphs. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 962–
973, Berkeley, CA, Oct. 2017.

[17] Y. Colin de Verdière, I. Gitler, and D. Vertigan.
Réseaux électriques planaires II. Commentarii Math-
ematici Helvetici, 71(1):144–167, Dec. 1996.

[18] Y. D. Colin de Verdière. Réseaux électriques planaires I.
Commentarii Mathematici Helvetici, 69:351–374, Dec.
1994.

[19] D. Coppersmith and M. Elkin. Sparse sourcewise and
pairwise distance preservers. SIAM Journal on Discrete
Mathematics, 20(2):463–501, 2006.

[20] M. Cossarini. Discrete Surfaces with Length and Area
and Minimal Fillings of the Circle. Ph.D. Disserta-
tion, Instituto Nacional de Matematica Pura e Apli-
cada, Sept. 2018.

[21] E. Curtis, E. Mooers, and J. Morrow. Finding the con-
ductors in circular networks from boundary measure-
ments. ESAIM: Mathematical Modelling and Numerical
Analysis, 28(7):781–814, 1994.

[22] E. B. Curtis, D. Ingerman, and J. A. Morrow. Circular
planar graphs and resistor networks. Linear Algebra
and its Applications, 283(1):115–150, Nov. 1998.

[23] V. G. Dĕıneko, J. A. Van der Veen, R. Rudolf, and G. J.
Woeginger. Three easy special cases of the euclidean
travelling salesman problem. RAIRO - Operations Re-
search, 31(4):343–362, 1997.

[24] F. F. Dragan, F. V. Fomin, and P. A. Golovach. Span-
ners in sparse graphs. Journal of Computer and System
Sciences, 77(6):1108–1119, Nov. 2011.

146

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[25] T. Dudás and R. Rudolf. Spanning trees and short-
est paths in Monge graphs. Computing, 60(2):109–119,
June 1998.

[26] D. Eppstein. Sequence comparison with mixed convex
and concave costs. Journal of Algorithms, 11(1):85–101,
Mar. 1990.

[27] D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano.
Sparse dynamic programming II: Convex and concave
cost functions. Journal of the ACM, 39(3):546–567, July
1992.

[28] J. Fakcharoenphol and S. Rao. Planar graphs, nega-
tive weight edges, shortest paths, and near linear time.
Journal of Computer and System Sciences, 72(5):868–
889, Aug. 2006.

[29] Z. Galil and K. Park. Dynamic programming with con-
vexity, concavity and sparsity. Theoretical Computer
Science, 92(1):49–76, Jan. 1992.

[30] P. Gawrychowski, S. Mozes, and O. Weimann. Subma-
trix maximum queries in Monge and partial Monge ma-
trices are equivalent to predecessor search. ACM Trans-
actions on Algorithms, 16(2):16:1–16:24, Apr. 2020.

[31] A. J. Hoffman. On simple linear programming prob-
lems. In Proceedings of Symposia in Pure Mathematics,
volume 7, pages 317–327. AMS, 1963.

[32] S.-E. Huang and S. Pettie. Lower Bounds on Sparse
Spanners, Emulators, and Diameter-reducing shortcuts.
In 16th Scandinavian Symposium and Workshops on Al-
gorithm Theory (SWAT 2018), pages 26:1–26:12, 2018.

[33] G. F. Italiano, Y. Nussbaum, P. Sankowski, and
C. Wulff-Nilsen. Improved algorithms for min cut and
max flow in undirected planar graphs. In Proceedings of
the 43rd Annual ACM Symposium on Theory of Com-
puting (STOC ’11), pages 313–322, San Jose, Califor-
nia, USA, 2011.

[34] K. Kalmanson. Edgeconvex Circuits and the Traveling
Salesman Problem. Canadian Journal of Mathematics,
27(5):1000–1010, Oct. 1975.

[35] H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir.
Submatrix maximum queries in Monge matrices and
partial Monge matrices, and their applications. ACM
Transactions on Algorithms, 13(2):26:1–26:42, Mar.
2017.

[36] K.-i. Kawarabayashi, P. N. Klein, and C. Sommer.
Linear-space approximate distance oracles for planar,
bounded-genus and minor-free graphs. In Proceedings
of the 38th International Colloquim Conference on Au-
tomata, Languages and Programming, pages 135–146,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[37] P. N. Klein. Multiple-source shortest paths in planar
graphs. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 146–
155, 2005.

[38] P. N. Klein. A subset spanner for planar graphs, with
application to subset TSP. In Proceedings of the Thirty-
Eighth Annual ACM Symposium on Theory of Comput-
ing, STOC ’06, pages 749–756, New York, NY, USA,
2006. ACM.

[39] L. L. Larmore and B. Schieber. On-line dynamic pro-
gramming with applications to the prediction of RNA
secondary structure. Journal of Algorithms, 12(3):490–
515, Sept. 1991.

[40] G. Monge. Mémoire sur la Théorie des Déblais et des
Remblais. De l’Imprimerie Royale, 1781.

[41] S. Mozes, C. Nikolaev, Y. Nussbaum, and O. Weimann.
Minimum cut of directed planar graphs in O(n log log n)
time. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 477–
494, New Orleans, Louisiana, Jan. 2018.

[42] S. Mozes and C. Sommer. Exact Distance Oracles for
Planar Graphs. In Y. Rabani, editor, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 209–222, Philadelphia, PA, Jan.
2012. Society for Industrial and Applied Mathematics.

[43] J. K. Park. The Monge Array: An Abstraction and Its
Applications. Ph.D. dissertation, MIT, 1991.

[44] D. Peleg and A. A. Schäffer. Graph spanners. Journal
of Graph Theory, 13(1):99–116, 1989.

[45] R. Rudolf and G. J. Woeginger. The cone of Monge ma-
trices: Extremal rays and applications. ZOR – Meth-
ods and Models of Operations Research, 42(2):161–168,
June 1995.

[46] L. M. Russo. Monge properties of sequence alignment.
Theoretical Computer Science, 423:30–49, Mar. 2012.

[47] C. Sommer. Shortest-path queries in static networks.
ACM Computing Surveys, 46(4):1–31, Mar. 2014.

[48] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. J. ACM,
51(6):993–1024, Nov. 2004.

[49] M. Thorup and U. Zwick. Spanners and emulators with
sublinear distance errors. In Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithm, pages 802–809, Miami, Florida, 2006. ACM
Press.

[50] A. Tiskin. Semi-local string comparison: Algorithmic
techniques and applications. Nov. 2013.

[51] D. Woodruff. Lower bounds for additive spanners,
emulators, and more. In Proceedings of 47th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 389–398, 2006.

147

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Simultaneous Visibility Representations of Undirected Pairs of Graphs∗

Ben Chugg† William S. Evans‡ Kelvin Wong§

Abstract

We consider the problem of determining if a pair of undi-
rected graphs 〈Gv, Gh〉, which share the same vertex
set, has a representation using opaque geometric shapes
for vertices, and vertical/horizontal visibility between
shapes for edges. While such a simultaneous visibil-
ity representation of two graphs can be determined effi-
ciently if the direction of the required visibility for each
edge is provided (and the vertex shapes are sufficiently
simple), it was unclear if edge direction is critical for
efficiency. We show that the problem is NP-complete
without that information, even for graphs that are only
slightly more complex than paths. In addition, we char-
acterize which pairs of paths have simultaneous visi-
bility representations using fixed orientation L-shapes.
This narrows the range of possible graph families for
which determining simultaneous visibility representa-
tion is non-trivial yet not NP-hard.

1 Introduction

A visibility representation Γ of a graph G = (V,E) is
a set of disjoint geometric objects {Γ(v) | v ∈ V } rep-
resenting vertices chosen from a family of allowed ob-
jects (e.g., axis-aligned rectangles in the plane) where
Γ(u) sees Γ(v) if and only if uv ∈ E. Typically,
the meaning of “sees” is that there exists a line seg-
ment (perhaps axis-aligned, perhaps positive width)
from Γ(u) to Γ(v) that does not intersect Γ(w) for any
other w ∈ V ; such a line segment is called a line-
of-sight. Many different classes of visibility represen-
tations may be defined by changing the family of al-
lowed objects and the meaning of “sees.” For exam-
ple, bar visibility representations (BVRs) use horizontal
line segments as vertices and vertical lines-of-sight for
edges [9, 11, 21, 20, 7, 14, 15]; rectangle visibility rep-
resentations (RVRs) use (solid) axis-aligned rectangles
and axis-aligned lines-of-sight [8, 22, 18, 2, 5, 16]; and
unit square visibility representations (USVRs) use axis-
aligned unit squares and axis-aligned lines-of-sight [4].
The popularity of this type of graph representation lies

∗Supported by Canada NSERC Discovery Grant and Un-
dergraduate Student Research Awards. Full paper available at
https://arxiv.org/abs/2005.00937
†Stanford University, benchugg@stanford.edu
‡University of British Columbia, will@cs.ubc.ca
§University of Toronto and Uber ATG, kelvin.wong@uber.com

1
2

3
4

5

6

7

1
2

3

4
5

6
7

Figure 1: Left: A pair of graphs 〈Gv, Gh〉 on the same
vertex set. Red (light) edges are those of Gv, while
blue (darker) are those of Gh. Right: A simultaneous
visibility representation of 〈Gv, Gh〉 using rectangles.

in its potential applicability to problems in VLSI design
and the production of readable representations of pla-
nar and non-planar graphs. Determining which graphs
or families of graphs have visibility representations of a
particular type is a fascinating area of research.

Our focus in this work is on the simultaneous visibil-
ity representation of pairs of graphs that share the same
vertex set (see Fig. 1). A simultaneous visibility repre-
sentation (SVR) of Gv = (V,Ev) and Gh = (V,Eh) is a
visibility representation Γ that, using vertical lines-of-
sight, represents Gv and, using horizontal lines-of-sight,
represents Gh. Streinu and Whitesides [19] describe a
beautiful connection between a pair of directed planar

graphs 〈−→G v,
−→
Gh〉 and their planar duals that determines

if the pair has a directed simultaneous visibility repre-
sentation using rectangles (a directed RSVR) Γ, where

an edge directed from u to v in
−→
G v or

−→
Gh is realized by

a low-to-high or left-to-right, respectively, line-of-sight
from Γ(u) to Γ(v). Evans et al. [13] extended this to the
family of geometric objects called L-shapes, which are
the union of two axis-aligned segments in the plane that
share a common endpoint and come in four orientations:
{ , , , }. They gave a polynomial time algorithm for

determining if a pair of directed graphs 〈−→G v,
−→
Gh〉 has a

directed simultaneous visibility representation using L-
shapes, Γ, in which the orientation of Γ(v) is given by
Φ : V → { , , , } (a directed Φ-LSVR).

The complexity of determining if a pair of undirected
graphs has a simultaneous visibility representation us-
ing L-shapes was stated as an open problem [13]. In
this paper, we show (Section 3) that the problem is NP-
complete. What is surprising about this result is the
simplicity of the graphs for which the problem is hard:
For L-shapes (and many other families of shapes includ-

148

32nd Canadian Conference on Computational Geometry, 2020

ing rectangles), one graph can be a set of disjoint paths
and the other a set of disjoint copies of a tree with 3
leaves connected to a root by paths of length 2 (i.e.

). For unit squares (and for translates of any spec-
ified connected shape with positive width and height),
one graph can be a set of disjoint paths and the other a
set of disjoint claws (K1,3).

This limits the families of graphs for which we can
reasonably hope to efficiently determine a simultaneous
visibility representation. We describe a linear time algo-
rithm (Section 4) that determines if a pair of undirected
paths has a simultaneous visibility representation using
L-shapes, all with the same orientation { } (an LSVR).
The algorithm is quite simple but relies on characteriz-
ing those pairs of paths for which such a representation
is possible. The characterization of such pairs of paths
for representations using rectangles, unit squares, and
L-shapes with more than one orientation is easier.

Our work has aspects of both visibility representation
and simultaneous geometric graph embedding (SGE).
SGE is the problem of deciding, given a set of planar
graphs on the same set of vertices, whether the vertices
can be placed in the plane so that each graph has a
straight-line drawing on the placed vertices. As in our
problem, SGE, which is NP-hard [12], asks to represent
several specified graphs using one common vertex set
representation. However, the hardness result for SGE
does not directly imply hardness of deciding simulta-
neous visibility representation. Similarly, deciding if a
graph has an RVR [18] or a USVR [4] is NP-hard, but
since the input does not specify which edges should be
realized as vertical versus horizontal lines-of-sight, the
problems are quite different. Choosing how the graph
should be split into vertical and horizontal parts is an
additional opportunity (or burden) for deciding if these
representations exist.

Rather than requiring the visibility representation to
partition the edges of the graph in a prescribed man-
ner between vertical and horizontal visibilities, Biedl et
al. [1] require that the visibility edges (lines-of-sight)
obey the same embedding as a prescribed embedding of
the original graph, which may include edge crossings.
They can decide if such a restricted RVR exists in poly-
nomial time, and in linear time if the graph is 1-planar.
Di Giacomo et al. [10] show that deciding if a similarly
restricted ortho-polygon1 visibility representation exists
for an embedded graph takes polynomial time as well.

2 Preliminaries

In this paper, we will assume that vertex shapes are con-
nected and closed (rather than open) sets in the plane,
and that lines-of-sight are 0-width (rather than positive-
width) and exist between two shapes if and only if the

1a polygon whose edges are axis-aligned.

corresponding vertices are connected by an edge. This
implies that Gv and Gh must have strong-visibility rep-
resentations [20] to have a simultaneous visibility rep-
resentation. For visibility graphs, these choices make a
difference since, for example, K2,4 can be represented if
lines-of-sight are positive-width (an ε-visibility represen-
tation) but does not have a strong-visibility representa-
tion [20]. However, for our results, we could adopt either
model with only minor modifications to our proofs.

Let Γ be an SVR of 〈Gv, Gh〉. Given a subset S ⊂ V ,
we let Γ(S) =

⋃
v∈S Γ(v). For a vertex v ∈ V , let XΓ(v)

and YΓ(v) be the orthogonal projections of Γ(v) onto the
x-axis and y-axis respectively. For a set of vertices S ⊂
V , let XΓ(S) =

⋃
v∈S XΓ(v) and YΓ(S) =

⋃
v∈S YΓ(v).

Set xΓ(v) = minXΓ(v), xΓ(v) = maxXΓ(v), y
Γ
(v) =

minYΓ(v), and yΓ(v) = maxYΓ(v). We write YΓ(u) ≤
YΓ(v) if yΓ(u) ≤ y

Γ
(v) and XΓ(u) ≤ XΓ(v) if xΓ(u) ≤

xΓ(v). We also use the shorthand [n] for {1, 2, . . . , n}.
We state three basic properties of any visibility rep-

resentation Γ of a graph G = (V,E). For brevity, these
properties are stated for vertical visibility representa-
tions only but also hold for horizontal visibility repre-
sentations by symmetry. See Appendix A for proofs.

Property 1 For S1, S2 ⊂ V and x ∈ XΓ(S1)∩XΓ(S2),
there exists a path u = u1, . . . , uk = v in G for some
u ∈ S1 and v ∈ S2 such that x ∈ XΓ(ui) for all i ∈ [k].

Property 2 If an endpoint of XΓ(w) is strictly con-
tained in XΓ(u) ∩ XΓ(v) and y

Γ
(u) < y

Γ
(w) < y

Γ
(v)

for u, v, w ∈ V , then there is a cycle in G.

Property 3 Let u1, . . . , u` be the only path from u1 to
u` in G. If Γ(ui) and Γ(uk) are both above or both
below Γ(uj) for i < j < k, then XΓ({u1, . . . , ui}) ∩
XΓ({uk, . . . , u`}) = ∅.

3 Hardness

In this section, we study the complexity of determin-
ing if a pair of undirected graphs has an SVR. We first
consider the problem of determining SVRs using unit
squares (Section 3.1). Then, we discuss how our results
can generalize to other connected shapes as well (Sec-
tion 3.2 and Appendix C). In the case of L-shapes, our
results settle an open question of Evans et al. [13].

To begin, we first state two lemmas that characterize
how the gadgets in our hardness proofs can be drawn.
See Appendix B for proofs and illustrations.

Lemma 1 Let G = (V,E) be a connected graph with
a (vertical) visibility representation Γ. If u ∈ V is a
cut vertex whose removal creates components C1, . . . , Ck
then XΓ(Ci) 6⊆ XΓ(u) for at most two components.

149

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

c1 c2 c3

v3

v1

v2

v4

c1 c2 c3

v11

v12

v13

v14

v22

v21

v24

v23 v33

Figure 2: Left: Gv (red) and Gh (blue) for Monotone
Not-All-Equal 3SAT instance ϕ = (v1∨v2∨v3)(v4∨v1∨
v2)(v3∨v4∨v3). Right: A USSVR of 〈Gv, Gh〉 encoding
the truth assignment v2, v4 = T and v1, v3 = F

Lemma 2 Let G = (V,E) be a graph with a (vertical)
visibility representation Γ. If C1 and C2 are components
in G, then either XΓ(C1) > XΓ(C2)2, or vice versa.

3.1 USSVR recognition

We first prove that determining if a pair of undirected
graphs has a simultaneous visibility representation using
unit squares (USSVR) is NP-complete.

Theorem 3 Deciding if a pair of undirected graphs has
a USSVR is NP-complete.

For our proof, we reduce from the NP-complete prob-
lem of Monotone Not-All-Equal 3SAT [17]. This variant
of 3SAT stipulates that every clause has three positive
literals of which exactly one or two must be satisfied.

Construction. Let ϕ be an instance of Monotone Not-
All-Equal 3SAT with a set C of m clauses and a set V
of n ≤ 3m variables. All clauses form a path in Gh in
the order of their appearance in ϕ; creating one clause
consistency gadget Gh(C). The same holds for all oc-
currences of literals representing the same variable; cre-
ating n variable consistency gadgets Gh(v) for v ∈ V.
All occurrences of literals in a clause form a K1,3 in Gv,
where the clause vertex is the central vertex; creating
m satisfiability gadgets Gv(c) for c ∈ C. See Fig. 2 for
an example.

Intuitively, the satisfiability gadgets allow us to en-
code local constraints on the literals for each clause. We
use this to enforce “not-all-equal” satisfiability. By con-
trast, the consistency gadgets allow us to encode global
constraints that span multiple clauses; i.e., relating lit-
erals that correspond to the same variable. This com-
pletes our construction of 〈Gv, Gh〉; see Fig. 2 for an
example.

Correctness. Lemmas 4 and 5 establish the correct-
ness of our reduction. Hence, since our construction
of 〈Gv, Gh〉 requires Θ(m) time, USSVR recognition is
NP-hard. Note that every USSVR can be redrawn on

2XΓ(A) > XΓ(B) means XΓ(a) > XΓ(b) for all a ∈ A, b ∈ B

an O(n2) × O(n2) grid such that its visibilities are not
changed by preserving the order of the endpoints in the
x and y-projections of its unit squares [4]. This gives
a certificate using polynomially-many bits that can be
verified in polynomial time. Thus, USSVR recognition
is NP-complete.

Lemma 4 If 〈Gv, Gh〉 has a USSVR, ϕ is satisfiable.

Proof. Let Γ be a USSVR for 〈Gv, Gh〉. We construct
a truth assignment α : V → {T, F} as follows. For every
variable v ∈ V, we define

α(v) =

{
T if YΓ(Gh(v)) ≥ YΓ(Gh(C)),
F otherwise.

We claim that α satisfies ϕ. To see this, let us consider
any clause vertex c for a clause (`1 ∨ `2 ∨ `3). Note that
we distinguish duplicate literals by their order in ϕ as in
Fig. 2. By construction, c is a cut vertex whose removal
from Gv creates three components, each containing one
literal vertex `i. Then by Lemma 1, for at least one such
vertex, say `2, XΓ(`2) ⊆ XΓ(c). But in fact, since Γ is
a unit-square representation, we have XΓ(`2) = XΓ(c).
Hence, for every k ∈ {1, 3}, XΓ(`k) ∩XΓ(`2) 6= ∅. Ap-
plying Property 3, we see that Γ(`2) and Γ(`k) must not
be both above or both below Γ(c). Moreover, since every
consistency gadget in our construction is a component
of Gh, Lemma 2 implies that for all variables v ∈ V,
either YΓ(Gh(v)) ≥ YΓ(Gh(C)), or vice versa. There-
fore, either YΓ(`2) ≥ YΓ(c) ≥ YΓ(`k) for k ∈ {1, 3},
implying that α satisfies exactly one literal in c, or
YΓ(`k) ≥ YΓ(c) ≥ YΓ(`2), implying that α satisfies ex-
actly two. By repeating this argument for all clauses in
C, we see that α satisfies ϕ. �

Lemma 5 If ϕ is satisfiable, 〈Gv, Gh〉 has a USSVR.

Proof. Let α : V → {T, F} be a truth assignment satis-
fying ϕ. To construct a USSVR Γ for 〈Gv, Gh〉, we first
represent Gv and Gh as two sets of intervals on the x and
y-axes respectively. The construction of these intervals
is as follows.

For the ith clause c = (`1 ∨ `2 ∨ `3) ∈ C, since α
satisfies exactly one or two of its literals, there must be
one, say `2, that has a unique truth value. We represent
both c and `2 on the x-axis by the interval [3i+1, 3i+2].
Moreover, assuming `1 and `3 are in order, we represent
their corresponding literal vertices on the x-axis as the
intervals [3i, 3i+1]+ε and [3i+2, 3i+3]−ε respectively,
for some small ε > 0.

Let ρ : V∪{C} → {0, . . . , |V|} be a bijection satisfying
ρ(v) > ρ(C) if and only if α(v) = T for each v ∈ V. For
each variable consistency gadget Gh(v), we represent its
vertices on the y-axis by the interval [2ρ(v), 2ρ(v) + 1].
We also represent the clause consistency gadget simi-
larly, replacing ρ(v) with ρ(C).

150

32nd Canadian Conference on Computational Geometry, 2020

Observe that each vertex in V is represented by two
unit intervals, one on the x-axis and one on the y-axis.
Thus, for each u ∈ V , we can define Γ(u) to be the
Cartesian product of its two corresponding intervals. To
see that this gives a valid USSVR Γ for 〈Gv, Gh〉, we
make three observations.

1. Every gadget in Gv (resp., Gh) occupies a contigu-
ous interval on the x-axis (resp., y-axis) that is dis-
joint from the intervals of other gadgets.

2. Every satisfiability gadget in Gv for a clause c =
(`1∨ `2∨ `3) is drawn such that Γ(c) blocks vertical
visibility between Γ(`2) and Γ(`k) for k ∈ {1, 3}
assuming `2 has the unique unique truth value of
literals in c.

3. Every consistency gadget in Gh is drawn as a hor-
izontal stack of unit squares (in order from left to
right) that share a y-projection.

The first observation implies that no two gadgets in
Gv (resp., Gh) share an (unwanted) visibility. The next
two observations mean that the implied visibilities for
each gadget in Gv and Gh are realized exactly. �

3.2 Generalizations

Notice that in the reduction given in Section 3.1, we
make only the assumption that the x-projection of every
allowable shape has the same size. Thus, we can adapt
this reduction to any family of translates of shapes
that share a fixed positive width. In Appendix C, we
also prove that SVR recognition using rectangles is NP-
complete. Again, we can adapt this reduction to any
family of translates of shapes for which at least two have
different widths; e.g., the family of L-shapes. These ob-
servations allow us to state the following.

Corollary 1 Deciding if a pair of undirected graphs has
an SVR using shapes from a family of translates of con-
nected shapes with positive width and height is NP-hard.

For families of translates of orthogonal polygonal
paths with constant complexity (e.g., L-shapes), SVR
recognition is also in NP; this follows by a similar argu-
ment to what we gave for USSVR recognition.

Corollary 2 Deciding if a pair of undirected graphs has
an SVR using shapes from a family of translates of or-
thogonal polygonal paths with constant complexity and
positive width and height is NP-complete.

4 Pairs of undirected paths

The hardness results of Section 3 utilize graphs that
are not significantly more structurally complicated than
paths. This motivates the question of whether pairs

of (undirected) paths always admit SVRs and if not,
whether there exists a polynomial time algorithm to de-
cide when they do.

This question has an easy answer when the under-
lying shapes are rectangles. First, notice that given a
pair of paths 〈Pv = (V,Ev), Ph = (V,Eh)〉 defined on
the same vertex set, if Ev ∩ Eh 6= ∅, then no RSVR or
USSVR can exist because both x and y-projections of
two rectangles or two squares cannot overlap unless the
shapes themselves overlap. Otherwise, if Ev ∩ Eh = ∅,
perform the following:

Algorithm A: For all v ∈ V , place Γ(v) in the
plane with its left corner at (i, j) where i (resp.,
j) is v’s place along Pv (resp., Ph) from a fixed
reference endpoint of the path; and set the side
lengths of the rectangles to be 1+ ε for a small
ε > 0.

It is easy to check that this satisfies all the visibilities.
We remark that this algorithm was presented by Brass
et al. [3] to compute a simultaneous embedding of two
paths. This leads to the following observation: There
exists an RSVR and USSVR of 〈Pv, Ph〉 if and only if
Ev ∩ Eh = ∅.

In fact, the result holds for any shapes that inter-
sect if both of their x and y projections overlap. We
turn our attention, therefore, to shapes that do not obey
this property. Surprisingly, this question becomes sig-
nificantly more complicated even for L-shapes which are
simply the left and bottom sides of a rectangle. A simul-
taneous visibility representation using fixed orientation
L-shapes { } (an LSVR) of 〈Gv, Gh〉 is a pair 〈Γv,Γh〉
where Γv is a BVR, Γh is a BVR rotated 90◦ (with ver-
tical bars and horizontal visibility), and for all v ∈ V ,
y

Γ
(v) = xΓ(v) (i.e., Γv(v) and Γh(v) share their respec-

tive bottom and left endpoints).

4.1 LSVR of two undirected paths

Let 〈Pv, Ph〉 be two undirected paths defined on the
same set of vertices V = [n]. By relabeling the vertices,
we may assume that Ph is the path (1, 2, . . . , n) and Pv

is (π1, π2, . . . , πn) for a permutation π of [n]. While the
paths are undirected, the algorithm considers 1 and π1

to be the reference endpoints of Ph and Pv, respectively.
We write (πi, πi+1) ∈ Ph but not (πi+1, πi) ∈ Ph because
of this choice of reference endpoint. The intuition be-
hind the following result may be understood by consid-
ering the result of running Algorithm A using L-shapes:
Γ(i) and Γ(i+ 1) would intersect iff (i+ 1, i) ∈ Pv—see
Fig. 4. However, these intersecting L’s may be modi-
fied to “nest” and preserve their existing visibilities in
two circumstances (see Fig. 3). Notice that Algorithm
A can produce drawings with four different “orders” by
always using (i, j), (−i, j), (i,−j) or (−i,−j) to place
Γ(v). Each of these would produce different drawings in

151

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Γ(i + 1)

Γ(i)

Γ(i + 1)

Γ(i)

before after

(a)

Γ(i + 1)

Γ(i)

Γ(i + 1)

Γ(i)

before after

(b)

Figure 3: Two possible transformations to remove cross-
ings. To perform (a), no other shape can have a visibil-
ity with Γ(i+ 1) from below. To perform (b), no other
shape can have a visibility with Γ(i) from the left.

which the right ends of bars in Γv and the top ends of
bars in Γh are either “increasing” or “decreasing”. We
show that if 〈Pv, Ph〉 admits any LSVR then modifying
one of these four drawings to remove intersecting L’s by
nesting them will work. We also give four conditions,
each of which forces the modification of one of the four
drawings to fail.

In order to state the four conditions, we first need
to define four subsets of the vertices. We say a se-
quence S = (s1, s2, . . . , sk) is increasing (decreasing)
in a sequence T = (t1, t2, . . . , tn) if there exist indices
(j1, j2, . . . , jk) that are strictly increasing (decreasing)
such that si = tji for all i ∈ [k]. A sequence S is mono-
tonic in T if it is either increasing or decreasing in T .
For example, (4, 7, 3) is monotonic in (1, 3, 2, 7, 5, 6, 4)
but (3, 4, 7) is not.

Definition 1 For Ph = (1, 2, . . . , n) and Pv =
(π1, π2, . . . , πn) where π is a permutation of [n], let

1. Aπ = (1, 2, . . . , a) be the longest such sequence
monotonic in π,

2. Bπ = (n, n− 1, . . . , b) be the longest such sequence
monotonic in π,

3. Cπ = (π1, π2, . . . , πc) be the longest such sequence
monotonic in [n], and

4. Dπ = (πn, πn−1, . . . , πd) be the longest such se-
quence monotonic in [n].

For example, if Pv = (1, 3, 2, 7, 5, 6, 4), then Aπ = (1, 2),
Bπ = (7, 6), Cπ = (1, 3), and Dπ = (4, 6). We are now
ready to state the forbidden conditions. There exists i
such that

F1. (i+ 1, i) ∈ Pv, i /∈ Cπ, and i+ 1 /∈ Aπ;

F2. (i, i+ 1) ∈ Pv, i+ 1 /∈ Cπ, and i /∈ Bπ;

F3. (i, i+ 1) ∈ Pv, i /∈ Dπ, and i+ 1 /∈ Aπ;

F4. (i+ 1, i) ∈ Pv, i+ 1 /∈ Dπ, and i /∈ Bπ.

The rest of Section 4.1 will focus on proving the fol-
lowing theorem.

1
2

3

4

5
6

7

1
23

4

5
6

7

Figure 4: Left: The result of running Algorithm A on
Ph = (1, 2, 3, 4, 5, 6, 7) and Pv = (4, 3, 5, 7, 2, 1, 6). Note
the intersection of Γ(4),Γ(3) and Γ(2),Γ(1). Right: The
intersections can be alleviated by stretching Γ(3) and
Γ(2).

Theorem 6 Let 〈Pv, Ph〉 be two paths defined on the
same set of n vertices. There exists an LSVR of 〈Pv, Ph〉
if and only if at least one of conditions F1 through F4
is not met. Moreover, in the positive case, the LSVR is
realizable in O(n) time on a grid of size O(n)×O(n).

Note that since each condition F1-F4 can be tested
in linear time, Theorem 6 yields a linear time algorithm
to determine if two given paths admit an LSVR. Be-
fore proceeding to the proof of Theorem 6, we present
a technical result which will be a useful tool in many
of the proofs to come. It demonstrates that once the
x-projection of a bar is contained in that of another,
this containment propagates for any representation of a
path. Fig. 7b provides an example.

Lemma 7 Let Γ be a noncollinear BVR of a path
P = v1, . . . , vn. If XΓ(vj) ⊂ XΓ(vk) for j < k,
then (i) XΓ(v1) ⊂ XΓ(v2) ⊂ · · · ⊂ XΓ(vj); and (ii)
y

Γ
(v1), . . . , y

Γ
(vk) forms a strictly monotonic sequence.

4.1.1 Necessity

We first prove if an LSVR of 〈Pv, Ph〉 exists, then at
least one of conditions F1-F4 is not met. We begin
by examining the structure of the underlying BVRs.
For a path P = (v1, . . . , vn) and a BVR Γ of P , we
say Γ is monotonically increasing (resp., decreasing) if
xΓ(vj) < xΓ(vj+1) (resp., xΓ(vj) > xΓ(vj+1)) for all
j ∈ [n − 1]. If Γ is monotonically increasing or de-
creasing we say it is monotone.3 We say Γ is strictly
increasing (resp., decreasing) if Γ is monotonically in-
creasing (resp., decreasing) and XΓ(vj) 6⊆ XΓ(vj+1)
(resp.,XΓ(vj+1) 6⊆ XΓ(vj)) for all j ∈ [n−1]. For a BVR
rotated by 90◦, the same definitions apply with yΓ(v)
replacing xΓ(v). A visibility representation in which
no vertical or horizontal line contains the endpoints of
two shapes from different vertices is called noncollinear.
Finally, a BVR which is noncollinear and monotone is

3Note that monotonically increasing and decreasing are not
symmetric properties: They both depend on the right side of the
bars.

152

32nd Canadian Conference on Computational Geometry, 2020

called canonical, and an LSVR Γ = 〈Γv,Γh〉 is canonical
if Γv and Γh are both canonical.

We will apply the same definitions and notation to
subdrawings of an LSVR Γ. That is, for a subset S ⊆ V ,
we will say Γ(S) is monotone (or strictly increasing, etc)
if the conditions are satisfied for the realizations of the
vertices in S. The following two lemmas allows us to
concentrate only on canonical LSVRs.

Lemma 8 If 〈Pv, Ph〉 has an LSVR then it has a canon-
ical LSVR.

Observe that in the transformations depicted in
Fig. 3, Γv({i, i+1}) and Γh({i, i+1}) are altered from be-
ing strictly increasing to simply monotonically increas-
ing. In order to determine when two L-shapes can be
“uncrossed,” therefore, we first determine in which parts
of the drawing Γh and Γv are required to be strictly in-
creasing or decreasing.

Lemma 9 Suppose Γ is a canonical LSVR of 〈Pv, Ph〉
and Aπ, Bπ, Cπ and Dπ are as in Definition 1. If
Γv is monotonically increasing (resp., decreasing) then
Γv({πc, πc+1, . . . , πn}) (resp., Γv({π1, . . . , πd−1, πd})) is
strictly increasing (resp., decreasing). Similarly, if
Γh is monotonically increasing (resp., decreasing) then
Γh({a, a + 1, . . . , n}) (resp., Γh({1, . . . , b − 1, b})) is
strictly increasing (resp., decreasing), where a = |Aπ|,
b = n− |Bπ|+ 1, c = |Cπ|, and d = n− |Dπ|+ 1.

We can now prove that if an LSVR of 〈Pv, Ph〉 exists
then at least one of the conditions F1-F4 are not met,
which completes the proof of necessity.

By Lemma 8, we may assume that if an LSVR of
〈Pv, Ph〉 exists then there is an LSVR Γ that is mono-
tone and noncollinear. We claim that F1 prevents the
existence of an LSVR Γ in which Γv and Γh are both
monotonically increasing, F2 prevents Γ in which Γv is
increasing and Γh is decreasing, F3 prevents Γ in which
Γv is decreasing and Γh increasing, and F4 prevents Γ
in which Γv and Γh are both decreasing. Since there
are the only four possibilities for a monotone LSVR, by
Lemma 8 if none of these four monotonic LSVRs exist,
then no LSVR of 〈Pv, Ph〉 exists. We provide the proof
for the case of F1 only, as the other cases are argued
similarly. Suppose Γ is an LSVR of 〈Pv, Ph〉 in which Γv

and Γh are monotonically increasing and let i be as in
condition F1: (i+1, i) ∈ Pv, i /∈ Cπ, and i+1 /∈ Aπ. Let
a = |Aπ|. By Lemma 9, Γh({a, a+ 1, . . . , n}) is strictly
increasing. Thus, since i ≥ a (because i + 1 /∈ Aπ),
y

Γ
(i) < y

Γ
(i + 1) < yΓ(i). By similar reasoning,

we obtain that Γv({i + 1, i}) is strictly increasing, so
xΓ(i + 1) < xΓ(i) < xΓ(i + 1). However, this is an im-
possible configuration to realize without an intersection
between Γh(i) and Γv(i + 1). Therefore no such LSVR
exists.

4.1.2 Sufficiency

In this section we present an algorithm which constructs
an LSVR for a pair of paths assuming that at least one
of conditions F1-F4 is not met. For the sake of clarity,
we will assume that F1 is not met. An explanation of
how to modify the algorithm and the proofs for other
conditions is in Appendix F.

LsvrPaths Algorithm. Let 〈Pv = (π1, π2, . . . , πn), Ph =
(1, 2, . . . , n)〉 be two paths defined on the same vertex
set [n]. We break the algorithm into three steps.

Step 1: For all i = 1, . . . , n, draw Γ(πi) such that
its corner is at (i, πi) and both bars have length 1 + ε.
That is, xΓ(πi) = i, y

Γ
(πi) = πi, xΓ(πi) = i+ 1 + ε, and

yΓ(πi) = πi + 1 + ε. Note that this is Algorithm A.
Step 2: Let Cπ = {π1, . . . , πc}. If π1 > π2 > · · · > πc

and there are crossings in Γ(Cπ), then for all πi ∈ Cπ,
stretch Γ(πi) to the left such that xΓ(πi) = 2− i.

Step 3: Let Aπ = {1, . . . , a}. If (1, 2, . . . , a) is
decreasing in π and there are crossings in Γ(Aπ), then
for all i ∈ Aπ \ Cπ, stretch Γ(i) downwards such that
y

Γ
(i) = 2− i.

Observe that LsvrPaths requires linear time. Further-
more, the layout is contained in [2 − n, n] × [2 − n, n],
i.e., a grid of size O(n) × O(n). Hence, the following
lemma completes the proof of Theorem 6. The proof is
given in Appendix E.

Lemma 10 If 〈Pv, Ph〉 are two paths defined on the
same vertex set and condition F1 is not satisfied then
Algorithm LsvrPaths returns an LSVR of 〈Pv, Ph〉.

153

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] T. Biedl, G. Liotta, and F. Montecchiani. On Visibility
Representations of Non-Planar Graphs. In S. Fekete
and A. Lubiw, editors, 32nd International Sympo-
sium on Computational Geometry (SoCG 2016), vol-
ume 51 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 19:1–19:16, 2016.

[2] P. Bose, A. Dean, J. Hutchinson, and T. Shermer. On
rectangle visibility graphs. In International Symposium
on Graph Drawing, pages 25–44, 1996.

[3] P. Brass, E. Cenek, C. A. Duncan, A. Efrat, C. Erten,
D. P. Ismailescu, S. G. Kobourov, A. Lubiw, and J. S.
Mitchell. On simultaneous planar graph embeddings.
Computational Geometry, 36(2):117–130, 2007.

[4] K. Casel, H. Fernau, A. Grigoriev, M. L. Schmid, and
S. Whitesides. Combinatorial Properties and Recogni-
tion of Unit Square Visibility Graphs. In 42nd Inter-
national Symposium on Mathematical Foundations of
Computer Science (MFCS 2017), volume 83 of Leib-
niz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:15, 2017.

[5] F. J. Cobos, J. C. Dana, F. Hurtado, A. Márquez, and
F. Mateos. On a visibility representation of graphs.
In International Symposium on Graph Drawing, pages
152–161. Springer, 1995.

[6] S. A. Cook. The complexity of theorem-proving proce-
dures. In Proceedings of the Third Annual ACM Sym-
posium on Theory of Computing, pages 151–158, 1971.

[7] A. M. Dean, W. S. Evans, E. Gethner, J. D. Laison,
M. A. Safari, and W. T. Trotter. Bar k-visibility graphs.
J. Graph Algorithms Appl., 11(1):45–59, 2007.

[8] A. M. Dean and J. P. Hutchinson. Rectangle-
visibility representations of bipartite graphs. In Inter-
national Symposium on Graph Drawing, pages 159–166.
Springer, 1994.

[9] A. M. Dean and N. Veytsel. Unit bar-visibility graphs.
Congressus Numerantium, pages 161–176, 2003.

[10] E. Di. Giacomo, W. Didimo, W. S. Evans, G. Liotta,
H. Meijer, F. Montecchiani, and S. K. Wismath. Ortho-
polygon visibility representations of embedded graphs.
Algorithmica, 80(8):2345–2383, 2018.

[11] P. Duchet, Y. Hamidoune, M. Las Vergnas, and
H. Meyniel. Representing a planar graph by verti-
cal lines joining different levels. Discrete Mathematics,
46(3):319–321, 1983.

[12] A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Per-
can, M. Schaefer, and M. Schulz. Simultaneous geomet-
ric graph embeddings. In International Symposium on
Graph Drawing, pages 280–290, 2007.

[13] W. S. Evans, G. Liotta, and F. Montecchiani. Simulta-
neous visibility representations of plane st-graphs using
L-shapes. Theoretical Computer Science, 645:100–111,
2016.

[14] S. Felsner and M. Massow. Parameters of bar k-
visibility graphs. J. Graph Algorithms Appl., 12(1):5–
27, 2008.

[15] S. G. Hartke, J. Vandenbussche, and P. Wenger. Fur-
ther results on bar k-visibility graphs. SIAM Journal
on Discrete Mathematics, 21(2):523–531, 2007.

[16] J. P. Hutchinson, T. Shermer, and A. Vince. On repre-
sentations of some thickness-two graphs. Computational
Geometry, 13(3):161–171, 1999.

[17] T. J. Schaefer. The complexity of satisfiability prob-
lems. In Proceedings of the tenth annual ACM sympo-
sium on Theory of computing, pages 216–226, 1978.

[18] T. C. Shermer. On rectangle visibility graphs III. Exter-
nal visibility and complexity. In Canadian Conference
on Computational Geometry, volume 96, pages 234–
239, 1996.

[19] I. Streinu and S. Whitesides. Rectangle visibil-
ity graphs: characterization, construction, and com-
paction. In Annual Symposium on Theoretical Aspects
of Computer Science, pages 26–37, 2003.

[20] R. Tamassia and I. G. Tollis. A unified approach to
visibility representations of planar graphs. Discrete &
Computational Geometry, 1(4):321–341, 1986.

[21] S. K. Wismath. Characterizing bar line-of-sight graphs.
In Proceedings of the 1st Annual ACM Symposium on
Computational Geometry, pages 147–152, 1985.

[22] S. K. Wismath. Bar-Representable Visibility Graphs
and Related Flow Problems. PhD thesis, University of
British Columbia, 1989.

A Omitted Proofs in Section 2

Let Γ be a (vertical) visibility representation for a graph
G = (V,E). The following properties hold.

Property 1 For S1, S2 ⊂ V and x ∈ XΓ(S1) ∩ XΓ(S2),
there exists a path u = u1, . . . , uk = v in G for some u ∈ S1

and v ∈ S2 such that x ∈ XΓ(ui) for all i ∈ [k].

Proof. Consider the intersection of Γ and the infinite ver-
tical line x × (−∞,+∞). Since this line intersects both
Γ(S1) and Γ(S2), there must be two vertices u ∈ S1 and
v ∈ S2 such that Γ(u) and Γ(v) both intersect the line. Let
u = u0, u1, . . . , uk = v be the sequence of vertices in V that
intersect the line in order along the line from Γ(u) to Γ(v).
Γ(ui) and Γ(ui+1) have an unblocked vertical visibility seg-
ment between them for all 1 ≤ i < k, which implies a path
between u and v that connects S1 and S2 in G. �

Property 2 If an endpoint of XΓ(w) is strictly contained in
XΓ(u) ∩XΓ(v) and y

Γ
(u) < y

Γ
(w) < y

Γ
(v) for u, v, w ∈ V ,

then there is a cycle in G.

Proof. Since an endpoint of XΓ(w) is strictly contained in
XΓ(u)∩XΓ(v), there exists x ∈ XΓ(w) and x′ 6∈ XΓ(w) such
that x, x′ ∈ XΓ(u) ∩ XΓ(v). By Property 1, there exists a
path from u to v (following the vertical line through x) that,
since y

Γ
(u) < y

Γ
(w) < y

Γ
(v), contains w, and a path from

u to v (following the vertical line through x′) that does not
contain w. The union of these two paths contains a cycle. �

154

32nd Canadian Conference on Computational Geometry, 2020

(a) (b)

Figure 5: Illustrations of Lemma 1 and 2 (Fig. 5a and
5b respectively). Lemma 1 says that a cut vertex will
not nest4 at most two components induced by its re-
moval. Lemma 2 states that disjoint subgraphs must
not overlap.

Property 3 Let u1, . . . , u` be the only path from u1 to u`
in G. If Γ(ui) and Γ(uk) are both above or both below Γ(uj)
for i < j < k, then XΓ({u1, . . . , ui})∩XΓ({uk, . . . , u`}) = ∅.

Proof. If x ∈ XΓ({u1, . . . , ui})∩XΓ({uk, . . . , u`}), then by
Property 1, there exists a path from ui to uk (following the
vertical line through x) that, since Γ(ui) and Γ(uk) are both
above or both below Γ(uj), does not include uj , a contra-
diction. �

B Omitted Proofs in Section 3

Lemma 1 Let G = (V,E) be a connected graph with a
(vertical) visibility representation Γ. If u ∈ V is a cut
vertex whose removal creates components C1, . . . , Ck then
XΓ(Ci) 6⊆ XΓ(u) for at most two components.

Proof. Since G is connected, XΓ(Ci) intersects XΓ(u) and
if in addition XΓ(Ci) 6⊆ XΓ(u), then since Ci is connected,
XΓ(Ci) is a contiguous interval that strictly contains an end-
point of XΓ(u). If three components have this property
then for two of them, say Ci and Cj , XΓ(Ci) and XΓ(Cj)
strictly contain the same endpoint and thus contain a point
x 6∈ XΓ(u). By Property 1, G contains a path (following the
vertical line through x) between Ci and Cj that does not
contain u, a contradiction. �

Lemma 2 Let G = (V,E) be a graph with a (vertical) visi-
bility representation Γ. If C1 and C2 are components in G,
then either XΓ(C1) > XΓ(C2)5, or vice versa.

Proof. Since each component Ci is connected, its x-
projection XΓ(Ci) forms a contiguous interval. And yet
since C1 and C2 are disconnected in G, by Property 1,
XΓ(C1) ∩ XΓ(C2) = ∅. Thus either XΓ(C1) > XΓ(C2), or
vice versa. �

See Fig. 5 for illustrations of Lemma 1 and 2.

C Hardness of RSVR recognition

In this section, we prove that determining if a pair of undi-
rected graphs has a simultaneous visibility representation us-
ing rectangles (RSVR) is NP-complete. In contrast to the
proof given in Section 3.1, here, we reduce from the NP-
complete problem of 3SAT [6]. A new reduction is needed

4Γ(A) is nested in Γ(B) if XΓ(A) ⊇ XΓ(B)
5XΓ(A) > XΓ(B) means XΓ(a) > XΓ(b) for all a ∈ A, b ∈ B

since every pair of edge-disjoint caterpillar forests (as pro-
duced for the reduction in Section 3.1) has an RSVR due to
Theorem 5 by Bose et al. [2].

Our modified construction is not much more complicated
than before: one graph remains a set of disjoint paths while
the other is a set of disjoint trees with 3 leaves connected to
a root by paths of length 2. This slight modification allows
us to prove the following theorem.

Theorem 11 Deciding if a pair of undirected graphs has an
RSVR is NP-complete.

Construction. Let ϕ be an instance of 3SAT with a set
C of m clauses and a set V of n ≤ 3m variables.

We adapt the gadgets used in Section 3.1 to this setting
as follows. Each satisfiability gadget Gv(c) for c ∈ C is now

a 1-subdivision of K1,3 (i.e.) where the central vertex is
the clause c, the subdivision vertices are the occurrences of
literals in the clause, and each leaf is an occurrence of the
negation of its parent. In addition to the variable consistency
gadget, we also construct a negated variable consistency gad-
get Gh(v) for each variable v ∈ V that is the path of negated
occurrences of literals in the order of their appearance in ϕ.
This completes our construction of 〈Gv, Gh〉; see Fig. 6 for
an example.

Correctness. Lemmas 12 and 13 establish the correct-
ness of our reduction. Thus, by a similar argument to the
one found in Section 3.1, RSVR recognition is NP-complete.

Lemma 12 If 〈Gv, Gh〉 has an RSVR, ϕ is satisfiable.

Proof. Let Γ be an RSVR for 〈Gv, Gh〉. If, for some variable
v ∈ V, we have YΓ(Gh(v)) ≥ YΓ(Gh(v)) ≥ YΓ(Gh(C)), or
vice versa, we say that v is positively-arranged in Γ. We
construct a truth assignment α : V → {T, F} as follows. For
each variable v ∈ V, we define

α(v) =

{
T if v is positively-arranged in Γ,

F otherwise.

We claim that α satisfies ϕ. To see this, let us consider
any clause vertex c for a clause (`1 ∨ `2 ∨ `3). By construc-
tion, c is a cut vertex whose removal from Gv(c) creates
three components, each containing one literal vertex and
its negated counterpart. Then by Lemma 1, for at least
one literal, say `2, we have XΓ({`2, `2}) ⊆ XΓ(c). Hence,
XΓ(`2) ∩XΓ(c) 6= ∅.

Applying Property 3, we see that Γ(`2) and Γ(c) must not
be both above or both below Γ(`2). Moreover, since the con-
sistency gadgets in our construction are components of Gh,
Lemma 2 implies that their y-projections must form disjoint
intervals. Therefore, either YΓ(`2) ≥ YΓ(`2) ≥ YΓ(c), or vice
versa. Thus, if `2 is a positive literal then its variable is
positively-arranged in Γ; otherwise, `2 is a negative literal
implying that its variable is not positively-arranged in Γ. In
either case, α satisfies c. By repeating this argument for all
clauses in C, we see that α satisfies ϕ. �

Lemma 13 If ϕ is satisfiable, 〈Gv, Gh〉 has an RSVR.

155

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

c1 c2 c3

v13

v13 v23

v23

c1 c2 c3

v11

v11

v12

v12

v21

v21

v22

v22

v31

v31

v32

v32

v41

v41

v3

v2

v1

Figure 6: Left: Gv (red) and Gh (blue) for 3SAT instance ϕ = (v3 ∨ v1 ∨ v2)(v1 ∨ v2 ∨ v1)(v2 ∨ v1 ∨ v3). Right: An
RSVR of 〈Gv, Gh〉 encoding the truth assignment v1, v3 = T and v2 = F .

Proof. Let α : V → {T, F} be a truth assignment satisfying
ϕ. To construct an RSVR Γ for 〈Gv, Gh〉, we first represent
Gv and Gh as two sets of intervals on the x and y-axes re-
spectively. The construction of these intervals is as follows.

For the ith clause c = (`1 ∨ `2 ∨ `3) ∈ C, we represent c on
the x-axis by the interval [7i+2, 7i+5]. Next, for one of the
satisfied literals in c, say `2, we represent both `2 and `2 on
the x-axis by the interval [7i + 3, 7i + 4]. Finally, assuming
that `1 and `3 are in order, we represent `1 and `1 on the
x-axis by the intervals [7i+ 1, 7i+ 2] + ε and [7i, 7i+ 1] + 2ε
respectively, for some positive but small ε. Similarly, we
represent `3 and `3 by the intervals [7i + 5, 7i + 6] − ε and
[7i+ 6, 7i+ 7]− 2ε respectively.

For the jth variable v ∈ V, if α(v) = T , we represent the
vertices in Gh(v) and Gh(v) on the y-axis by the intervals
[4j, 4j + 1] and [4j + 2, 4j + 3]. Otherwise, if α(v) = F , we
simply swap the intervals and proceed as before. Finally, we
represent every vertex in Gh(C) on the y-axis by the interval
[0, 1].

Observe that each vertex in V is represented by two
(nonempty) intervals, one on the x-axis and one on the y-
axis. Thus, for every u ∈ V , we can define Γ(u) to be the
Cartesian product of its two corresponding intervals. To see
this gives a valid RSVR Γ for 〈Gv, Gh〉, we make three ob-
servations.

1. Every gadget in Gv (resp., Gh) occupies a contiguous
interval on the x-axis (resp., y-axis) that is disjoint from
the intervals of other gadgets.

2. Every satisfiability gadget in Gv for a clause c = (`1 ∨
`2∨`3) is drawn such that Γ(`2) blocks vertical visibility
between Γ(c) and Γ(`2). Moreover, XΓ(c) intersects
XΓ(`k) but not XΓ(`k) for k ∈ {1, 3}.

3. Every consistency gadget in Gh is drawn as a horizontal
stack of rectangles (in order from left to right) that
share a y-projection.

The first observation implies that no two gadgets in Gv

(resp., Gh) share an (unwanted) visibility. The next two ob-
servations mean that the implied visibilities for each gadget
in Gv and Gh are realized exactly. Therefore, Γ is indeed a
valid RSVR for 〈Gv, Gh〉. �

Γ(u)

Γ(w)

Γ(v)

(a)

Γ(vk)

Γ(vj)

Γ(vj−1)

Γ(v1)

(b)

Figure 7: Illustration of Property 2 and Lemma 7
(Fig. 7a and 7b respectively). The gray lines in (a) rep-
resent other bars which may or may not be in the BVR,
and the dotted (red) lines represent the two sequences
of vertical visibilities.

D Omitted Proofs for Section 4

Lemma 7 Let Γ be a noncollinear BVR of a path P =
v1, . . . , vn. If XΓ(vj) ⊂ XΓ(vk) for j < k, then (i) XΓ(v1) ⊂
XΓ(v2) ⊂ · · · ⊂ XΓ(vj); and (ii) y

Γ
(v1), . . . , y

Γ
(vk) forms a

strictly monotonic sequence.

Proof. By assumption we have that XΓ(vj) ⊂ XΓ(vk), and
since Γ is noncollinear, we may assume that y

Γ
(vj) < y

Γ
(vk)

or y
Γ
(vj) > y

Γ
(vk). Suppose it is the former; the argu-

ment is symmetric in the other case. Consider the largest
i < j such that either XΓ(vi) 6⊂ XΓ(vi+1) or y

Γ
(vi) >

y
Γ
(vi+1). If y

Γ
(vi) > y

Γ
(vi+1), then Γ(vi) and Γ(vk) are

both above Γ(vi+1). By Property 3, XΓ({v1, . . . , vi}) ∩
XΓ({vk, . . . , vn}) = ∅. However, since XΓ(vi)∩XΓ(vi+1) 6= ∅
(they must share a visibility) and XΓ(vi+1) ⊂ XΓ(vk), it fol-
lows that XΓ(vi) ∩XΓ(vk) 6= ∅, a contradiction. Otherwise,
if XΓ(vi) 6⊂ XΓ(vi+1), then one of the endpoints of XΓ(vi+1)
is contained in XΓ(vi) and XΓ(vk). By Property 2, there is
a cycle, a contradiction. �

Lemma 8 If 〈Pv, Ph〉 has an LSVR then it has a canonical
LSVR.

Proof. We begin by demonstrating that:

Claim 1 If 〈Pv, Ph〉 has an LSVR then it has a noncollinear
LSVR.

156

32nd Canadian Conference on Computational Geometry, 2020

Proof. We first show how to transform an LSVR Γ of
〈Pv, Ph〉 into an LSVR Γ′ such that xΓ′(i) 6= xΓ′(j) and
y

Γ′(i) 6= yΓ′(j) for all i, j ∈ V . Suppose that xΓ(i) =
xΓ(j) = x0 for some i, j ∈ V . Let L = {k ∈ V : xΓ(k) ≤ x0}
and R = {k ∈ V : xΓ(k) ≥ x0} be the collection of shapes to
the left and right of x0 respectively. Let δ > 0. Construct
Γ′ as follows.

Shift Γ(L) to the left by δ, and Γ(R) to the right by δ.
For all ` /∈ L∪R (meaning that xΓ(`) < x0 < xΓ(`)), stretch
Γ(`) both left and right by δ (so that xΓ′(`) = xΓ(`)− δ and
xΓ′(`) = xΓ(`) + δ). Note that xΓ′(i) < xΓ′(j).

We claim that Γ′ is an LSVR of 〈Pv, Ph〉. Since there was
no vertical displacement, the horizontal visibilities present in
Γ were unaffected. Moreover, the structure of the drawing
to the right of (and including) x0 in Γ was unchanged in
Γ′. Formally, Γ′ ∩ [x0 + δ,∞) × (−∞,∞) is precisely Γ ∩
[x0,∞)× (−∞,∞) shifted by δ. Similarly for the structure
to the left of x0 in Γ. Since Γ′h(v) lies outside the region
M = (x0 − δ, x0 + δ)× (−∞,∞) for all v ∈ V , we introduce
no crossings. Therefore, it remains only to show that no
unwanted vertical visibilities are introduced in M . Notice
that any unwanted vertical visibilities in this region must
be among shapes not in Γ′(L ∪ R) (i.e., those which were
stretched), since Γ′(L ∪R) ∩M = ∅.

If Γ′v(u) and Γ′v(v) share an unwanted vertical visibility
in M then, since the visibility was blocked by two horizon-
tal bars which shared a collinearity at x0 in Γ—say Γv(i

′)
and Γv(j

′)—XΓ(u) and XΓ(v) both strictly contain x0 and
Γv(u) is above Γv(i

′) and Γv(j
′) while Γv(v) is below them.

However, this implies a cycle by Property 2, a contradic-
tion. This demonstrates that Γ′ is an LSVR of 〈Pv, Ph〉. If
instead xΓ′(i) = yΓ′(j), then we perform a similar surgery,
but the geometry is rotated by π/2. Repeating this pro-
cess iteratively produces the desired LSVR of 〈Pv, Ph〉. We
now assume that Γ is an LSVR such that xΓ(i) 6= xΓ(j) and
y

Γ
(i) 6= yΓ(j) for all i, j ∈ V , and show how to transform Γ

into an LSVR Γ′ such that y
Γ′(i) 6= y

Γ′(j), yΓ′(i) 6= yΓ′(j),
xΓ′(i) 6= xΓ′(j), and xΓ′(i) 6= xΓ′(j) for all i, j ∈ V . Suppose
xΓ(i) = xΓ(j) = x0 for some i, j ∈ V (as above, the other
cases are symmetric) and choose i and j such that Γv(i) is
the highest such bar and Γv(j) is the lowest. We construct
an LSVR Γ′ which removes this collinearity. By Property 2,
there cannot be a bar Γv(u) above Γv(i) and a bar Γv(v) be-
low Γv(j) that both strictly contain x0. If such a Γv(u) does
not exist, decrease xΓ(i) by a small amount. This does not
introduce any new vertical visibility since Γv(i) is the high-
est bar with xΓ(i) = x0. Similarly, decrease xΓ(j) if such
a Γv(v) does not exist. Repeating this process iteratively
produces a noncollinear LSVR of 〈Pv, Ph〉. �

We now proceed to the main proof of Lemma 8. By
Lemma 1, we may assume that Γ is noncollinear. Sup-
pose without loss of generality that Γv({π1, . . . , πk−1}) is
monotone increasing for some k ≥ 3. If xΓ(πk) < xΓ(πk−1),
we will show how to modify Γ such that Γv({π1, . . . , πk}) is
monotonically increasing or decreasing. We consider three
cases:

Case 1: Γv(πk) and Γv(πk−2) are both above or both below
Γv(πk−1), and xΓ(πk−2) < xΓ(πk). There is no vertex u such
that xΓ(πk) ∈ XΓ(u) as otherwise, by Property 1, there is
a path from u to πk−1 avoiding πk and πk−2, implying that

πk−1 has degree three in Pv; a contradiction. Hence, we may
stretch Γv(πk) to the right such that xΓ(πk) > xΓ(πk−1),
making Γv({π1, . . . , πk}) monotonically increasing.

Case 2: Γv(πk) and Γv(πk−2) are both above or both be-
low Γv(πk−1), and xΓ(πk) < xΓ(πk−2). Since Γv(πk) and
Γv(πk−1) must share a visibility, we have that xΓ(πk−1) <
xΓ(πk−2), hence XΓ(πk−2) ⊂ XΓ(πk−1) By Lemma 7(i),
XΓ(π1) ⊂ XΓ(π2) ⊂ · · · ⊂ XΓ(πk−1). Successively, for
j from k − 2 to 1, stretch Γv(πj) to the right such that
xΓ(πj) > xΓ(πj+1). Note that before each stretch, xΓ(πj+1)
is the rightmost point in Γv({π1, . . . , πk}); otherwise, as in
Case 1, πj+1 has degree three. Thus, the transformation in-
duces no unwanted vertical visibilities. Furthermore, it’s
clear that the horizontal visibilities are maintained since
there is no movement of any vertical bars. Γv({π1, . . . , πk})
is now monotonically decreasing, which completes the proof
of this case.

Case 3: If one of Γv(πk) and Γv(πk−2) is below Γv(πk−1)
and the other above then, stretch Γv(πk) to the right such
that xΓ(πk) > xΓ(πk−1). The argument that this induces
no unwanted visibilities is the same as in Case 1. This
completes the proof if Γv({π1, . . . , πk−1} is monotonically
increasing. If Γv({π1, . . . , πk−1}) is monotonically decreas-
ing, Property 2 (for πk, πk−1, and πk−2) implies a cycle if
xΓ(πk) > xΓ(πk−1). Therefore, Γv({π1, . . . , πk}) is mono-
tonically decreasing. A similar and symmetric argument
may be applied to Γh. �

Lemma 9 Suppose Γ is a canonical LSVR of 〈Pv, Ph〉
and Aπ, Bπ, Cπ and Dπ are as in Definition 1. If
Γv is monotonically increasing (resp., decreasing) then
Γv({πc, πc+1, . . . , πn}) (resp., Γv({π1, . . . , πd−1, πd})) is
strictly increasing (resp., decreasing). Similarly, if Γh is
monotonically increasing (resp., decreasing) then Γh({a, a+
1, . . . , n}) (resp., Γh({1, . . . , b − 1, b})) is strictly increas-
ing (resp., decreasing), where a = |Aπ|, b = n − |Bπ| + 1,
c = |Cπ|, and d = n− |Dπ|+ 1.

Proof. Let Γ be a canonical BVR of a path P = v1, . . . , vn.
We begin by showing:

Claim 2 If Γ({vi, vi+1}) is strictly increasing (resp., de-
creasing) then Γ({vi, vi+1, . . . , vn}) is strictly increasing
(resp., decreasing).

Proof. Suppose that Γ({vi, vi+1}) is strictly increasing (the
case of strictly decreasing is similar) and let j > i be
minimal such that Γ({vj , vj+1}) is not. Since Γ is mono-
tone and noncollinear, this implies xΓ(vj+1) < xΓ(vj) and
XΓ(vj) ⊂ XΓ(vj+1). Suppose that Γ(vj−1) is above Γ(vj);
the other case is argued similarly. If Γ(vj+1) is above Γ(vj−1)
or below Γ(vj), applying Property 2 to vj−1, vj and vj+1

yields a contradiction. On the other hand, if Γ(vj+1) is be-
tween Γ(vj−1) and Γ(vj), then because XΓ(vj) ⊂ XΓ(vj+1),
Γ(vj−1) and Γ(vj) cannot share a visibility. This is a con-
tradiction. �

We now show that:

Claim 3 If Γ is a canonical LSVR of 〈Pv, Ph〉 and
Γv is monotonically increasing (resp., decreasing) then

157

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

ΓV (πc+1)

Γ(πc)

(a)

ΓV (πc+1)

Γ(πc)

Γ(πc−1)

Γ(π1)

(b)

Γ(π1)

ΓV (πc)

ΓV (πc+1)

(c)

Γ(πc−1)

Γ(πc)

Γ(πc+1)

(d)

Figure 8: The cases in the proof of Lemma 9. (a) and
(b) correspond to the two subcases of Case 1; (b) and
(d) to the two subcases of Case 2.

Γv({πc, πc+1}) (resp., Γv({πd−1, πd})) is strictly increasing
(resp., decreasing). Similarly, if Γh is monotonically increas-
ing (resp., decreasing) then Γh({a, a + 1}) (resp., Γh({b −
1, b})) is strictly increasing (resp., decreasing).

Proof. Consider Γv, the proof for Γh can be obtained by
a symmetric argument. We will assume that both Γv and
Γh are monotonically increasing. If Γh is decreasing then
the proofs pertaining to the two cases below are simply ex-
changed. Assume for contradiction that Γv({πc, πc+1}) is
not strictly increasing, so xΓ(πc+1) < xΓ(πc). Notice that,
since Γv is monotonically increasing, XΓ(πc) ⊂ XΓ(πc+1).
Applying Lemma 7(i) we see that XΓ(πi) ⊂ XΓ(πi+1) for
i ∈ [c]. We consider two cases based on the ordering of
(π1, . . . , πc) in Ph (see Figure 8).

Case 1: Suppose π1 < π2 < · · · < πc. Then yΓ(π1) <
yΓ(π2) < · · · < yΓ(πc) since (π1, π2, . . . , πc) is increas-
ing in Ph and Γh is monotonically increasing. By defini-
tion of Cπ, πc+1 < πc, hence yΓ(πc+1) < yΓ(πc). There-
fore, Γv(πc) is above Γv(πc+1) (i.e., y

Γ
(πc) > y

Γ
(πc+1));

otherwise Γh(πc) would intersect Γv(πc+1) (by the assump-
tion that xΓ(πc+1) < xΓ(πc)). Hence, by Lemma 7(ii),
y

Γ
(π1) > y

Γ
(π2) > · · · > y

Γ
(πc+1) thus demonstrating that

Γ(πi) is nested in Γ(πi+1) for all i ∈ [c− 1].
First, we claim that for all i ∈ {π1, π1 + 1, . . . , πc},

xΓ(i) ∈ [xΓ(πc), xΓ(π1)]. Suppose the claim is false and
choose the smallest i ∈ {π1, π1 + 1, . . . , πc} such that ei-
ther xΓ(i) < xΓ(πc) or xΓ(i) > xΓ(π1). In the former case,
Γh(i) is blocked from sharing a visibility with Γh(i − 1) by
Γh(πc) (where we’re using that yΓ(i − 1), yΓ(i) < yΓ(πc),
and y

Γ
(i− 1) > y

Γ
(πc) to avoid Γh(i− 1) and Γv(πc) inter-

secting). In the latter case apply Property 2 to i, π1 and πc
(using that yΓ(πc) > yΓ(i) > yΓ(π1)) to obtain a contradic-
tion. This proves the claim, which implies that πc+1 < π1,
since πc+1 < πc and xΓ(πc+1) /∈ [xΓ(πc), xΓ(π1)]. This, how-
ever, also yields a contradiction: Since YΓ(π1) ⊂ YΓ(πc) and
xΓ(πc) < xΓ(π1), Lemma 7 implies that xΓ(i) > xΓ(πc) for
all i < π1. By assumption however, y

Γ
(πc+1) < y

Γ
(πc).

Case 2: Otherwise, π1 > π2 > · · · > πc so yΓ(π1) >
yΓ(π2) > · · · > yΓ(πc). If y

Γ
(πc+1) < y

Γ
(πc), then we must

have c = 1; otherwise apply Property 2 to πc+1, πc−1 and πc.
This, however, contradicts the definition of Cπ as it will al-
ways have length at least two. Thus y

Γ
(πc) < y

Γ
(πc+1) and

again by Lemma 7(ii) we have y
Γ
(π1) < · · · < y

Γ
(πc+1).

Again, however, this forces c = 1. Otherwise, because
xΓ(πc) < xΓ(π1) and yΓ(π1) > yΓ(πc), Γh(π1) would in-
tersect Γv(πc). As above, c = 1 is impossible.

This completes the proof if Γv is increasing. See Fig. 8
for an illustration of the different cases. If Γv is decreasing,
the argument is similar but considers instead the vertices
πd−1, πd, . . . , πn. The same geometric arguments apply. �

Combining these two claims provide the proof of
Lemma 9. �

E Correctness of LsvrPaths Algorithm

Here we prove Lemma 10. We break the proof into a se-
quence of lemmas.

Lemma 14 Let Aπ = {1, . . . , a}. If (1, 2, . . . , a) is decreas-
ing in π, then either Aπ \ Cπ = ∅ or Aπ \ Cπ = {1, . . . , a′}
for some a′ ≤ a.

Proof. Let i ∈ Aπ ∩ Cπ (if no such i exists, we are done)
and suppose that i + 1 ∈ Aπ. Since π−1(i) > π−1(i + 1),
we can write i = πj+1 and i + 1 = πj for some j, where
πj+1 ∈ Cπ. By definition, if πj+1 ∈ Cπ then πj ∈ Cπ. We
can now choose the minimal i ∈ Aπ ∩ Cπ, and apply the
above argument inductively to complete the proof. �

Lemma 15 Let Aπ = {1, . . . , a} and Cπ = {π1, . . . , πc}.
After Step 1 there is a crossing among Γ(Aπ) only if
(1, 2, . . . , a) is decreasing in π and among Γ(Cπ) only if
π1 > π2 > · · · > πc.

Proof. If (1, 2, . . . , a) is increasing in π, then after Step 1
we have xΓ(πi) < xΓ(πi+1) and y

Γ
(i) < y

Γ
(i + 1) for all

i < a, hence there are no crossings in Γ(Aπ). The argument
for Cπ is similar. �

Lemma 16 At the end of LsvrPaths, the required visibilities
are present in Γ and no others.

Proof. We first prove the claim for horizontal visibilities.
By Lemma 14, write Aπ \ Cπ = {1, . . . , a′}. Consider the
vertices {a′, . . . , n}, whose vertical bars are not altered after
Step 1. By construction, for all i ∈ {a′ + 1, . . . , n}, YΓ(i) =
[i, i+ 1 + ε]. Therefore, YΓ(i) ∩ YΓ(i+ 1) = [i+ 1, i+ 1 + ε]
and YΓ(j) ∩ [i + 1, i + 1 + ε] = ∅ for all j 6= i, i + 1 (even
if Step 3 is performed). Hence, Γh(i) and Γh(i + 1) share
a horizontal visibility for all i ∈ {a′, . . . , n − 1}. Moreover,
YΓ(i) ∩ YΓ(j) = ∅ for j /∈ {i − 1, i, i + 1}, so there are no
unwanted visibilities among these shapes. If Step 3 is not
performed, then the same argument demonstrates that all
required horizontal visibilities are present among [n]. Sup-
pose, therefore, that Step 3 is performed. Fix i ∈ {2, . . . , a′}.
To complete the proof, it suffices to show that Γh(i) shares a
visibility with Γh(i− 1) and does not share a visibility with
Γh(j) for j ≤ i− 2. By construction, YΓ(i) = [2− i, i+ 1 + ε]
for all i ∈ [a′]. Hence, YΓ(i) ⊃ YΓ(i − 1). Furthermore,
since Step 3 was performed, (1, 2, . . . , a′) is decreasing in π

158

32nd Canadian Conference on Computational Geometry, 2020

and so xΓ(1) > xΓ(2) > · · · > xΓ(a′) demonstrating that
Γh(j) for j ≤ a′ cannot block the visibility between Γh(i)
and Γh(i − 1). Moreover, y

Γ
(j) ≥ a′ + 1 ≥ i + 1 for all

j ≥ a′ + 1; hence, neither can Γh(j) for j ≥ a′ + 1. Fi-
nally, since YΓ(i− 1) ⊃ YΓ(i− 2) ⊃ · · · ⊃ YΓ(1), we see that
YΓ(i−1) blocks Γh(i) from sharing a visibility with Γh(j) for
j ≤ i−2. The proof of vertical visibilities is almost identical,
except that the argument uses y-projections. �

Lemma 17 After Algorithm LsvrPaths is complete, there
are no crossings among any shapes.

Proof. First we observe that after Step 1 of the Algorithm,
there is a crossing between two shapes Γ(i1) and Γ(i2) iff
we can write i1 = i and i2 = i + 2 and (i + 1, i) ∈ Pv.
Consequently, we may write i + 1 = πj and i = πj+1 for
some j. Since condition F1 is not met, in this case either
i ∈ Cπ or i+1 ∈ Aπ. First we consider the case when i ∈ Cπ.
After Step 2 is carried out, we have xΓ(i) = 2−j−1 < 2−j =
xΓ(i+1) and since there was no vertical displacement of the
bars, this alleviates the crossing between Γh(i) and Γv(i−1).
It remains to show that the transformation did not induce
any further crossings. Notice that even after Step 3, the only
shapes which share an x-coordinate with Γ(i) are Γ(i − 1)
and Γ(i + 1). This is because i > a′ where Aπ \ Cπ = [a′],
hence the modifications to Γ(Aπ \ Cπ) (if any) stretch the
shapes downwards and thus YΓ(Aπ\Cπ)∩YΓ(i) is unaffected.
Furthermore, Γ(i−1) intersects Γ(i) iff they share a vertical
visibility, in which case we must have i − 1 = πj+2 (since
i + 1 = πj) and, by Lemma 16, Γ contains only the correct
vertical visibilities. In this case, notice that πj+2 ∈ Cπ since
πj+1 ∈ Cπ and by Lemma 15, π1 > π2 > · · · > πc and
πj+2 = i− 1 < i = πj+1. This completes the proof if i ∈ Cπ.
If i+1 ∈ Aπ instead, the argument is similar, except we argue
about Step 3 and the vertical displacement of Γ(i+ 1). �

F Modifying LsvrPaths

Here we describe how to modify LsvrPaths if it is condition
F2, F3, or F4 rather than F1 that is not met. Let Aπ, Bπ, Cπ
and Dπ be as in Definition 1. If F2 (resp., F3, F4) is not
met, we construct an LSVR Γ in which Γv is monotonically
increasing (resp., decreasing, decreasing) and Γh is monoton-
ically decreasing (resp., increasing, decreasing). Thus, for all
i, we place Γ(πi) such that its corner is at (i, n+1−πi) (resp.,
(n+ 1− i, πi), (n+ 1− i, n+ 1− πi)).

The transformation in Step 2 is either performed on Γ(Cπ)
(as presented in LsvrPaths) or Γ(Dπ). If performed on Γ(Dπ)
then Γ(πi) is stretched backwards to i− (n− 1) (recall that
it was originally placed at x-coordinate n + 1 − i). Step 2
is performed on Γ(Cπ) only if Γv is increasing (cases F1 and
F2). It is performed on Γ(Dπ) only if Γv is decreasing (cases
F3 and F4).

The transformation in Step 3 is either performed on
Γ(Aπ \ Z) (again, as presented) or Γ(Bπ \ Z), where Z ∈
{Cπ, Dπ} is the relevant set in Step 2. If performed on
Γ(Bπ), then Γ(i) is stretched downwards to y-coordinate
i − (n − 1). Step 3 is performed on Γ(Aπ) only if Γh is
increasing (cases F1 and F3). It is performed on Γ(Bπ) only
if Γh is decreasing (cases F2 and F4).

Importantly, the transformations of Steps 2 and 3 are only
performed in certain circumstances to do with the ordering
between the two paths. Specifically:

1. If Γv is increasing and Γh is decreasing, then Step 2
is performed if π1 < π2 < · · · < πc, and Step 3 if
(n, n− 1, . . . , b) is decreasing in π.

2. If Γv is decreasing and Γh increasing, then Step 2 is
performed if πn > πn−1 > · · · > πd and Step 3 if
(1, 2, . . . , a) is increasing in π.

3. If Γv and Γh are both decreasing then Step 2 is per-
formed if πn < πn−1 < · · · < πd and Step 3 if
(n, n− 1, . . . , b) is increasing in π.

The proofs of correctness in these alternate cases are
largely symmetric to the one presented in the case of F1.

159

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Finding a Maximum Clique in a Grounded 1-Bend String Graph*

J. Mark Keil Debajyoti Mondal Ehsan Moradi

Abstract

A grounded 1-bend string graph is an intersection graph
of a set of polygonal lines, each with one bend, such that
the lines lie above a common horizontal line ` and have
exactly one endpoint on `. We show that the prob-
lem of finding a maximum clique in a grounded 1-bend
string graph is APX-hard, even for strictly y-monotone
strings. For general 1-bend strings, the problem remains
APX-hard even if we restrict the position of the bends
and end-points to lie on at most three parallel horizon-
tal lines. We give fast algorithms to compute a maxi-
mum clique for different subclasses of grounded segment
graphs, which are formed by restricting the strings to
various forms of L-shapes.

1 Introduction

A geometric intersection graph consists of a set of ge-
ometric objects representing the nodes of the graph,
where two nodes are adjacent if and only if the cor-
responding objects intersect. Intersection graphs that
arise from the intersection of strings, i.e., simple curves
in R2, are called string graphs. A number of restric-
tions on the strings have been examined in the litera-
ture. Outerstring graphs and grounded string graphs
are two widely studied classes of graphs that resulted
from such restrictions. An outerstring graph is a string
graph, where the strings lie inside a disk, with one end-
point on the boundary of the disk. In a grounded string
graph, the strings lie above a common horizontal line `,
with one endpoint on `. The line ` is referred to as a
ground line.

Although the outerstring graphs and grounded string
graphs are the same for general strings, they can be
different when we put restrictions on the strings. For
example, if we restrict the strings to be straight line seg-
ments, the resulting grounded segment graph class is a
proper subclass of outersegment graph class [3]. Strings
are often modeled with polygonal chains, where a k-
bend string is a polygonal chain with at most k bends
or (k + 1) segments.

*Department of Computer Science, Uni-
versity of Saskatchewan, Saskatoon, Canada
{mark.keil,dmondal,ehsan.moradi}@cs.usask.ca. The work
is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

While the maximum independent set problem is NP-
complete for string graphs (even when the strings are
straight line segments), it is polynomial-time solvable
for outerstring graphs with a given outerstring repre-
sentation of polynomial size [7]. Therefore, it is natural
to explore other common optimization problems for out-
erstring graphs. In this paper we explore the maximum
clique problem, i.e., we seek a largest subset of pair-
wise intersecting strings. Cabello et al. [2] proved the
maximum clique problem to be NP-hard even for ray
intersection graphs. Since one can enclose a ray inter-
section graph inside a circle such that all the rays hit the
perimeter, their result implies NP-hardness for comput-
ing a maximum clique in an outersegment graph. There-
fore, an interesting question that arises in this context
is whether the maximum clique problem remains NP-
hard for grounded segment graphs. While the problem
remains open, in this paper, we show NP-hardness for
two subclasses of grounded 1-bend strings.

1.1 Related Research

The hardness of independent set and maximum clique
problems in general graphs inspired researchers to ex-
amine these problems for restricted intersection graph
classes. Both problems remain polynomial-time solvable
for circle graphs, i.e., the intersection of a set of chords
of a circle [11, 13]. However, both become NP-complete
in general segment intersection graphs [8].

A set of curves is k-intersecting if every pair of curves
have at most k points in common. A string graph
is k-intersecting if it is the intersection graph of a k-
intersecting set of curves. Fox and Pach [5] gave subex-
ponential time algorithms for computing a maximum
independent set for string graphs, as well as algorithms
for approximating independent set and maximum clique
in k-intersecting graphs.

Middendorf and Pfeiffer [10] showed the maximum
clique problem to be NP-hard for axis-aligned 1-bend
strings, even when the strings are of two types:

L

and L. They also showed the problem to be polynomial-
time solvable for two cases: (a) For the strings of type
Γ and

L

, and (b) for grounded segments when the
free endpoints of the segments lie on a fixed number of
horizontal lines.

Keil et al. [7] examined the maximum independent set
problem for outerstring graphs. Given an outerstring
representation, where each segment is represented as a

160

32nd Canadian Conference on Computational Geometry, 2020

polygonal chain, they showed how to compute a max-
imum independent set in O(s3) time, where s is the
total number of segments in the representation. Bose et
al. [1] gave an O(n2)-time algorithm when the strings
are y-monotone polygonal paths of constant length with
segments at integral coordinates. They also showed this
to be the best possible under strong exponential time
hypothesis.

A rich body of research examines the recognizability
of various classes of string graphs [9, 3, 12]. Throughout
this paper, whenever we examine an intersection model,
we assume that the input graph comes with a represen-
tation satisfying that intersection model.

1.2 Contributions

We first prove that the problem of computing a maxi-
mum clique in a grounded 1-bend string graph is APX-
hard, even for strictly y-monotone strings. We then
show that the problem remains NP-hard when the
bend and end points of the strings (not necessarily
y-monotone) are restricted to lie on three horizontal
lines. Finally, we give fast polynomial-time algorithms
for some restricted grounded 1-bend string graphs. In
particular, when the grounded 1-bend strings are 1- and
2-sided L-shapes, and 2-sided square L-shapes. The re-
sults are summarized in the following table. Note that
the class of 2-sided grounded L-shapes is known to be
a proper subclass of grounded segment graph class [6].
Therefore, the time complexity question for computing
a maximum clique in a grounded segment graph remains
open.

Graph Class Complexity Reference

1-sided L-shape O(n2 log logn) Sec. 5

2-sided square L O(n2 log2 n) Sec. 4
2-sided L-shape O(n3) Sec. 3
1-bend string APX-hard Sec. 2

Throughout the paper, we use the term L-shape to
denote an axis-aligned 1-bend string. An L-shape in-
tersection representation is 1-sided (Figure 1(a)–(b)), if
the L-shapes in the representation all turn clockwise,
or all turn anticlockwise. Otherwise, the representation
is two-sided (Figure 1(d)). In a square L-shape repre-
sentation, the horizontal and vertical segments of every
L-shape are of the same length (Figure 1(c)).

2 APX-hardness

In this section we show that finding a maximum clique
in a grounded 1-bend string graph is an APX-hard prob-
lem, even when each string is strictly y-monotone. We
reduce the maximum independent set problem in 2k-
subdivisions of cubic graphs, which is APX-hard for any

b cd efa

(b)
a bc d ef

c

a d

(a)

f e
b

c ea bd f
(c) (d)

Figure 1: (a) A graph G. (b) An one-sided L-shape
representation. (c) A square L-shape representation.
(d) A two-sided L-shape representation.

fixed k ≥ 0 [4]. Here a t-subdivision of a graph is ob-
tained by replacing each edge (u, v) of G with a path
(u, d1, d2, . . . , dt, v) of t division vertices.

Let G be a 2-subdivision of a cubic graph. We first
compute the complement graph G and then show how
G can be represented as a strictly y-monotone grounded
1-bend string graph. Assume that there exists a (1 −
ε)-approximation algorithm A for the maximum clique
problem in grounded 1-bend string graphs. Let C be a
maximum clique obtained from G using A. Let I∗ and
C∗ be a maximum independent set and a maximum
clique in G and G, respectively. Then |C| ≥ (1−ε)|C∗|.
Note that an independent set in a graph corresponds to
a clique in its complement, and vice versa. Therefore,
we obtain an independent set of size at least (1−ε)|I∗| in
G, which contradicts the APX-hardness for computing
a maximum independent set in G. Therefore, it now
suffices to give an algorithm that represents G using
strictly y-monotone grounded 1-bend strings.

2.1 Grounded 1-bend string representation with y-
monotone strings

Assume that G is the 2-subdivision of a cubic graph H
(Figure 2(a)). Let the x-axis be the ground line. While
constructing the representation for G, we will refer to
the strings corresponding to the vertices that originally
belong to H as the original strings, and the other strings
as the division strings.

Note that the original vertices form a clique in G. For
each vertex i = 1 . . . , n in H, we construct an original
string, which is a straight line segment with end-points

161

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

a

c

b

s2ac

s1ac

s2cd
s1cd

c a b d`1
(a) (b) (c)

c a b d

p
d

s1cd s1cd
s2cd

s2cd

s1ac
s2cd

Figure 2: Illustration for the (a) graph G, and (b) the construction of the original strings. (c) Construction of a
grounded 1-bend string representation for G.

(i, 0) and (−3ni, 6n + 2). All these lines pass through
the point p = (0, 2). Consequently, we obtain a set of
pairwise intersecting strings (Figure 2(b)).

We now describe the construction for the division
strings. Let `1 be the vertical segment that starts at
(−3n2−1, 6n+2) and hits the ground line (Figure 2(b)).
Then there are 6n horizontal lines (through integral co-
ordinates) between y = 3 and y = 6n+ 6. This number
is larger than 3n, i.e., the number of division vertices in
G. We use these lines to create the division strings.

We number the edges of H from 1 to (3n/2). Let
(c, d) be the jth edge in H and let s1cd, s

2
cd be the corre-

sponding division vertices in G. The vertex s1cd (resp.,
s2cd) is adjacent to all the original vertices and division
vertices of G, except for c (resp., d) and s2cd (resp., s1cd).
We now construct a pair of division strings that realize
these adjacencies.

Let c and d be the tth and rth vertex of H. Assume
without loss of generality that the string of c appears
to the left of the string of d on the ground line. The
division string for s1cd starts at the ground line, makes
a bend at `1, and then intersect all the original strings
that lie to the left of the string for c. In particular,
the string starts at (t − 1

j , 0), makes a right turn at

q = (−3n2 − 1, 6n− j + 3) following the line y = (6n−
j + 3), and stops as soon as it intersects all the strings
that appear before the string of c on this line. The
division string for s2cd starts at w = (r − 1

j , 0), makes a
right turn at the intersection point of the lines qw and
y = (6n− j+ 2), and continues until it intersects all the
strings that appear before the string of d (Figure 2(c)).

Since the permutation of the original strings on the
ground line is opposite to the permutation on the line
y = 6n+2, it is straightforward to verify that the string
for s1cd (resp., s2cd) intersects all the original strings ex-
cept the one for c (resp., d).

By construction, the strings of s1cd and s2cd are disjoint
and intersect all the previously added division strings.
Otherwise, suppose for a contradiction that a previously
added division string z has not been intersected by the
string for s2cd. Then z should appear to the left of s2cd.

Thus the segment of z that touches the ground line will
be almost vertical. Therefore, z will have a negative
x-coordinate at the ground line, which contradicts the
property that every division string starts with a positive
x-coordinate. The argument is the same for s1cd.

This completes the grounded string representation for
G.

Since the coordinates explicitly described above are
polynomial in n, the intersection of the line segments
required to carry out the construction also have coor-
dinates of polynomial size. Hence one can compute the
string representation in polynomial time. Note that the
strings that we computed are y-monotone. To make the
strings strictly y-monotone, one can carry out the same
construction for division strings with a set of slanted
parallel lines of small positive slope, instead of horizon-
tal ones. We thus have the following theorem.

Theorem 1 The maximum clique problem is APX-
hard for grounded 1-bend string graphs, even when the
strings are strictly y-monotone.

2.2 Grounded string representation on a few lines

Given a 1-bend string, we will refer to its two endpoints
as fixed or free depending on whether they lie on the
ground line or not. Similarly, we call its segments fixed
or free depending on whether the segment is adjacent
to the ground line or not.

We slightly modify the construction of the previ-
ous section such that the bends and end-points of the
strings lie on at most three lines (above the ground line):
`1, `2, `3, as illustrated in Figure 3. We omit the coordi-
nate details for this construction. It is straightforward
to use a very similar approach as in the previous sec-
tion to compute the representation with coordinates of
polynomial size.

We create the original strings such that bend-points
and free endpoints lie on `2 and `1, respectively. We
also ensure that the order of the free endpoints on `1 is
opposite to the order of the fixed endpoints.

162

32nd Canadian Conference on Computational Geometry, 2020

c a b d

q

sac scd

`2

`1

`3

Figure 3: Construction of a grounded string represen-
tation for G on three lines.

Let q be a point to the right of all the free endpoints
of the original strings on `1. A pair of division strings
start at the ground line near their corresponding orig-
inal strings (as in our earlier construction), but their
bends are placed on `2 and `3 such that the strings re-
main disjoint. We also ensure that fixed segments of
these strings lie to the right of q. Consider now a divi-
sion string z that starts at the ground line and reaches
`2 or `3. If all the required intersections are realized
at its fixed segment, then we create the free segment
by connecting q and its bend-point. If only a subset
of the required intersections is realized at its fixed seg-
ment, then the free segment is created by connecting
the bend-point to an appropriate point q′ to the left of
q on `1. Since the permutation of the fixed endpoints of
the original strings is the reverse of the permutation of
their free endpoints, such a point q′ must exist.

The division vertices are created in pairs and their
bend-points are placed to the right of all the previ-
ously created bend-points, as illustrated using the ver-
tical stripes in Figure 3. Note that every newly created
string z needs to reach either q or to a point to the left of
q on `1. Therefore, we can choose the new bend-point of
z sufficiently far apart such that its free segment crosses
all the previously added division strings at their fixed
segments. This completes the required construction for
G. We thus have the following theorem.

Theorem 2 The maximum clique problem is APX-
hard for grounded 1-bend string graphs, even when the
bends and end-points are restricted to lie on three hori-
zontal lines.

3 Two-sided L-shapes

In this section we consider the case when the grounded
strings are two-sided L-shapes. We use dynamic pro-
gramming to compute a maximum clique on this class
of graphs, and give an O(n3)-time algorithm to compute
a maximum clique. We assume that all the L-shapes are

in general position, i.e., no two segments in the intersec-
tion representation lie on the same horizontal or vertical
line.

Let G be an intersection graph of two-sided L-shapes,
and letQ be a maximum clique with at least two vertices
in G. Let a and b be the highest and second-highest L-
shape in Q, respectively, and without loss of generality
assume that a appears to the left of b on the ground
line (Figure 4). Then any other L-shape c in Q must be
below the line ` determined by the horizontal segment
of b. Furthermore, since c intersects both a and b, its
endpoint on the ground line must be to the left of a or
to the right of b. In other words, the interval [a, b] on
the ground line acts as a forbidden interval for the other
vertices in the clique.

If c is the next highest clique after b in Q, then de-
pending on whether it lies to the left or right of the
interval [a, b], the forbidden region for the remaining
vertices in Q grows to either [c, b] or [a, c]. Without
loss of generality assume that c lies to the right of b,
and the new forbidden region is [a, c]. Then an L-shape
intersecting c and a must also intersect b, where b al-
ready belongs to Q. One can thus continue adding a
new L-shape that intersect the L-shapes representing
the current forbidden interval, without worrying about
the L-shapes which have been chosen already. We use
this idea to design the dynamic programming algorithm.

If G does not contain any edge, then the maximum
clique size is 1. Otherwise, let D(a, b) denote a maxi-
mum clique, where a, b, or b, a are the first and second
highest L-shapes, and a lies to the left of b. Let c be
an L-shape that intersects both a and b, and for an L-
shape w, let wx be its x-coordinate on the ground line.
Then

D(a, b) =





2, if c doesn’t exist ,

max





max
cx<ax

{D(c, b)}+ 1

max
cx>bx

{D(a, c)}+ 1, otherwise.

cba

`

Figure 4: Illustration for the dynamic programming for
two-sided L-shapes. The clique Q is shown in black.

We take the maximum over all pairs of L-shapes a, b
in the input. We can use a 2-dimensional table T (a, b)
to store the solution of D(a, b). The size of the dynamic
programming table is O(n2), where n is the number of

163

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

L-shapes. Computing each entry of the table requires
O(n) table look-up. Therefore, it is straightforward to
compute the maximum clique in O(n3) time.

The following theorem summarizes the result of this
section.

Theorem 3 Given a set of n grounded two-sided L-
shapes, one can compute a maximum clique in the cor-
responding intersection graph in O(n3) time.

4 Two-sided Square L-shapes

In this section, we consider two-sided square L-shapes,
and give an O(n2 log2 n)-time algorithm to compute a
maximum clique. We assume the L-shapes are in gen-
eral position.

Lx1

h

ba cba c

Lx2

(a) (b)

Figure 5: (a) A maximum clique in a two-sided square
L-shape representation. (b) Illustration for the proper-
ties of the clique.

We first discuss some geometric properties of a max-
imum clique, which will help us to design the dynamic
programming (Figure 5). Let a be the lowest L-shape
of a maximum clique Q. Then all other L-shapes must
intersect the horizontal segment h of a. Let Lx1

and Lx2

be vertical lines through the left and right endpoints of
h. We now have the following observation.

Lemma 4 Every square L-shape that intersects h,
must intersect Lx1

or Lx2
.

Proof. Suppose for a contradiction that b is an L-shape
that intersects h but does not intersect Lx1

or Lx2
. Then

the length of the horizontal segment of b is at most the
length of h. Thus the maximum length for the vertical
segment of b is also bounded by the length of h. Since
the bend-point of b is above h, the vertical segment of
b cannot reach the ground line, which contradicts that
b is a grounded square L-shape. �

Let R be the region above h, bounded by Lx1 and Lx2 .
Since every L-shape intersecting h, also intersects either
Lx1

or Lx2
(Lemma 4), the parts of these L-shapes in-

side R corresponds to the chords of a circle graph, where
the boundary of R corresponds to a part of the circle
perimeter. Since a maximum clique in a circle graph

can be obtained in O(n log2 n) time [13], we can find
the maximum clique containing a in the same time as-
suming the circle graph representation is precomputed.

Finally, we iterate the above process over all L-shapes
to find the maximum clique. Let S be the input L-
shapes. It is straightforward to precompute the circle
graph for every L shape in O(n2 log n) time in total.
Hence the time complexity for computing maximum
clique is O(n2 log n) +

∑
q∈S O(n log2 n) ∈ O(n2 log2 n),

where S is the set of L-shapes in the input.
The following theorem summarizes the result of this

section.

Theorem 5 Given a set of n grounded two-sided square
L-shapes, one can find the maximum clique of the cor-
responding intersection graph in O(n2 log2 n) time.

5 One-sided L-shapes

In this section, we consider one-sided L-shapes, and give
an O(n2 log log n)-time algorithm to compute a maxi-
mum clique. We assume the L-shapes are in general
position.

cd ab

Figure 6: Illustration for the dynamic programming for
one-sided L-shapes. The clique Q is shown in black.

Let S be the set of L-shapes in the input and let Q
be a maximum clique. Let a be the highest L-shape in
Q. Then all the other L-shapes in Q must intersect the
vertical segment of a (Figure 6). There may also exist
L-shapes (e.g., b) that do intersect the vertical segment
of a but does not belong to Q.

Let D(S) be the maximum clique in the intersection
graph of the set S of input L-shapes. For any L-shape
q ∈ S, let N(q) be the subset of S such that every L-
shape in N(q) intersects the vertical segment of q. Then
D(S) can be defined as follows.

D(S) = max
q∈S

(D(N(q)) + 1)

To compute the maximum clique efficiently, we do
some preprocessing. We first compute the intersec-
tion graph G of S in O(n2) time. We then compute
a sorted list Sx consisting of the fixed endpoints (on
the grounded line) of all the L-shapes. We next com-
pute another sorted list Sh of the heights of the L-
shapes (Figure 7). Both these lists can be computed

164

32nd Canadian Conference on Computational Geometry, 2020

n
q

b
a
e
c
m

m n a b c q e

Sx

Sh

Figure 7: Illustration for Sx and Sh.

in O(n log n) time. Hence the total preprocessing takes
O(n2) +O(n log n) ∈ O(n2) time.

For each q ∈ S, we now compute the maximum clique
in N(q). First note that N(q) corresponds to a permu-
tation graph, where the edges are determined by the
intersection of the L-shapes in N(q). We first find two
ordered lists for the L-shapes of N(q), one list corre-
sponds to the order they appear on the ground line, and
the other list corresponds to the order they appear on
the vertical segment of q. We then use an O(n log log n)-
time algorithm [14] for computing a maximum clique in
a permutation graph to compute the maximum clique
in N(q).

To list the L-shapes of N(q) in the order they ap-
pear on the ground line, we scan Sx from left to right
and create a new ordered list S′x with the L-shapes
that intersect the vertical segment of q. We then scan
Sh and create a new ordered list S′h that contains the
L-shapes intersecting the vertical segment of q. Con-
structing S′x and S′h takes O(n) time. Hence comput-
ing N(q) and finding a maximum clique in N(q) takes
O(n)+O(n log log n) time. Thus the total running time
is ∑

q∈S
O(n) +O(n log log n) ∈ O(n2 log log n).

The following theorem summarizes the result of this
section.

Theorem 6 Given a set of n grounded one-sided
square L-shapes, one can find the maximum clique of
the corresponding intersection graph in O(n2 log log n)
time.

6 Conclusion

In this paper we have examined the maximum clique
problem for the grounded 1-bend string graphs. We
show the problem to be hard for y-monotone strings.
We also show that the problem remains hard when we

relax monotonicity, but restrict the bends and free end-
points of the strings to lie on three horizontal lines.

The most intriguing open problem is to settle the
time complexity for grounded segment graphs. How-
ever, there are various questions worth investigating for
1-bend strings where the bends and endpoints lie on
a few lines. If we allow only one horizontal line, then
the resulting y-monotone strings become segments and
the corresponding intersection graph is a permutation
graph, where one can find a maximum clique in poly-
nomial time. For a fixed number of lines the problem
is polynomial-time solvable for segments [10]. There-
fore, it would be interesting to examine whether the
problem becomes polynomial-time solvable for two hor-
izontal lines, where we can explore 1-bend strings. We
think such restriction on the number of lines would be
non-trivial even for strictly y-monotone 1-bend strings.

We have developed polynomial-time algorithms to
find maximum clique for various types of L-shapes. A
natural question is whether the running times of these
algorithms can be improved. It would also be interesting
to find non-trivial lower bounds on the time complexity.

References

[1] P. Bose, P. Carmi, M. J. Keil, A. Maheshwari,
S. Mehrabi, D. Mondal, and M. Smid. Computing max-
imum independent set on outerstring graphs and their
relatives. In Workshop on Algorithms and Data Struc-
tures, pages 211–224. Springer, 2019.

[2] S. Cabello, J. Cardinal, and S. Langerman. The clique
problem in ray intersection graphs. In European Sym-
posium on Algorithms, pages 241–252. Springer, 2012.

[3] J. Cardinal, S. Felsner, T. Miltzow, C. Tompkins,
and B. Vogtenhuber. Intersection graphs of rays
and grounded segments. J. Graph Algorithms Appl.,
22(2):273–295, 2018.

[4] M. Chleb́ık and J. Chleb́ıková. The complexity of
combinatorial optimization problems on d-dimensional
boxes. SIAM J. Discret. Math., 21(1):158–169, 2007.

[5] J. Fox and J. Pach. Computing the independence
number of intersection graphs. In D. Randall, edi-
tor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 1161–1165. SIAM, 2011.

[6] V. Jeĺınek and M. Töpfer. On grounded l-graphs and
their relatives. Electr. J. Comb., 26(3):P3.17, 2019.

[7] J. M. Keil, J. S. Mitchell, D. Pradhan, and M. Vatshelle.
An algorithm for the maximum weight independent set
problem on outerstring graphs. Computational Geome-
try, 60:19–25, 2017.

[8] J. Kratochv́ıl and J. Nešetřil. Independent set
and clique problems in intersection-defined classes of
graphs. Commentationes Mathematicae Universitatis
Carolinae, 31(1):85–93, 1990.

165

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[9] J. Matousek. Intersection graphs of segments and ∃R.
arXiv preprint arXiv:1406.2636, 2014.

[10] M. Middendorf and F. Pfeiffer. The max clique prob-
lem in classes of string-graphs. Discret. Math., 108(1-
3):365–372, 1992.

[11] N. Nash and D. Gregg. An output sensitive algorithm
for computing a maximum independent set of a circle
graph. Inf. Process. Lett., 110(16):630–634, 2010.

[12] M. Pergel and P. Rzewski. On edge intersection graphs
of paths with 2 bends. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages
207–219. Springer, 2016.

[13] A. Tiskin. Fast distance multiplication of unit-monge
matrices. Algorithmica, 71(4):859–888, 2015.

[14] M. Yu, L. Tseng, and S. Chang. Sequential and par-
allel algorithms for the maximum-weight independent
set problem on permutation graphs. Inf. Process. Lett.,
46(1):7–11, 1993.

166

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Testing Balanced Splitting Cycles in Complete Triangulations*

Vincent Despré� Michaël Rao� Stéphan Thomassé�

Abstract

Let T be a triangulation of an orientable surface Σ of
genus g. A cycle C of T is splitting if it cuts Σ into two
noncontractible parts Σ1 and Σ2, with respective genus
0 < g1 ≤ g2. The splitting cycle C is called balanced
if g1 ≥ g2 − 1. We define a new notion of splitting cy-
cle approximation allowing us to show that one can rule
out in polynomial time the existence of a balanced split-
ting cycle when the triangulation is far enough to have
one. Implementing a randomized algorithm based on
the same ideas, we show that large Ringel and Youngs
triangulations (for instance on 22.363 vertices) have no
balanced splitting cycle, the only limitation being the
size of the input rather than the computation time.

1 Introduction

Let Σ be a surface and G be a graph embedded on
Σ such that each face of the graph is an open disk. A
splitting cycle on a surface Σ of genus at least 2 is a sim-
ple cycle (without repeated vertices) that allows to cut
Σ into two parts non-homeomorphic to disks (see Fig-
ure 1). If G has genus at least 2 it may or may not have
a splitting cycle and the problem is NP-complete [3, 2].
However, splitting cycles can be found certainly when
G has some additional properties.

Conjecture 1 (Barnette (1982) [13, p. 166]) If G
is triangulation without loops or multiple edges of a sur-
face of genus at least 2, then it has a splitting cycle.

For now on, we consider only triangulations without
loops or multiple edges. This conjecture is known to be
true only in the case of the double torus [9]. It is formu-
lated for triangulations but has been also investigated
for G with sufficient face-width (the minimum number
of faces crossed by a non-contractible curve). It is easy
to build an embedded graph of face-width 2 without
splitting cycles. Zha and Zhao [18] conjectured that a
face-width of 3 is sufficient to obtain a splitting cycle
and proved that 6 is actually enough. Triangulations

*The first author was partially supported by the grant ANR-
17-CE40-0033 of the French National Research Agency ANR
(project SoS)

�Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy,
France

�LIP, CNRS - ENS de Lyon

C1

C3

C2

Figure 1: C1 is contractible, C2 is a splitting cycle and
C3 is non-separating.

are a particular case of this second conjecture since any
triangulation has face-width at least 3.

We say that a triangulation T is irreducible if none of
its edges can be contracted without violating the condi-
tion of simplicity. It is easy to see that if T has a split-
ting cycle and is obtained by contracting an edge from
some T ′ then T ′ also has a splitting cycle. Thus, it is
sufficient to consider irreducible triangulations. Observe
also that irreducible triangulations have face-width ex-
actly 3. The number of irreducible triangulations of
a given genus being finite [1, 14, 10], it is theoretically
possible to check the conjecture for fixed genus. Sulanke
gave an algorithm to compute the set of irreducible tri-
angulations of a fixed genus [16] and used it to prove
the conjecture for genus 2 with a computer assisted ap-
proach [17]. Unfortunately, the number of irreducible
triangulations with respect to the genus grows too fast
to hope for a brute force proof, even for genus 3.

A splitting cycle C cuts Σ into two parts of respective
genus g1, g2, where g1 ≤ g2 and g1 ≤ g2 = g. We call g1
the type of C, and C is called balanced if g1 ≥ g2 − 1 (if
such a cycle exists for T , we also say that T is balanced).
It was independently conjectured by Zha and Zhao [18]
and Mohar and Thomassen [13, p. 167] that a trian-
gulation (or an embedded graph of face-width at least
3) have all the possible types of splitting cycles. How-
ever, Despré and Lazarus [4] disproved this by showing
that some triangulations of complete graphs do not have
all the possible types of splitting cycles. More precisely
they show that some triangulations of K19, the complete
graph on 19 vertices or K43 have no balanced splitting
cycle. However, the algorithm they use could not rule
out the existence of balanced large complete triangula-
tions which still could be ”smoother” than small ones
and allow all types of splitting cycles. The key-result of

167

32nd Canadian Conference on Computational Geometry, 2020

this paper is first to show that existence of balanced cy-
cle in a complete triangulation T of Kn can be property
tested, and then to provide an efficient implementation
of this algorithm to test large complete triangulations.

Every splitting cycle C of a triangulation T partitions
the edges into three classes (R,L,C), where C are the
edges of the cycle, R the edges to the right of C, and
L the one to the left. Moreover, in the cyclic order σv
induced by T around the edges incident to each vertex
v, the order of the types of edges is (R,C,L,C). In
particular, we never have the cyclic pattern R,L,R,L.
This allows a relaxation of the notion of splitting cycle.
Precisely, for every ε > 0, an ε-cycle of T is a partition
of the edges into three classes (R,L,U) such that:

� No vertex v have the cyclic pattern R,L,R,L in
σv.

� All but εn of the vertices v of T are typical, i.e.
every cyclic interval of σv of length εn contains an
edge R or an edge L.

We say that an ε-cycle (R′, L′, U) approximates a
splitting cycle (R,L,C) if R′ ⊆ R and L′ ⊆ L (here
C ⊆ U where U stands for unknown). Our main result
is the following:

Theorem 2 There is a randomized algorithm running
in time f(ε) · poly(|T |) which takes as input a complete
triangulation T and returns w.h.p. a set X of ε-cycles
such that every splitting cycle of T is approximated by
some element of X. Moreover, the size of X only de-
pends on ε.

Note that if T has a balanced cycle C, then the pre-
vious algorithm will find w.h.p. a balanced ε-cycle (in a
sense to be defined later). Let us say that T is ε-far to
be balanced if it does not have a balanced ε-cycle. We
have the following corollary:

Corollary 3 There is a randomized algorithm running
in time f(ε) · poly(|T |) which takes as input a complete
triangulation T which is either balanced or ε-far to be
balanced and returns w.h.p. either a balanced ε-cycle,
or a certificate that no balanced cycle exists.

The previous algorithms are based on sampling a
good set of vertices and can indeed be derandomized.
However, even in the randomized version, the size of the
family X is too large to allow any practical use. Luckily,
when restricted to finding a set X approximating every
balanced splitting cycle (hence cutting branches leading
to unbalanced cycles), it turns out that a mix of random
sampling and greedy choices can be implemented in a
more efficient way. We could use this implementation
in order to rule out the existence of balanced cycles in
large complete triangulations. It remains to build ex-
plicit complete triangulations.

The problem of constructing triangulations of com-
plete graphs is a very classical one, raised by Heawood
in 1890 [8]. The original aim was to find an optimal
proper coloring of a graph embedded on a surface of
genus g > 0. Apart from the case of the sphere (or
the plane) and the Klein bottle, the Euler formula al-

ready gives the exact upper bound of γ(g) = b 7+
√
1+48g
2 c

colors. Hence, to prove the tightness of the bound, it
was necessary to produce a graph of genus g with chro-
matic number γ(g). This has been achieved by Ringel
and Youngs [15, 7] using complete graphs. The embed-
dings they provided are minimal in the sense that each
complete graph cannot be embedded on a smaller genus
surface and some of them are triangulations. Actually,
there are many different triangulations of a given com-
plete graph [12, 11, 6, 5]. For the experiments in this
paper we will focus on the triangulations given by Ringel
and Youngs for n ≡ 7[12].

The major difficulty here is that the size of the sample
which gives the certificate is too large to allow compu-
tation based on a one-step guess. We instead adopt a
randomized greedy strategy in order to iteratively con-
struct the sample. The algorithm is described in details
in Section 4. This algorithm is extremely efficient and
allow to address huge triangulations. Actually, it may
be used as soon as the size of the triangulation can be
stored on the computer. It has been implemented inde-
pendently by Vincent Despré and Michaël Rao and they
were able to reach very huge complete triangulations.
Using those implementations we were able to show that
the complete triangulation with 22.363 vertices (and
250.040.703 edges) given by Ringel and Youngs has no
balanced splitting cycle.

Our algorithm is a new tool to deal with splitting cy-
cles and may be useful in a larger spectrum. Indeed,
when it fails to prove that the input triangulation has
no balanced splitting cycles, it gives hints to find possi-
ble ones since it outputs balanced ε-cycles which can be
the seed of some new investigation. The most appealing
open question left by the paper is: Given a balanced ε-
cycle, how to decide if it can be extended or not into a
balanced (or near balanced) cycle. If one could design
an efficient algorithm in order to find balanced split-
ting cycles, it would lead to efficient divide and conquer
algorithms on complete triangulations.

We first give some properties of the splitting cycles
in Section 2. Then, we prove Theorem 2 in Section 3.
Section 4 is devoted to the description of the practical
algorithm and the implementations details along with
the different results are developed in Section 5.

168

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

2 Properties of Splitting Cycles of Complete Trian-
gulations

We begin by fixing some notations. Let Tn be a tri-
angulation of the complete graph Kn. We denote by
(v0, . . . , vn − 1) the vertices of Kn. Around the vertex
vi, the ordering of its neighbors is a permutation σi of
{0, . . . , n − 1} \ i. We will need to split the neighbor-
hood of the vertices into parts as follows: if vi is a vertex
we denote by (ev0, ev1, ev2)i a partition of the vertices
around vi such that each set evi contains consecutive
vertices with respect to σi. We call a local configuration
a couple (i, c)v where i corresponds to the part evi and
c is a color and a configuration a list of local configura-
tions.

Lemma 4 Let vi be a vertex of Tn, (ev0, ev1, ev2)i be
any partition of the edges in the neighborhood of vi and
(R,L,C) be a splitting cycle of Tn. At least one of the
evj is entirely colored L or R.

Proof. C may reach at most two of ev0, ev1 and ev2
since it is a simple cycle. It implies that one of the
evi has to be colored entirely L or R for any splitting
cycle. �

The following lemma is a direct consequence of the pre-
vious one.

Lemma 5 There is at least one configuration
((i0, c0)v0 , · · · , (ik−1, ck−1)vk−1

) realized by each splitting
cycle (R,L,C).

Let us now consider the particular properties of bal-
anced splitting cycles of complete triangulations. In-
deed, as we will prove in the next lemma, a balanced
splitting cycle cannot be too short in a complete graph
because of the Euler characteristic χ(Tn) = n− e+ f =
2 − 2g where e is the number of edges of Tn and f its
number of triangles.

Lemma 6 Let C = (R,L,C) be a balanced splitting cy-
cle of Tn. Then,

|C| ≥
⌈

5 +
√

2n2 − 14n+ 25

2

⌉

min(|L|, |R|) ≥
⌈
n2 − 7n+ 8 + 4

√
2n2 − 14n+ 25

4

⌉

Proof. Since we consider complete graphs, it is not pos-
sible that two vertices be colored entirely R for one and
entirely L for the other one. Hence, after cutting along
C, there is a graph embedding with one boundary and
no interior vertex of genus at least b g2c. Let k = |C|
and T ′ be the triangulation without interior vertices ob-
tained after cutting along C. T ′ has genus at least

⌊
g
2

⌋

and so χ(T ′) ≤ 2−2
⌊
g
2

⌋
−1 ≤ 2−(g−1)−1 = 2−g. M ′

has k vertices, e ≤ k(k−1)
2 edges and f faces. The dou-

ble counting of the number of edges gives 3f = 2e − k
because all the edges are on exactly 2 faces except the
k on the boundary. So χ(T ′) = k − e + 2 e

3 − k
3 =

2k−e
3 ≥ 4k−k(k−1)

6 = 5k−k2

6 . By putting together the

two inequalities we obtain: 2 − g ≥ 5k−k2

6 leading to
k2 − 5k + 6 − 6g ≥ 0. ∆ = 25 − 4(6 − 6g) = 1 + 24g

and so k = |C| ≥ 5+
√
1+24g
2 =

5+
√

1+2(n−3)(n−4)
2 =

5+
√
2n2−14n+25

2 .
Let us look back at the Euler formula for T ′.

We have, χ(T ′) = 2k−e
3 ≤ 2 − g. It implies

that e ≥ 2k + 3g − 6 ≥ 5 +
√

2n2 − 14n+ 25 +
3(n−3)(n−4)

12 − 6 = (n−3)(n−4)+4
√
2n2−14n+25−4

4 =
n2−7n+8+4

√
2n2−14n+25

4 . �

It is interesting to notice that e
min(|L|,|R|) = 1

2 −O(1
n)

for balanced splitting cycles in complete triangulations

and thus minE(n) = n2

4 −O(n).

3 Approximations of splitting cycles

Our goal is to prove Theorem 2, which shows that we
can efficiently find a set X of ε-cycles approximating all
splitting cycles.

Lemma 7 For every orientable triangulation Tn of Kn

and every ε > 0, there is a set X of size f(ε) consist-
ing of ε-cycles such that every splitting cycle of Tn is
approximated by some element of X.

Proof. Pick some large constant c > 4/ε2. We implic-
itly assume here that n is much larger than ε and c, oth-
erwise X simply exists by enumeration. Pick uniformly
at random a sample S of c different vertices of Tn. For
each vi ∈ S, divide the cyclic order σi into c cyclic in-
tervals I1, . . . , Ic of approximately the same length (i.e.
size b(n− 1)/cc or d(n− 1)/ce). We now construct our
ε-cycles (R,L,U). We first decide for each vi ∈ S an
R,L,U (right, left, unknown) coloring of the intervals
Ij in such a way that two (possibly identical) intervals
are U and these two U intervals separates the R inter-
vals and the L intervals. Note that when the U intervals
are identical or adjacent, the remaining intervals are all
colored R or all colored L. The total number of such
choices for a given vi ∈ S is c2 + c, and we then have
(c2 + c)c possible ways of coloring the edges adjacent
to S according to this local rule. Among these coloring,
some of then are inconsistent in the sense that they give
both colors R and L at the two endpoints of some edge
between two elements of S. We reject these colorings.
It can also happen that an edge receives both colors U
and R (or U and L) in which case the edge keeps the
color different from U . We then color U all edges which

169

32nd Canadian Conference on Computational Geometry, 2020

were not incident to vertices of S. We reject all color-
ings which contain the forbidden pattern (R,L,R,L) in
some σi. The set of surviving (R,L,U) colorings is de-
noted by XS , and this is our candidate for X. Note that
the size of XS only depends on c and hence on ε, and
that the total number of U edges incident to vertices of
S is at most c · 2n/c.

The key-observation is that every splitting cycle C of
Tn is approximated by some element of XS . Indeed, for
each vertex vi ∈ S one can define the two U intervals of
σi as these containing an edge of C, and the R and L
intervals are the one which are entirely R or L according
to cycle C. So to reach our conclusion, we just have to
show that every element of XS is an ε-cycle.

We claim that this happens if we are lucky enough
with our sampling S. Let us say that a vertex vi is good
if S is well distributed in σi i.e. if for every cyclic interval
of σi of size at least εn, the number of elements of S is
at least εc/2. Observe that the probability that a vertex
is good tends to 1, when ε is fixed and c goes to infinity.
By Markov, we can fix c large enough such that with
high probability, our sampling S will be such that all
vertices save an arbitrarily small proportion are good.
We now claim that in this case, all (R,L,U) partitions
of XS are ε-cycles.

Assume for contradiction that this is not the case.
Then there are more than εn non typical vertices vi for
which σi contains an interval Iji of size at least εn with
no R ∪ L edge. Since we can neglect these vertices vi
which are either in S or are not good, each of these
intervals Iji contains εc/2 vertices of S, and none of
them have created an R ∪ L edge with vi. So the total
number of U edges incident to vertices of S is at least
εn.εc/2, which is contradicting the fact that there are
at most c.2n/c of them since c > 4/ε2. �

This concludes the proof of Theorem 2, the algorithm
simply returning XS for some large enough sample S.
The main drawback of this approach is the size of the
sampling, which makes it very difficult to implement for
some practicle use. Since our goal is to look for balanced
splitting cycles, we will only focus on ε-cycles which can
be approximations of balanced cycles. Let us denote
by minE(n) the minimum size of R (or equivalently of
L) in a balanced cycle (R,L,C) of an orientable trian-
gulation of Kn. Note that minE(n) = n2/4 − O(n),
but a more precise value will be given later when we
will discuss the implementation. Thus if some ε-cycle
(R′, L′, U) approximates (R,L,C), it must have poten-
tially at least minE(n) many R′ or L′ edges. Let us
properly define this. The right-potential r(vi) of some
vertex vi is defined as:

� When vi is incident to some edges of R′ and L′,
r(vi) is the size of the longest cyclic interval of σi
with a point in R′ and no point in L′, minus 2.

� When vi is only incident to edges of R′, we have
r(vi) = n− 1.

� When vi is only incident to edges of L′, r(vi) is the
size of the longest cyclic interval of σi with no point
in L′, minus 2.

The same definition applies for left potential l(vi).
The right-potential r(R′, L′, U) is the sum of the right
potential of all the vertices (same for left-potential
l(R′, L′, U)). Note that r(R′, L′, U) ≥ 2|R| and
l(R′, L′, U) ≥ 2|L| when (R′, L′, U) approximates
(R,L,C) (the factor 2 in the inequality stands for the
fact that we are doubly counting edges in the potential).
Let us then say that an ε-cycle (R′, L′, U) is unbalanced
if r(R′, L′, U) < 2minE(n) or l(R′, L′, U) < 2minE(n)
(otherwise it is balanced). A triangulation Tn is ε-far to
be balanced if it has no balanced ε-cycle.

Proof. [Proof of Corollary 3] Now let us prove that we
can efficiently separate triangulations which are either
balanced or ε-far to be balanced. For this, we compute
a set XS of ε-cycles which approximates all splitting
cycles of Tn. Note that if Tn admits a balanced cy-
cle (R,L,C), then it is approximated by some ε-cycle
(R′, L′, U) in XS which hence must be balanced and
thus a certificate of separation. Now if Tn does not ad-
mit a balanced cycle (R,L,C), we compute a set XS

coming w.h.p. from a lucky sample S. The key point is
that we can indeed check if S is a good sample or not,
just by checking if it is well-distributed in nearly all σi.
Hence the set XS probably approximate all splitting cy-
cles of Tn, and if we satisfy the separation hypothesis of
Theorem 3, none of the ε-cycles are balanced. Therefore
XS is a certificate of the fact that Tn has no balanced
splitting cycle. �

The nice feature of this property testing algorithm is
that if we try to check if a given Tn has a balanced cy-
cle, we may be lucky and get a NO-certificate. This is
basically what happens so far for all Ringel and Youngs
triangulations on which the algorithm terminates. How-
ever, in the present form, the size of XS is way too large
to be implemented, and we will use a mix of random
sampling and greedy choices for S. Also the fact that
we divide σi into c intervals is convenient for the proof
but not for the algorithm, which will only cut into 3
parts.

Another exciting direction of research is when we get
a set XS of ε-cycles, some of which are balanced. There
is possibly a way to investigate if a given balanced ε-
cycle can be completed into a balanced (or near bal-
anced) cycle. For instance, if some σi contains the pat-
tern (R,U,R,L), then the U edge can be turned into
an R edge (possibly creating forbidden patterns leading
to reduction of XS). These closure operations (together

170

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

with a (L,U,L,R) rule) can greatly densify our candi-
date ε-cycle making it easier to complete or not into a
splitting cycle.

4 Practicle algorithm

Sketch

We choose at random a set of k vertices (v0, · · · , vk−1) of
Tn and (ev0, ev1, ev2)j a balanced partition of the edges
around vj , for all 0 ≤ j < k. We have 3 · 6k−1 different
configurations on the chosen vertices since each vertex
has 3 possible ev and 2 possible colors for each case. We
say that a configuration is valid if it is compatible with
the existence of a balance splitting cycle. We want to
show that no configuration is valid and thus conclude
that no balanced splitting cycle exists. By considering
the other vertices of the graph, we obtain two tools to
show that the configuration is not valid:

� There is a vertex with an alternated sequence of
edges labeled (L,R,L,R).

� The biggest number of edges colored R (or L) that
the graph can admit is less than minE(n) (see
Lemma 6).

It is natural to see the 3 · 6k−1 as the leaves of a
tree where each layer i adds the local configuration of
vi. We can remark that, if a partial configuration on a
node is already invalid then all the corresponding sub-
tree is invalid. It implies a natural breadth is the tree
of configuration considered as a search tree.

Data structure

To be able to correctly describe our algorithm and ana-
lyze its complexity, it is necessary to describe a bit the
data structure we use. It is mainly a half-edge data
structure which consists in coding Tn by a set of half-
edges each having a handle to the opposite half-edge
(represented by an involution α0) and to the next half-
edge in the local permutation σi (we can think of it as a
global permutation σ whose cycles are the σi). At this
point, we can notice that the size of the map is actually
2e· < size of an half-edge >= O(e). An edge is an orbit
of the action of α0 on the set of half-edges and can be
stored as one element in the orbit. Similarly, the orbits
of σ are the vertices, it is again sufficient to store one
half-edge for each vertex. We need to store on each ver-
tex a ”reverse” dictionary Revi that associate to every
vertex vj for j 6= i its position around vi (each vertex is
associated to a unique half-edge around vi). The Rev
dictionaries are not a general feature in the half-edge
data structure but is required by our algorithm. Finally,
the faces can be construct by alternatively applying α0

and σ and storing a half-edge for each corresponding or-
bit. Here, computing the faces is mainly useful to check

that Tn is a correct triangulation. The construction of
the map is considered as a precomputation and is done
using O(e) operations.

Algorithm

INPUT: A complete triangulation.

� Let C be an empty vector of configurations. We
initialize RandV with a random vertex vi and a
random partition of the neighborhood of vi into
three consecutive parts (ev0, ev1, ev2)i. We put the
configuration (vi, (ev0, ev1, ev2)i, 0, L) in C.

� We add a list Lj on each vector vj that stores the
position of the vertices already colored. At this
stage, it means that for all vj ∈ ev0 we call Revj(i)
to know the position of vi around vj and we put
(Revj(i), L) in Lj . Notice that the Lis must be
sorted during the algorithm.

� While C is non-empty we do:

1. We test if C is valid. This implies two tests:

– We look at all the Li to see if there
is no cyclic subsequence of the form
(L,R,L,R).

– We sum the biggest interval that can be
colored L (resp. R) in all the Lis and we
compare the result to the one of Lemma 6.

2. If one of the test fails we update C in the
following way:

– If the last element of C is of the form
(· · · , 2, R) then we discard it and we up-
date C again.

– Else we consider the next con-
figuration using the order:
(0, L),(1, L),(2, L),(0, R),(1, R) and
(2, R).

We update each Li to make it coherent with
the new configuration and the go back to step
1.

3. We compute a new random vertex vi not al-
ready used by C with a partition of its neigh-
borhood and we add (vi, (ev0, ev1, ev2)i, 0, L)
at the end of C. We then update the Li and
go back to 1.

Analysis of the algorithm

Proposition 8 If the algorithm terminates then the in-
put triangulation does not have a balanced splitting cy-
cle.

171

32nd Canadian Conference on Computational Geometry, 2020

Proof. If the algorithm terminates then C has de-
scribed a search tree T rooted at the empty configura-
tion. All the leaves of T corresponds to configurations
that are invalid in step 1. Now, if all the children of a
given node are invalid, it implies that the configuration
of the node is invalid. So, by induction, all configura-
tions in T are invalid and this includes its root. If the
empty set is invalid, it implies that the input triangula-
tion has no balanced splitting cycle. �

Proposition 9 The algorithm described above requires
O(t · d · n) = O(t · d · √e) operations where t is the size
of the search tree T and d its depth.

Proof. Each node of T corresponds to one iteration of
the while loop. Step 1 requires reading all the lists Li.
There are n such lists and their size is bounded by the
size of C which is less than the depth of T . It implies
that this step requires O(d · n) operations. Step 2 and
3 may require an insertion or a deletion in one third of
the Li which is done in O(d · n) operations. Since we
consider t configurations, we obtain a total of O(t ·d ·n)
operations. �

5 Implementation details and experimental results

The algorithm can be made parallel by having a mas-
ter thread assigning different subtrees of the search tree
to different threads. There are no difficulty here and
no significant risk of bug since each thread has its own
copy of the data structure. The implementation has
been realized in C++ using OPENMPI for paralleliza-
tion and can be downloaded at http://vdespre.free.
fr/Splitting.tar.gz. The tests have been launched
on the cluster Grid’50001. We denote by m be the num-
ber of threads for given experiment.

We first give results to show the efficiency of the algo-
rithm. Notice that the limit is set by the RAM on each
node and so the number of threads is set to not break
the memory limit. The time column shows the average
on 10 tries.

s n e time (s.)
833 10 003 50 025 003 425
1863 22 363 250 040 703 2990

m nodes t CPU time
180 45 2 000 000 21h15m
45 45 1 700 000 37h22m

It is interesting to notice that the time of the tests
highly depends on the exact value of n. It means that
the size of the research tree is not smooth with respect

1Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.

grid5000.fr).

to n. It is pretty surprising and we have no hint of the
reason by now. The following experiments have been
done using 720 threads on 45 nodes.

s n time (s.) s.d. (s.) d0 t
100 1207 18 1 7 1 800 000
101 1219 62 15 7 2 100 000
102 1231 945 224 9 41 000 000
103 1243 970 178 9 42 000 000
104 1255 17 1 7 1 800 000
105 1267 fails (7200) 10
106 1279 35 8 7 1 900 000
107 1291 42 4 7 1 900 000
108 1303 220 45 7 8 200 000
109 1315 17 1 7 1 800 000
110 1327 18 1 7 1 800 000

6 Conclusion

The structure of the splitting cycles in triangulations of
complete graphs remains quite mysterious. Even for the
case of Ringel and Youngs embeddings restricted to n =
12s + 7, we do not understand what exactly happens.
Our new experimental results give some information on
the absence of balanced splittings. In this specific case,
we can imagine to make tests on bigger triangulations
by storing the embedding using O(n) memory. This can
be done using the extreme symmetry of the embeddings
but is not likely to be generalized.

We can also want to explore other triangulations of
complete graphs. A very simple question remains open
on this subject:

Question 10 Is there an unbounded sequence of trian-
gulations of complete graphs admitting balanced splitting
cycles?

The question is of intrinsic interest and it is difficult to
have an intuition about it. The constructions of trian-
gulations of complete graphs are pretty intricate and it
is not clear if one can be modified to ensure the exis-
tence of a balanced splitting. In addition, we always
look for an easy proof that some triangulation does not
have a splitting cycle. We think that Lemma 7 is the
kind of idea that can lead to such a proof. However, it is
not clear how much the properties of a specific embed-
ding must be used. If there exists huge triangulations
of complete graphs with balanced splittings, it would be
necessary to use an explicit embedding. If not, we can
imagine proving the non-existence of balanced splitting
in complete triangulations without considering a spe-
cific embedding which is very convenient, in particular
for probabilistic arguments.

172

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] D. W. Barnette and A. L. Edelson. All orientable 2-
manifolds have finitely many minimal triangulations.
Israel Journal of Mathematics, 62(1):90–98, 1988.

[2] S. Cabello, É. Colin de Verdière, and F. Lazarus.
Finding cycles with topological properties in embed-
ded graphs. SIAM J. Discrete Math., 25(4):1600–1614,
2011.

[3] E. W. Chambers, É. C. De Verdière, J. Erickson,
F. Lazarus, and K. Whittlesey. Splitting (complicated)
surfaces is hard. In Proceedings of the twenty-second
annual symposium on Computational geometry, pages
421–429. ACM, 2006.

[4] V. Despré and F. Lazarus. Some triangulated surfaces
without balanced splitting. Graphs and Combinatorics,
32(6):2339–2353, 2016.

[5] M. N. Ellingham and C. Stephens. Triangular em-
beddings of complete graphs (neighborly maps) with
12 and 13 vertices. Journal of Combinatorial Designs,
13(5):336–344, 2005.

[6] M. J. Grannell and M. Knor. A lower bound for the
number of orientable triangular embeddings of some
complete graphs. Journal of Combinatorial Theory, Se-
ries B, 100(2):216–225, 2010.

[7] J. L. Gross and T. W. Tucker. Topological graph theory.
Dover, reprint 2001 from Wiley edition, 1987.

[8] P. Heawood. Map-color theorem. Quart. J. Math. Ox-
ford Ser. 24, 1890.

[9] D. L. Jennings. Separating Cycles in Triangulations of
the Double Torus. PhD thesis, Vanderbilt University,
2003.

[10] G. Joret and D. R. Wood. Irreducible triangulations
are small. Journal of Combinatorial Theory, Series B,
100(5):446–455, 2010.

[11] V. P. Korzhik and H.-J. Voss. On the number of non-
isomorphic orientable regular embeddings of complete
graphs. Journal of Combinatorial Theory, Series B,
81(1):58–76, 2001.

[12] S. Lawrencenko, S. Negami, and A. T. White. Three
nonisomorphic triangulations of an orientable surface
with the same complete graph. Discrete Mathematics,
135(1):367–369, 1994.

[13] B. Mohar and C. Thomassen. Graphs on Surfaces.
Studies in the Mathematical Sciences. Johns Hopkins
University Press, 2001.

[14] A. Nakamoto and K. Ota. Note on irreducible triangu-
lations of surfaces. Journal of Graph Theory, 20(2):227–
233, 1995.

[15] G. Ringel. Map color theorem, volume 209. Springer,
1974.

[16] T. Sulanke. Generating irreducible triangulations of
surfaces. arXiv:math/0606687, 2006.

[17] T. Sulanke. Irreducible triangulations of low genus sur-
faces. arXiv:math/0606690, 2006.

[18] X. Zha and Y. Zhao. On non-null separating cir-
cuits in embedded graphs. Contemporary Mathematics,
147:349–349, 1993.

173

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A Linear-Time Algorithm for Discrete Radius Optimally Augmenting Paths
in a Metric Space

Haitao Wang ∗ Yiming Zhao †

Abstract

Let P be a path graph of n vertices embedded in a
metric space. We consider the problem of adding a new
edge to P so that the radius of the resulting graph is
minimized, where any center is constrained to be one of
the vertices of P . Previously, the “continuous” version
of the problem where a center may be a point in the
interior of an edge of the graph was studied and a linear-
time algorithm was known. Our “discrete” version of
the problem has not been studied before. We present a
linear-time algorithm for the problem.

1 Introduction

Let P be a path graph of n vertices embedded in a met-
ric space. We wish to add a new edge to P so that the
radius of the resulting graph is minimized, where any
center of the graph is constrained to be one of the ver-
tices of P . The problem is formally defined as follows.

Let {v1, v2, ..., vn} be the set of vertices of P along P .
For each i ∈ [1, n − 1], let e(vi, vi+1) denote the edge
connecting vi and vi+1. We assume that P is embedded
in a metric space and |vivj | is the distance between two
vertices vi and vj , such that the following properties
hold: (1) |vivj | = 0 if and only if i = j; (2) |vivj | =
|vjvi| ≥ 0; (3) |vivk|+ |vkvj | ≥ |vivj | for any vk (i.e., the
triangle inequality). Note that the length of each edge
e(vi, vi+1) for i ∈ [1, n − 1] in P is equal to |vivi+1|. We
assume that the distance |vivj | can be obtained in O(1)
time for any two vertices vi and vj of P .

Let P ∪ {e(vi, vj)} denote the resulting graph (also
called augmenting path) after adding a new edge e(vi, vj)
connecting two vertices (i.e., vi and vj) of P . A vertex
c of P is called a center of the new graph P ∪{e(vi, vj)}
if it minimizes the maximum length of the shortest
paths from c to all vertices in the graph, and the
maximum shortest path length is called the radius of
P ∪ {e(vi, vj)}. The problem is to add a new edge
e(vi, vj) such that the radius of P ∪ {e(vi, vj)} is mini-
mized, among all vertex pairs (vi, vj) with 1 ≤ i < j ≤

∗Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA. haitao.wang@usu.edu

†Corresponding author. Department of Computer Sci-
ence, Utah State University, Logan, UT 84322, USA.
yiming.zhao@aggiemail.usu.edu

n. We call it discrete radius optimally augmenting path
problem (or discrete-ROAP for short).

To the best of our knowledge, the problem has not
been studied before in the literature. In this paper, we
present an O(n) time algorithm for the problem.

1.1 Related work

Johnson and Wang [12] studied a “continuous” version
of the problem in which a center may be in the interior
of an edge of the graph. In contrast, in our problem
any center has to be a vertex of the graph, and thus our
problem may be considered a “discrete” version. John-
son and Wang [12] gave a linear time algorithm for their
continuous problem.

A similar problem that is to minimize the diameter
of the augmenting path has also been studied. Große
et al. [9] first gave an O(n log3 n) time algorithm; later
Wang [16] improved the algorithm to O(n log n) time.
Variations of the diameter problem (i.e., add a new edge
to P to minimize the diameter of the resulting graph)
were also considered. If the path P is embedded in
the Euclidean space Rd for a given constant d, Große
et al. [9] proposed an algorithm that can compute a
(1 + ϵ)-approximate solution for the diameter problem
in O(n + 1

ϵ3) time, for any ϵ > 0. If P is embedded
in the Euclidean plane R2, De Carufel et al. [5] de-
rived a linear-time algorithm for the continuous version
of the diameter problem (i.e., the diameter is defined
with respect to all points of the graph, including the
points in the interior of the graph edges, not just ver-
tices). For a geometric tree T of n vertices embedded
in the Euclidean plane R2, De Carufel et al. [6] de-
signed an O(n log n)-time algorithm for adding a new
edge to T to minimize the continuous diameter in the
new graph. If T is a tree embedded in a metric space,
Große et al. [10] solved the discrete diameter problem
in O(n2 log n) time; Bilò [3] improved the algorithm to
O(n log n) time. Oh and Ahn [14] considered the diame-
ter problem on a general tree (not necessarily embedded
in a metric space) and developed O(n2 log3 n) time algo-
rithms for both the discrete and the continuous versions
of the diameter problem; later Bilò [3] gave an improved
O(n2) time algorithm for the discrete diameter problem.

A more general problem is to add k edges to a gen-
eral graph G such that the diameter of the new graph

174

32nd Canadian Conference on Computational Geometry, 2020

is minimized. This problem is NP-hard [15] and some
variants are even W[2]-hard [7, 8]. Various approxima-
tion algorithms are known [4, 7, 13]. The problem of
bounding the diameters of the augmenting graphs have
also been studied [1, 11]. In a geometric setting, given
a circle in the plane, Bae et al. [2] considered the prob-
lem of inserting k shortcuts (i.e., chords) to the circle
to minimize the diameter of the resulting graph.

As a motivation of our problem, we borrow an exam-
ple from [12]. Suppose there is a highway that connects
several cities and we want to build a facility along the
highway to provide certain service for all these cities; it
is required that the facility be located in one of the cities
along the highway. To reduce the transportation time,
one option is to construct a new highway connecting
two cities such that the radius (the maximum distance
from the facility to all cities) is as small as possible.

1.2 Our approach

Note that the radius of P ∪{e(vi, vj)} may not be equal
to its diameter divided by 2. For example, suppose P ∪
{e(vi, vj)} is a cycle (i.e., i = 1 and j = n) and all edges
of the cycle have the same length; then one can verify
that the radius of the graph is equal to its diameter.

To solve our problem, a natural idea is to see whether
the algorithm [12] for the continuous problem can be
used. To this end, two basic questions arise. First, for
an augmenting graph P ∪ {e(vi, vj)}, how far a contin-
uous center can be from the discrete center? For exam-
ple, is it the case that if a continuous center lies in the
interior of an edge e, then one of the two vertices of e
must be a discrete center? Second, is it the case that an
optimal solution (i.e., the new edge to be added) in the
continuous version must also be an optimal solution for
the discrete version?

In order to answer these questions, we illustrate two
examples.

Figure 1 shows an example in which the path P with
10 vertices is embedded in the Euclidean plane, with
|vivi+1| = 1 for all 1 ≤ i ≤ 9. Suppose a new edge
e(v3, v8) is added. It is possible to draw the figure such
that |v3v8| = 4. One can verify that the only continuous
center is the middle point of e(v3, v8) (whose farthest
vertices are {v1, v5, v6, v10}) and the continuous radius
is 4. Either v5 or v6 can be a discrete center (v5 has
only one farthest vertex v10 and v6 has only one farthest
vertex v1) and the discrete radius is 5. This example
shows that the discrete center and the continuous center
could be “far from” each other. Therefore, it is not
obvious to us whether/how a continuous center can be
used to find a discrete center.

Figure 2 shows an example in which the path P with
10 vertices is embedded in the Euclidean plane, with
|vivi+1| = 1 for all 1 ≤ i ≤ 9. It is possible to draw the
figure such that |v3v8| = 4, |v4v7| > 2, |v5v10| > |v1v6|,

v1

v2

v3
v4

v5 v6
v7

v8

v9

v10|v3v8| = 4|vivi+1| = 1, i = 1, 2, ..., 9

Figure 1: Illustrating the difference between the con-
tinuous center and the discrete center. The continuous
center is the middle point of the new edge e(v3, v8). Ei-
ther v5 or v6 can be a discrete center.

and 4 < |v1v6| < 5. For the continuous problem,
an optimal solution is to add the edge e(v3, v8), after
which the continuous center of the new graph is the
middle point of e(v3, v8) (which has four farthest ver-
tices {v1, v5, v6, v10}) and the continuous radius is 4.
For the discrete problem, an optimal solution is to add
the edge e(v1, v6), after which the discrete center of the
new graph is v6 (which has only one farthest vertex v1)
and the discrete radius is equal to |e(v1, v6)|, which is
larger than 4. Note that e(v5, v10) is not an optimal
solution due to |v5v10| > |v1v6|. This example shows
that optimal solutions of the two versions of the prob-
lem could be very different. Therefore, it is not obvious
to us whether/how a continuous optimal solution can
be used to find a discrete optimal solution.

v1

v2

v3
v4

v5 v6
v7

v8

v9

v10|v3v8| = 4

4 < |v1v6| < 5

|v4v7| > 2

|vivi+1| = 1, i = 1, 2, ..., 9 |v5v10| > |v1v6|

Figure 2: Illustrating the difference between an optimal
solution of the continuous problem and that of the dis-
crete problem. For the continuous problem, an optimal
solution is to add the edge e(v3, v8). For the discrete
problem, an optimal solution is to add e(v1, v6).

The above examples demonstrate that using the algo-
rithm in [12] directly to solve the discrete problem seems
not possible. Instead, we design a new algorithm. Our
algorithm still share some similarities with that in [12]
in the following sense. In the continuous case, any cen-
ter must have two different farthest vertices in the aug-
menting graph. Based on the location of the center, the
locations of the two farthest vertices, and the shortest
paths from the center to the two farthest vertices in
an optimal solution, the algorithm in [12] considers a
constant number of configurations, and in each configu-
ration the algorithm computes a candidate solution such

175

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

that if an optimal solution conforms to the configura-
tion, then the candidate solution is an optimal solution.
In our discrete case, we also consider a constant number
of configurations and process the configurations in the
same way as above. However, the major difference is
that the definitions of the configurations in our prob-
lem are quite different from those in [12]. Indeed, in
our problem, a center may have only one farthest ver-
tex. Therefore, the configurations in our problem are
defined with respect to the locations of the center and a
single farthest vertex, as well as their shortest path. In
addition, unlike those in [12], we do not need to consider
the configurations where the center is in the interior of
the new added edge. For this reason, we have much
fewer configurations than those in [12].

In the following, Section 2 introduces notation and
definitions. Our algorithm is described in Section 3.

2 Preliminaries

Unless otherwise stated, for any index pair (i, j) or ver-
tex pair (vi, vj) used in our discussion, we assume that
1 ≤ i ≤ j ≤ n. For any two vertices vi and vj of the
path P , we use P (vi, vj) to refer to the subpath of P
from vi to vj inclusively.

Define G(i, j) = P ∪ {e(vi, vj)}, i.e., the new graph
after a new edge e(vi, vj) is added to the path P . Note
that if j = i or j = i + 1, then G(i, j) is P . Define
C(i, j) = P (vi, vj)∪e(vi, vj), which is a cycle formed by
a new edge e(vi, vj) and the subpath P (vi, vj).

For any graph G used in our discussion (e.g., G is
G(i, j), C(i, j), or P) and any two vertices v and v′ of
G, we use dG(v, v′) to denote the length of any shortest
path from v to v′ in G and we also refer to dG(v, v′)
as the distance from v to v′ in G. Following this defi-
nition, dP (vi, vj) is the length of the subpath P (vi, vj)
and dC(i,j)(v, v′) is the distance between v to v′ in the
cycle C(i, j). For any path π in G, we use |π| to denote
the length of π. We also use |C(i, j)| to denote the total
length of all edges of the cycle C(i, j).

Our algorithm will frequently compute dP (vi, vj) for
any index pair (i, j). This can be done in constant time
after O(n) time preprocessing, e.g., compute the prefix
sum dP (v1, vk) for all 1 ≤ k ≤ n.

For any vertex v of any graph G used in our discus-
sion, a vertex v′ of G is called a farthest vertex of v if it
maximizes dG(v, v′). A vertex vc of G is called a center
if its distance to its farthest vertex is minimized, and
the distance from vc to its farthest vertex is called the
radius of G. Therefore, our problem is to find an index
pair (i, j) such that the radius of G(i, j) is minimized.

Let (i∗, j∗) denote an optimal solution (with i∗ < j∗),
i.e., e(vi∗ , vj∗) is the new edge to be added. Let c∗ de-
note the index of a center of G(i∗, j∗), r∗ the radius
of G(i∗, j∗), a∗ the index of a farthest vertex of vc∗ in

G(i∗, j∗), and π∗ a shortest path from vc∗ to va∗ in
G(i∗, j∗). Note that the center of G(i∗, j∗) may not be
unique, in which case we use c∗ to refer to an arbitrary
one, but once c∗ is fixed we will never change it through-
out the paper. So as a∗ and π∗. Note that c∗ ̸= a∗ since
otherwise the graph would have only one vertex.

3 The Algorithm

As discussed in Section 1.2, we consider a constant num-
ber of configurations for the optimal solution G(i∗, j∗).
For each configuration, we compute in O(n) time a can-
didate solution (consisting of an index pair (i′, j′), a can-
didate center c′ and a candidate radius r′) such that if
the optimal solution conforms to the configuration, then
our candidate solution is an optimal one, i.e., r∗ = r′.
On the other hand, the candidate solution is a feasible
one, i.e., the distances from c′ to all vertices in G(i′, j′)
are at most r′.

In the following, we first give an overview of all con-
figurations and then present algorithms to compute can-
didate solutions for them.

3.1 Configuration overview

The configurations are defined with respect to the lo-
cations of va∗ and vc∗ as well as whether the path π∗

contains the new edge e(vi∗ , vj∗).
Depending on whether c∗ ∈ (i∗, j∗), there are two

main cases.

Case 1: c∗ ̸∈ (i∗, j∗). In this case, c∗ is either in [1, i∗]
or in [j∗, n]. Hence, there are two subcases.

Case 1.1: c∗ ∈ [1, i∗]. See Fig. 3.
Case 1.2: c∗ ∈ [j∗, n].

This case is symmetric to Case 1.1.

Case 2: c∗ ∈ (i∗, j∗). Notice that a∗ cannot be in
[2, i∗] ∪ [j∗, n − 1]. Hence, there are three subcases
a∗ = 1, a∗ = n, and a∗ ∈ (i∗, j∗).

Case 2.1: a∗ = 1.
This case further has two subcases depending
on whether the new edge e(v∗

i , v∗
j) is contained

in the path π∗.
Case 2.1.1: e(v∗

i , v∗
j) ⊆ π∗. See Fig. 5.

Case 2.1.2: e(v∗
i , v∗

j) ̸⊆ π∗. See Fig. 7.
Case 2.2: a∗ = n. This case is symmetric to

Case 2.1.
Case 2.3: a∗ ∈ (i∗, j∗).

In fact, we will only compute candidate solutions for
Cases 1.1 and 1.2. We will show that other cases can be
reduced to these two cases (i.e., if any case other than
Case 1.1 and Case 1.2 has an optimal solution, then one
of Case 1.1 and Case 1.2 must have an optimal solution).

176

32nd Canadian Conference on Computational Geometry, 2020

3.2 Computing candidate solutions

We are now in a position to describe our algorithms for
computing candidate solutions.

Case 1: c∗ ̸∈ (i∗, j∗).

Depending on whether c∗ ∈ [1, i∗] or c∗ ∈ [j∗, n], there
are two subcases.

Case 1.1: c∗ ∈ [1, i∗].

vc∗ vi∗

vj∗

vnv1

Figure 3: Illustrating Case 1.1: c∗ ∈ [1, i∗].

Refer to Fig. 3. In this case, either a∗ = 1 or a∗ ∈
[i∗, n] and thus the radius r∗ is equal to

max{dP (v1, vc∗), dP (vc∗ , vi∗)+ max
k∈[i∗,n]

dG(i∗,j∗)(vi∗ , vk)}.

Definition 1 For each i ∈ [1, n − 1], define

λi = min
j∈[i,n]

max
k∈[i,n]

dG(i,j)(vi, vk),

ji = arg min
j∈[i,n]

max
k∈[i,n]

dG(i,j)(vi, vk),

ri = min
k∈[1,i]

max{dP (v1, vk), dP (vk, vi) + λi},

ci = arg min
k∈[1,i]

max{dP (v1, vk), dP (vk, vi) + λi}.

The values λi and ji were also used for solving the
continuous problem in [12], where an algorithm was
given that can compute λi and ji for all i = 1, 2, . . . , n−1
in O(n) time. For our discrete problem, we also need
to compute ri and ci for all i = 1, 2, . . . , n − 1. To this
end, we propose an O(n)-time algorithm in Lemma 1.

Lemma 1 The values ri and ci for all i = 1, 2, . . . , n−1
can be computed in O(n) time.

Proof. We first compute λi for all i = 1, 2, . . . , n− 1 in
O(n) time [12]. Note that once ci for all i = 1, 2, . . . , n−
1 are known, all ri can be computed in additional O(n)
time because ri = max{dP (v1, vci), dP (vci , vi) + λi)}.
Hence, we will focus on computing ci below.

For each i ∈ [1, n − 1], define ki as the largest index
k ∈ [1, i] such that dP (v1, vk) ≤ dP (vk, vi) + λi.

We claim that for each i ∈ [1, n − 1], ci is either ki or
ki +1. Indeed, as k changes [1, i], the value dP (v1, vk) is
monotonically increasing while the value dP (vk, vi)+λi

is monotonically decreasing. By the definition of ci and
ki, the claim follows.

In light of the claim, once ki is known, ci can be
determined in additional O(1) time. In the follow-
ing, we describe an algorithm to compute ki for all
i = 1, 2, . . . , n − 1 in O(n) time.

We first prove a critical monotonicity property: ki ≤
ki+1 for all i ∈ [1, n−2]. To this end, it suffices to show
that dP (v1, vki

) ≤ dP (vki
, vi+1) + λi+1. We claim that

λi ≤ dP (vi, vi+1) + λi+1. Before proving the claim, we
use the claim to prove the monotonicity property:

dP (v1, vki
) ≤ dP (vki

, vi) + λi

= dP (vki
, vi+1) − dP (vi, vi+1) + λi

≤ dP (vki
, vi+1) + λi+1.

The first inequaltiy is due to the definition of ki while
the last inequality is due to the above claim. This proves
the monotonicity property. In the following we prove
the claim. The proof involves two graphs G(i, ji+1) and
G(i + 1, ji+1), e.g., see Fig. 4.

v1

vi vji+1

vn

vi

vnv1

vi+1

vi+1

vji+1

Figure 4: Illustrating the two graphs G(i, ji+1) (top)
and G(i + 1, ji+1) (bottom).

By definition, λi ≤ maxk∈[i,n] dG(i,ji+1)(vi, vk). De-
fine k′ = arg maxk∈[i,n] dG(i,ji+1)(vi, vk). Hence, λi ≤
dG(i,ji+1)(vi, vk′). It is not difficult to see that ei-
ther k′ = n or k′ ∈ (i, ji+1). Below we prove λi ≤
dP (vi, vi+1) + λi+1 for each case.

If k′ = n, then due to the triangle inequal-
ity, dG(i,ji+1)(vi, vk′) = |vivji+1

| + dP (vji+1
, vn).

Also due to the triangle inequality, |vivji+1
| ≤

dP (vi, vi+1) + |vi+1vji+1
| and dG(i+1,ji+1)(vi+1, vn) =

|vi+1vji+1 | + dP (vji+1 , vn). In addition, ac-
cording to the definition of λi+1, we have
λi+1 = maxk∈[i+1,n] dG(i+1,ji+1)(vi+1, vk) ≥
dG(i+1,ji+1)(vi+1, vn). Combining all above, we
can derive

λi ≤ dG(i,ji+1)(vi, vk′) = dG(i,ji+1)(vi, vn)

= |vivji+1
| + dP (vji+1

, vn)

≤ dP (vi, vi+1) + |vi+1vji+1
| + dP (vji+1

, vn)

= dP (vi, vi+1) + dG(i+1,ji+1)(vi+1, vn)

≤ dP (vi, vi+1) + max
k∈[i+1,n]

dG(i+1,ji+1)(vi+1, vk)

= dP (vi, vi+1) + λi+1.

177

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

We proceed to the case k′ ∈ (i, ji+1). Consider the
graph G(i + 1, ji+1). dG(i+1,ji+1)(vi+1, vk′) is equal to
either dP (vi+1, vk′) or |vi+1vji+1 | + dP (vk′ , vji+1).

In the former case, we have

λi ≤ dG(i,ji+1)(vi, vk′) ≤ dP (vi, vk′)

= dP (vi, vi+1) + dP (vi+1, vk′)

= dP (vi, vi+1) + dG(i+1,ji+1)(vi+1, vk′)

≤ dP (vi, vi+1) + max
k∈[i+1,n]

dG(i+1,ji+1)(vi+1, vk)

= dP (vi, vi+1) + λi+1.

In the latter case, similarly we can derive

λi ≤ dG(i,ji+1)(vi, vk′) ≤ |vivji+1
| + dP (vk′ , vji+1

)

≤ dP (vi, vi+1) + |vi+1vji+1
| + dP (vk′ , vji+1

)

= dP (vi, vi+1) + dG(i+1,ji+1)(vi+1, vk′)

≤ dP (vi, vi+1) + max
k∈[i+1,n]

dG(i+1,ji+1)(vi+1, vk)

= dP (vi, vi+1) + λi+1.

This proves the claim and thus the monotonicity prop-
erty of ki’s.

Using the monotonicity property of ki’s, we can easily
compute all ki’s in O(n) time as follows. Starting from
i = 1, the algorithm incrementally computes ki for all
i = 1, 2, . . . , n − 1. The algorithm maintains an index
k. Initially, k = i = 1 and ki = k. Consider a general
step where ki has just been computed and k = ki. Next
we compute ki+1 as follows. As long as dP (v1, vk+1) ≤
dP (vk+1, vi+1) + λi+1, we increment k by one. After
that, we set ki+1 = k. The monotonicity property of
ki’s guarantees the correctness of the algorithm. The
running time is O(n).

The lemma is thus proved. □

We obtain a candidate solution for this configura-
tion as follows. We first compute λi and ji for all
i = 1, 2, . . . , n − 1 in O(n) time [12]. We then use
Lemma 1 to compute ri and ci for all i = 1, 2, . . . , n−1.
Let i′ = arg mini∈[1,n−1] ri. Let r′ = ri′ and j′ = ji′ .
We return (i′, j′), c′, and r′ as a candidate solution for
this configuration. Notice that the candidate solution is
a feasible solution, i.e., the distances from vc′ to all ver-
tices in G(vi′ , vj′) are at most r′. The following lemma
establishes the correctness of our candidate solution.

Lemma 2 r′ = r∗.

Proof. First of all, as the candidate solution is a feasi-
ble one, by the definition of r∗, r∗ ≤ r′ holds. It remains
to prove r′ ≤ r∗.

Recall that r∗ = max{dP (vc∗ , v1), dP (vc∗ , vi∗) +
maxk∈[i∗,n] dG(i∗,j∗)(vi∗ , vk)}. By the definition of λi,
it holds that λi∗ ≤ maxk∈[i∗,n] dG(i∗,j∗)(vi∗ , vk). Thus,
r∗ ≥ max{dP (vc∗ , v1), dP (vc∗ , vi∗) + λi∗}. We claim

that r∗ = max{dP (vc∗ , v1), dP (vc∗ , vi∗) + λi∗}. In-
deed, the value max{dP (vc∗ , v1), dP (vc∗ , vi∗) + λi∗} is
equal to the distance from vertex c∗ to its farthest ver-
tex in the graph G(i∗, ji∗). By the definition of r∗,
r∗ ≤ max{dP (vc∗ , v1), dP (vc∗ , vi∗) + λi∗}. The claim
thus follows.

The claim and the definition of ri∗ together lead to
ri∗ ≤ r∗. Further, by the definition of the index i′, we
have r′ = ri′ ≤ ri∗ ≤ r∗. The lemma thus follows. □

Case 1.2: c∗ ∈ [j∗, n].

This case is symmetric to Case 1.1 and we use a similar
algorithm to compute a candidate solution. The details
are omitted but can be found in the full paper [17].

Case 2: c∗ ∈ (i∗, j∗).

We now consider the case c∗ ∈ (i∗, j∗). In this case, it
is easy to see that dG(i∗,j∗)(vc∗ , vk) < dG(i∗,j∗)(vc∗ , v1)
for any k ∈ (1, i∗] and similarly dG(i∗,j∗)(vc∗ , vk) <
dG(i∗,j∗)(vc∗ , vn) for any k ∈ [j∗, n). Hence, a∗ can-
not be in (1, i∗] ∪ [j∗, n). Thus, a∗ = 1, a∗ = n, or
a∗ ∈ (i∗, j∗).

Case 2.1: a∗ = 1.

Depending on whether the new added edge e(vi∗ , vj∗) is
contained in the path π∗, there are two cases.

Case 2.1.1: e(vi∗ , vj∗) ⊆ π∗.

vc∗
vi∗ vj∗

vnva∗ = v1

Figure 5: Illustrating the configuration for Case 2.1.1,
where c∗ ∈ (i∗, j∗), a∗ = 1, and e(vi∗ , vj∗) ⊆ π∗. The
thick (red) path is π∗.

In this case, c∗ ∈ (i∗, j∗), a∗ = 1, and e(vi∗ , vj∗) ⊆
π∗. This implies that π∗ = P (vc∗ , vj∗) ∪ e(vi∗ , vj∗) ∪
P (v1, vi∗); e.g., see Fig. 5.

Lemma 3 The index pair (i∗, c∗) is an optimal solution
and c∗ is a center of the graph G(i∗, c∗).

Proof. We show that the distances from c∗ to all ver-
tices in the graph G(i∗, c∗) are at most r∗ (e.g., see
Fig. 6). This implies that the radius of G(i∗, c∗) is at
most r∗ and thus proves the lemma.

Let k be any index in [1, n]. Our goal is to prove
dG(i∗,c∗)(vc∗ , vk) ≤ r∗.

If k ∈ [1, i∗], then dG(i∗,c∗)(vc∗ , vk) ≤ |e(vi∗ , vc∗)| +
dP (vk, vi∗). By the triangle inequality, |e(vi∗ , vc∗)| ≤

178

32nd Canadian Conference on Computational Geometry, 2020

vc∗
vi∗ vj∗

vnva∗ = v1

Figure 6: Illustrating Lemma 3: The distances from c∗

to all vertices in G(i∗, c∗) are at most r∗.

|e(vi∗ , vj∗)| + dP (vc∗ , vj∗) holds. Hence, r∗ =
|π∗| = |e(vi∗ , vj∗)| + dP (vc∗ , vj∗) + dP (v1, vi∗) ≥
|e(vi∗ , vc∗)| + dP (v1, vi∗) ≥ |e(vi∗ , vc∗)| + dP (vk, vi∗) ≥
dG(i∗,c∗)(vc∗ , vk).

If k ∈ [c∗, n], then dG(i∗,c∗)(vc∗ , vk) ≤ dP (vc∗ , vk) ≤
dP (vc∗ , vn). As π∗ is a shortest path in G(i∗, j∗) and π∗

contains P (vc∗ , vj∗), P (vc∗ , vn) must be a shortest path
from vc∗ to vn in G(i∗, j∗), implying that dP (vc∗ , vn) ≤
r∗. Therefore, dG(i∗,c∗)(vc∗ , vk) ≤ r∗ holds.

If k ∈ (i∗, c∗), then both vc∗ and vk are in
the cycle C(i∗, j∗) of the graph G(i∗, j∗) and are
also in the cycle C(i∗, c∗) of the graph G(i∗, c∗).
Hence, dG(i∗,j∗)(vc∗ , vk) = dC(i∗,j∗)(vc∗ , vk) and
dG(i∗,c∗)(vc∗ , vk) = dC(i∗,c∗)(vc∗ , vk). Due to
the triangle inequality, |C(i∗, c∗)| ≤ |C(i∗, j∗)|.
Hence, dC(i∗,c∗)(vc∗ , vk) ≤ dC(i∗,j∗)(vc∗ , vk).
As dG(i∗,j∗)(vc∗ , vk) ≤ r∗, we can now ob-
tain dG(i∗,c∗)(vc∗ , vk) = dC(i∗,c∗)(vc∗ , vk) ≤
dC(i∗,j∗)(vc∗ , vk) = dG(i∗,j∗)(vc∗ , vk) ≤ r∗. □

Because (i∗, c∗) is an optimal solution with c∗ as a
center in the graph G(i∗, c∗), it is a configuration of
Case 1.2. Hence, the candidate solution found by our
algorithm for Case 1.2 is also an optimal solution. Thus,
it is not necessary to compute a candidate solution for
this case any more, i.e., this case is reduced to Case 1.2.

Case 2.1.2: e(vi∗ , vj∗) ̸⊆ π∗.

vc∗
vi∗

vj∗

vnva∗ = v1

Figure 7: Illustrating the configuration for Case 2.1.2,
where c∗ ∈ (i∗, j∗), a∗ = 1, and e(vi∗ , vj∗) ̸⊆ π∗. The
thick (red) path is π∗.

Refer to Fig. 7. In this case, c∗ ∈ (i∗, j∗), a∗ = 1,
and e(vi∗ , vj∗) ̸⊆ π∗. This implies that π∗ = P (v1, vc∗).
The following lemma reduces this case to Case 1.1.

Lemma 4 The index pair (c∗, j∗) is an optimal solution
and c∗ is a center of the graph G(c∗, j∗).

Proof. Some proof techniques are similar to Lemma 3.
It suffices to show that the distances from c∗ to all ver-
tices in G(c∗, j∗) are at most r∗. Let k be any index in
[1, n]. Our goal is to prove dG(c∗,j∗)(vc∗ , vk) ≤ r∗.

Note that dP (vc∗ , v1) = r∗, for π∗ = P (v1, vc∗).
If k ∈ [1, c∗], then dG(c∗,j∗)(vc∗ , vk) ≤ dP (vc∗ , vk) ≤

dP (vc∗ , v1) = r∗.
If k ∈ [j∗, n], then dG(c∗,j∗)(vc∗ , vk) ≤

dG(c∗,j∗)(vc∗ , vn). Below we prove dG(c∗,j∗)(vc∗ , vn) ≤
dG(i∗,j∗)(vc∗ , vn), which is at most r∗. Note that
dG(i∗,j∗)(vc∗ , vn) = min{dP (vc∗ , vn), dP (vc∗ , vi∗) +
|e(vi∗ , vj∗)| + dP (vj∗ , vn)}. If dG(i∗,j∗)(vc∗ , vn) =
dP (vc∗ , vn), then we have dG(c∗,j∗)(vc∗ , vn) ≤
dP (vc∗ , vn) = dG(i∗,j∗)(vc∗ , vn). If dG(i∗,j∗)(vc∗ , vn) =
dP (vc∗ , vi∗) + |e(vi∗ , vj∗)| + dP (vj∗ , vn), then by the
triangle inequality, dG(c∗,j∗)(vc∗ , vn) ≤ |e(vc∗ , vj∗)| +
dP (vj∗ , vn) ≤ dP (vc∗ , vi∗) + |e(vi∗ , vj∗)| + dP (vj∗ , vn) =
dG(i∗,j∗)(vc∗ , vn).

If k ∈ (c∗, j∗), then both vc∗ and vk are in the cycle
C(i∗, j∗) of the graph G(i∗, j∗) and are also in the cycle
C(c∗, j∗) of the graph G(c∗, j∗). By a similar analysis
as that for Lemma 3, we can obtain dG(c∗,j∗)(vc∗ , vk) ≤
dG(i∗,j∗)(vc∗ , vk) ≤ r∗. □

Case 2.2: a∗ = n.

This case is symmetric to Case 2.1 and we omit the
details.

Case 2.3: a∗ ∈ (i∗, j∗).

In this case, both a∗ and c∗ are in (i∗, j∗). Without loss
of generality, we assume that c∗ < a∗. The following
lemma reduces this case to Case 1.1. Due to the space
limit, the proof is omitted but can be found in the full
paper [17].

Lemma 5 The index pair (c∗, j∗) is an optimal solution
and c∗ is a center of the graph G(c∗, j∗).

Summary. We have computed a candidate solution for
each of Case 1.1 and Case 1.2. Each candidate solution
is also a feasible one. We have proved that if an optimal
solution belongs to one of the two cases, then the cor-
responding candidate solution must also be an optimal
solution. On the other hand, we have shown that other
cases can be reduced to the two cases. Therefore, one of
the two candidate solutions must be an optimal one. As
a final step of our algorithm, among the two candidate
solutions, we return the one with smaller candidate ra-
dius as our optimal solution. The running time of the
entire algorithm is O(n).

Theorem 6 The discrete-ROAP problem can be solved
in linear time.

179

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] N. Alon, A. Gyárfás, and M. Ruszinkó. Decreasing the
diameter of bounded degree graphs. Journal of Graph
Theory, 35:161–172, 2000.

[2] S. Bae, M. de Berg, O. Cheong, J. Gudmundsson, and
C. Levcopoulos. Shortcuts for the circle. In Proceedings
of the 28th International Symposium on Algorithms and
Computation (ISAAC), pages 9:1–9:13, 2017.

[3] D. Bilò. Almost optimal algorithms for diameter-
optimally augmenting trees. In Proceedings of the 29th
International Symposium on Algorithms and Computa-
tion (ISAAC), pages 40:1–40:13, 2018.

[4] D. Bilò, L. Gualà, and G. Proietti. Improved approx-
imability and non-approximability results for graph di-
ameter decreasing problems. Theoretical Computer Sci-
ence, 417:12–22, 2012.

[5] J.-L. De Carufel, C. Grimm, A. Maheshwari, and
M. Smid. Minimizing the continuous diameter when
augmenting paths and cycles with shortcuts. In Pro-
ceedings of the 15th Scandinavian Workshop on Algo-
rithm Theory (SWAT), pages 27:1–27:14, 2016.

[6] J.-L. De Carufel, C. Grimm, S. Schirra, and M. Smid.
Minimizing the continuous diameter when augmenting
a tree with a shortcut. In Proceedings of the 15th Algo-
rithms and Data Structures Symposium (WADS), pages
301–312, 2017.

[7] F. Frati, S. Gaspers, J. Gudmundsson, and L. Math-
ieson. Augmenting graphs to minimize the diameter.
Algorithmica, 72:995–1010, 2015.

[8] Y. Gao, D. Hare, and J. Nastos. The parametric com-
plexity of graph diameter augmentation. Discrete Ap-
plied Mathematics, 161:1626–1631, 2013.

[9] U. Große, J. Gudmundsson, C. Knauer, M. Smid, and
F. Stehn. Fast algorithms for diameter-optimally aug-
menting paths. In Proceedings of the 42nd International
Colloquium on Automata, Languages and Programming
(ICALP), pages 678–688, 2015.

[10] U. Große, J. Gudmundsson, C. Knauer, M. Smid, and
F. Stehn. Fast algorithms for diameter-optimally aug-
menting paths and trees. arXiv:1607.05547, 2016.

[11] T. Ishii. Augmenting outerplanar graphs to meet diam-
eter requirements. Journal of Graph Theory, 74:392–
416, 2013.

[12] C. Johnson and H. Wang. A linear-time algorithm for
radius-optimally augmenting paths in a metric space. In
Proceedings of the 16th Algorithms and Data Structures
Symposium (WADS), pages 466–480, 2019.

[13] C.-L. Li, S. McCormick, and D. Simchi-Levi. On
the minimum-cardinality-bounded-diameter and the
bounded-cardinality-minimum-diameter edge addition
problems. Operations Research Letters, 11:303–308,
1992.

[14] E. Oh and H.-K. Ahn. A near-optimal algorithm for
finding an optimal shortcut of a tree. In Proceedings of
the 27th International Symposium on Algorithms and
Computation (ISAAC), pages 59:1–59:12, 2016.

[15] A. Schoone, H. Bodlaender, and J. V. Leeuwen. Diam-
eter increase caused by edge deletion. Journal of Graph
Theory, 11:409–427, 1997.

[16] H. Wang. An improved algorithm for diameter-
optimally augmenting paths in a metric space. Compu-
tational Geometry: Theory and Applications, 75:11–21,
2018.

[17] H. Wang and Y. Zhao. A linear-time algorithm for dis-
crete radius optimally augmenting paths in a metric
space. arXiv:2006.14093, 2020.

180

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Topological and geometric methods for graph analysis

Yusu Wang*

In recent years, topological and geometric data analysis (TGDA) has emerged as a new and promising field for
processing, analyzing and understanding complex data. Indeed, geometry and topology form natural platforms for
data analysis, with geometry describing the “shape” and “structure” behind data; and topology characterizing /
summarizing both the domain where data are sampled from, as well as functions and maps associated to them.

In this talk, I will show how topological and geometric ideas can be used to analyze graph data, which occurs
ubiquitously across science and engineering. Graphs could be geometric in nature, such as road networks in GIS, or
relational and abstract. I will particularly focus on the reconstruction of hidden geometric graphs from noisy data,
as well as graph matching and classification. I will discuss the motivating applications, algorithm development, and
theoretical guarantees for these methods. Through these topics, I aim to illustrate the important role that geometric
and topological ideas can play in data analysis.

*University of California, San Diego, yusuwang@ucsd.edu

181

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Computing the Carathéodory Number of a Point

Sergey Bereg∗ Mohammadreza Haghpanah∗

Abstract

Carathéodory’s theorem says that any point in the con-
vex hull of a set P in R

d is in the convex hull of a
subset P ′ of P such that |P ′| ≤ d + 1. For some sets
P , the upper bound d + 1 can be improved. The best
upper bound for P is known as the Carathéodory num-
ber [2, 15, 17]. In this paper, we study a computational
problem of finding the smallest set P ′ for a given set
P and a point p. We call the size of this set P ′, the
Carathéodory number of a point p or CNP. We show
that the problem of deciding the Carathéodory number
of a point is NP-hard. Furthermore, we show that the
problem is k-LDT-hard. We present two algorithms for
computing a smallest set P ′, if CNP= 2, 3.

Bárány [1] generalized Carathéodory’s theorem by us-
ing d+ 1 sets (colored sets) such that their convex hulls
intersect. We introduce a Colorful Carathéodory num-
ber of a point or CCNP which can be smaller than d+1.
Then we extend our results for CNP to CCNP.

1 Introduction

The well-known Carathéodory’s theorem deals with the
convex hull of a set P , denoted by conv(P).

Theorem 1 (Carathéodory’s theorem [8, 13])
Let P be a set of points in R

d and p be a point in
conv(P). Then there is a subset P ′ of P consisting of
at most d+ 1 points such that p ∈ conv(P ′).

Sometimes there is a set P ′ of smaller size such that
p ∈ conv(P ′), see Figure 1 for an example. We define a
Carathéodory number of a point.

Definition 2 For a set of points P ⊂ R
d and a point

p ∈ conv(P), Carathéodory number of p with respect
to P , denoted by C(P, p), is the smallest integer k such
that p ∈ conv(P ′) for a subset P ′ ⊆ P of size k.

Carathéodory’s theorem guarantees that for every set
of points P ⊂ R

d and p ∈ conv(P), C(P, p) is well-
defined and C(P, p) ≤ d + 1. This is related to the
well-known concept of the Carathéodory number of a set
that is the smallest integer k such that, for any point
p ∈ conv(P), there is a subset P ′ of P consisting of at

∗University of Texas at Dallas, Richardson, TX 75080, USA.
{besp,Mohammadreza.Haghpanah}@utdallas.edu

most k points such that p ∈ conv(P ′). Equivalently, it
can be defined using C(P, p) as follows.

p

conv(P)

Figure 1: Point p ∈ conv(P) with C(P, p) = 2.

Definition 3 For a set of points P ⊂ R
d,

Carathéodory number of P , denoted by C(P), is the
largest integer k where there exists a point p ∈ conv(P)
such that C(P, p) = k.

The Carathéodory number of a set is being studied
for more than 90 years [15, 17], in a more general set-
ting. The Carathéodory number of any set P ⊂ R

d

is at most d + 1 by Carathéodory’s theorem. For a
compactum P ⊂ R

d, Bárány and Karasev [2] found
sufficient conditions to have Carathéodory number less
than d + 1. Kay and Womble [22] showed a relation
between the Carathéodory, Helly, and Radon numbers.
Recently, Ito and Lourenço [19] showed an upper bound
for the Carathéodory number of a set. Much research
has been done on the Carathéodory number for some
specific sets. Sierksma [27] studied the Carathéodory
number for convex-product-structures, Naldi [25] for
Hilbert cones of quadratic forms and binary forms. Bui
and Karasev [7] showed the Carathéodory number for
arbitrary gauge set K in Rd is greater than d− 1. Also,
the Carathéodory number for several graph convexities
is studied in graph theory [4, 11, 12].

In this paper, we are interested in computing the
Carathéodory number of a point. We found the fol-
lowing characterization of the Carathéodory number of
a set in R

d. This characterization of the Carathéodory
number could be known but we were not able to find it1.
Recall that the affine hull of a set S is the smallest affine

1We found that the upper bound of the Carathéodory number
of a set follows from Proposition 1.15(ii) [28], see the proof in
Section 2.

182

32nd Canadian Conference on Computational Geometry, 2020

set containing S (a set A is affine if, for any a, b ∈ A,
the line passing through a and b is also contained in A).
We denote it by aff(S). The dimension of an affine set
S, denoted by dim(S) is the dimension of its underlying
linear subspace.

Proposition 4 The Carathéodory number of any non-
empty set P ⊆ R

d is equal to dim(aff(P)) + 1.

The Carathéodory number of a finite set in Rd can be
computed using Proposition 4. In this paper, we study
the computational problem of finding the Carathéodory
number of a point with respect to a finite set.

Problem 5 (ComputingCNP)

Given a set of points P in R
d and a point p ∈

conv(P).

Compute a subset P ′ of P such that (i) p ∈
conv(P ′) and (ii) the size of P ′ is minimized.

We show that the decision version of Comput-
ingCNP is NP-hard if the dimension d is part of the
input. Furthermore, we show that the problem is k-
LDT-hard if dimension d is fixed. We present two algo-
rithms for ComputingCNP when C(P, p) = 2, 3.

Bárány [1] generalized Carathéodory’s theorem by us-
ing d+ 1 sets (colored sets) such that their convex hulls
intersect. As in [24], we call these sets color classes and
we call a set of d+1 elements, one from each color class,
a colorful choice.

Theorem 6 (Colorful Carathéodory theorem [1])
Let P = {P1, P2, . . . , Pd+1} be a collection of
sets of points in R

d and p be a point such that
p ∈ ∩d+1

i=1 conv(Pi). Then there is a colorful choice P ′

such that p ∈ conv(P ′).

It is known that the number of color classes in The-
orem 6 cannot be reduced. One may ask whether the
number of colors in set P ′ can be reduced. Sometimes
there is a set P ′ of size smaller than d + 1 such that
p ∈ conv(P ′), see Figure 2 for an example. In this paper,
we define a Colorful Carathéodory number of a point.
We call a set of at most d+ 1 elements, one from color
class, a rainbow, i.e. a rainbow is a subset of a colorful
choice for P. We use notation [k] = {1, 2, . . . , k}.

Definition 7 Let P = {P1, P2, . . . , Pd+1} be a col-
lection of sets of points in R

d and p be a point such
that p ∈ ∩d+1

i=1 conv(Pi). The Colorful Carathéodory
number of p with respect to P, denoted by CC(P, p),
is the smallest size of a rainbow P ′ for P such that
p ∈ conv(P ′).

The colorful Carathéodory theorem guarantees that
CC(P, p) ≤ d + 1. In this paper, we also propose to
study a new problem of computing CC(P, p).

p

Figure 2: Three sets capturing p in the plane. There
is a 2-colorful choice using one red point and one blue
point.

Problem 8 (ComputingCCNP)

Given a collection P = {P1, P2, · · · , Pd+1} of sets
of points in R

d and a point p ∈ ∩d+1
i=1 conv(Pi).

Compute a rainbow P ′ of the smallest size such
that p ∈ conv(P ′).

Related work. Bárány and Onn [3] describe an ap-
proximation algorithm to find a colorful set P ′ such that
point p has distance at most ε from conv(P ′). Bar-
man [6] showed that a rainbow P ′ of size O(γ2/ε2) for
γ = maxx∈P ‖x‖ such that the distance between p and
conv(P ′) is at most ε. Mulzer and Stein [24] studied
a different approximation using m-colorful sets. A set
P ′ is m-colorful if Pi ∩ P ′ ≤ m for each color set Pi.
Mulzer and Stein [24] give a polynomial algorithm to
find a dεde-colorful choice P ′ such that p ∈ conv(P ′)
for some fixed ε > 0. Meunier et al. [23] show that the
problem of finding a colorful choice is PPAD and PLS.

ComputingCNP is related to the sparse linear re-
gression problem [18, 26] where a d×n matrix M and a
vector q ∈ Rd are given and the task is to find a k-sparse
vector τ minimizing ‖q −Mτ‖2. Natarajan [26] proved
NP-hardness of this problem. Har-Peled, Indyk and Ma-
habadi [18] presented an algorithm with nk−1S(n, d, ε)
space and nk−1TQ(n, d, ε) query time where S(n, d, ε)
denotes the preprocessing time and space used by a (1+
ε)-ANN (approximate nearest-neighbor) data-structure,
and TQ(n, d, ε) denotes the query time. Recently, Car-
dinal and Ooms [9] studied the sparse regression prob-
lem and found a O(nk−1 logd−k+2 n)-time randomized
(1 + ε)-approximation algorithm for this problem with
d and ε constant.

Our results can be summarized as follows.

• We characterize the Carathéodory number of a fi-
nite set of distinct points in R

d (Proposition 4).

• We introduce new problems ComputingCNP and
ComputingCCNP for computing C(P, p) and
CC(P, p). We show that DecidingCNP, the de-
cision version of ComputingCNP, is

183

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

– NP-hard (Theorem 10) if the dimension d is
part of the input,

– is k-LDT-hard if dimension d is fixed (Theo-
rem 13).

• We present two algorithms in Section 4 for Com-
putingCNP when C(P, p) = 2, 3.

• Then we extend our results for ComputingCNP
to ComputingCCNP in Section 5.

2 Proof of Proposition 4

Let P be a finite set of distinct points in R
d. Theorem

4 states that

C(P) = dim(aff(P)) + 1.

Let d′ = dim(aff(P)).
First, we will prove that C(P) ≥ d′+1. There exists a

setQ of d′+1 points of P which are affinely independent.
Then S = conv(Q) is the (d′ + 1)-dimensional simplex.
Consider the set A defined as

A =
⋃

P ′⊂P,|P ′|=d′

aff(P ′).

Set A is the union of
(
n
d′
)

sets each of dimension smaller
than d′. Therefore A∩ S 6= S. For any point p ∈ S \A,
we have C(P, p) ≥ d′ + 1. Therefore C(P) ≥ d′ + 1.

Second, we show that C(P) ≤ d′ + 1. This follows
from Proposition 1.15(ii) [28] if we write n points of P
as a d× n matrix X.

Proposition. Let X ∈ R
d×n and x ∈ R

d. If x ∈
conv(X), then x ∈ conv(X ′) holds for a subset X ′ ⊆ X
of at most rank

(
1

X

)
= dim(conv(X)) + 1 vectors in X.

3 Hardness of ComputingCNP

First, we state the decision problem corresponding to
ComputingCNP.

Problem 9 (DecidingCNP)

Given a set of points P ⊂ R
d, a point p ∈ conv(P)

and an integer k ≤ |P |.
Decide whether C(P, p) ≤ k.

Observe that DecidingCNP can be solved in poly-
nomial time if dimension d is a constant. We show that
it is NP-hard if d is part of the input.

Theorem 10 DecidingCNP is NP-hard.

Proof. We reduce the following problem to Decid-
ingCNP.

Problem 11 (ExactCoverBy3-Sets)

Given a set X = {1, 2, 3, . . . ,m} such that 3
is a divisor of m and a collection S =
{T1, T2, . . . , Tn} where Ti ⊂ X and |Ti| = 3,
for 1 ≤ i ≤ n.

Decide whether there exists a subset S ′ of S such
that S ′ is a partition of X, i.e. sets in S ′ are
disjoint and their union is X.

Problem ExactCoverBy3-Sets is a variant of Ex-
actCover [21]. This problem is also known to be NP-
complete [20].

For an instance of ExactCoverBy3-Sets, a set
X = {1, 2, 3, . . . ,m} such that 3 is a divisor of m
and a collection S = {T1, T2, . . . , Tn} where Ti ⊂ X
and |Ti| = 3 for 1 ≤ i ≤ n, we construct an in-
stance of DecidingCNP as follows. Set k = m/3,
p = (1, 1, . . . , 1) ∈ Rm and P = {p1, p2, . . . , pn} where
pi = (pi,1, pi,2, . . . , pi,m) ∈ Rm and

pi,j =

{
k if j ∈ Ti,
0 otherwise.

We show that there exists an exact cover for set X if
and only if there exists a subset P ′ ⊂ P of size k where
p ∈ conv(P ′).

=⇒) Suppose that S ′ is a partition for X. Then for
every j ∈ X there exists unique Ti ∈ S ′ with j ∈ Ti.
Set P ′ as the set of all points pi such that Ti ∈ S ′. For
any j ∈ [m], there is exactly one point pi ∈ P ′ with
pi,j = k and pi′,j = 0 for all other points pi′ ∈ P ′.
Therefore the j-th coordinate of

∑
pi∈P ′ pi is equal to k

and
∑

pi∈P ′ pi = kp. Hence, p ∈ conv(P ′).
⇐=) Suppose that p ∈ conv(P ′), i.e.

∑
pi∈P ′ λipi =

p. Then each λi ≤ 1
k , otherwise some coordinate of∑

pi∈P ′ λipi is greater than 1. We have
∑

pi∈P ′ λi = 1
and each λi ≥ 0. Since |P ′| = k, each λi must be equal
to 1/k. Let S ′ be the set of all Ti such that pi ∈ P ′.
Then, S ′ is a partition of X. �

Now, suppose that the dimension d is fixed. We show
that DecidingCNP is k-LDT-hard.

Problem 12 (k-LDT)

Given a set of A ⊂ R and a k-variate linear func-
tion φ(x1, x2, . . . , xk) = α0 +

∑k
i=1 αixi where

α0, α1, . . . , αk ∈ R.

Decide whether there exists x = (x1, x2, . . . , xk) ∈
Ak where x is a root of φ.

k-LDT-hardness implies k-SUM-hardness and many
problems are known to be k-SUM-hard, see for example
[5, 16]. Erickson [14] proved any algorithm in r-linear

decision tree model for k-LDT problem has Ω(nd
k
2 e)

time complexity.

184

32nd Canadian Conference on Computational Geometry, 2020

Theorem 13 DecidingCNP for a fixed dimension d
is k-LDT-hard.

Proof. We show a linear-time reduction of k-LDT to
DecidingCNP. Let A = {a1, a2, . . . , an} be a set of
real numbers and linear function φ(x1, x2, . . . , xk) =
α0+

∑t
i=0 αixi be an instance of k-LDT problem. An in-

stance of DecidingCNP must contain a set P , a point
p, and an integer k′ (it could be different from k in k-
LDT). We construct an instance of DecidingCNP. We
choose k′ = k + 1. We construct set P as follows.

Let {e1, e2, . . . , ek+1} be the standard basis of Rk+1,
i.e. ei = (ei,1, ei,2, . . . , ei,k+1) where ei,j = 1 if j = i
and ei,j = 0 otherwise. For every xi ∈ A, 1 ≤ i ≤ n,
we construct k points in R

k+1, yi,j , for 1 ≤ j ≤ k, as
follows

yi,j = ej + αjxiek+1.

We also define p = (−α0ek+1 +
∑k

i=1 ei)/k.
=⇒) Suppose there is k integer i1, i2, . . . , ik where

1 ≤ ij ≤ n for 1 ≤ j ≤ k such that φ(xi1 , xi2 , . . . , xik) =
0. Consider set P ′ of k points yi1,1, yi2,2, . . . , yik,k. It

implies that
∑k

j=1 λyij ,j = p where λ = 1
k . Therefore,

p ∈ conv(P ′) and C(P, p) ≤ k.
⇐=) Suppose there exist k pairs of integers

(i1, j1), (i2, j2), . . . , (ik, jk) where 1 ≤ it ≤ n, 1 ≤ jt ≤
k, for 1 ≤ t ≤ k, such that p ∈ conv(p1, p2, . . . , pk)
where p1 = yi1,j1 , p2 = yi2,j2 , . . . , pkyik,jk . Therefore,
there exists λt, for 1 ≤ t ≤ k, such that 0 ≤ λt ≤ 1, for
0 ≤ t ≤ k and

∑k
t=1 λt = 1 and

k∑

t=1

λtpt = p. (1)

We claim that for every pair of integers t1 and t2
where 1 ≤ t1 < t2 ≤ k, jt1 6= jt2 , otherwise there
exists an integer m such that 1 ≤ m ≤ k and m 6∈
{j1, j2, . . . , jk}. Then the m-th coordinate of all points
p1, p2, . . . , pk is zero. Then pm = 0 contradicting the
choice of p. Therefore, j1, j2, . . . , jk is a permutation
of 1, 2, . . . , k. By reordering points p1, p2, . . . , pk we as-
sume that jt = t for 1 ≤ t ≤ k.

By taking mth coordinate, 1 ≤ m ≤ k, Equation (1)
implies

k∑

t=1

λtpt,m = λmpm,m = λm = 1/k.

Now take (k + 1)th coordinate in Equation (1)

k∑

t=1

λtpt,k+1 =
k∑

t=1

1

k
pt,k+1 =

k∑

t=1

1

k
αjtxit =

−α0

k
.

Hence, α0 +
∑k

t=1 αtxit = 0 which is the solution for
k-LDT. �

4 Algorithms for ComputingCNP

We present two algorithms for ComputingCNP when
C(P, p) = 2, 3.

4.1 C(P, p) = 2 in R
d

One can easily decide in O(n) time whether C(P, p) =
1. In this section we discuss the problem of deciding
whether C(P, p) = 2. We assume that dimension d ≥ 2
is a constant.

Theorem 14 Let P be a set of n points in R
d and p

be a point in R
d, where d ≥ 2 is fixed. One can de-

cide whether C(P, p) = 2 and find the corresponding set
P ′ in O(n log n) time which is optimal in the algebraic
decision tree model.

Proof. The task is to compute a subset P ′ ⊂ P such
that |P ′| ≤ 2 and p ∈ conv(P ′) if it exists. We will
describe an algorithm and prove the lower bound.

Algorithm. First, we decide whether C(P, p) = 1 in
O(n) time by searching p in P . Assume that C(P, p) ≥
2, i.e. pi 6= p for all pi ∈ P . Compute normalized
vectors p′i = pi−p

‖pi−p‖ . We sort points p′1, p
′
2, . . . , p

′
n lex-

icographically and assume that they are in the lexico-
graphic order, i.e. p′1 � p′2 � · · · � p′n.

Since C(P, p) 6= 1, C(P, p) = 2 if and only if there
exist two points pi, pj ∈ P such that p = api + (1−a)pj
for some 1 ≤ i < j ≤ n and 0 < a < 1 (Clearly, if
a = 0 or a = 1 then C(P, p) = 1). This equation can be
written as

0 = a(pi − p) + (1− a)(pj − p) (2)

a(pi − p) = (a− 1)(pj − p) (3)

alip
′
i = (a− 1)ljp

′
j , (4)

where li = ‖pi − p‖ and lj = ‖pj − p‖. Since p′i and p′j
are unit vectors, we have |ali| = |(a − 1)lj |. Note that
ali > 0 and (a−1)lj < 0. Equation (4) implies that p′i =
−p′j . Conversely, if p′i = −p′j then p = api + (1 − a)pj
for a = lj/(li + lj).

The algorithm performs binary search of −p′i in the
sorted sequence p′1, p

′
2, . . . , p

′
n, for each i ∈ [n]. If −p′i is

found then −p′i = p′j for some p′j . Note that j must be
not equal to i since−p′i = p′i would mean that p′i = 0 but
‖p′i‖ = 1. The time complexity of the above algorithm
is O(n log n) where n = |P |.

Proof of the lower bound. We now prove that the
lower bound on the time complexity for the problem of
deciding C(P, p) = 2 is Ω(n log n). We use the 2-SUM
problem: Given n numbers, do any two of them sum
to zero? Chan, Gasarch and Kruskal [10] proved that
solving 2-SUM in algebraic decision tree model takes
Ω(n log n) time. Let X = {x1, x2, . . . , xn} be set of
integers in an instance of 2-SUM.

185

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

We construct a set P of n points in R
2. If d ≥ 3, we

can use a 2-dimensional plane in Rd for the points in P .
Assign point p = (0, 0). Consider the map µ : R → R

2

defined as µ(x) := (sgn(x), x) where

sgn(x) =

{
x/|x| if x 6= 0,

0 otherwise.

Find set P = µ(X) in O(n) time, i.e. P = {pi | pi =
µ(xi), i ∈ [n]}. To show that the reduction is correct,
we prove the following claim. There are distinct integers
i, j such that xi + xj = 0 if and only if there are two
points pi, pj ∈ P for which p ∈ conv({pi, pj}).

Suppose that xi +xj = 0 for some integers i, j. Then
either xi = xj = 0 or xixj < 0. If xi = xj = 0 then
pi = (0, 0) ∈ P , so p ∈ conv({pi}). If xixj < 0, then we
can assume xi < 0 < xj . Then 0 ∈ conv({pi, pj}) since
pi = −pj .

Now suppose that there exists a subset P ′ ⊂ P such
that |P ′| = 2 and p ∈ conv(P ′). If p ∈ P ′, then 0 ∈ X.
If p 6∈ P ′ and P ′ = {pi, pj}, then xi and xj have opposite
signs (since px = 0). Then the convex combination p =
api +(1−a)pj must have a = 1−a (using x-coordinates
in p = api + (1−a)pj , 0 = a · sgn(xi) + (1−a) · sgn(xj)).
Then a = 1/2 and xi = −xj (using y-coordinates in
p = api + (1− a)pj). �

4.2 C(P, p) = 3 in R
3

Theorem 15 Let P be a set of n points in R
3 and p be

a point in R
3. One can decide whether C(P, p) = 3 and

find the corresponding set P ′ in O(n2 log n) time.

Let P = {p1, . . . , pn} ⊂ R
3. We denote by αi,j

the angle between vectors −→ppi and −→ppj , i.e. cosαi,j =
−→ppi·−→ppj

‖−→ppi‖·‖−→ppj‖ and 0 ≤ αi,j ≤ π. Let k be an integer in

{1, 2, . . . , n}. Consider the plane πk passing through
point p with −→ppk is its normal vector. Let qi be the pro-
jection of pi on πk, see Fig. 3. We apply the following
algorithm.

Input: p ∈ R3 and P = {p1, . . . , pn} ⊂ R
3 such that

p ∈ conv(P).
Output: Decide if C(P, p) = 3. If C(P, p) = 3, com-

pute a subset S ⊂ P such that |S| = 3 and p ∈ conv(S).

1. Check if C(P, p) = 1 or C(P, p) = 2 from Section
4.1. Stop if C(P, p) ≤ 2.

2. For each point pk ∈ P do the following:

3. Compute plane πk (it can be computed since p 6=
pk; otherwise C(P, p) = 1). Compute points qi for
all i ∈ {1, 2, . . . , n}, i 6= k, see Fig. 3.

4. Compute set Pk as follows. Initialize Pk = P \{pk},
then prune Pk by repeating the following step.

πk

p

pk
p2

q2

q1

p1

p3

q3

Figure 3: Plane πk is orthogonal to vector −→ppk. Point
qi, i = 1, 2, 3 is the projection of point pi onto the plane
πk.

5. The pruning step. Remove a point pi from Pk,
if there exists another point pj in Pk such that

(a) Vectors −→pqi and −→pqj have same direction and

(b) αi,k < αj,k (if αi,k = αj,k remove either pi or
pj from Pk).

6. Compute Qk = {qi | pi ∈ Pk}. For each point qi ∈
Qk, use the binary search for −qi in Qk as in the
algorithm from Section 4.1. Suppose C(Qk, p) = 2
and a set Q′ = {qi, qj} is found such that p ∈
conv(qi, qj). Check if p ∈ conv({pi, pj , pk}) in O(1)
time. If p ∈ conv({pi, pj , pk}) then output the so-
lution P ′ = {pi, pj , pk}. If p /∈ conv({pi, pj , pk}),
check next point qi in the loop.

7. If a solution is not found in Step 6, then there is no
solution for C(P, p) = 3, so C(P, p) = 4.

First, we justify the pruning step.

Lemma 16 Suppose p ∈ conv({pi, pj , pk}) for some
points pi, pj , pk ∈ R

3. If pi or pj is removed in the
pruning step for pk then there exist pi′ , pj′ ∈ Pk such
that p ∈ conv({pi′ , pj′ , pk}).

Proof. It suffices to prove the lemma if only one point
from {pi, pj} is removed in the pruning step. If both of
them are removed, the argument can be used twice, see
Fig. 4(b) for an example.

Suppose that point pi is removed in the pruning step
for pk. Then there exists another point pi′ in P such
that

1. Vectors −→pqi and −→pqi′ have same direction and

2. αi,k ≤ αi′,k

Then points p, pi, pj , pk are coplanar. Without loss
of generality we can assume pi, pi′ , pj , pk ∈ R2, pk is on

186

32nd Canadian Conference on Computational Geometry, 2020

pk

p4 p5

p7
p3

p1

p2

p

p6

pk

p4 p5

p7
p3

p1

p2

p

p6

α1,k

α2,k

α3,k

α5,k

α7,k

α4,k

α6,k

(a)

(b)

d1 d2

Figure 4: (a) The pruning step. Vectors −→pqi, i = 1, 2, 3
have the same direction d1. Points p1 and p2 will be
pruned based on α-angles. Vectors −→pqi, i = 4, 5, 6, 7
have the same direction d2 = −d1. Points pi, i =
4, 5, 6 will be pruned based on α-angles. (b) Point
p ∈ conv({pk, p2, p6}) before the pruning for pk and it
is in conv({pk, p3, p7}) after the pruning for pk.

the y-axis and p is at the origin. We can assume that
x(pi), x(pi′) > 0 and x(pj) < 0. The necessary and suffi-
cient condition for p ∈ conv({pi, pj , pk}) is αi,k +αj,k >
π. Since αi,k ≤ αi′,k, we have αi′,k+αj,k > π. Therefore
p ∈ conv({pi′ , pj , pk}) and the lemma follows. �

Time Complexity. Plane πk is computed in O(1)
time. Projection of P onto πk takes O(n) time. The
pruning step can be done in O(n log n) time by main-
taining the sorted order of points qi by the direction.
Finally, Step 6 takes O(n log n) time since binary search
takes O(log n) time and it is done for every point in Qk.
Therefore, the processing of pk takes O(n log n) time
and the total time is O(n2 log n).

5 Hardness and Algorithms for ComputingCCNP

In this section we show that our results for Comput-
ingCNP can be extended directly to ComputingC-
CNP.

5.1 Hardness

We show that DecidingCCNP (i.e. deciding if
CC(P, p) ≤ k), the decision version of ComputingC-
CNP, is NP-hard. There is a natural reduction from
DecidingCNP problem to DecidingCCNP problem.
Consider an instance of DecidingCNP, i.e. a set of
points P in R

d, a point p ∈ conv(P) and an integer k.
We construct an instance of DecidingCCNP by taking
d+ 1 copies of P , the color classes P = {P1, . . . , Pd+1}
and by using the same point p and integer k. Clearly,
this reduction can be computed in polynomial time.
It remains to prove that C(P, p) ≤ k if and only if
CC(P, p) ≤ k. If C(P, p) ≤ k then there exists a subset
P ′ = {p1, p2, . . . , pk} of P such that p ∈ conv(P ′). Then
CC(P, p) ≤ k by selecting pi from color set Pi (i.e. P ′

is a rainbow for P). Similarly, CC(P, p) ≤ k implies
C(P, p) ≤ k. Therefore DecidingCCNP is NP-hard.

Similarly, one can prove that DecidingCCNP is k-
LDT-hard if dimension d is fixed (we omit details due
to lack of space).

5.2 CC(P, p) = 2 in R
d

We show that the algorithm from Section 4.1 can be
modified for deciding if CC(P, p) = 2 in R

d and com-
puting the corresponding rainbow. In this problem, we
have d + 1 color classes, and they can be processed as
follows. We normalize the vectors (of all colors) again,
but this time there could be equal normal vectors of dif-
ferent colors. We store one vector for them and the list
of their colors. Then the binary search is modified to
select a vector of different color from the list.

The time complexity of this algorithm is O(n log n)

where n =
∑d+1

i=1 |Pi|.

5.3 CC(P, p) = 3 in R
3

We briefly (due to lack of space) show that the algo-
rithm from Section 4.2 can be modified for deciding if
CC(P, p) = 3 in R

3 and computing the corresponding
rainbow. In step 2, we select pk from ∪Pi. In step 3, we
use the same colors for projected points. In the pruning
step, if there are more than two points qi and qj with
distinct colors with the same direction of −→pqi and −→pqj , we
store the two with the largest α-angles. In steps 6, we
apply the algorithm for deciding CC(P, p) = 2 instead
of deciding C(P, p) = 2. The total time complexity of

the algorithm is O(n2 log n) where n =
∑d+1

i=1 |Pi|.

187

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] I. Bárány. A generalization of Carathéodory’s theorem.
Discrete Mathematics, 40(2-3):141–152, 1982.

[2] I. Bárány and R. Karasev. Notes about the
Carathéodory number. Discrete & Computational Ge-
ometry, 48(3):783–792, 2012.

[3] I. Bárány and S. Onn. Colourful linear programming
and its relatives. Mathematics of Operations Research,
22(3):550–567, 1997.

[4] R. M. Barbosa, E. M. Coelho, M. C. Dourado, D. Raut-
enbach, and J. L. Szwarcfiter. On the Carathéodory
number for the convexity of paths of order three. SIAM
Journal on Discrete Mathematics, 26(3):929–939, 2012.

[5] G. Barequet and S. Har-Peled. Polygon containment
and translational in-hausdorff-distance between seg-
ment sets are 3sum-hard. International Journal of
Computational Geometry & Applications, 11(04):465–
474, 2001.

[6] S. Barman. Approximating Nash equilibria and dense
bipartite subgraphs via an approximate version of
Caratheodory’s theorem. In Proc. 47th ACM sympo-
sium on Theory of computing, pages 361–369. ACM,
2015.

[7] V. Bui and R. Karasev. On the Carathéodory number
for strong convexity. arXiv preprint arXiv:1806.10937,
2018.

[8] C. Carathéodory. Über den variabilitätsbereich der ko-
effizienten von potenzreihen, die gegebene werte nicht
annehmen. Mathematische Annalen, 64(1):95–115,
1907.

[9] J. Cardinal and A. Ooms. Sparse regression via range
counting. In 17th Scandinavian Symposium and Work-
shops on Algorithm Theory, SWAT 2020, June 22-24,
2020, Tórshavn, Faroe Islands, pages 20:1–20:17, 2020.

[10] A. C. Chan, W. I. Gasarch, and C. P. Kruskal.
Refined upper and lower bounds for 2-SUM. https:

//www.researchgate.net/publication/228515076_

Refined_Upper_and_Lower_Bounds_for_2-SUM.

[11] E. M. Coelho, M. C. Dourado, D. Rautenbach, and J. L.
Szwarcfiter. The Carathéodory number of the P3 con-
vexity of chordal graphs. Discrete Applied Mathematics,
172:104–108, 2014.

[12] M. C. Dourado, D. Rautenbach, V. F. Dos Santos, P. M.
Schäfer, and J. L. Szwarcfiter. On the Carathéodory
number of interval and graph convexities. Theoretical
Computer Science, 510:127–135, 2013.

[13] J. Eckhoff. Helly, Radon, and Carathéodory type theo-
rems. In Handbook of convex geometry, pages 389–448.
Elsevier, 1993.

[14] J. Erickson. Lower bounds for linear satisfiability prob-
lems. In SODA, pages 388–395, 1995.

[15] W. Fenchel. Über krümmung und windung
geschlossener raumkurven. Mathematische Annalen,
101(1):238–252, 1929.

[16] A. Gajentaan and M. H. Overmars. On a class of o(n2)
problems in computational geometry. Computational
geometry, 5(3):165–185, 1995.

[17] O. Hanner and H. R̊adström. A generalization of a the-
orem of Fenchel. Proceedings of the American Mathe-
matical Society, 2(4):589–593, 1951.

[18] S. Har-Peled, P. Indyk, and S. Mahabadi. Approxi-
mate sparse linear regression. In 45th International Col-
loquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 77:1–77:14, 2018.

[19] M. Ito and B. F. Lourenço. A bound on the
Carathéodory number. Linear Algebra and its Appli-
cations, 532:347–363, 2017.

[20] D. S. Johnson and M. R. Garey. Computers and in-
tractability: A guide to the theory of NP-completeness.
WH Freeman, 1979.

[21] R. M. Karp. Reducibility among combinatorial prob-
lems. In Proc. of a Symposium on the Complexity of
Computer Computations, pages 85–103. Springer, 1972.

[22] D. Kay and E. W. Womble. Axiomatic convexity the-
ory and relationships between the Carathéodory, Helly,
and Radon numbers. Pacific Journal of Mathematics,
38(2):471–485, 1971.

[23] F. Meunier, W. Mulzer, P. Sarrabezolles, and Y. Stein.
The rainbow at the end of the line—a ppad formula-
tion of the colorful carathéodory theorem with appli-
cations. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
1342–1351. SIAM, 2017.

[24] W. Mulzer and Y. Stein. Computational aspects of the
colorful Carathéodory theorem. Discrete & Computa-
tional Geometry, 60(3):720–755, 2018.

[25] S. Naldi. Nonnegative polynomials and their
Carathéodory number. Discrete & Computational Ge-
ometry, 51(3):559–568, 2014.

[26] B. K. Natarajan. Sparse approximate solutions to linear
systems. SIAM J. Comput., 24(2):227–234, 1995.

[27] G. Sierksma. Carathéodory and Helly-numbers of
convex-product-structures. Pacific Journal of Mathe-
matics, 61(1):275–282, 1975.

[28] G. M. Ziegler. Lectures on Polytopes, volume 152 of
Graduate Texts in Mathematics. Springer-Verlag, Hei-
delberg, 1994.

188

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Characterization and Computation of Feasible Trajectories for an
Articulated Probe with a Variable-Length End Segment

Ovidiu Daescu* Ka Yaw Teo*

Abstract

We consider an extension of the articulated probe tra-
jectory planning problem introduced in [11], where the
length r of the end segment can be customized. We
prove that, for n line segment obstacles, the smallest
length r for which there exists a feasible probe trajec-
tory can be found in O(n2+ε) time using O(n2+ε) space,
for any constant ε > 0. Furthermore, we prove that all
values r for which a feasible probe trajectory exists form
O(n2) intervals, and can be computed in O(n5/2) time
using O(n2+ε) space. We also show that, for a given
r, the feasible trajectory space of the articulated probe
can be characterized by a simple arrangement of com-
plexity O(n2), which can be constructed in O(n2) time.
To obtain our solutions, we design efficient data struc-
tures for a number of interesting variants of geometric
intersection and emptiness query problems.

1 Introduction

The articulated probe trajectory planning problem was
introduced in [11] with the following setup. We are
given a two-dimensional workspace containing a set P
of simple polygonal obstacles with a total of n vertices,
and a target point t in the free space, all enclosed by
a circle S of radius R centered at t. An articulated
probe is modeled in <2 as two line segments, ab and
bc, connected at point b. The length of ab is greater
than or equal to R, whereas bc is of some small length
r ∈ (0, R]. The probe is initially located outside S, as-
suming an unarticulated configuration, in which ab and
bc are collinear, and b ∈ ac. A feasible probe trajectory
consists of an initial insertion (sliding) of straight line
segment abc into S, possibly followed by a rotation of
bc around b up to π/2 radians in either direction, such
that c coincides with t, while avoiding the obstacles in
the process. If a rotation is performed, then we have an
articulated final configuration of the probe. The goal is
to determine if a feasible probe trajectory exists and, if
so, to report one such trajectory.

It has been argued in [11] that the polygonal obstacles
can be treated by considering only their bounding line

*Department of Computer Science, University of
Texas at Dallas, Richardson, TX, USA. {ovidiu.daescu,
ka.teo}@utdallas.edu

Figure 1: In order to reach the target point t, a straight
insertion of line segment abc may be followed by a ro-
tation of bc from its intermediate position (dashed line)
to its final position (solid line).

segments. Thus, for simplicity, assume that P consists
of n non-crossing line segment obstacles (Figure 1). We
further assume that S is not visible from t, since other-
wise the problem reduces to computing visibility from
t to infinity, which takes O(n log n) time [11]. Thus, in
order to reach t, the probe has to rotate bc around b.

After inserting segment abc, point a is located on or
outside S. Let C be the circle of radius r centered at
t. Observe that, since bc may only rotate as far as π/2
radians in either direction after the initial insertion of
segment abc, ab intersects C only once and at b (i.e.,
b ∈ C). When bc rotates around b, the area swept by
bc is a sector of a circle of radius r centered at b. For
conciseness, the center of the circle on which a circular
sector is based is called the center of the circular sector.

In this paper, we develop efficient algorithms for com-
puting i) the minimum value r > 0 for which a feasible
articulated trajectory exists, including reporting at least
one such trajectory, ii) all values r > 0 for which a fea-
sible articulated trajectory exists (i.e., feasible domain
of r), and iii) the feasible trajectory space (i.e., set of
all feasible trajectories) for a given value r.

Related work. The two-dimensional articulated probe
trajectory planning problem (with a constant length r)
was originally introduced by Teo, Daescu, and Fox [11],
who presented a geometric-combinatorial algorithm for
computing so-called extremal feasible probe trajectories
in O(n2 log n) time using O(n log n) space. In an ex-
tremal probe trajectory, one or two obstacle endpoints
always lie tangent to the probe. The solution approach
proposed in [11] can be extended to the case of polyg-

189

32nd Canadian Conference on Computational Geometry, 2020

onal obstacles. For h polygonal obstacles with a total
of n vertices, an extremal feasible probe trajectory can
be determined in O(n2 +h2 log h) time using O(n log n)
space. When a clearance δ from the polygonal obstacles
is required, a feasible probe trajectory can be obtained
in O(n2 + h2 log h) time using O(n2) space.

In addition, Daescu and Teo [4] developed an algo-
rithm for solving the articulated probe trajectory plan-
ning problem in three dimensions for a given r. It was
shown that a feasible probe trajectory among n tri-
angular obstacles can be found in O(n4+ε) time using
O(n4+ε) space, for any constant ε > 0.

Motivation. Besides its general relevance in robotics,
the proposed problem arises specifically in some medi-
cal applications. In minimally invasive surgeries, a rigid
needle-like instrument is typically inserted through a
small incision to reach a given target, after which it may
perform operations such as tissue resection and biopsy.
Some newer designs allow for a joint to be incorporated
for moving the acting end (tip); after inserting the in-
strument in a straight path, the surgeon may rotate the
tip around the joint to reach the target [9].

Due to the rapid advances in three dimensional print-
ing techniques, such robotic probes can even be cus-
tomized for a given patient [3]. Rather than using a
one-size-fits-all instrument, based on the patient-specific
requirement and constraints, a robotic probe with a
tailored-sized tip can be customarily built on-demand
using three dimensional printing.

Despite its importance and relevance, as well as its
rich combinatorial and geometric properties, only a
handful of results have been reported [4, 11] for this
trajectory planning problem.

Results and contributions. Recall our assumption
that there is no feasible unarticulated probe trajectory
(i.e., t cannot see to infinity). We begin in Section 2 by
addressing our first problem of interest:

Problem 1 Find the minimum length r > 0 of segment
bc such that a feasible articulated probe trajectory exists,
if any, and report (at least) one such trajectory.

For brevity, a feasible articulated trajectory with the
minimum length r is referred to as a feasible min-r ar-
ticulated trajectory. Our approach to solving Problem
1 is as follows: i) We show that a feasible min-r articu-
lated trajectory, if one exists, can always be perturbed,
while remaining feasible, into one of a finite number of
“extremal” feasible trajectories, which can be enumer-
ated using an algebraic-geometric method (see Lemma
1 for a detailed definition of the extremal trajectories).
This leads to a simple O(n3 log n) time, O(n2+ε) space

algorithm, for any constant ε > 0, based on enumerat-
ing and verifying the extremal trajectories for feasibil-
ity (see the full version of the paper for details). ii) We
then derive an O(n2+ε) time and space algorithm by
partially waiving the notion of computing and check-
ing the extremal trajectories for feasibility. Specifically,
the algorithm searches for a feasible min-r articulated
trajectory, if any, by performing a finite sequence of
perturbations and feasibility tests on certain O(n2) ex-
tremal trajectories (whose segment ab is tangent to two
obstacle endpoints). With a proper algorithmic exten-
sion to our process of finding the minimum feasible r,
we can compute, in O(n5/2) time using O(n2+ε) space,
the set of r-intervals for which feasible articulated tra-
jectories exist, together with an implicit representation
of feasible solutions for those values of r.

In the process of deriving our solution to Problem 1,
we encounter and solve a number of fundamental prob-
lems (or their special cases) that could be of theoret-
ical interest in computational geometry. For instance,
we provide an efficient data structure with logarithmic
query time for solving a special instance of the circular
sector emptiness query problem (i.e., for a query circu-
lar sector with a fixed arc endpoint t).

In Section 3, we address our second problem:

Problem 2 For a given length r of segment bc, com-
pute the feasible trajectory space (i.e., set of all feasible
trajectories) of the articulated probe.

We describe a geometric combinatorial approach for
characterizing and computing the feasible trajectory
space of the articulated probe. The feasible configura-
tion space has a worst-case complexity of O(n2) and can
be described by an arrangement of simple curves. Us-
ing topological sweep [2], the arrangement can be con-
structed in O(n log n+ k) time using O(n+ k) working
storage, where k = O(n2) is the number of vertices of
the arrangement. By simply traversing the cells of the
arrangement, we can find a feasible probe trajectory in
O(n2) time – a logarithmic factor improvement com-
pared to the algorithm in [11].

2 Computing feasible min-r articulated trajectories

Recall that, for a given r, C is the circle of radius r
centered at t. Using the rationale of [11, Lemma 2.1],
we can immediately claim the following observation.

Observation 1 Given a feasible min-r articulated tra-
jectory, there exists an extremal feasible min-r articu-
lated trajectory such that the probe assumes an articu-
lated final configuration that passes through an obstacle
endpoint outside C and another obstacle endpoint inside
or outside C.

190

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

We will later show in Lemma 1 that an extremal fea-
sible min-r articulated trajectory is always tangent to
two obstacle endpoints outside C.

For ease of discussion, unless noted otherwise, we use
bc and bt to denote line segment bc of the probe in its
intermediate (right after the initial insertion of segment
abc) and final configurations, respectively. Let ∠cbt be
the angle of rotation of segment bc to reach t, and let
σbct be the circular sector swept by segment bc in order
to reach t. Let γct denote the circular arc of σbct. Let
V denote the set of endpoints of the line segments of P .

Lemma 1 Given a feasible min-r articulated trajec-
tory, there exists an extremal feasible min-r articulated
trajectory such that, in its final configuration, ab passes
through two obstacle endpoints and at least one of the
following holds: I) ∠cbt = π/2 radians, II) bc inter-
sects an obstacle line segment at c, III) γct intersects
an obstacle endpoint or is tangent to an obstacle line
segment, IV) one of the obstacle endpoints intersected
by ab coincides with b, and ∠cbt ≤ π/2 radians, or V)
bt passes through an obstacle endpoint.

The full proof of Lemma 1 is given in Appendix A.

Solution approach. We begin by emphasizing that, as
stated in Lemma 1, an extremal feasible min-r articu-
lated trajectory passes through two obstacle endpoints,
neither of which is inside C.

Consider the following solution approach. For each
point v ∈ V , compute the set Rv of rays with the fol-
lowing properties: i) Each ray originates at v and passes
through a point u ∈ V \ {v}. ii) Segment vb0 does not
intersect any line segment of P , where b0 is the point of
tangency between the supporting line of the ray and the
circle C centered at t (Figure 2A). iii) If the ray passes
through b0, then the reversal of the ray does not inter-
sect any line segment of P ; otherwise, the ray itself does
not intersect any line segment of P . Rv can be obtained
in O(n log n) time by computing the visibility polygon
from v [1, 7, 10]. Since |V | = O(n), the worst-case run-
ning time for finding the set of rays R = ∪v∈VRv is
O(n2 log n).

Note that each ray of R is associated with a trajectory
T that has an obstacle-free segment ab passing through
two obstacle endpoints. Without loss of generality, as-
sume that ab of T passes through a pair of obstacle
endpoints u, v ∈ V , where u 6= v, in the way depicted
in Figure 2A. Assume that bc of T rotates clockwise to
reach t (the other case is symmetrical). Let b0 be the
position of b when ∠cbt = π/2 radians, and c0 be the
position of c when b = b0. In order to find a feasible
min-r articulated trajectory, we perform the following
sequence of steps.

A1. Check if the articulated trajectory T with ∠cbt =
π/2 radians is feasible. Specifically, check if the

Figure 2: Illustrations of steps (A) A1 and A2, (B) A3
and A4, (C) A5 and A6, and (D) A7.

quarter circular sector bounded by b0c0, b0t, and
circular arc γc0t (centered at b0 and emanating
counter-clockwise from t to c0) is free of obstacles
(Figure 2A). If it is, then T is a feasible min-r ar-
ticulated trajectory whose ab passes through u and
v. Otherwise, proceed with step A2.

A2. Check if b0t is intersected by any obstacle (Figure
2A). If it is, then a feasible min-r articulated tra-
jectory whose ab passes through u and v does not
exist. Otherwise, proceed with steps A3 and A4.

191

32nd Canadian Conference on Computational Geometry, 2020

Table 1: Summary of query data structures used in steps A1-A7. The size, preprocessing time, and query time of a
data structure are denoted by S(n), P (n), and Q(n), respectively.

Step Query data structure S(n) P (n) Q(n)

A1, A6 Circular sector emptiness queries O(n2+ε) O(n2+ε) O(log n)

A2, A4 Radius intersection queries O(n) O(n log n) O(log n)

A3 Ray shooting queries [8] O(n2) O(n2) O(log n)

A5 Radius shooting queries O(n2/ log2 n) O(n2/ log2 n) O(log2 n)

A7 Arc shooting queries O(n2+ε) O(n2+ε) O(log n)

A3. Find the closest point c′ ∈ b0c0 to c0 such that b0c
′

does not intersect any obstacle (Figure 2B). Com-
pute the center b′ of the circular arc γc′t emanating
counter-clockwise from t to c′, where b′ ∈ vb0.

A4. Check if b′t is intersected by any obstacle (Figure
2B). If it is, then a feasible min-r articulated tra-
jectory whose ab passes through u and v does not
exist. Otherwise, proceed with steps A5 and A6.

A5. Find the closest point b′′ ∈ vb′ to b′ such that b′′t
intersects an obstacle endpoint (Figure 2C). Com-
pute the corresponding point c′′ (i.e., the intersec-
tion between b0c

′ and the circle of radius |b′′t| cen-
tered at b′′). Note that the triangle bounded by b′t,
b′′t, and b′b′′ is free of obstacles.

A6. Check if the “sector” bounded by b′c′′, b′t, and
circular arc γc′′t (centered at b′′ and emanating
counter-clockwise from t to c′′) intersects any ob-
stacle (Figure 2C). Note that it is equivalent to
checking if the circular sector bounded by b′′c′′,
b′′t, and γc′′t intersects any obstacle. If it does,
then a feasible min-r articulated trajectory whose
ab passes through u and v does not exist. Other-
wise, proceed with step A7.

A7. At this point, observe that the articulated tra-
jectory with the intermediate configuration repre-
sented by ab′′c′′ is feasible. Find the closest point
b′′′ ∈ b′b′′ to b′ such that circular arc γc′′′t (cen-
tered at b′′′ and emanating counter-clockwise from
t to c′′′) intersects an obstacle endpoint or is tan-
gent to an obstacle line segment (Figure 2D). Note
that the “sector” bounded by b′c′′′, b′t, and circular
arc γc′′′t is free of obstacles. The articulated trajec-
tory with the intermediate configuration indicated
by ab′′′c′′′ is a feasible min-r articulated trajectory
whose ab passes through u and v.

By simply performing an O(n)-check (i.e., check
against each of the O(n) obstacles) in each of the
steps above, we can obtain an O(n3)-time “brute-force”
method to find a feasible min-r articulated trajectory,
if one exists. Alternatively, we can address these steps

using efficient data structures, which require geometric
constructs such as lower envelopes and half-space de-
composition schemes. Refer to Table 1 for a summary
of the query data structures, whose details are deferred
to the full version of the paper. O(n2) queries are to be
processed in the worst case, resulting in a total query
time bounded by O(n2 log2 n). Since the preprocessing
time of the query data structures is dominant overall,
we have the following final result.

Theorem 2 A feasible min-r articulated probe trajec-
tory, if one exists, can be determined in O(n2+ε) time
using O(n2+ε) space, for any constant ε > 0.

The solution approach just described can be extended
to find all feasible values of r. The details of the algo-
rithmic extension will be presented in the full publica-
tion, and the corresponding result is summarized in the
following theorem.

Theorem 3 All values of r for which at least one feasi-
ble trajectory exists can be determined in O(n5/2) time
using O(n2+ε) space, for any constant ε > 0.

3 Characterizing feasible trajectory space

In this section, we describe our solution to Problem 2.
We begin by explicitly characterizing the following for
a given length r: i) the final configuration space, ii) the
forbidden final configuration space, and iii) the infeasi-
ble final configuration space.

3.1 Final configuration space

In a final configuration of the articulated probe, point
a can be assumed to be on S, and point b lies on the
circle C of radius r centered at t (Figure 1). Let θS
and θC be the angles of line segments ta and tb mea-
sured counter-clockwise from the x-axis, where θS , θC ∈
[0, 2π). Since bc may rotate around b as far as π/2
radians in either direction, for any given θS , we have
θC ∈ [θS − cos−1 r/R, θS + cos−1 r/R]. We call this the
unforbidden range of θC . A final configuration of the ar-
ticulated probe can be specified by (θS , θC), depending
on the locations of points a and b on circles S and C,

192

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

respectively (Figure 3). The final configuration space
Σfin of the probe can be computed in O(1) time.

Figure 3: Final configurations of the articulated probe.
(A) Each value of θS is associated with an unforbid-
den range of θC spanning from θS − cos−1 r/R to θS +
cos−1 r/R. (B) The unshaded region of the (θS , θC)-
plot represents the unforbidden final configuration space
when S is obstacle-free.

3.2 Forbidden final configuration space

A final configuration is called forbidden if the final con-
figuration (represented by ab and bt) intersects one or
more of the obstacle line segments. Let s be an obstacle
line segment of P . We have two different cases, depend-
ing on whether s is located 1) outside or 2) inside C.

Case 1. Obstacle line segment s outside C. Let
angles θi, where i = 1, . . . , 6, be defined in the manner
depicted in Figure 4A. Briefly, each θi corresponds to an
angle θS at which point a tangent line i) between C and
s or ii) from t to s, intersects S. As θS increases from
θ1 to θ3, the upper bound of the unforbidden range of
θC decreases as a continuous function of θS . Similarly,
when θS varies from θ4 to θ6, the lower bound of the un-
forbidden range of θC decreases as a continuous function

of θS . For θ3 ≤ θS ≤ θ4, there exists no unforbidden
final configuration at any θC (Figure 4B). For concise-
ness, the upper (resp. lower) bound of the unforbidden
range of θC is referred to as the upper (resp. lower)
bound of θC hereafter.

Figure 4: Forbidden final configurations due to an ob-
stacle line segment s outside C.

Case 2. Obstacle line segment s inside C. We
can similarly compute the forbidden final configuration
space for an obstacle line segment s inside C. Note in
Figure 5A that angles θi, where i = 1, . . . , 6, are defined
differently from case 1. For θ1 ≤ θS ≤ θ4, the upper
bound of θC is equivalent to θ2. For θ3 ≤ θS ≤ θ6, the
lower bound of θC equals to θ5 (Figure 5B).

We can find the forbidden final configuration space
for an obstacle line segment in O(1) time. Thus, for
n obstacle line segments, it takes O(n) time to com-
pute the corresponding set of forbidden final configu-
rations. The union of these configurations forms the
forbidden final configuration space Σfin,forb of the ar-
ticulated probe. The free final configuration space of
the articulated probe is Σfin,free = Σfin \ Σfin,forb.

193

32nd Canadian Conference on Computational Geometry, 2020

Figure 5: Forbidden final configurations due to an ob-
stacle line segment s inside C.

3.3 Infeasible final configuration space

The feasible trajectory space of the articulated probe
can be characterized as a subset of Σfin,free. A final
configuration is called infeasible if the circular sector as-
sociated with the final configuration (i.e., the area swept
by segment bc to reach t) intersects any obstacle line
segment. We denote the infeasible final configuration
space as Σfin,inf . The analytical details of the char-
acterization of Σfin,inf are presented in Appendix B.
Based on the analysis, we conclude that the infeasible
final configuration space associated with any obstacle
line segment can be found in O(1) time. As a result, it
takes O(n) time to determine the infeasible final config-
uration space for n obstacle line segments.

3.4 Complexity and construction of feasible trajec-
tory space

The feasible trajectory space of the articulated probe
is represented by Σfin \ (Σfin,forb ∪ Σfin,inf). Three
sets of lower- and upper-bound curves, denoted as σfin,
σfin,forb, and σfin,inf , were obtained from characteriz-

ing the final, forbidden final, and infeasible final config-
uration spaces, respectively. Each of these curves is a
function of θS – that is, θC(θS).

As illustrated in Figure 3, σfin contains two linearly
increasing curves, θC = θS − cos−1 r/R and θC =
θS + cos−1 r/R, which are defined over θS ∈ [0, 2π).
Each curve in σfin,forb is partially defined, continuous,
and monotone in θS . Specifically, as shown in Figures 4
& 5, the curves in case 1 are monotonically decreasing
with respect to θS , and the curves in case 2 are horizon-
tal lines parallel to the θS-axis (i.e., of some constant
values of θC). Furthermore, any two curves in case 1 can
intersect at most once. Likewise, a curve in σfin,inf is
bounded and monotonically increasing with respect to
θS (Figures 9 & 11 in Appendix B), and can intersect
with another at most once.

From the observations above, it can be easily deduced
that the number of intersections between any two curves
in σ = σfin ∪ σfin,forb ∪ σfin,inf is at most one. For a
set σ of O(n) x-monotone Jordan arcs, with at most c
intersections per pair of arcs, where c is a constant, the
maximum combinatorial complexity of the arrangement
A(σ) is O(n2) [6].

An incremental construction approach, as detailed in
[5], can be used to construct the arrangement A(σ) in
O(n2α(n)) time using O(n2) space, where α(n) is the in-
verse Ackermann function. By using topological sweep
[2] in computing the intersections for a collection of well-
behaved curves such as those described above, the time
and space complexities can be improved toO(n log n+k)
and O(n+k), respectively. Note that we can find a fea-
sible probe trajectory by simply traversing the cells of
the arrangement A(σ) in O(n2) time. This implies an
O(log n) improvement over the previous result reported
in [11]. We thus conclude with the following theorem.

Theorem 4 For a positive value r, the feasible trajec-
tory space of the corresponding articulated probe can
be represented as a simple arrangement of maximum
combinatorial complexity k = O(n2), which can be con-
structed in O(n log n+ k) time using O(n+ k) space. A
feasible probe trajectory, if one exists, can be determined
in O(n2) time using O(n2) space.

4 Open questions

1) Our solution to Problem 1 relies on efficient data
structures to address some rather specific geometric in-
tersection and emptiness query problems. Can we im-
prove upon those query data structures? 2) Do our tech-
niques extend well to the variant in which a clearance is
required from the obstacles? 3) Can we generalize our
solution approaches to three dimensions?

194

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] E. Arkin and J. Mitchell. An optimal visibility al-
gorithm for a simple polygon with star-shaped holes.
Technical report, Cornell University Operations Re-
search and Industrial Engineering, 1987.

[2] I. J. Balaban. An optimal algorithm for finding seg-
ments intersections. In Proceedings of the eleventh
annual symposium on Computational geometry, pages
211–219, 1995.

[3] C. Culmone, G. Smit, and P. Breedveld. Additive man-
ufacturing of medical instruments: A state-of-the-art
review. Additive Manufacturing, 2019.

[4] O. Daescu and K. Teo. Computing feasible trajectories
for an articulated probe in three dimensions. In 31st
Annual Canadian Conference on Computational Geom-
etry, pages 59–70, 2019.

[5] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Sei-
del, and M. Sharir. Arrangements of curves in the plane
– topology, combinatorics, and algorithms. Theoretical
Computer Science, 92(2):319–336, 1992.

[6] D. Halperin and M. Sharir. Arrangements. Handbook of
Discrete and Computational Geometry, pages 723–762,
2017.

[7] P. J. Heffernan and J. S. Mitchell. An optimal algorithm
for computing visibility in the plane. SIAM Journal on
Computing, 24(1):184–201, 1995.

[8] M. Pocchiola. Graphics in flatland revisited. In Scan-
dinavian Workshop on Algorithm Theory, pages 85–96,
1990.

[9] N. Simaan, R. M. Yasin, and L. Wang. Medical tech-
nologies and challenges of robot-assisted minimally in-
vasive intervention and diagnostics. Annual Review of
Control, Robotics, and Autonomous Systems, 1:465–
490, 2018.

[10] S. Suri and J. O’Rourke. Worst-case optimal algorithms
for constructing visibility polygons with holes. In Pro-
ceedings of the Second Annual Symposium on Compu-
tational Geometry, pages 14–23. ACM, 1986.

[11] K. Teo, O. Daescu, and K. Fox. Trajectory planning for
an articulated probe. Computational Geometry, page
101655, 2020.

Appendices

A Proof of Lemma 1

We proceed by considering the two possible scenarios implied
by Observation 1.

Scenario A. A feasible min-r articulated probe trajectory
exists such that ab of the trajectory passes through two ob-
stacles endpoints u, v ∈ V , where u 6= v. Obviously, ab does
not intersect the interior of any line segment of P . Without
loss of generality, assume that segment bc of the probe is
rotated clockwise around b to reach t (the other case can be
handled symmetrically), and ab passes through u and v in
the way depicted in Figure 6.

Figure 6: Finding the extremal feasible min-r articu-
lated probe trajectory in Scenario A.

Let hab denote the supporting line of ab. Let b0t be the
perpendicular line segment dropped from t to line hab. It is
easy to observe that the minimum possible value of r for an
articulated trajectory is given by the length of b0t – that is,
when b = b0 and ∠cbt is equal to π/2 radians. Let T denote
the corresponding trajectory. If T is free of obstacles, then
T is a feasible min-r articulated trajectory (case I of the
lemma).

Otherwise, the minimum feasible value of r is attained at
some point b∗ on line segment vb0, where b∗ is the closest
point to b0 on vb0 for which the corresponding articulated
trajectory is feasible. In order to find b∗, we increase r by
moving b away from b0 on vb0 until the trajectory becomes
feasible. Observe that, if bt intersects an obstacle line seg-
ment at any given time during the process of increasing r,
then the trajectory would never become feasible thereafter
(illustrated by the blue and green trajectories in Figure 6).

The observations above imply that, if b = b0 is not feasi-
ble, then bc or γct of T must be intersected by an obstacle
line segment, or σbct of T must contain an obstacle line seg-
ment. By moving b away from b0 on vb0, we may rid the
trajectory of obstacle line segments that intersect bc, γct, or
are contained within σbct. Suppose that we increase r until
either bt becomes tangent to an obstacle line segment or b
reaches v. Let b1 denote the final position of b. Observe that
b∗ must lie somewhere between b0 and b1. In fact, as we in-
crease r, b = b∗ when bc intersects an obstacle line segment
at c, or γct intersects an obstacle endpoint or is tangent to
an obstacle line segment (cases II and III of the lemma).

195

32nd Canadian Conference on Computational Geometry, 2020

Remark. Let rb0 , rb∗ , and rb1 be the lengths of bc when
b = b0, b = b∗, and b = b1, respectively, where rb0 ≤ rb∗ ≤
rb1 . Observe that [rb∗ , rb1] is a feasible contiguous subset of
[rb0 , rb1]. Indeed, based on the observations made thus far,
it is easy to figure that, in Scenario A, there exists at most
one contiguous feasible subset of [rb0 , rb1].

Scenario B. A feasible min-r articulated probe trajectory
exists such that ab of the trajectory passes through an ob-
stacle endpoint u, and bt of the trajectory passes through an
obstacle endpoint v, where u, v ∈ V and u 6= v. Recall that
∠cbt of the trajectory is less than or equal to π/2 radians.
Without loss of generality, assume that segment bc of the
probe is rotated clockwise around b to reach t, as in Figure
7 (the other case is symmetrical).

Figure 7: Finding the extremal feasible min-r articu-
lated probe trajectory in Scenario B.

In this case, the minimum value of r for a feasible trajec-
tory occurs when b = v. Let b0 denote that location of b, and
T be the corresponding trajectory. If T is free of obstacles,
then T is a feasible min-r articulated trajectory (case IV of
the lemma).

We now assume otherwise. Let ρb0 denote the reversal
(i.e., opposite in direction) of the ray emanating from b0
passing through t. We increase r by moving b away from
b0 along ρb0 , while maintaining the intersection of ab with
u and that of bt with v, until the trajectory becomes fea-
sible. Observe the following: i) If σbct of T intersects any
obstacle line segment, then for certain there is no feasible ar-
ticulated trajectory that intersects u outside C and v inside
C. So, σbct of T must be empty of obstacle line segments.
ii) If bt, bc, or γct intersects an obstacle line segment at any
given moment during the process of increasing r, then the
trajectory would never become feasible thereafter.

These observations imply that, when b = b0, ab of T must
be intersected by some obstacle line segment. By increasing
r, we may rid the trajectory of obstacle line segments that
intersect ab. Let b∗ denote the closest point to b0 on ρb0 for
which the corresponding articulated trajectory is feasible.
Note that ab, at the moment, intersects an obstacle endpoint
(case V of the lemma), as illustrated by the red trajectory
in Figure 7.

Remark. Observe that we can continue to increase r,
while still having a feasible articulated trajectory, until

b reaches some point b1, at which either i) ab, bc, or γct
collides with an obstacle line segment, or ii) ∠cbt = π/2. Let
rb0 , rb∗ , and rb1 be the lengths of bc when b = b0, b = b∗,
and b = b1, respectively, where rb0 ≤ rb∗ ≤ rb1 . In addition,
let rπ/2 be the length of bc when ∠cbt = π/2. According
to our earlier arguments, [rb∗ , rb1] is a feasible contiguous
subset of [rb0 , rπ/2]. In fact, there could exist multiple
(disjoint) contiguous feasible subsets of [rb0 , rπ/2], given
that ab may enter and leave intersections with multiple
obstacle line segments during the process of increasing r,
while σbct remains free of obstacle line segments (refer to
the blue and green trajectories in Figure 7 for an instance).

This concludes the proof of Lemma 1.

B Characterizing infeasible final configuration space

Let C′ be the circle centered at t and of radius
√

2r. A
circular sector associated with a final configuration can only
intersect an obstacle line segment lying inside C′. Instead
of characterizing the lower and upper bounds of θC as θS
varies from 0 to 2π (as in Section 3.2), here we perform the
characterization the other way around. For conciseness, we
only present arguments for the negative half of the θS-range,
which is [θC−cos−1 r/R, θC]; similar arguments apply to the
other half due to symmetry. We have two cases, depending
on whether an obstacle line segment s lies 1) inside C or 2)
outside C and inside C′.

Case 1. Obstacle line segment s inside C. For
brevity, the quarter circular sector associated with a point
b (i.e., the maximum possible area swept by segment bc to
reach t), where the angle of tb (relative to the x-axis) is θC ,
is referred to as the quart-sector of θC .

We define φ1, φ2, and φ3 as follows (Figure 8A). φ1 is the
smallest angle θC at which the circular arc of the quart-sector
of θC intersects s (at one of its endpoints or interior points).
φ2 is the smallest angle θC at which bt of the quart-sector
of θC intersects s (at one of its endpoints). φ3 is the largest
angle θC at which bt of the quart-sector of θC intersects s
(at one of its endpoints). Observe that, as θC varies from 0
to 2π, φ1 and φ3 are the angles θC at which the quart-sector
of θC first and last intersects s, respectively.

We are only concerned with finding the lower bound of
θS for θC ∈ [φ1, φ2], since the entire negative half of the θS-
range (i.e., [θC − cos−1 r/R, θC]) is feasible for θC ∈ [0, φ1]∪
[φ3, 2π), and is infeasible for θC ∈ [φ2, φ3] due to intersection
of bt with s (Figure 8A).

For θC ∈ [φ1, φ2], the lower bound of θS can be repre-
sented by a piecewise continuous curve, which consists of at
most two pieces, corresponding to two intervals [φ1, α] and
[α, φ2], where α is the angle θC of the intersection point be-
tween C and the supporting line of s. If φ1 ≤ α, then the
curve has two pieces; otherwise, the curve is of one single
piece.

For θC ∈ [φ1, α], the lower bound of θS is indicated by the
endpoint a of line segment abc′, where c′ is the intersection
point between s and the circular arc centered at b (Figure
8B). If no intersection occurs between s and the circular arc,

196

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 8: Infeasible final configurations due to an obstacle line segment s inside C. Illustrations of θS-lower bounds
for (A) θC ∈ [φ1, φ2], (B) φ1 < θC < α, (C) θC = α, and (D) α < θC < φ2.

Figure 9: Infeasible final configuration space due to an
obstacle line segment s inside C.

then the lower bound of θS is given by the endpoint a of line
segment abc′, where bc′ intersects an endpoint of s.

For θC ∈ [α, φ2], the lower bound of θS is indicated by
the endpoint a of line segment abc′, where bc′ intersects an
endpoint of s (Figure 8D). The lower bound of θS is equal to
θC when θC = φ2. See Figure 9 for a sketch of the infeasible
final configuration space.

Case 2. Obstacle line segment s outside C and in-
side C′. As depicted in Figure 10, we only need to worry
about computing the lower bound of θS for θC ∈ [φ1, φ2],
given that the entire negative half of the θS-range (i.e.,
[θC − cos−1 r/R, θC]) is feasible for θC ∈ [0, φ1] ∪ [φ2, 2π).
The analysis is similar to case 1 and thus omitted herein.
A sketch of the corresponding infeasible final configuration
space is shown in Figure 11.

Observe that any of the curves just described for charac-
terizing the lower or upper bound of θS can be computed in
constant time. Thus, given an obstacle line segment s, the
associated infeasible final configuration space can be found
in O(1) time. As a result, it takes O(n) time to determine
the infeasible final configuration space for n obstacle line
segments.

197

32nd Canadian Conference on Computational Geometry, 2020

Figure 10: Infeasible final configurations due to an obstacle line segment s outside C and inside C ′. Illustrations of
θS-lower bounds for (A) θC ∈ [φ1, φ2], (B) φ1 < θC < α, (C) θC = α, and (D) α < θC < φ2.

Figure 11: Infeasible final configuration space due to a line segment s outside C and inside C ′.

198

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Dynamic Products of Ranks

David Eppstein∗

Abstract

We describe a data structure that can maintain a dy-
namic set of points given by their Cartesian coordinates,
and maintain the point whose product of ranks within
the two coordinate orderings is minimum or maximum,
in time O(

√
n log n) per update.

1 Introduction

The rank of an element in a collection of elements is
its position in a list of all elements, sorted by some as-
sociated numerical value. If elements have a multidi-
mensional vector of values associated with them, then
each of these values gives rise to a different rank, and
we may wish to aggregate these multiple ranks into a
single combined score. One common method of aggre-
gating ranks is to use the geometric mean or equiva-
lently the product of ranks as the combined score. This
method is used in applications ranging from finding dif-
ferentially regulated genes in DNA microarray data [2],
choosing winners in multi-discipline sports events [7],
and measuring the scholarly output of economists [10]
to image recognition [8] and spam filtering in web search
engines [6].

In many of these applications, it is natural for the
elements in the collection and their associated numeri-
cal values to change dynamically, and when they do the
whole system of ranks for other elements may change.
For instance, inserting one new element, with a low nu-
merical value, will increase the ranks of all elements
with larger values. This raises the question: how can
we update the elements and their numerical values, and
maintain information about the product of ranks?

We can model this as a geometry problem, in which
the elements in the collection are modeled as points in
the Cartesian plane, with the x- and y-coordinates of
these points representing their associated numerical val-
ues. In this model, we would like to maintain a dynamic
set of pairs of real numbers, subject to point insertion
and point deletion, and as we do so, maintain dynami-
cally the point whose product of ranks in the two coor-
dinate orderings is minimum or maximum.

In this work we provide a solution to this dynamic
product of ranks problem. We solve the dynamic prod-

∗Computer Science Department, University of California,
Irvine, eppstein@uci.edu. This work was supported in part by
the US National Science Foundation under grant CCF-1616248.

uct of ranks problem, in the special case when there are
two rankings being combined, in time O(

√
n log n) per

update.
There are three main ideas to our method:

• We partition the points into rigid subsets: sets
of points whose ranks all change in lockstep with
each operation (that is, without changing the dif-
ference between the ranks of any two elements in
the set). Our partition will have the property that
each update will rebuild rigid subsets of total size
O(
√
n log n) and search for the point with minimum

or maximum product of ranks within O(
√
n/ log n)

of these subsets.

• We provide two solutions to the dynamic product of
ranks problem within each rigid subset. One solu-
tion applies a lifting transformation (to the pairs of
ranks of the points, not their given coordinates) to
turn it into a problem of querying a (static) three-
dimensional convex hull. Dually, the other solution
uses analogues of the classical Voronoi diagram and
farthest-point Voronoi diagram, minimization and
maximization diagrams with convex-polygon cells.

• We provide linear-time constructions for the lifted
convex hull in the minimization version of the prob-
lem, and for the maximization diagram in the max-
imization version of the problem, adapted from two
different algorithms for linear-time construction of
Voronoi diagrams of points in convex position.

Our method can be generalized to larger numbers of
rankings, but with a quadratic blowup in the dimen-
sion of the lifting transformation that (together with the
high complexity of higher-dimensional extreme point
queries) leads to a running time per update that is only
slightly smaller than the trivial naive algorithm of up-
dating all rankings and recomputing all products in lin-
ear time per update. For this reason, we restrict our
attention to maintaining information about the prod-
uct of two rankings.

2 Rigid subsets

2.1 Lifted hull

We say that a subset S of elements in our product of
ranks problem is rigid, through a sequence of updates,
if none of the updates performs an insertion or deletion

199

32nd Canadian Conference on Computational Geometry, 2020

of an element of S, or of another element whose position
in either of the two rankings lies between two elements
of S. Equivalently, the difference in ranks of any two
elements of S remains invariant throughout the given
sequence of updates.

Lemma 1 Let S be any subset of elements in the
product of ranks problem, of size m. Then in time
O(m logm) we can build a data structure for S such
that, throughout any sequence of updates for which S is
rigid, we can compute the elements of S with the min-
imum or maximum product of ranks in time O(logm)
per update.

Proof. Let (xi, yi) be the ranks of the elements of S
prior to the sequence of updates for which S is rigid. We
construct the three-dimensional convex hull of the lifted
points (xi, yi, xiyi), and a Dobkin–Kirkpatrick hierarchy
allowing us to perform linear optimization queries (find-
ing the extreme point on the resulting hull of a given
linear function) in time O(logm) per query [5]. The
hull takes O(n log n) time to construct and its Dobkin–
Kirkpatrick hierarchy takes an additional O(n) time.
For each element, let zi = xiyi denote its third coordi-
nate in this lifted point set.

After a sequence of updates that have changed the
ranks by subtracting the same offset a from each rank
xi and the same offset b from each rank yi within S, the
updated products of ranks are

(xi − a)(yi − b) = ab− ayi − bxi + zi,

a linear function of the three coordinates of the lifted
points, so the elements with the minimum and maxi-
mum product of ranks can be found by a linear opti-
mization query. �

This method is closely analogous to the classical
lifting transformation of two-dimensional closest-point
problems to three-dimensional extreme-point prob-
lems [3], which in its most commonly used form maps
pairs (xi, yi) to triples (xi, yi, x

2
i + y2i); however, we use

a different quadratic function for the third coordinate.
Note that we will only query this structure for pairs
(a, b) with a ≤ xi and b ≤ yi, because the differences
xi− a and yi− b represent ranks and are therefore non-
negative.

2.2 Linear time construction

To construct the lifted hull more quickly, it is helpful to
reduce the set of points to a subset whose projection to
the plane is convex.

Lemma 2 Let S be a set of points, let (a, b) be a pair
of numbers with a less than or equal to all x-coordinates
in S and b less than or equal to all y-coordinates in S.
Let (xi, yi) be the point in S minimizing (xi−a)(yi−b).
Then (xi, yi) lies on the convex hull of S.

(a,b)

(xi,yi)

L

Figure 1: The minimizer of (xi − a)(yi − b) must be
a convex hull vertex, because the region below line L,
the tangent to the hyperbola through (xi, yi), must be
disjoint from S (Lemma 2). Analogously, the maximizer
of (xi−a)(yi−b) must be a maximal point of S, because
the region above and to its left (yellow) must be disjoint
from S (Lemma 5).

Proof. The locus of points (x, y) with (x− a)(y− b) =
(xi − a)(yi − b) is a hyperbola, asymptotic to the lines
x = a and y = b, with (xi, yi) on its positive branch. Let
L be the line tangent to this hyperbola at (xi, yi); see
Figure 1. Then the halfplane below L must be disjoint
from S, for any point (xj , yj) between L and the other
branch of the hyperbola would have a smaller value of
(xj−a)(yj−b) and by the assumptions on a and b there
are no points of S on the other side of the other branch
of the hyperbola. �

Aggarwal et al. [1] showed that, for 3d points whose
two-dimensional projection is convex, the 3d convex hull
can be constructed in linear time. In the next lemma
we apply this result to the lifted hull of Lemma 1.

Lemma 3 Let S be any subset of elements in the prod-
uct of ranks problem, of size m, for which the sorted
order by x-coordinate is known. Then in time O(m) we
can build a data structure for S such that, throughout
any sequence of updates for which S is rigid, we can
compute the elements of S with the minimum product
of ranks in time O(logm) per update.

Proof. We use Graham scan to compute the 2d convex
hull from the sorted order of points in linear time, and
the algorithm of Aggarwal et al. [1] to compute the 3d
convex hull from the 2d convex hull in linear time. The

200

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 2: The bisector between two sites in the mini-
mization diagram is the line through the other two cor-
ners of their bounding box.

Dobkin–Kirkpatrick hierarchy construction time is also
linear. �

2.3 Maximization diagram

Instead of lifting the points (xi, yi) to the convex hull
of three-dimensional points (xi, yi, xiyi), an alternative
representation for each rigid subset would be to repre-
sent it by the minimization diagram or maximization
diagram of the functions fi(a, b) = (xi − a)(yi − b) =
ab − ayi − bxi + zi. Then, the minimum or maximum
product of ranks for the rigid subset with rank offsets
a and b could be obtained by performing a point loca-
tion query in this diagram, rather than by performing
an extreme-point query on a three-dimensional polyhe-
dron.

Because the quadratic term ab in the definition of the
function fi(a, b) does not depend on the point (xi, yi),
and is equal for all points, it does not affect the min-
imization or maximization: we obtain the same mini-
mization or maximization diagrams for the linear func-
tions gi(a, b) = −ayi − bxi + zi. As the minimization
or maximization diagram of linear functions, these dia-
grams have convex polygon cells, separated by bisector
lines, the lines consisting of the points (a, b) at which
two of these functions are equal.

Lemma 4 The bisector of any two given points (sites)
(xi, yi) and (xj , yj) in the minimization or maximiza-
tion diagram described above is a line that passes
through the other two corners (xi, yj) and (xj , yi) of the
bounding box of the two points (Figure 2).

Proof. When the bounding box is a square, this fol-
lows by symmetry: a reflection through the line de-
scribed in the lemma maps the two given points to each
other, swapping the two Cartesian coordinates, so for
any point (a, b) on the line described in the lemma, the
coordinate differences between (a, b) and the two given
points are equal but reversed. That is, |xi−a| = |yj−b|
and |xj − a| = |yi − b|. Since the quantity being mini-

Figure 3: The maximization diagram for a given set of
maximal points. Although this diagram is well-defined
over the whole plane, we will only query it within the
bottom-left quadrant, below and to the left of all the
given points.

mized is the product of these coordinate differences, it
is equal for the two given points along this line.

For any other two points, not both on the same verti-
cal or horizontal line, we may apply a linear transforma-
tion to one of the coordinates that makes the bounding
box a square; this transformation affects both of the
functions gi and gj in the same way, so the bisector of
the transformed points (the diagonal of the square) is
the transformation of the bisector, which must there-
fore be the diagonal of the original bounding box. The
remaining case, that the points are on a horizontal or
vertical line, follows by continuity. �

Figure 3 depicts an example of the maximization di-
agram described above.

2.4 Expected linear time construction

These diagrams can be constructed in O(n log n) time,
either by interpreting them as a lower or upper envelope
of three-dimensional planes (the graphs of the functions
they minimize or maximize) or by using algorithms for
abstract Voronoi diagrams with bisectors determined as
in Lemma 4 [9]. However, as we now show, they can be
constructed in expected linear time.

Our construction begins with the following analogue
of Lemma 2. We observe that, in constructing the maxi-
mization diagram for a collection of points, we need only
include the points (xi, yi) that are maximal (meaning
that there is no other point (xj , yj) with xj ≥ xi and
yj ≥ yi), for those are the only ones that can produce
the maximum of the function values at any point (a, b).

201

32nd Canadian Conference on Computational Geometry, 2020

Lemma 5 Let S be a set of points, let (a, b) be a pair
of numbers with a less than or equal to all x-coordinates
in S and b less than or equal to all y-coordinates in S.
Let (xi, yi) be the point in S maximizing (xi−a)(yi−b).
Then (xi, yi) is one of the maximal points of S, meaning
that there is no other point (xj , yj) in S with xj ≥ xi
and yj ≥ yi.

Proof. Any such point (xj , yj) would have a larger
value of (xi − a)(yi − b). �

The quarter-plane of points with larger x- and y-
coordinates than (xi, yi), and their relation to the hy-
perbola of points with equal query values to (xi, yi), is
shown in Figure 1.

To construct the maximization diagram in expected
linear time we adapt an algorithm by Paul Chew for
Voronoi diagrams of convex polygons [4].

Lemma 6 Let S be a set of points, all of which are
maximal in S, indexed in sorted order by their x-
coordinates, and let (xi, yi) and (xi+1, yi+1) be consec-
utive points in this ordering. Then in the maximization
diagram for (xi−a)(yi−b), the cells for these two points
share an edge.

Proof. Within the bounding rectangle of (xi, yi) and
(xi+1, yi+1), the point (xi, yi) has a larger query value
than all points of S with smaller index, and the point
(xi+1, yi+1) has a larger query value than all points of S
with larger index, so the maximization diagram within
the rectangle consists only of points in the cells for these
two points. By Lemma 4 the cells meet within the rect-
angle along the bisector of these two points, which is
the diagonal of the rectangle. �

The shared edge is not in a part of the diagram that
we will query in our data structure for products of ranks,
but its location is unimportant for the use we will make
of it in the following lemma.

Lemma 7 Let S be any subset of elements in the prod-
uct of ranks problem, of size m, for which the sorted
order by x-coordinate is known. Then in randomized
expected time O(m) we can build a data structure for S
such that, throughout any sequence of updates for which
S is rigid, we can compute the elements of S with the
maximum product of ranks in time O(logm) per update.

Proof. The maximal points in S can be found in linear
time from the sorted order by x-coordinates, using a
stack algorithm closely related to Graham scan.

We construct the maximization diagram by a ran-
domized incremental algorithm in which we randomly
permute the points and add them to the diagram one
at a time in that random order. By the analysis of
Chew [4], this can be done in expected constant time

per point as long as we know the identity of a neighbor-
ing cell in the diagram of the points added so far. We
can form a random permutation with this additional
information about neighboring cells by starting with a
doubly linked list of all of the points, in x-coordinate
order, deleting randomly chosen points from the linked
list until none are left, and then reversing the order of
the deletions. By Lemma 6, the neighbors of a point
(xi, yi) in the linked list at the time of its deletion will
form neighboring cells in the maximization diagram at
the time of its insertion.

Because it is the maximization diagram of a set of
linear functions, we can interpret this diagram as a
three-dimensional intersection of halfspaces, and con-
struct a Dobkin–Kirkpatrick hierarchy from it in linear
time, suitable for performing point location queries in
logarithmic time. (Alternatively, the history DAG of a
vertical decomposition of the randomized incremental
maximization diagram construction can be used as a
point location data structure with logarithmic expected
time per query.) �

3 Partitioned data structure

3.1 One-dimensional partition

To partition our given elements into rigid subsets,
we first consider a one-dimensional partition method,
which we will apply separately to the two rankings of
the elements.

Lemma 8 Let f be any positive concave function of
a single argument. Then for any sequence S of or-
dered values undergoing insertions and deletions, we can
maintain a partition of S into an ordered sequence of
O(n/f(n)) contiguous subsets, with O(f(n)) elements
in each subset, changing O(1) subsets per update, using
a data structure with time O(log n) per update, where n
denotes the current size of S.

Proof. We use binary search trees to keep track of the
sequence of elements and the sequence of subsets. As
keys for the binary search tree of subsets, we use the
values of their first elements. In this way we can find
the subset containing the updated element, after any
update, and determine the new size of this subset. We
also keep track of the sizes of each subset and main-
tain priority queues for the largest subsets and for the
smallest consecutive pairs of subsets.

We maintain as an invariant the requirements that
the sizes of all subsets in the partition are at most
2df(n)e + 2, and that no two consecutive subsets both
have size less than df(n)e−1. We say that our structure
is growing if, for the most recent update having a dif-
ferent value of df(n)e, that value was smaller than the
current value, and shrinking otherwise. If the structure

202

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

is growing, we require that all subsets have size at most
2df(n)e, and if it is shrinking, we require that no two
consecutive subsets both have size less than df(n)e.

On each update, if the structure is growing, we select
an arbitrary pair of consecutive subsets of size df(n)e−1
(if such a pair exists) and merge them into a single sub-
set. If the structure is shrinking, we select an arbitrary
subset of size greater than 2df(n)e (if such a subset ex-
ists) and split it into two subsets of size as close to equal
as possible. We claim that this is sufficient to maintain
our invariants. Clearly, it does so at the updates for
which df(n)e does not change, so we need only consider
the steps at which it does change.

In the case that df(n)e changes in such a way that the
structure was growing before the update and is shrink-
ing after the update, the invariants are automatically
maintained, because the ranges of sizes of subsets and
consecutive pairs of subsets that are allowed remain
unchanged. The same is true when the structure was
shrinking before the update and growing after the up-
date.

When df(n)e increases twice in a row (so that it was
growing both before and after the second increase), let
n0 be the value of n at the first increase. Then at
that time, there must be at most n0/f(n0) consecutive
pairs of small subsets, and (by concavity of f) at least
n0/f(n0) steps between the two increases. It only takes
n0/2f(n0) steps to eliminate all of the consecutive pairs
of small subsets. So by the time that the second increase
happens, all of the consecutive pairs of small subsets will
have been eliminated, maintaining the invariant.

Similarly, when df(n)e decreases twice in a row (so
that it was shrinking both before and after the sec-
ond decrease), let n0 be the value of n at the first
decrease. Then at that time, there must be at most
n0/2f(n0) large subsets, and (by concavity of f) at least
n0/f(n0) steps between the two decreases. It only takes
n0/2f(n0) steps to eliminate all of the large subsets. So
by the time that the second decrease happens, all of the
consecutive pairs of large subsets will have been elimi-
nated, maintaining the invariant. �

3.2 Two-dimensional partition

We now use our one-dimensional rank partition to par-
tition the given elements into subsets, most of which
remain rigid in each update. If the ranks of each ele-
ment are (xi, yi), we will maintain one rank partition on
the ranks xi, and a second rank partition on the ranks
yi, each with parameter f(n) =

√
n log n. Then each

subset Sk of our two-dimensional partition will consist
of elements that are grouped together both in the parti-
tion on the x-ranks and in the partition on the y-ranks.

Lemma 9 The partition into subsets Sk described
above has the following properties:

• There are O(n/ log n) subsets.

• Each update to the data causes O(
√
n/ log n) of the

subsets, with total size O(
√
n log n), to be non-rigid.

• Each update to the data causes O(
√
n/ log n) of the

subsets, with total size O(
√
n log n), to be replaced

by new subsets due to the change in the underlying
one-dimensional partitions.

Proof. It follows from Lemma 8 and our choice of
the function f that each one-dimensional partition has
O(
√
n/ log n) subsets, of size O(

√
n log n), and that

each update causes O(1) changes to the one-dimensional
partition. Because each subset in the two-dimensional
partition is determined by a pair of subsets in the two
one-dimensional partitions, there are O(n/ log n) sub-
sets in the two-dimensional partition.

In any update, only one subset of each one-
dimensional partition contains non-rigid subsets of the
two-dimensional partition. Therefore, the total num-
ber of non-rigid subsets is at most twice the number of
two-dimensional subsets that can be contained in a sin-
gle one-dimensional subset, O(

√
n/ log n), and the total

size of the non-rigid subsets is at most twice the size of
a one-dimensional subset, O(

√
n log n). The analysis of

the number of subsets that are replaced with new sub-
sets and their total size is similar: each change to a
one-dimensional subset causes changes to O(

√
n/ log n)

two-dimensional subsets having a total of O(
√
n log n)

elements, so the bounds on replaced subsets follow from
the fact that each update causes O(1) changes to the
one-dimensional partitions. �

4 Which subsets to query?

We introduced Lemma 2 and Lemma 5 to aid in the
efficient construction of rigid subsets, but they can also
be used to reduce the number of rigid subsets that we
must query after any update. As these two lemmas
show, the point with the smallest product of ranks must
be minimal in the coordinate ordering of the points,
and the point with the largest product of ranks must be
maximal. The two-dimensional partition of Lemma 9
partitions the points in a grid pattern, and we need
only query the rigid subsets for cells in this grid that
can contain minimal or maximal points.

Lemma 10 Let a given set of points be partitioned by k
axis-parallel lines into a grid of cells, represented in such
a way that in constant time we can find the neighboring
cell in any direction from any given cell and find the
lowest nonempty cell in any column of the grid. Then
in time O(k) we can identify a subset of O(k) of the grid
cells that contain all of the minimal points in the set.

203

32nd Canadian Conference on Computational Geometry, 2020

Figure 4: A grid partition of a point set, and a path
(yellow shading) through the cells of the grid, such that
the cells of the path contain all minimal points of the
set (shown as red).

Proof. As we describe below, we select cells in the grid
along a path from top left to bottom right, such that
every unselected cell below the path is also below the
lowest nonempty cell in its column, and every unselected
cell above the path has a nonempty selected cell below
and to the left of it. In this way, every minimal point of
the given point set belongs to a selected cell, for there
can be no points below and to the left of the path, and
all points above and to the right are not minimal. Fig-
ure 4 shows an example.

To find this path of grid cells, we begin at the top left
cell of the grid. Then we repeatedly step to a neighbor-
ing cell, according to the following rules:

• If the current cell is the bottom right cell of the
grid, we terminate the path.

• If the current cell is not the lowest nonempty cell in
its column, or if it belongs to the rightmost column,
we step to the next cell down.

• Otherwise, we step to the next cell to the right.

The path must extend across all columns, for it can
only stop in the rightmost column. If a cell is below
the path, it must also be below the lowest nonempty
cell in its column, or we would have stepped downward
to it when the path crossed its column; therefore, all
cells below the path are empty. If a cell is above the
path, then the path must have stepped below it in some

column to the left of it, which can only happen when
the lowest nonempty cell in that column is below and
to the left of the given cell. Therefore, all cells above
the path have a nonempty cell below and to the left of
them. �

A similar method, with the ability to find the highest
nonempty cell in each column, can find a path of grid
cells containing all maximal points.

5 Overall data structure

Our overall data structure consists of:

• Two binary search trees on the two coordinate val-
ues of the elements, augmented to allow the rank
of any element at any step of the update sequence
to be looked up in logarithmic time per query.

• Two one-dimensional partitions of the elements,
one for each of the two rankings of the elements,
according to Lemma 8, with the parameter choice
specified for Lemma 9.

• The two-dimensional partition of the elements into
rigid subsets Sk defined from these one-dimensional
partitions, according to Lemma 9.

• A graph describing the relation between neighbor-
ing cells in this two-dimensional partition, and the
lowest or highest nonempty cell in each column of
cells, suitable for use in Lemma 10.

• A sorted list of points in each partition set, sorted
by their x-coordinates.

• A data structure for maintaining the extreme
points for the product of ranks of each subset Sk,
through updates for which it is rigid, according to
Lemma 1.

Theorem 11 The data structure described above can
maintain the minimum or maximum product of ranks
in time O(

√
n log n) per update for the minimimum, or

the same time bound in expectation for the maximum.

Proof. By Lemma 9, each update causes changes to
subsets Sk of total size O(

√
n log n); by Lemma 3 and

Lemma 7, reconstructing the extreme-point data struc-
tures for these subsets takes the stated time per update.
After each update, we may use Lemma 10 to find a sub-
set of O(

√
n/ log n) subsets to query, use the binary

search trees to determine the offsets in rank for each of
these selected subsets, and then query the extreme point
within each subset in time O(log n) by Lemma 1. The
total time for these queries is again the stated time per
update. Maintaining the binary search trees and one-
dimensional partitions takes an amount of time that is
negligible with respect to this total time bound. �

204

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] Alok Aggarwal, Leonidas J. Guibas, James Saxe,
and Peter W. Shor. A linear-time algorithm for
computing the Voronoi diagram of a convex
polygon. Discrete & Computational Geometry,
4(6):591–604, 1989. doi:10.1007/BF02187749.

[2] Rainer Breitling, Patrick Armengaud, Anna
Amtmann, and Pawel Herzyk. Rank products: a
simple, yet powerful, new method to detect
differentially regulated genes in replicated
microarray experiments. FEBS Letters,
573(1-3):83–92, 2004.
doi:10.1016/j.febslet.2004.07.055.

[3] Kevin Q. Brown. Voronoi diagrams from convex
hulls. Information Processing Letters,
9(5):223–228, December 1979.
doi:10.1016/0020-0190(79)90074-7.

[4] L. Paul Chew. Building Voronoi diagrams for
convex polygons in linear expected time.
Technical Report PCS-TR90-147, Dartmouth
College Department of Mathematics and
Computer Science, 1990. URL:
https://www.cs.dartmouth.edu/~trdata/

reports/TR90-147.pdf.

[5] David P. Dobkin and David G. Kirkpatrick. A
linear algorithm for determining the separation of

convex polyhedra. Journal of Algorithms,
6(3):381–392, 1985.
doi:10.1016/0196-6774(85)90007-0.

[6] Cynthia Dwork, Ravi Kumar, Moni Naor, and
D. Sivakumar. Rank aggregation methods for the
web. In Proceedings of the 10th International
Conference on World Wide Web. ACM, 2001.
doi:10.1145/371920.372165.

[7] International Federation of Sport Climbing. Rules
2019, March 2019. URL:
https://www.ifsc-climbing.org/images/

World_Competitions/IFSC-Rules_2019_v192_

PUBLIC.pdf.

[8] Chao Li and A. Barreto. An integrated 3D
face-expression recognition approach. In
Proceedings of the International Conference on
Acoustics Speed and Signal Processing. IEEE,
2006. doi:10.1109/icassp.2006.1660858.

[9] K. Mehlhorn, St. Meiser, and C. Ó’Dúnlaing. On
the construction of abstract Voronoi diagrams.
Discrete & Computational Geometry,
6(3):211–224, 1991. doi:10.1007/BF02574686.

[10] Christian Zimmermann. Academic rankings with
RePEc. Econometrics, 1(3):249–280, December
2013. doi:10.3390/econometrics1030249.

205

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Closest-Pair Queries and Minimum-Weight Queries are Equivalent for
Squares

Abrar Kazi* Michiel Smid�

Abstract

Let S be a set of n weighted points in the plane and let
R be a query range in the plane. In the range closest
pair problem, we want to report the closest pair in the
set R ∩ S. In the range minimum weight problem, we
want to report the minimum weight of any point in the
set R ∩ S. We show that these two query problems are
equivalent for query ranges that are squares, for data
structures having Ω(log n) query times. As a result, we
obtain new data structures for range closest pair queries
with squares.

1 Introduction

Let S be a set of n points in the plane. In the range
closest pair problem, we want to store S in a data struc-
ture, such that for any axes-parallel query rectangle R,
the closest pair in the point set R ∩ S can be reported.
This problem has received considerable attention; see
[1, 2, 3, 6, 7, 9, 10, 11, 12]. The best known result is by
Xue et al. [12], who obtained a query time of O(log2 n)
using a data structure of size O(n log2 n). For the spe-
cial case when the query range R is a square (or, more
generally, a fat rectangle), Bae and Smid [2] showed that
a query time of O(log n) is possible, using O(n log n)
space.

Assume that each point p of S has a real weight
ω(p). In the range minimum weight problem, we want
to store S in a data structure, such that for any axes-
parallel query rectangle R, the minimum weight of any
point in R ∩ S can be reported. Using a standard
range tree of size O(n log n), such queries can be an-
swered in O(log2 n) time; see, e.g., de Berg et al. [5].
Chazelle [4] showed the following results for such queries
on a RAM: (i) for every ε > 0, O(log1+ε n) query time
using O(n) space, (ii) O(log n log log n) query time using
O(n log log n) space, and (iii) for every ε > 0, O(log n)
query time using O(n logε n) space. We are not aware
of better solutions for query squares.

*School of Computer Science, Carleton University, Ottawa,
Canada, AbrarKazi@cmail.carleton.ca. Research supported by
an NSERC Undergraduate Student Research Award.

�School of Computer Science, Carleton University, Ottawa,
Canada, michiel@scs.carleton.ca. Research supported by
NSERC.

1.1 Our Results

We show that the range closest pair problem and the
range minimum weight problem are equivalent for query
squares1, for data structures having Ω(log n) query
times. We say that a function f is smooth, if f(O(n)) =
O(f(n)). Our main results are as follows:

Theorem 1 Let M and Q be smooth functions such
that M(n) ≥ n and Q(n) = Ω(log n). Assume there
exists a data structure of size M(n) that answers a
range minimum weight query, for any query square, in
Q(n) time. Then there exists a data structure of size
O(M(n)) that answers a range closest pair query, for
any query square, in O(Q(n)) time.

Theorem 2 Let M and Q be smooth functions such
that M(n) ≥ n and Q(n) = Ω(log n). Assume there
exists a data structure of size M(n) that answers a range
closest pair query, for any query square, in Q(n) time.
Then there exists a data structure of size O(M(n)) that
answers a range minimum weight query, for any query
square, in O(Q(n)) time.

Theorem 1, together with the above mentioned results
of Chazelle, imply the following:

Corollary 3 Let S be a set of n points in the plane.
Range closest pair queries, for any query square, can be
answered

1. in O(log1+ε n) time using O(n) space,

2. in O(log n log log n) time using O(n log log n) space,

3. in O(log n) time using O(n logε n) space.

Observe that the third result in Corollary 3 improves
the space bound in Bae and Smid [2] from O(n log n) to
O(n logε n).

Our proofs of Theorems 1 and 2 are based on the ap-
proach of Bae and Smid [2] for range closest pair queries
with squares. Their solution uses data structures for
(i) deciding whether a query square contains at most c
points of S, for some fixed constant c, (ii) computing the
smallest square that has a query point as its bottom-left
corner and contains c′ points of S, for some fixed con-
stant c′, and (iii) range minimum weight queries with

1throughout this paper, squares are always axes-parallel

206

32nd Canadian Conference on Computational Geometry, 2020

squares. They showed that the queries in (i) and (ii) can
be answered inO(log n) time usingO(n log n) space. We
will improve the space bound for both these queries to
O(n).

If p is a point in the plane, then we denote its x- and
y-coordinates by px and py, respectively. The north-east
quadrant of p is defined as NE (p) = [px,∞) × [py,∞).
Similarly, the south-west quadrant of p is defined as
SW (p) = (−∞, px] × (−∞, py]. The Manhattan dis-
tance between two points p and q is given by d1(p, q) =
|px − qx| + |py − qy|. Observe that, for q ∈ NE (p),
d1(p, q) = (qx + qy)− (px + py).

Definition 1 Let S be a set of n points in the plane,
let c be an integer with 1 ≤ c ≤ n, and let p be a point
in the plane.

1. Assume that |NE (p)∩S| ≥ c. We define closestc(p)
to be the set of the c points in NE (p) ∩ S that are
closest (with respect to d1) to p.

2. Assume that |NE (p)∩S| < c. We define closestc(p)
to be NE (p) ∩ S.

The set closestc(p) can equivalently be described as
follows. Consider a line with slope −1 through p. We
move this line to the right until it has encountered c
points of NE (p) ∩ S or it has encountered all points in
NE (p) ∩ S, whichever occurs first. The set closestc(p)
is the subset of NE (p) ∩ S that are encountered during
this process.

We will see in Section 3 that data structures answer-
ing the queries in (i) and (ii) above in O(log n) time,
while using O(n) space, can be obtained from the fol-
lowing result:

Theorem 4 Let S be a set of n points in the plane and
let c be an integer with 1 ≤ c ≤ n. There exists a data
structure of size O(c2n) such that for any query point p,
the set closestc(p) can be computed in O(log n+c) time.

The proof of Theorem 4 will be given in Section 2.
In Section 4, we will reduce range closest pair queries
with squares, to range minimum weight queries, again
with squares, and the queries of Section 3. Finally, in
Section 5, we will present our reduction in the other
direction.

2 Answering closestc(p) Queries

In this section, we will prove Theorem 4. Throughout
this section, S denotes a set of n points in the plane and
c denotes an integer with 1 ≤ c ≤ n. We assume for
simplicity that no two points in S are (i) on a vertical
line, (ii) on a horizontal line, and (iii) on a line with
slope −1. We will use the notion of a staircase polygon,
as illustrated in Figure 1.

A B

C

A B

C

B

Figure 1: Staircase polygons.

p

L

Figure 2: Illustrating Observation 1. Each thick edge is
divided into two new edges.

Definition 2 (Staircase polygon) A staircase poly-
gon consists of (i) a horizontal edge AB, where A is to
the left of B, (ii) a vertical edge CB where C is below
B, and (iii) a polygonal path consisting of alternating
vertical and horizontal edges, where the leftmost edge is
vertical with top endpoint A and the rightmost edge is
horizontal with right endpoint C.

In the first two staircase polygons in Figure 1, the ver-
tices A, B, and C have finite x- and y-coordinates. In
the third staircase polygon, the vertex A can be thought
of having an x-coordinate of −∞ and the left-most edge
as being infinitely far off to the left. Similarly, the ver-
tex C has a y-coordinate of −∞ and the bottom-most
edge is infinitely far off in the downward direction. The
vertex B may have x- and y- coordinates of ∞. In par-
ticular, the entire plane is considered a staircase poly-
gon.

The following observation is illustrated in Figure 2.

Observation 1 Let P be a staircase polygon.

1. If L is a horizontal or vertical line that intersects
P , then L divides P into two staircase polygons,
P1 and P2. The total number of edges of P1 and
P2 (counting shared edges only once) is at most 3
more than the number of edges belonging to P .

207

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

2. Let p be a point in the interior of P . The boundary
of SW (p) divides P into two staircase polygons, P1

and P2. The total number of edges of P1 and P2

(counting shared edges only once) is at most 4 more
than the number of edges belonging to P .

2.1 Constructing the Data Structure

We order the points p in S by their px+py values and use
p(k) to denote the kth point in this ordering. Observe
that this is the order in which the points of S are visited
when moving a line with slope −1 from left to right.

We iteratively construct a subdivision of the plane
into staircase polygons. We will refer to each such poly-
gon as a cell. The 0th subdivision SD (0) consists of one
single cell, the plane itself.

In the kth iteration, we add the point p(k) to the
(k − 1)th subdivision SD (k−1): From the point p(k), we
extend a ray horizontally to the left until it has en-
countered c vertical edges of SD (k−1) or reaches −∞,
whichever occurs first. For i = 1, . . . , c − 1, the part
of the ray between the ith and (i + 1)th vertical edges

divides a cell of SD (k−1) into two cells. We also ex-
tend a ray from p(k) vertically downward until it has
encountered c horizontal edges of SD (k−1) or reaches
−∞, whichever occurs first. For i = 1, . . . , c − 1, the
part of the ray between the ith and (i+ 1)th horizontal

edges divides a cell of SD (k−1) into two cells. Finally,
the boundary of SW (p(k)) divides the cell of SD (k−1)

that contains p(k) into two cells. The resulting subdivi-
sion is SD (k). The entire construction is illustrated in
Figure 3.

1

2
3

4

5

6

7

1

2
3

4

5

6

7

1

2
3

4

5

6

7

1

2
3

4

5

6

7

1

2
3

4

5

6

7

1

2
3

4

5

6

7

1

2
3

4

5

6

7

1

2
3

4

5

6

7

Figure 3: Constructing the sequence of subdivisions for
n = 7 and c = 2.

The following lemma follows, by induction on k, from
Observation 1.

Lemma 5 For every k with 0 ≤ k ≤ n, every cell of
the subdivision SD (k) is a staircase polygon.

Consider the final subdivision SD (n). With each
cell C of this subdivision, we store the set Sc(C) :=
closestc(z), where z is the top-right vertex of C. Fi-
nally, we build a point location data structure for the
subdivision SD (n); see Kirkpatrick [8]. This completes
the description of the data structure.

Definition 3 Let C be a cell in SD (k). The north-
east closure of C, NEC (C), consists of its interior, the
topmost edge of C (without its leftmost point), and the
rightmost edge of C (without its lowest point).

For the query algorithm, consider a query point p.
We first locate p in the subdivision SD (n), and find the
(unique) cell C such that p ∈ NEC (C). The query
algorithm returns the set Sc(C).

The following lemma proves the correctness of this
query algorithm.

Lemma 6 For any query point p in the plane, let C be
the cell of SD (n) that is returned by the point location
query. Then Sc(C) = closestc(p).

A proof of Lemma 6 can be found in the Appendix.

2.2 Space Requirement and Query Time

We start by bounding the number of cells of the final
subdivision SD (n). Clearly, SD (0) consists of only one
cell. For each k, during the construction of the subdivi-
sion SD (k) from SD (k−1), at most 2c−1 cells are divided
into two new cells and, thus, the total number of cells
increases by at most 2c− 1. It follows that the number
of cells in SD (n) is at most 1 + n(2c− 1) = O(cn).

Each cell C of SD (n) stores a set Sc(C) of size at
most c. Therefore, the total size of all these sets Sc(C)
is O(c2n).

Next, we bound the number of edges of SD (n). The
initial subdivision DS (0) is the entire plane, which we re-
gard to be an infinite rectangle consisting of four edges.
By Lemma 5, each cell in each subdivision SD (k) is a
staircase polygon. Thus, by Observation 1, at most 4
new edges are added when such a cell is divided. There-
fore, the number of edges increases by at most 4(2c−1)

when constructing SD (k) from SD (k−1). Thus, the to-
tal number of edges in the final subdivision SD (n) is at
most 4 +n · 4(2c− 1) = O(cn). It follows that the point
location data structure uses O(cn) space.

We have shown that the space used by the entire data
structure is O(c2n).

208

32nd Canadian Conference on Computational Geometry, 2020

p

T (p)

p′

T (p′)

NNE(p)

NE(T (p))

x x

y y

Figure 4: T transforms NNE (p) into NE (T (p)).

The query algorithm, with query point p, first per-
forms point location, which takes O(log(cn)) = O(log n)
time, because c ≤ n. Reporting the set closestc(p) takes
O(c) time. Thus, the total query time is O(log n+ c).

This completes the proof of Theorem 4.

3 Some Related Queries

In this section, we use the data structure of Theorem 4
to solve several related query problems.

Definition 4 Let p be a point in the plane and consider
the line with slope 1 through p. This line divides NE (p)
into two cones, each one having an angle of 45◦. We
denote the upper cone by NNE (p) and the lower cone by
ENE (p).

Lemma 7 Let S be a set of n points in the plane and
let c be an integer with 1 ≤ c ≤ n. There exists a data
structure of size O(c2n) which can perform the following
query in O(log n+ c) time: Given a query point p, find
the smallest square that has p as its bottom-left corner
and contains c points of S.

Proof. Assume we know the set L1 consisting of the c
lowest points of NNE (p) ∩ S and the set L2 consisting
of the c leftmost points of ENE (p)∩S. Then we obtain
the answer to the query in O(c) time by selecting the cth

smallest element in the sequence d∞(p, q), q ∈ L1 ∪ L2,
where d∞(p, q) = max{|px − qx|, |py − qy|}.

We will describe how the data structure of Theorem 4
can be used to find the set L1 in O(log n + c) time.
Finding the set L2 can be done in a symmetric way.

Consider the transformation T that maps any point
q = (qx, qy) to the point T (q) = (qx, qy − qx). We com-
pute the set S′ = {T (q) : q ∈ S} and construct the data
structure of Theorem 4 for S′.

Observe that p′ ∈ NNE (p) if and only if T (p′) ∈
NE (T (p)); refer to Figure 4. Furthermore, if
p′ ∈ NNE (p), then d1(T (p), T (p′)) = d1((px, py −
px), (p′x, p

′
y−p′x)) = (p′x +(p′y−p′x))− (px +(py−px)) =

p′y − py. Thus, p′ is one of the c lowest points in
NNE (p) ∩ S if and only if T (p′) is one of the c points

in NE (T (p)) ∩ S′ that is closest (with respect to d1) to
T (p).

Thus, for a given query point p, by querying the data
structure for S′ with T (p), we obtain the set L1. By
Theorem 4, the amount of space used is O(c2n) and the
query time is O(log n+ c). �

Lemma 8 Let S be a set of n points in the plane and
let c be an integer with 0 ≤ c ≤ n − 1. There exists
a data structure of size O(c2n) which can perform the
following query in O(log n + c) time: Given a query
square R, decide whether |R ∩ S| ≤ c, and if so, report
the points of R ∩ S.

Proof. We store the set S in the data structure of
Lemma 7, with c replaced by c+ 1.

Let p be the bottom-left corner of the query square
R. By querying the data structure, we obtain the small-
est square R′ that has p as its bottom-left corner and
contains c + 1 points of S. It is clear that one of these
c + 1 points is on the top or right edge of R′; let this
point be p′.

If p′ 6∈ R then R is properly contained in R′ and, thus,
|R ∩ S| ≤ c. In this case, since R ∩ S ⊂ (R′ ∩ S), the
points of R ∩ S can be reported in O(c) time.

If p′ ∈ R then |R ∩ S| > c. This fact is reported. �

4 From Minimum Weight Queries to Closest-Pair
Queries

In this section, we prove Theorem 1. Let S be a set of
n points in the plane.

We assume that, for any set V of m weighted points in
the plane, we can construct a data structure DSMW (V)
that can report, for any query square R, the minimum
weight of any point in R∩ V . We denote the space and
query time of this data structure by M(m) and Q(m),
respectively. We assume that both functions M and Q
are smooth, M(m) ≥ m, and Q(m) = Ω(logm).

We will show that DSMW and the results from the
previous sections can be used to obtain a data structure
that supports range closest pair queries on S for ranges
that are squares.

Let R be a query square. Bae and Smid [2] have
shown that, in order to obtain the closest pair in R∩S,
the following steps are sufficient:

1. Decide if |R ∩ S| ≤ 16. If this is the case, report
the points in R ∩ S.

Thus, we store the points of S in the data structure
of Lemma 8, where c = 16. This uses O(n) space
and supports this query in O(log n) time.

2. Let p be the bottom-left corner of R. Find the
smallest square that has p as its bottom-left corner
and contains 5 points of S.

209

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Thus, we store the points of S in the data structure
of Lemma 7, where c = 5. This uses O(n) space and
supports this query in O(log n) time.

3. Three queries that are symmetric to 2., with p being
the bottom-right, top-right, and top-left corner of
R, respectively.

Thus, we store the points of S in each of these three
variants of the data structure of Lemma 7, where
c = 5. This uses O(n) space and supports these
three queries in O(log n) time.

4. During preprocessing, we obtain four subsets
S1, . . . , S4 of S; these subsets may overlap. For
each k = 1, 2, 3, 4, each point of Sk has a positive
weight.

To answer the closest pair query for R, the previous
three steps give four squares B1, . . . , B4. For each
k = 1, . . . , 4, we find the minimum weight of any
point in Bk ∩ Sk.

Thus, for each k = 1, . . . , 4, we store the weighted
point set Sk in the data structure DSMW (Sk).
Since Sk has size at most n, this uses O(M(n))
space and supports these four queries in O(Q(n))
time.

5. The previous four steps give four squares
C1, . . . , Ck, each containing at most 5 points of S.
For each k = 1, . . . , 4, we find the points of Ck ∩S.

Thus, we store the points of S in the data structure
of Lemma 8, where c = 5. This uses O(n) space and
supports this query in O(log n) time.

6. The results of the queries in these five steps give us
sufficient information to compute the closest pair
in R ∩ S in O(1) time.

To conclude, the total amount of space used is
O(M(n) + n) = O(M(n)) and the total query time is
O(Q(n) + log n) = O(Q(n)). This proves Theorem 1.

5 From Closest-Pair Queries to Minimum Weight
Queries

In this final section, we prove Theorem 2. Let S be a
set of n weighted points in the plane. For each point p
in S, we denote its weight by ω(p).

We assume that, for any set V of m points in the
plane, we can construct a data structure DSCP (V) that
can report, for any query square R, the closest pair in
R∩V . We denote the space and query time of this data
structure by M(m) and Q(m), respectively. We assume
that both functions M and Q are smooth, M(m) ≥ m,
and Q(m) = Ω(logm).

We will show that DSCP and the data structure of
Lemma 8 can be used to obtain a data structure that

supports range minimum weight queries on S for ranges
that are squares.

We may assume, without loss of generality, that all
weights ω(p) are positive, pairwise distinct, and strictly
less than 1. (If this is not the case, then we sort the se-
quence of weights, breaking ties arbitrarily, and replace
each weight by 1/(2n) times its position in the sorted
order.)

Let δ be the closest pair distance in the set S. For
each point p in S, define the points

p+ = (px + δ · ω(p)/3, py)

and
p− = (px − δ · ω(p)/3, py) ,

and let S′ = {p+ : p ∈ S} ∪ {p− : p ∈ S}.
Our data structure for minimum weight queries con-

sists of the following:

1. We store the points of S in the data structure of
Lemma 8, where c = 1.

2. We store the points of S ∪ S′ in the data structure
DSCP (S ∪ S′).

The query algorithm is as follows. Let R be a query
square. First, we decide whether |R ∩ S| ≤ 1. If this is
the case, then we obtain the setR∩S. If this set contains
one point, say p, then we return ω(p); otherwise, we
return the fact that R ∩ S is empty.

Assume that |R ∩ S| ≥ 2. Then we query DSCP (S ∪
S′) for the closest pair in R∩ (S∪S′). Let (p, a) be this
closest pair. In Lemma 11, we will prove that p ∈ R∩S
and a ∈ R ∩ {p+, p−}. We return ω(p).

Since |S| = n and |S′| = 2n, the total amount of space
used by the data structure is O(n)+M(3n) = O(M(n))
and the total query time is O(log n)+Q(3n) = O(Q(n)).

To complete the proof of Theorem 2, it remains to
prove the correctness of the query algorithm. We will
present this proof in the next subsection.

5.1 Correctness of the Query Algorithm

We denote the Euclidean distance between two points a
and b by d(a, b). We start with two preliminary lemmas.

Lemma 9 Let R be a square such that |R ∩ S| ≥ 2.
Then for each point p in R∩S, at least one of the points
p+ and p− is in R.

Proof. Let ` be the side length of R. The distance
between any two distinct points of R ∩ S is at least δ
and at most ` ·

√
2. It follows that δ ≤ ` ·

√
2.

Let p be an arbitrary point in R∩S. We may assume,
without loss of generality, that p is in the left half of R,
i.e., the distance between p and the right boundary of
R is at least `/2. Since ω(p) < 1,

d(p, p+) = δ · ω(p)/3 < δ/3 < `/2

210

32nd Canadian Conference on Computational Geometry, 2020

and, thus, the point p+ is in R. �

Lemma 10 Let p and q be two distinct points in S, and
let a ∈ {p+, p−} and b ∈ {q+, q−}. Then the following
inequalities hold:

1. Both d(p, a) and d(q, b) are less than δ/3.

2. d(p, q) ≥ δ.

3. Both d(p, b) and d(a, q) are larger than 2δ/3.

4. d(a, b) > δ/3.

Proof. Recall that the weights of all points in S are less
than 1. Since d(p, a) = δ · ω(p)/3 < δ/3 and d(q, b) =
δ ·ω(q)/3 < δ/3, the first claim holds. The second claim
follows from the definition of δ. The third claim holds
because

δ ≤ d(p, q) ≤ d(p, b) + d(b, q) < d(p, b) + δ/3

and

δ ≤ d(p, q) ≤ d(p, a) + d(a, q) < δ/3 + d(a, q).

The fourth claim holds because

δ ≤ d(p, q) ≤ d(p, a)+d(a, b)+d(b, q) < δ/3+d(a, b)+δ/3.

�

The next lemma states that the output of the query
in DSCP (S ∪ S′) consists of one point p in S and one
point in {p+, p−}.

Lemma 11 Let R be a square such that |R ∩ S| ≥ 2.
The closest pair distance in R ∩ (S ∪ S′) is attained by
a pair (p, a), for some p ∈ R ∩ S and a ∈ R ∩ {p+, p−}.

Proof. We consider the three possible cases, depending
on whether the closest pair distance in R ∩ (S ∪ S′) is
attained by two points of S (Case 1), two points of S′

(Case 2), or one point of S and one point of S′ (Case 3).
As we will see, neither of the first two cases can happen.

Case 1: The closest pair distance in R ∩ (S ∪ S′) is
attained by a pair (p, q), where p and q are distinct
points in R ∩ S.

By Lemma 9, there exist points a ∈ {p+, p−} and b ∈
{q+, q−}, such that both a and b are in R. Therefore,
the closest pair distance in R ∩ (S ∪ S′) is at most the
closest pair distance in {p, q, a, b}, which, by Lemma 10,
is less than d(p, q). This is a contradiction. Thus, this
case cannot happen.

Case 2: The closest pair distance in R ∩ (S ∪ S′) is
attained by a pair (a, b), where a and b are distinct
points in R ∩ S′.

Let p and q be the points in S such that a ∈ {p+, p−}
and b ∈ {q+, q−}. Note that p or q may be outside R.

First assume that p = q. Then, {a, b} = {p+, p−}
and, thus, p ∈ R. But then d(p, a) < d(a, b), which is a
contradiction.

Thus, p 6= q. By Lemma 10, d(a, b) > δ/3. Let r
be the point in R ∩ S whose weight is minimum. By
Lemma 9, there exists a point c ∈ {r+, r−}, such that
c is in R, and, by Lemma 10, d(r, c) < δ/3. It follows
that d(r, c) < d(a, b), which is a contradiction. Thus,
Case 2 cannot happen.

Case 3: The closest pair distance in R ∩ (S ∪ S′) is
attained by a pair (a, q), where a is a point in R ∩ S′
and q is a point in R ∩ S.

Let p be the point in S such that a ∈ {p+, p−}. The
claim in the lemma follows if we can show that p = q.

Assume that p 6= q. By Lemma 9, there exists a
point b ∈ {q+, q−}, such that b is in R. We obtain a
contradiction, because, by Lemma 10, d(q, b) < δ/3 and
d(a, q) > 2δ/3. �

The next lemma will complete the correctness proof
of our query algorithm.

Lemma 12 Let R be a square such that |R∩S| ≥ 2. Let
p be a point in R ∩ S and let a be a point in {p+, p−},
such that the closest pair distance in R ∩ (S ∪ S′) is
attained by (p, a). (By Lemma 11, p and a exist.) Then
the minimum weight of any point in R ∩ S is equal to
ω(p).

Proof. Let q be the point in R∩S whose weight is min-
imum. By Lemma 9, there exists a point b ∈ {q+, q−},
such that b is in R. If q 6= p, then

d(q, b) = δ · ω(q)/3 < δ · ω(p)/3 = d(p, a),

which is a contradiction. Thus, q = p. �

References

[1] M. A. Abam, P. Carmi, M. Farshi, and M. Smid.
On the power of the semi-separated pair decom-
position. Computational Geometry: Theory and
Applications, 46:631–639, 2013.

[2] S. W. Bae and M. Smid. Closest-pair queries in fat
rectangles. Computational Geometry: Theory and
Applications, 83:1–8, 2019.

[3] T. M. Chan, S. Rahul, and J. Xue. Range closest-
pair search in higher dimensions. In Proceedings of
the 16th Algorithms and Data Structures Sympo-
sium, volume 11646 of Lecture Notes in Computer
Science, pages 269–282. Springer, 2019.

[4] B. Chazelle. A functional approach to data struc-
tures and its use in multidimensional searching.
SIAM Journal on Computing, 17:427–462, 1988.

211

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[5] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, Berlin,
3rd edition, 2008.

[6] P. Gupta. Algorithms for range-aggregate query
problems involving geometric aggregation opera-
tions. In Proceedings of the 16th Annual Interna-
tional Symposium on Algorithms and Computation,
volume 3827 of Lecture Notes in Computer Science,
pages 892–901. Springer, 2005.

[7] P. Gupta, R. Janardan, Y. Kumar, and M. Smid.
Data structures for range-aggregate extent queries.
Computational Geometry: Theory and Applica-
tions, 47:329–347, 2014.

[8] D. Kirkpatrick. Optimal search in planar subdi-
visions. SIAM Journal on Computing, 12:28–35,
1983.

[9] J. Shan, D. Zhang, and B. Salzberg. On spatial-
range closest-pair query. In Proceedings of the 8th
International Symposium on Spatial and Temporal
Databases, volume 2750 of Lecture Notes in Com-
puter Science, pages 252–269. Springer, 2003.

[10] R. Sharathkumar and P. Gupta. Range-
aggregate proximity queries. Technical Report
IIIT/TR/2007/80, International Institute of Infor-
mation Technology Hyderabad, 2007.

[11] J. Xue, Y. Li, and R. Janardan. Approximate
range closest-pair search. In Proceedings of the 30th
Canadian Conference on Computational Geometry,
pages 282–287, 2018.

[12] J. Xue, Y. Li, S. Rahul, and R. Janardan. New
bounds for range closest-pair problems. In Proceed-
ings of the 34th International Symposium on Com-
putational Geometry, volume 99 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages
73:1–73:14, 2018.

Appendix

We state a few definitions and observations in prepara-
tion for proving Lemma 6. As in Section 2.1, S is a set
of n points ordered by their px + py values, p(k) is the
kth point in this ordering, and 1 ≤ c ≤ n.

Definition 5 S(k) is the set of the first k points of S,
that is, S(k) = {p(1), . . . , p(k)}. Note that S(n) = S.

Definition 6 For any cell C ∈ SD (k), the depth of that
cell is depth(C) = |NE (z) ∩ S(k)|, where z is the top-
right vertex of the cell.

1

0 0 0

1

12

0

1

12

23

0

1

1

2

2

2

3

4

0

1

1

2

2

3

3

5
2 1

0

2

2

3

3

4

4

6
1

1

1

2

0

2

3

4

4

5

5

7
2

1

2

3

2 1

1

Figure 5: Constructing the sequence of subdivisions for
n = 7 and c = 2, with the depth of each cell displayed
inside it.

The following observation is illustrated in Figure 5.

Observation 2 For all k with 0 ≤ k ≤ n, there is
exactly one cell of depth 0 in SD (k), and p(k) belongs
to the cell of depth 0 in SD (k−1). If L is a horizontal
or vertical ray starting at p(k) and moving left or down
respectively, the first c cells encountered by L in SD (k−1)

have depths of 0, 1, . . . , c − 1, and every cell afterwards
has a depth of at least c. In particular, if 1 ≤ c1 ≤ c−1,
the unique cell of depth c1 that intersects L will be split
into two cells of SD(k) by the part of the L between the
cth1 and (c1 + 1)th edges encountered.

Definition 7 Let p be a point in the plane.

1. Assume that |NE (p) ∩ S(k)| ≥ c. We define

closest (k)c (p) to be the set of the c points in NE (p)∩
S(k) that are closest (with respect to d1) to p.

212

32nd Canadian Conference on Computational Geometry, 2020

2. Assume that |NE (p) ∩ S(k)| < c. We define

closest (k)c (p) to be NE (p) ∩ S(k).

3. If C is a cell in SD (k), then S
(k)
c (C) := closest (k)c (z)

where z is the top-right vertex of C.

Observation 3 If p is any point in the plane and

p(i), p(j) ∈ NE(p), where i < j, then since p
(i)
x + p

(i)
y <

p
(j)
x + p

(j)
y , we have d1(p, p(i)) < d1(p, p(j)). Thus, the

set of c points closest to p in S(k) ∩ NE(p) in the

definition of closest (k)c (p) is the same as the set of c
points of lowest order in S(k) ∩ NE(p). It also fol-
lows that if NE (p1) ∩ S(k1) = NE (p2) ∩ S(k2), then

closest (k1)
c (p1) = closest (k2)

c (p2)

Lemma 13 Let k be any integer with 0 ≤ k ≤ n and
let p1 and p2 be any points in the plane which belong
to the northeast closure of the same cell in SD (k), and
|S(k−1) ∩NE (p1)| < c. Then p(k) ∈ NE (p1) if and only
if p(k) ∈ NE (p2).

Proof. Note that p1 and p2 must have belonged to the
northeast closure of the same cell in SD (k−1), so there
exists a cell C ∈ SD (k−1) such that p1, p2 ∈ NEC (C).
Let z be the top-right vertex of C. Then since NE (z) ⊆
NE (p1), we have S(k−1) ∩NE (z) ⊆ S(k−1) ∩NE (p1), so
depth(C) = |S(k−1) ∩NE (z)| < c.

We prove that p(k) ∈ NE (p1) implies p(k) ∈ NE (p2).
The converse is symmetric.

Let p(k) ∈ NE (p1) and suppose p(k) /∈ NE (p2).
If depth(C) = 0, then since p1 ∈ SW (p(k)) and p2 /∈

SW (p(k)), p1 and p2 will be in the northeast closure

of different cells in SD (k), contradicting the fact that
p1, p2 ∈ NEC (C).

Now suppose 1 ≤ depth(C) ≤ c − 1. Since p(k) /∈
NE (p2), p(k) is strictly below or strictly to the left of p2;
without loss of generality, we assume the former. Since
p(k) ∈ NE (p1), p(k) is above or at the same height as
p1. Thus, the horizontal ray starting at p(k) and moving
left will encounter C, and since 1 ≤ depth(C) ≤ c − 1,
by Observation 2, C will be split into two new cells
of SD (k). p1 will be in the northeast closure of the
lower cell and p2 will be in the northeast closure of the
upper cell, again contradicting the fact that p1, p2 ∈
NEC (C). �

The following lemma implies Lemma 6 when k = n.

Lemma 14 For any k with 0 ≤ k ≤ n and for any
point p in the plane, let C be the cell of SD(k) such that

p ∈ NEC (C). Then S
(k)
c (C) = closest (k)c (p).

Proof. We use induction on k.
When k = 0, S(0) = ∅, so the claim clearly holds.

Now let k ≥ 1 and suppose that for all points p, if

p ∈ NEC (C) where C ∈ SD (k−1), then S
(k−1)
c (C) =

closest (k−1)c (p). Let p be any point in the plane, let

C be the cell in SD (k) such that p ∈ NEC (C), and
let z be the top-right vertex of C. We must show

closest (k)c (z) = S
(k)
c (C) = closest (k)c (p). Note that

z ∈ NEC (C) and so p and z must have belonged to the

northeast closure of the same cell in SD (k−1). Thus, by
hypothesis, closest (k−1)c (p) = closest (k−1)c (z).

We consider two cases based on the cardinality of
S(k−1) ∩NE (p)

For the first case, suppose |S(k−1) ∩NE (p)| ≥ c.
Then closest (k−1)c (p) = {p(i1), . . . , p(ic)} =

closest (k−1)c (z). If p(k) /∈ NE (p), then S(k) ∩ NE (p) =

S(k−1) ∩ NE (p), so closest (k)c (p) = closest (k−1)c (p). If
p(k) ∈ NE (p), then since i1, . . . , ic < k, p(i1), . . . , p(ic)

are still the c points of lowest order in S(k) ∩NE (p), so

again, closest (k)c (p) = closest (k−1)c (p). Similarly, it can

be shown that closest (k)c (z) = closest (k−1)c (z). Thus,

closest (k)c (p) = closest (k−1)c (p) = closest (k−1)c (z) =

closest (k)c (z).
For the second case, suppose |S(k−1) ∩NE (p)| < c.
Since p and z belong to the northeast closure of the

same cell in SD (k), by Lemma 13, p(k) ∈ NE (p) if and
only if p(k) ∈ NE (z). If p(k) ∈ NE (p), then p(k) ∈
NE (z) and so {p(k)}∩NE (p) = {p(k)} = {p(k)}∩NE (z).
If p(k) /∈ NE (p), then p(k) /∈ NE (z) and so {p(k)} ∩
NE (p) = ∅ = {p(k)} ∩ NE (z). Thus, {p(k)} ∩ NE (p) =
{p(k)} ∩NE (z).

Now since |S(k−1) ∩ NE (p)| < c, closest (k−1)c (p) =

S(k−1)∩NE (p). Since closest (k−1)c (p) = closest (k−1)c (z),

|closest (k−1)c (z)| < c so it must be that |S(k−1) ∩
NE (z)| < c and closest (k−1)c (z) = S(k−1)∩NE (z). Then
S(k) ∩ NE (p) = (S(k−1) ∩ NE (p)) ∪ ({p(k)} ∩ NE (p)) =

(closest (k−1)c (p))∪({p(k)}∩NE (p)) = (closest (k−1)c (z))∪
({p(k)}∩NE (z)) = (S(k−1)∩NE (z))∪({p(k)}∩NE (z)) =

S(k) ∩ NE (z). Thus, by Observation 3, closest (k)c (p) =

closest (k)c (z). �

213

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Parallel Topological Sweep

Ming Ouyang*

Abstract

On input of a line arrangement, topological sweep out-
puts the line intersections in a topological order. The
intersection of two lines is ready if all intersections to the
left on these two lines have been processed. The classi-
cal algorithm processes the ready intersections one at a
time. This article describes the first attempt to process
the ready intersections in parallel. It is proved that, at
the beginning of the sweep of a random arrangement,
the expected number of ready intersections is a constant
fraction of the number of lines. After the first batch, em-
pirical data show that many intersections become ready
batch after batch. Two new implementations are de-
scribed. On arrangements of 300,000 lines, a new se-
rial implementation is 3.92 times the speed of a serial
implementation in the literature, and the first parallel
implementation is 4.2 times the speed of the new one.

1 Introduction

Topological sweep [3] is a classical algorithm in com-
putational geometry. The input is an arrangement of
n lines in the plane. The intersection of two lines is a
vertex. An arrangement is simple if any two lines in-
tersect at a vertex, but no three do so. The algorithm
sweeps the arrangement — reporting the vertices — us-
ing O(n2) time, which is asymptotically optimal. It is
used in efficient algorithms for applications, such as data
depth [4, 5, 7, 8, 9]. The algorithm is implemented in
C by Rosenberger [3, 12] and in C++ using the LEDA
library by Miller et al. [8]. It is extended to handle
non-simple arrangements by Rafalin et al. [11] — they
implement the extended method in C++ without using
any standard libraries. The algorithm and implementa-
tions are serial in nature. Parallel topological sweep is
needed for two reasons. First, in the past five decades,
the performance of computers has more or less doubled
every 18 months. This so-called Moore’s Law, however,
is showing signs of plateauing. Second, experimental
scientists, enabled by technology, are collecting more
and larger data sets than ever. Analysis of large data
sets, such as finding the Tukey median [8], is difficult
without parallelization. The author is unaware of any
prior attempt at parallelizing topological sweep.

Section 2 reviews the line-point duality and the clas-

*Department of Computer Science, UMass Boston

sical algorithm. Section 3 examines how to parallelize
it. Section 4 studies the expected concurrency in ran-
dom arrangements. It is proved that Ω(n) intersections
are ready at the beginning of the sweep. Empirical data
show that, on average, a constant fraction of the lines
are engaged in ready pairs throughout the sweep. Sec-
tion 5 describes a new serial implementation in C and
the first parallel implementation in C and OpenMP. The
new serial code is 3.92 times the speed of the Rafalin
code [11]. The parallel code is 4.2 times the speed of
the new serial code and more than 16 times that of the
Rafalin code. Section 6 concludes with discussion.

2 Serial Topological Sweep

The description of the classical algorithm is expanded
beyond that of [3] to include the dual space of point ar-
rangement, which makes easy a proof in Section 4. Let
A be a simple arrangement of n lines. As in [3], it is
assumed that none of the lines is vertical. Some appli-
cations, such as data depth [5, 8], need to process the
vertices of A in some order. They require that the ver-
tices on the same line be listed monotonically — vertices
on different lines may come in any order. Topological
sweep produces such a topological sort of the vertices.

The line-point duality maps a line y = c1x + c0
to the point (c1, c0), and a point (c1, c0) to the line
y = −c1x + c0. Fig. 1(a) shows two lines and their
intersection. Fig. 1(b) is the dual arrangement. The du-
ality preserves incidence — the dual line of the intersec-
tion point is incident upon the dual points of the lines.
Sweeping a line can be construed as walking along its
upper and lower sides to detect whether the line comes
to an intersection as the upper or lower line. Fig. 1(c)
shows walking the lines of Fig. 1(a) from left to right.
For the upper line, y = −4x − 3, its lower sidewalk is
blocked by the lower line, but its upper sidewalk over-
passes the intersection and continues to the right. For
the lower line, y = −x+2, its upper sidewalk is blocked
by the upper line, but its lower sidewalk underpasses
the intersection and continues to the right. The duals
of the upper and lower sidewalks are, metaphorically,
the left and right halves, respectively, of the dual point.
Imagine the dual point as a clock. The dual of the upper
sidewalk — moving from negative infinity to infinity —
is a hand, the lower hand, that rotates from six o’clock
to twelve o’clock, whereas the dual of the lower side-
walk is the upper hand that rotates from twelve o’clock

214

32nd Canadian Conference on Computational Geometry, 2020

y = -4 x - 3

y = -x + 2

(-5/3, 11/3)

(a) y = −4x−3 and y = −x+2
intersect at (−5/3, 11/3).

(-1, 2)

(-4, -3)

y = (5x + 11) / 3

(b) y = (5x+ 11)/3 is incident on
(−4,−3) and (−1, 2).

walk the lines from left to right

y = -4 x - 3

y = -x + 2

(c) Walk the lower side of
y = −4x − 3 and the upper
side of y = −x+ 2.

(-1, 2)

(-4, -3)

rotate upper and lower

hands clockwise

(d) Rotate upper hand of
(−4,−3) and lower hand of
(−1, 2) clockwise.

Figure 1: Line-point duality.

to six o’clock. During such a rotation, a hand must
make a stop and point at any other point. When the
upper hand of one point lines up with the lower hand of
another point, the two hands merge and form the line
dual of the primal vertex. As shown in Fig. 1(d), the
upper hand of (−4,−3) rotates from twelve o’clock until
it points at (−1, 2). The lower hand of (−1, 2) rotates
from six o’clock until it points at (−4,−3). Not shown
in Fig. 1(d), both the lower hand of (−4,−3) and the
upper hand of (−1, 2) make a half-circle rotation.

The lines in the arrangement are sorted by their
slopes. A topological sweep line — a cut — is monotonic
in the y-direction, intersects each of the n lines once,
and does not pass through any vertices. Fig. 2(a) shows
the first cut of an arrangement of five lines, L1, . . . , L5.
The first cut walks the lines from left to right and stops
before the vertices. An array, cut[], stores the order of
the lines along the cut. Initially, cut[1] is L1, cut[2]
is L2, and so on. When the cut advances over a ver-
tex, the two intersecting lines, which must have been
adjacent in the cut, will swap their places.

The upper and lower horizon trees — UHT and LHT
— are the main data structures. The solid lines in
Fig. 2(b) and (c) are the initial UHT and LHT, respec-
tively. The exposition of [3] illustrates the algorithm
with the UHT. This article uses the LHT. When two
lines meet in the LHT, the upper line has higher prece-
dence — it continues to the right and blocks the lower
line from proceeding. The precedence in the UHT is
reversed. The trees are stored in two arrays, uht[] and
lht[], where each element is the entity that blocks the
line from proceeding. For example, in the LHT, L2, L3,
and L4 are blocked by L1. Each line Li has two obsta-

the initial cut

L1
L2

L3

L4

L5

(a) The initial cut.

L1
L2

L3

L4

L5

(b) Solid lines: initial UHT.

L1
L2

L3

L4

L5

(c) Solid lines: initial LHT.

L1
L2

L3

L4

L5

(d) Set-intersection of horizon
trees.

L1
L2

L3

L4

L5

new cut

(e) Processing (L4, L5) and up-
dating the UHT.

L1
L2

L3

L4

L5

new cut

(f) Processing (L4, L5) and up-
dating the LHT.

Figure 2: An arrangement of five lines.

cles, uht[i] and lht[i]. The obstacle that is closer to
the cut is stored in closer[i]. This array closer[]

is a succinct representation of the set-intersection of
the UHT and LHT (Fig. 2(d)). The crucial observa-
tion is that, when closer[cut[i]] is cut[i+1] and
closer[cut[i+1]] is cut[i], the intersection of cut[i]
and cut[i+1] is ready for the sweep line to cross. In
Fig. 2(d), (L1, L2) is a ready pair, so is (L4, L5). Table 1
lists the initial values of the data structures. These data
structures are simplified from those in [3], which store
both the left and right endpoints of the UHT and LHT.
Herein only the right endpoints are kept. The simplified
version is sufficient to produce a topological sort of the
vertices and conducive to fast implementation.

The ready pairs are stored in an array ready[]. A
pair is represented by the rank in the cut of its first
member. In Table 1, ready[1] is 1 and ready[2] is
4. During the sweep, one ready pair is removed from
ready[], and up to two new pairs may be added back
to it. This array ready[] can be managed either as a
queue or a stack, because the pairs can be processed in
any order. Herein lies the source of concurrency.

The upper and lower horizon trees correspond to the

215

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Table 1: The initial data structures for the arrangement
in Fig. 2

i cut[i] uht[i] lht[i] closer[i]

1 1 2 ∞ 2 ready
2 2 5 1 1
3 3 5 1 5
4 4 5 1 5 ready
5 5 ∞ 4 4

lower and upper sidewalks, respectively, which in turn
correspond to the upper and lower hands, respectively,
in the dual space. For example, in the LHT, L1 goes
all the way to the right, so its lower hand in the dual
space rotates nonstop from six o’clock to twelve o’clock.
The lower hands of L2, L3, and L4 stop at the dual
of L1, and that of L5 stops at the dual of L4. This
correspondence will be used in Section 4.

1 l h t [1] = ∞ // i n i t i a l i z e LHT
with L1

2 for i from 2 to n // in s e r t Li in to LHT
3 j = cut [i − 1]
4 currentX = ∞
5 memo = ∞
6 while (j ≥ 1 and j <∞) // traverse the bay
7 nextX = x−coord o f i n t e r s e c t i o n o f Li , Lj

8 i f (nextX < currentX)
9 currentX = nextX

10 memo = j
11 j = l h t [j] //new Lj b locks o ld Lj

12 else
13 break //break out the whi le loop
14 l h t [i] = memo

Listing 1: Pseudo-code of constructing the initial LHT

Listing 1 is the pseudo-code for constructing the ini-
tial LHT, which is initialized with L1 by setting lht[1]

to infinity. The major step is the clockwise traversal of
the bay. Consider the scenario when L3 enters the scene
after L1 and L2 are already in place (Fig. 2(c)). The bay
here consists of, clockwise, L2 and L1 — see Fig. 3(a) for
a more complicated example, where Bay3 consists of L5,
L4, L3, and L1. The while loop on lines 6–13 performs
the bay traversal and finds the next intersection of L3,
which is with L1. Before L3 is inserted, the bay consists
of L2 and L1. After L3 is inserted, L2 drops below the
horizon, and the bay consists of L3 and L1. L2 is no
longer visible to subsequent Lj ’s. The same situation
of dropping below the horizon happens to L3 after L4

is inserted. The time of constructing the LHT is O(n)
because the while loop will iterate at most 3(n − 1)
times, accounted for in three categories. First, there is
one iteration per Li as the first iteration of the loop, for
n − 1 iterations in total. Second, there is one iteration
every time when the if condition (line 8) is true, for at
most n − 1 iterations in total. When this happens, a
previous line drops below the horizon. This can happen
at most once for every line. Third, there is one iteration
every time when the if condition (line 8) is false, for at
most n− 1 iterations in total. When this happens, the
loop terminates via the break statement.

When the cut advances beyond a ready pair, the al-
gorithm needs to update the horizon trees. This is il-
lustrated with the ready pair (L4, L5) in Fig. 2(d). The
new UHT is shown in Fig. 2(e). The right endpoint of
L5 remains the same. As for L4, the bay beyond L5

is empty, so uht[4] is set to infinity. The new LHT is
shown in Fig. 2(f). The right endpoint of L4 remains
the same. As for L5, the bay beyond L4 — consisting of
L1 and L3 — becomes visible. Thus, L5 has to traverse
the bay clockwise to find its new endpoint. Listing 2
is the pseudo-code for updating the LHT. The second
member of the pair — the lower line — is designated as
Li. The bay traversal is performed by the while loop
on lines 7–15. This traversal is similar to the one in the
initial construction of the LHT. The complication is the
if statement on lines 10–12. When the if condition is
true, Lj is located to the right of the cut, and its inter-
section with Li is duly considered. When it is false, the
intersection of Li and Lj is to the left of the cut and
has already been processed, so the if statement has no
else part. After the UHT and LHT are updated, the
intersecting lines swap their places in the array cut[]

and may be engaged in up to two new ready pairs.

1 //update LHT for ready pair (cut [r] , cut [r+1])
2 i = cut [r + 1]
3 memo = ∞
4 i f (r − 1 ≥ 1)
5 j = cut [r − 1]
6 currentX = ∞
7 while (j ≥ 1 and j <∞) // traverse the bay
8 nextX = x−coord o f i n t e r s e c t i o n o f Li , Lj

9 i f (nextX < currentX)
10 i f (nextX i s to the r i g h t o f the cut)
11 currentX = nextX
12 memo = j
13 j = l h t [j]
14 else
15 break //break out the whi le loop
16 l h t [i] = memo

Listing 2: Pseudo-code of updating the LHT

The time for processing one ready pair is O(n). The
total time for the complete sweep would be O(n3) but is
only O(n2) via amortized analysis. Recall that the lines
in the arrangement are sorted by increasing slopes. Li
will participate in n− i pairs as the upper line and will
perform traversal of the UHT. It will participate in i−1
pairs as the lower line and will perform traversal of the
LHT. Consider a fixed Li. Aggregating over all of the
bay traversals of the UHT and LHT, the while loops
will iterate at most 3(n − 1) times in total. Thus, the
time for processing the intersections on one line is O(n),
for a total time of O(n2) for the sweep.

3 Parallel Topological Sweep

Multiple ready pairs can be processed in parallel. The
task is to keep the horizon trees consistent. Fig. 3(a)
is an LHT with three ready pairs: (L1, L2), (L4, L5),
and (L6, L7). Recall that in updating the LHT, the

216

32nd Canadian Conference on Computational Geometry, 2020

right endpoints of the upper lines — L1, L4, and L6

— remain unchanged. The lower lines need to traverse
the bays beyond their partners to find new endpoints.
When L2 crosses beyond L1, it will proceed to infinity.
When L5 crosses beyond L4, it will meet L3. Even if
L3 is absent from the arrangement, L5 can not inter-
cept L2 before L2 intersects with L1. Otherwise, L2

would not be a ready partner with L1. Similarly, when
L7 crosses beyond L6, it can not intercept L5 nor L2.
Thus, the lines coming from below — L2, L5, and L7

— may simultaneously traverse their bays for new in-
tersections. These simultaneous traversals entail con-
current read of lht[] by multiple processors, which is
innocuous. What is critical is that after a processor has
finished its traversal, it must hold off updating its local
region of lht[] until all traversals are done. Otherwise,
there will be a race condition, as illustrated in the fol-
lowing scenario. Assume that L5 finishes its traversal
of Bay2 and updates lht[5] to L3 right away. At that
moment, if L7 has already moved from L5 to L4, no
harm is done. If, however, lht[5] is overwritten be-
fore L7 finishes with L5, then L7 will follow the new
lht[5] to L3 rather than L4. This would break the al-
gorithm. Thus, the processors must synchronize before
they write to lht[]. When they do write, they write to
different parts of lht[] — there is no risk of concurrent
write. Note that if (L6, L7) is sequentially processed af-
ter (L4, L5), then L7 will visit only L4 and L3. With
parallel processing, L7 will visit L5 in addition to L4

and L3. This is a source of parallel overhead.

1 parFor r from 1 to numReady private (memoL,memoU)
2 //ready pair (cut [ready [r]] , cut [ready [r]+1])
3 memoL = new endpoint o f L { cut [ready [r]+1]} in LHT
4 memoU = new endpoint o f L { cut [ready [r]] } in UHT
5 synchronize
6 l h t [cut [ready [r] + 1]] = memoL
7 uht [cut [ready [r]]] = memoU
8 //update c l o s e r [ready [r]] & c l o s e r [ready [r]+1]
9 //swap cut [ready [r]] and cut [ready [r]+1]

10 synchronize
11 // f ind new ready pairs ; update ready & numReady

Listing 3: Pseudo-code of parallel topological sweep

Let the variable numReady be the number of ready
pairs stored in the array ready[1..numReady]. List-
ing 3 describes how to process all ready pairs in paral-
lel. The parFor loop on line 1 is executed by numReady

processors simultaneously. Each processor works on one
pair. The clause private() on line 1 reserves two pri-
vate variables for every processor that can be read and
written without contention with other processors. The
imperative synchronize on lines 5 and 10 stipulates
that all processors must finish the proceeding steps be-
fore any of them proceed further. At line 11, each pro-
cessor looks above and below to see if its two lines will
be engaged in new ready pairs. Care must be taken
that a new pair is identified exactly once. For exam-
ple, assume two processors work on two adjacent pairs
(Lcut[i], Lcut[i+1]) and (Lcut[i+2], Lcut[i+3]). If Lcut[i] and

Bay1

Bay2

Bay3

L1
L2

L3

cut

L4

L5

L6
L7

(a) Parallel processing of
ready pairs.

P_i

P_i+1

width 4/n

height

 1/2

(b) A pair of ready points in
the dual arrangement.

Figure 3: Parallel processing of ready pairs.

Lcut[i+3], which will have become Lcut[i+1] and Lcut[i+2],
form a new pair, only one processor should add it to
ready[]. After peeking at each other’s data, the first
processor leaves this task to the second processor. Fur-
thermore, the new ready pairs must be collated and
saved consecutively at the front of ready[]. Because
there may be zero, one, or two new pairs per existing
one, the processors do not know in advance where to
write in the array ready[]. This can be solved with
prefix sum. For example, let this sequence [1 0 1 0 1
0] be the numbers of new pairs found by six processors.
The exclusive prefix sum of this sequence is [0 1 1 2 2
3], which can be computed in dlog2 6e steps using the
parallel prefix sum algorithm [6]. Adding one to the
exclusive prefix sum, the sequence [1 2 2 3 3 4] is the
locations in the array ready[] where the processors can
write down their ready pairs in parallel.

The computation in Listing 3 constitutes one stage
of parallel topological sweep that processes one batch
of ready pairs and produces the next batch. The algo-
rithm repeats stage after stage until all

(
n
2

)
pairs are pro-

cessed. Although parallelization incurs some overhead,
the overall time remains O(n2) if the parallel compu-
tation is serialized. Parallelization does not change the
observation that the while loops for bay traversals will
iterate at most 3(n− 1) times on behalf of each line.

4 Expected Concurrency

This section studies the expected number of ready pairs
at the first stage. The lines are generated via the dual.
The dual points are uniformly distributed in the interior
of the unit circle, excluding the origin. For each point,
its polar angle is a uniform random number between 0
and 2π. Its distance to the origin is the square root of
a uniform random number in the open interval (0, 1).
Square root is taken because the area is proportional to
the square of the distance. The polar coordinates are
converted to the Cartesian coordinates, which become
the coefficients of the lines in the primal arrangement.

217

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

This section, however, works with the dual.
Let x1, . . . , xn be the sorted x-coordinates of the

points P1, . . . , Pn. The xi’s are distinct because iden-
tical ones would result in parallel lines in the primal
arrangement, which is assumed to be simple. The n
vertical lines, x = xi, shred the unit circle into n+1 ver-
tical strips. At least dn/2e strips have widths less than
4/n. Otherwise, the strips would be wider than the unit
circle. Fig. 3(b) shows such a strip. Recall that walk-
ing a line from left to right corresponds to rotating two
hands around the dual point. The UHT corresponds to
the upper hands that start at twelve o’clock. The LHT
corresponds to the lower hands that start at six o’clock.
They rotate clockwise and stop at other points. The set-
intersection of the UHT and LHT is to take the smaller
rotation of the two hands. For example, if the upper
hand has rotated to two o’clock and the lower hand to
seven o’clock, the smaller rotation is π/6. In Fig. 3(b),
if the duals of Pi and Pi+1 form a ready pair at the first
stage, their four hands have the following configuration.
First, the upper hand of Pi has rotated to Pi+1, and the
antipodal image of its lower hand has rotated beyond
Pi+1. Second, the lower hand of Pi+1 has rotated to Pi,
and the antipodal image of its upper hand has rotated
beyond Pi. If the pair is not ready, at least one of their
hands has stopped at a third point that resides in one
of the shaded pies below Pi and above Pi+1.

Lemma 1 Assume Pi and Pi+1 are in the bottom and
top quarters, respectively, of their vertical lines. If the
strip between Pi and Pi+1 has a width less than 4/n, the
area of the shaded pie above Pi+1 is at most 1/n. So is
the area of the shaded pie below Pi.

Proof. When Pi+1 is in the top quarter of its vertical
line, the length of the vertical side of the shaded pie
above Pi+1 is at most 1/2. The horizontal span of the
arc is at most the width of the strip, 4/n. Thus, the pie
fits inside the right-angled triangle with an area of 1/n.
So is the pie below Pi. �

Let Xi, i = 1, . . . , n− 1, be the indicator that the duals
of Pi and Pi+1 are a ready pair. Let X be the random
variable of the number of ready pairs at the first stage.

Theorem 2 If the n dual points are uniformly dis-
tributed in the unit circle, the expected number of ready
pairs at the first stage is Ω(n).

Proof. The probability Pi and Pi+1 are in the bottom
and top quarters, respectively, of their vertical lines is
1/4 · 1/4 = 1/16. If the strip has a width less than
4/n, the probability a point is in a shaded pie below
Pi or above Pi+1 is less than (2/n)/π = 2/(πn). The
probability the duals of Pi and Pi+1 are a ready pair is

Pr(Xi = 1) ≥ 1

16

(
1− 2

πn

)n−2

.

Although at least dn/2e strips have widths less than
4/n, the leftmost and rightmost strips must be excluded.
Both of them are demarcated by only one point.

E(X) =
n−1∑

i=1

E(Xi)

≥
(⌈

n

2

⌉
− 2

)
1

16

(
1− 2

πn

)n−2

=

(⌈
n

2

⌉
− 2

)
1

16
exp

(
(n− 2) · ln

(
1− 2

πn

))

≥
(⌈

n

2

⌉
− 2

)
1

16
exp

(
(n− 2)

−2
πn

1 + −2
πn

)

≥
(n

2
− 2
) 1

16
exp

(
− 2n− 4

πn− 2

)

≥
(n

2
− 2
) 1

16e

�

By the theorem, the expected number of ready pairs
is at least 0.01n. Empirical data suggest there are more
than that. Fig. 4(a) shows the boxplots of the num-
bers of ready pairs at the first stage for n from 10,000
to 200,000. For each n, 100 random arrangements are
generated, and their ready pairs at the first stage are
counted. In the boxplots, the numbers of pairs are di-
vided by n and become fractions. The central mark of
a box indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles,
respectively. The medians are at least 0.297n for all n.

The author does not know the expected number of
ready pairs after the first stage. Fig. 4(b) shows the
boxplots of the average numbers of ready pairs per stage
for n from 20,000 to 400,000. For each n, ten random
arrangements are generated. For each arrangement, the
number

(
n
2

)
is divided by the number of stages, resulting

in the average number of ready pairs per stage, which is
then divided by n and becomes a fraction. The medians
are at least 0.153n. If the expected number of ready
pairs per stage is Ω(n), parallel topological sweep will
run in O(n) time using bn/2c processors. Empirical data
suggest that there are 3.3n stages on average.

5 Implementations

There are three implementations in the literature. The
Rosenberger code [3, 12] is difficult to locate. The Miller
code [8] has a broken URL. The Rafalin code [11] is
downloaded from the Tufts University website [10]. It
is slightly revised and brought up to the latest lan-
guage standard. Two new implementations are devel-
oped. A new serial code is implemented in C. The
first parallel code is implemented in C and OpenMP.
The two new implementations are available on GitHub,

218

32nd Canadian Conference on Computational Geometry, 2020

github.com/mingouyang/parTopoSwp. The code is
compiled with the Intel C compiler (icc and icpc

19.0.5.281) with the optimization flags -O3 -xHost

-ipo. The computation is performed on a CentOS 7
server with two Intel Xeon 6150 Skylake 2.70 GHz 18-
core CPUs and 384GB DDR4 2,666 MHz RAM.

Fig. 4(c) compares the performance of the three im-
plementations. For each implementation at each value
of n, the average runtime of ten random arrangements
is plotted. The Rafalin code solves n = 100, 000 in 692.2
second. The new serial code solves n = 200, 000 in 742.8
second. On average, the new serial code is 3.92 times
faster than the Rafalin code. The parallel code is exe-
cuted with 64 OpenMP threads. It solves n = 400, 000
in 678.3 second. It is more than 16 times faster than
the Rafalin code for large n.

Fig. 4(d) shows the speedup curve of the parallel code
using 2, 4, 8, 16, 32, and 64 threads when n is fixed at
300,000. The baseline is the new serial code — it uses
one thread. Speedup is calculated as the serial runtime
divided by the parallel runtime. When the number of
threads is two and four, the parallel code runs slower
than the serial code. This comes from the parallel over-
head described in Section 3 as well as the penalty of
thread synchronization. At each synchronization point,
some threads will be waiting for the others to finish
their work. Their idling is another form of parallel over-
head. With 64 threads, the parallel code is 4.2 times
faster than the serial code. The server has 36 physi-
cal cores. The hyper-threading technology of Intel al-
lows two threads to share a physical core. Thus, the
hardware may support up to 72 threads. When sharing
cores, however, the threads rarely run as fast as when
each thread occupies a physical core exclusively. It is
likely that if there are 64 physical cores, the parallel
code may reach higher performance.

6 Discussion

Topological sweep [3] is a building block of some efficient
algorithms. The present work is the first to parallelize
it. The classical algorithm processes the ready pairs one
at a time. Herein it is shown that ready pairs can be
processed in parallel. For random arrangements, it is
proved that the expected number of ready pairs at the
beginning is Ω(n). Empirical data suggest that the av-
erage number of ready pairs for the rest of the parallel
stages is also Ω(n). If this is proved, topological sweep
can be done in expected linear time using bn/2c proces-
sors. Arrangements that constrict concurrency can be
constructed. The number of parallel stages is the max-
imal monotone path length, which is Ω(n2−o(1)) [1, 2].

Three implementations are compared. The code by
Rafalin et al. [11] is designed to handle degenerate ar-
rangements. A new serial code for simple arrangements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n / 10
4

0.293

0.294

0.295

0.296

0.297

0.298

0.299

0.3

0.301

0.302

(a) For n from 10,000 to
200,000, the numbers of ready
pairs at the first stage divided
by n. Each box has 100 random
arrangements.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

n / 10
4

0.152

0.1525

0.153

0.1535

0.154

0.1545

0.155

0.1555

0.156

(b) For n from 20,000 to
400,000, the average numbers of
ready pairs per stage divided by
n. Each box has ten random ar-
rangements.

0 5 10 15 20 25 30 35 40

n / 10 4

0

100

200

300

400

500

600

700

800

ru
n
ti
m

e
,
s
e
c

Rafalin C++ code

new serial code

parallel code

(c) The Rafalin code is the slow-
est. The parallel code is the
fastest. The new serial code is
in between.

1 2 4 8 16 32 64

number of threads

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s
p

e
e

d
u

p

(d) The speedup curve of the
parallel code for numbers of
threads from 2 to 64 with n fixed
at 300,000.

Figure 4: Empirical results.

is implemented that runs as fast as the author can make
it. It will underreport the vertices of degenerate ar-
rangements. When compiled with the same compiler
and executed on the same hardware, the new serial code
is 3.92 times the speed of the Rafalin code. The speedup
is attained by ignoring degeneracy as well as by stream-
lined computation. Based on the new serial code, the
first parallel code is implemented in C and OpenMP.
When executed with 64 threads, it is 4.2 times the speed
of the serial code and more than 16 times that of the
Rafalin code. Both new implementations are available
on GitHub. The parallel code is merely a proof of con-
cept. For future work, the code can be sped up with
advanced techniques of parallel programming, such as
dynamic load balancing and non-uniform memory ac-
cess tuning.

Graphics processing units have thousands of vec-
tor processors. They are designed for massive single-
instruction-multiple-data (SIMD) computation. The
parallel traversals of the horizon trees loosely fit the
SIMD paradigm. The complication is that the bays to
be explored have different sizes. Some processors may
finish their work before the others. This divergence in
computation is a source of SIMD overhead. It is an in-
teresting problem to reorganize the traversals so that
such overhead is reduced.

219

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] Balogh, J., Regev, O., Smyth, C., Steiger, W., Szegedy,
M.: Long monotone paths in line arrangements.
Discrete & Computational Geometry. 32(2), 167–76
(2004).

[2] Dumitrescu A.: On some monotone path problems in
line arrangements. Computational Geometry 32(1), 13–
25 (2005).

[3] Edelsbrunner, H., Guibas, L.J.: Topologically sweep-
ing an arrangement. Journal of Computer and System
Sciences 38(1), 165–194 (1989).

[4] Edelsbrunner, H., Souvaine, D.L.: Computing least me-
dian of squares regression lines and guided topological
sweep. JASA 85(409), 115–119 (1990).

[5] Gil, J., Steiger, W., Wigderson, A.: Geometric medi-
ans. Discrete Mathematics 108(1-3), 37–51 (1992).

[6] Hillis, W.D., Steele Jr, G.L.: Data parallel algo-
rithms. Communications of the ACM 29(12), 1170–
1183 (1986).

[7] Liu, R.: On a notion of data depth based on ran-
dom simplices. The Annals of Statistics 18(1), 405–414
(1990).

[8] Miller, K., Ramaswami, S., Rousseeuw, P., Sellarès,
J.A., Souvaine, D., Streinu, I., Struyf, A.: Efficient
computation of location depth contours by methods
of computational geometry. Statistics and Computing
13(2), 153–162 (2003).

[9] Pocchiola, M., Vegter, G.: Topologically sweeping vis-
ibility complexes via pseudotriangulations. Discrete &
Computational Geometry 16(4), 419–453 (1996).

[10] Rafalin, E.: Topological sweep in degenerate cases.
www.cs.tufts.edu/r/geometry/other/sweep/ (2002),
[Online; accessed 2020-1-9].

[11] Rafalin, E., Souvaine, D., Streinu, I.: Topological sweep
in degenerate cases. In: Workshop on Algorithm En-
gineering and Experimentation, pp. 155–165, Springer
(2002).

[12] Rosenberger, H.: Topological plane sweep implemented
in C. University of Illinois at Urbana-Champaign
(1990).

220

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

One Hop Greedy Permutations∗

Donald R. Sheehy†

Abstract

We adapt and generalize a heuristic for k-center clus-
tering to the permutation case, where every prefix of
the ordering is a guaranteed approximate solution. The
one-hop greedy permutations work by choosing at each
step the farthest unchosen point and then looking in
its local neighborhood for a point that covers the most
points at a certain scale. This balances the compet-
ing demands of reducing the coverage radius and also
covering as many points as possible. This idea first ap-
peared in the work of Garcia-Diaz et al. [6] and their
algorithm required O(n2 log n) time for a fixed k (i.e.
not the whole permutation). We show how to use geo-
metric data structures to approximate the entire permu-
tation in O(n log ∆) time for metrics sets with spread ∆.
Notably, this running time is asymptotically the same
as the running time for computing the ordinary greedy
permutation.

1 Introduction

Greedy permutations of points in a metric space are use-
ful for many standard computations, such as proximity
search data structures, sampling, and k-center cluster-
ing. They were developed independently by Gonzalez [7]
and also Dyer and Frieze [4] in 1985 for k-center cluster-
ing. Starting from any point the next point in a greedy
permutation is chosen to be the farthest remaining point
from the previously chosen points. Greedy permuta-
tions are effective for so many tasks because every pre-
fix of the ordering gives a good, mostly uniform sample,
keeping points as far apart as possible while (approx-
imately) minimizing the maximum distance from any
point to the sample.

The coverage radius of a subset S ⊂ P is the min-
imum r such that P ⊆ ⋃

x∈S ball(x, r). The metric
k-center problem is a search for k points that minimize
the coverage radius. The first k points of a greedy per-
mutation provide a 2-approximate k-center, i.e. the cov-
erage radius is at most twice the optimal solution. This
is known to be the best possible unless P = NP . How-
ever, there are several heuristics that have been shown
to produce better solutions in practice. One such heuris-
tic developed by Garcia-Diaz et al.[6] achieves a worse

∗This work was partially supported under grant CCF-1652218.
†Department of Computer Science, North Carolina State Uni-

versity, don.r.sheehy@gmail.com

theoretical guarantee, but consistently outperforms the
greedy approach on benchmarks. That approach works
for a fixed r by choosing at each step, not the farthest
point, but instead a point within distance r of the far-
thest point that covers the most previously uncovered
points in its radius r ball. Then the algorithm binary
searches for a good value of r. We call this the one-hop
k-center algorithm.

Given that the greedy permutation is widely used be-
cause of its ability to provide a sequence of good covers,
it makes sense to import these efficient heuristics from
the setting with fixed r and k into the permutation set-
ting. In this paper, we will generalize this approach
to give a permutation of one-hop k-centers and show
how to relate it to approximate greedy permutations.
We call these one-hop greedy permutations. We will
then show how to compute a one-hop greedy permu-
tation in O(n log ∆) time, where ∆ is the spread of the
input (the ratio of the largest to smallest pairwise dis-
tances). As (almost) always with such an analysis, the
true worst case is O(n2), but would require point sets
with exponential spread to achieve. In theory, this can
be brought down to O(n log n) using elaborate theoreti-
cal techniques [8]; however, given that our interest is in
the practical performance, we describe our algorithm in
terms of a standard practical approach. In theory, the
greedy approach is optimal anyways. In practice, it is
very rare to find inputs with super-polynomial spread.
A proof of concept implementation was used to generate
some examples visualized in Section 5.

2 Background

2.1 Metrics Spaces

Let P be a finite subset of a metric space. Let d(a, b)
denote the distance between a and b. The metric ball
centered at x with radius r is

ball(x, r) := {p ∈ P | d(x, p) ≤ r}.

For a subset S ⊂ P , let d(a, S) := minx∈S d(a, x). The
Hausdorff distance between two subsets is defined as

dH(S, T) := max{max
s∈S

d(s, T),max
t∈T

d(t, S)}.

So, for a subset S ⊂ P , this simplifies to
maxp∈P d(p, S), also known as the coverage radius of
S. A subset S ⊆ P is an (α, β)-net if it has coverage

221

32nd Canadian Conference on Computational Geometry, 2020

radius at most β and all pairs of points are at least α
apart. The constant α controls the packing and β con-
trols the covering. If α = β, then we call it an α-net,
and if the constants are unimportant, we just call it a
net. The spread ∆ of a point set is the ratio of the
largest distance to the smallest distance. The quantity
log ∆ features naturally in the analysis of many geomet-
ric algorithms and data structures as it roughly counts
the number of levels in a hierarchical data structure in
which the scale drops by a constant factor at each level.

The doubling dimension for a metric is the minimum
number ρ such that every ball of radius 2r can be cov-
ered by 2ρ balls of radius r. A metric is said to be a
doubling metric if the doubling dimension is bounded
by a constant. The natural appeal of doubling metrics
is that they give a notion of low dimensionality for gen-
eral metric spaces. In particular, packing and covering
arguments similar to those used in Euclidean space can
be used. For example, an (α, β)-net of the points in a
ball of radius r will have at most O(2r/α) points.

2.2 From Approximate Greedy to k-Center

Let P = (p1, . . . , pn) be an ordered set of points and
let Pi = (p1, . . . , pi) be the ith prefix. A c-approximate
greedy permutation is an ordering of P such that for all
i = 1 . . . n− 1,

dH(Pi, P) ≤ cd(pi+1, Pi).

A 1-approximate greedy permutation is simply called a
greedy permutation.

Below, we explain how the standard proof that the
greedy permutation gives 2-approximate k-centers for
all k can be extended to the approximate greedy case.
More specifically, we show that that a c-approximate
greedy permutation yields a 2c-approximate k-center
clustering.

Lemma 1 If P is ordered according to a c-approximate
greedy permutation, then every prefix Pk is an (rc , r)-net
where r = dH(Pk, P).

Proof. Fix any value of k. The coverage radius of Pk is
r by definition. For the packing condition, we observe
that for any i < j ≤ k, we have

d(pi, pj) ≥ d(pj , Pj−1)

≥ 1

c
dH(P, Pj−1)

≥ 1

c
dH(P, Pk)

=
r

c
.

�

Lemma 2 If P = (p1, . . . , pn) be a c-approximate
greedy permutation for some c ≥ 1, then Pk is a 2c-
approximate k-center for all k.

Proof. Let r = dH(Pk, P) be the coverage radius of
Pk. Let r∗ be the radius of the optimal k-center, Opt.
The goal is to show that r ≤ 2cr∗.

By Lemma 1, every two points in Pk are at least r
c

apart. If there are two points of Pk within distance r∗ of
one center in the optimal solution, then their distance
is at most 2r∗. Thus, it would follow that r

c ≤ 2r∗
and therefore r ≤ 2cr∗ as desired. If no two points
have this property, then every ball of radius r∗ in the
optimal solution contains a unique point of Pk and thus
dH(Pk, Opt) ≤ r∗. By the triangle inequality, r ≤ 2r∗ ≤
2cr∗ because

r = dH(P, Pk) ≤ dH(Pk, Opt) + d(P,Opt) ≤ 2r∗.

�

3 The One-Hop Greedy Permutation

The heuristic proposed by Garcia-Diaz et al., which we
refer to as one-hop k-center was motivated by the ob-
servation that the greedy permutation achieves its fac-
tor of 2 approximation factor by choosing points very
conservatively. Another perspective is that the greedy
approach reduces the coverage radius by actively seek-
ing out and covering the extremes, which is at odds with
the goal of finding “centers”.

A simple one-dimensional example shows how the
greedy algorithm can make poor selections (see Fig-
ure 1). Suppose we start with a unit-length line segment
densely sampled with points and a sample point on one
end. The next point taken in the greedy ordering is the
other end of the segment. The coverage radius is one
half. A better choice would be to take the point at 2

3 .
This would reduce the coverage radius to 1

3 .

p
1 p

2 p
1

p
2

Figure 1: On the left, a greedy permutation takes the
end point as its second point, resulting in a coverage
radius of 1

2 . On the right, the one-hop greedy permuta-
tion backs of from the purely greedy choice resulting in
a coverage radius of 1

3 .

There are several challenges that naturally arise in
generalizing the one-hop approach from fixed radius (i.e.
fixed k) setting to the permutation setting. The main

222

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

one is the changing radius; the radius decreases with
each prefix. This means we must choose what the target
radius should be at each step rather than using binary
search as in the original work. If we did use binary
search, we would potentially get a completely different
set for each k instead of a single permutation of the
input. The natural choice for the scale at each step is
to be some fraction of the current radius. We will allow
this to be a tunable parameter, which also allows us to
prove some other theoretical properties below.

Let P be the input metric. We will define an order-
ing (p1, . . . pn) of P . Let Pi = (p1, . . . , pi) denote the
prefixes of the ordering. For each i, let qi denote the
point in P that maximizes the distance to Pi−1. In
other words, qi is the point that would be added next if
the permutation were greedy. Fix a parameter α. The
ordering is α-one-hop greedy if for each i, the point pi
is the point in ball(qi, αr) with r = d(qi, Pi−1) that
maximizes

∣∣∣∣∣∣
ball(pi, αr) \

i−1⋃

j=1

ball(pj , αr)

∣∣∣∣∣∣
.

The point is to balance between covering the farthest
point and also covering many points.

Lemma 3 If P is ordered according to an α-one-hop
greedy permutation, then P is 1

1−α -approximate greedy.

Proof. By definition, the point pi is chosen in a ball
of radius αr centered at the point of distance r =
dH(Pi−1, P) from Pi−1. So, by the triangle inequality,
d(pi, Pi−1) ≤ (1−α)r = (1−α)dH(Pi−1, P). Therefore,
P is 1

1−α -approximate greedy as desired. �

The Lemma 2 and Lemma 3 imply that our one-
hop greedy permutations will give 2

1−α -approximate
k-center solutions. As α goes to zero, we get the
standard greedy permutation and its corresponding 2-
approximate k-centers.

The choice of α is nonobvious. On the one hand,
a large value provides flexibility in choosing the next
point. On the other hand, that takes more time and
the guarantee gets worse. Algorithmically, the clean-
est choice for α is to let it equal 1

3 . For any value
of α ≤ 1

3 , the points in ball(pi, αr) are disjoint from⋃i−1
j=1 ball(pj , αr). This saves us the trouble checking

if points are already covered when choosing the next
point. Perhaps accidentally, choosing α = 1

3 leads to
a 3-approximate k-center, which is the approximation
ratio achieved by Garcia-Diaz et al. in the fixed radius
case. Whether such a choice is actually best will likely
vary based on peculiarities of the input.

4 Efficient Approximations

The original algorithm for one-hop k-centers started
by sorting all distances in O(n2 log n) time. It then,
used this ordering to compute a one-hop k-center for
a given radius r in quadratic time in a manner simi-
lar to the original Gonzalez greedy ordering algorithm.
The extra step in each iteration was the search in the
neighborhood of the greedy choice for a point that cov-
ers more points in its radius r ball (that were not al-
ready covered by a previously inserted point). This also
takes quadratic time. Thus, the total running time is
O(n2 log n).

In the low-dimensional setting, one can hope to do
better with approximations. In the case of greedy per-
mutations, Har-Peled and Mendel [8] showed that the
approach of Clarkson [2, 3] runs in O(n log ∆) time. We
will augment this approach with a data structure that
does approximate range sampling, to make the local im-
provement step faster. In the end, we will have an al-
gorithm that runs in O(n log ∆) time. Thus, it matches
the asymptotic running time of the greedy permutation
computation, albeit with worse constants.

A (1 + ε)-approximate one-hop greedy permutation of
P is an ordering of P that could be a one-hop greedy
permutation if all distances are perturbed by a factor of
at most 1 + ε. For such an approximation, it will suffice
to choose the next point among an εr-net where r is the
distance to the current farthest point. It also suffices
to count points in metric balls only approximately as
described below.

4.1 Approximate Range Sampling

A metric range search takes a point x and a radius
r as input and returns the points in ball(x, r). A c-
approximate metric range search returns a set of points
S such that

ball(x, r) ⊆ S ⊆ ball(x, cr).

That is, it may return some extra points that are close
to the desired ball. Similarly, metric range counting
and c-approximate range counting return the number
of points that would be returned by the corresponding
search.

Many data structures for proximity search on metric
spaces can easily be adapted to perform approximate
range sampling, which is a hybrid between range search
and range counting. A range sampling query (x, r, ε)
for a given resolution ε returns an ε-net of ball(x, r)
along with a weight for each point. The points in the
range are each assigned to a point in the sample within
distance ε and the weight of a point is the number of
points assigned to it. In the c-approximate variant, the
range may include points of distance up to cr away from
x.

223

32nd Canadian Conference on Computational Geometry, 2020

Perhaps the simplest data structure to use for ap-
proximate range sampling would be the cover tree of
Beygelzimer et al. [1], particularly in the variant by
Izbicki and Shelton [9]. Other hierarchical data struc-
tures such as navigating nets [12], net-trees [8, 11, 10],
or deformable spanners [5] could also be used. In any
of these data structures, one searches through a hierar-
chy of nets, where the ith level is a 2i net. They are
all designed for range searching, though they are sold
as nearest neighbor search data structures, which is, of
course, a kind of range search with a range that shrinks
as you proceed. A search through such a data structure
maintains a 2i-approximate range sample at each level.
Moreover, for doubling metrics, the number of points
in the sample is 2O(2i/r). So, any search that stops at
a level i such that r = Ω(2i) will only return a con-
stant sized set of (weighted) points. The running time
of such a search is proportional to the number of levels
searched, which is O(log ∆) in the worst case.

4.2 Putting it all together

A standard approach to computing a greedy permuta-
tion is to use a kind of discrete Voronoi diagram. At step
i, each point is associated with its nearest neighbor in
Pi. A cluster is the set of points associated with a given
point. When the point pi is added to the permutation,
a search is performed to find which points now have
pi as their nearest neighbor. To speed up the search,
one stores a graph with vertex set Pi that connects two
points pa and pb if adding a point from the cluster of pa
could affect the cluster of pb. Armed with this graph,
the update only checks points within a constant factor
of the current coverage radius. This approach first for-
malized [2] and implemented [3] by Clarkson was shown
to only require O(n log ∆) time for greedy permutations
in doubling metrics by Har-Peled and Mendel [8]. The
same analysis easily holds for approximately greedy per-
mutations. The two key steps are that, one, the graph
has constant degree on a net, and, two, the distance to
a point is computed only a constant number of times
before the coverage radius must go down by a factor of
two. We call this structure the cluster graph.

Our algorithm uses a cluster graph and approximate
range sampling to compute an approximate one-hop
greedy permutation. Let α < 1 be the hop parame-
ter. Let ε <= 1 be the desired approximation factor.
At each iteration, we add one point using the following
steps. First, we use a heap to quickly find the existing
point p whose cluster has the largest radius. The far-
thest point f in this cluster is the point that would be
added in a pure greedy permutation. Let r be the dis-
tance from f to p. We compute an approximate range
sample S in ball(f, 2αr) at scale εr. We can then com-
pute approximate range counts for ball(q, αr) for each
q ∈ S in constant time by adding the weights of points

in S, careful not to count points that are within αr of
a previously added point. The previously added points
that could be within this radius are all neighbors of p in
the cluster graph, so there are only a constant number
of them. There are a constant number of points in S
and each takes constant time. We add the point with
the largest count. In total, we get the following.

Theorem 4 Let P be points in a metric space with con-
stant doubling dimension. Let α < 1 and ε < 1 be con-
stants. Then, a (1 + ε)-approximate α-one-hop greedy
permutation of P can be computed in O(n log ∆) time.

5 A Proof of Concept

We integrated an implementation of the one-hop
greedy permutations into our Python library for greedy
permutations. It can be found on Github at
https://github.com/donsheehy/

greedypermutation. This library also includes
standard algorithms for computing pure greedy
permutations and its approximations.

We found that on small, low-dimensional examples,
there appears to be a very slight improvement with the
one-hop greedy permutations. The example in Figure 2
is typical. We set α = 1/3 and took a uniform sample of
points in a square. The figure show three different scales
in the permutation at k = 10, k = 25, and k = 50. The
graph in Figure 3 shows how the radii change with the
number of points. Even in this simple example, the one-
hop greedy permutation often has the smaller coverage
radius.

It remains to see if the improvements attained with
one-hop k-centers on large benchmark instances coming
from TSP datasets [6] are realized by the one-hop greedy
permutations.

6 Conclusions

We have generalized the one-hop k-center heuristic to
define one-hop greedy permutations. We have also given
an efficient algorithm to compute approximations in
O(n log ∆) time.

There are several future directions to consider. In
our implementation, we used a standard greedy per-
mutation to build the data structure for approximate
range sampling. This is novel in that it does a kind
of boot strapping from an ordinary greedy permutation
to a one-hop greedy permutation. Another direction to
consider is whether the final choice should really count
points by weight or just count points in the approximate
range sample. It seems that the latter approach, though
farther from the one-hop k-center approach could be
more stable to drastically varying density in the under-
lying points set.

224

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 2: For points in the plane, there is little visual
difference between the two cases except at the boundary.
The one-hop greedy permutation tends to overshoot the
boundary less.

Figure 3: This is the graph of the coverage radii for the
two approaches on the small example shown above.

References

[1] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In ICML, 2006.

[2] K. L. Clarkson. Nearest neighbor queries in metric
spaces. Discrete & Computational Geometry, 22(1):63–
93, 1999.

[3] K. L. Clarkson. Nearest neighbor searching in metric
spaces: Experimental results for ‘sb(s)‘. Preliminary
version presented at ALENEX99, 2003.

[4] M. Dyer and A. Frieze. A simple heuristic for the p-
centre problem. Operations Research Letters, 3(6):285–
288, 1985.

[5] J. Gao, L. J. Guibas, and A. Nguyen. Deformable span-
ners and applications. Computational Geometry: The-
ory and Applications, 35:2–19, 2006.

[6] J. Garcia-Diaz, J. Sanchez-Hernandez, R. Menchaca-
Mendez, and R. Menchaca-Mendez. When a worse
approximation factor gives better performance: a 3-
approximation algorithm for the vertex k-center prob-
lem. Journal of Heuristics, 23(5):349–366, 2017.

[7] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theor. Comput. Sci., 38:293–306,
1985.

[8] S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[9] M. Izbicki and C. R. Shelton. Faster cover trees. In Pro-
ceedings of the Thirty-Second International Conference
on Machine Learning, 2015.

[10] M. Jahanseir and D. Sheehy. Nettrees. Available from
http://dx.doi.org/10.5281/zenodo.1409233, 2018.

[11] M. Jahanseir and D. R. Sheehy. Transforming hierarchi-
cal trees on metric spaces. In Proceedings of the Cana-
dian Conference on Computational Geometry, 2016.

[12] R. Krauthgamer and J. R. Lee. Navigating nets: Simple
algorithms for proximity search. In SODA, 2004.

225

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A Degree 3 Plane 5.19-Spanner for Points in Convex Position

Davood Bakhshesh∗ Mohammad Farshi†

Abstract

Let S be a set of n points in the plane that is in con-
vex position. In this paper, using the well-known path-
greedy spanner algorithm, we present an algorithm that
constructs a plane 3+4π

3 -spanner G of degree 3 on the
point set S. Recently, Biniaz et al. (Towards plane
spanners of degree 3, Journal of Computational Geom-
etry, 8 (1), 2017) have proposed an algorithm that con-
structs a degree 3 plane 3+4π

3 -spanner G′ for S. We
show that there is no upper bound for the total weight
of G′, but the total weight of G is asymptotically equal
to the total weight of the minimum spanning tree of S.

1 Introduction

Let S be a set of points in the plane. A weighted graph
G with vertex set S is called geometric, if any edge (p, q)
of G is the straight line between p and q, and its weight
is |pq|, the Euclidean distance between p and q. The
total weights of the graph G is the sum of the weight of
all edges of G and is denoted by wt(G). Let t > 1 be a
real number. The geometric graph G is called t-spanner
for S, if for any two vertices p and q in G, there exists
a path P between p and q in G such that |P | ≤ t|pq|,
where |P | denotes the length of the path P which is
the sum of the weight of all edges on P . For any two
points u and v in a geometric graph G, let δG(u, v) be
the length of the shortest path between u and v in G.
The stretch factor (dilation) between u and v is defined

the ratio δG(u,v)
|uv| and we denote it by SFG(u, v). The

stretch factor SF (G) of a graph G is defined as

SF (G) = max
u,v∈G

SFG(u, v).

Note that when a geometric graph G is t-spanner,
clearly SF (G) ≤ t. We refer the reader to the book [13]
for an overview of t-spanners and the related algorithms.

A plane spanner of bounded degree is a spanner whose
edges do not cross each other and whose maximum de-
gree is bounded by a constant. In Table 1, some of the
results related to the plane spanner of bounded degree
are summarized. Note that since the stretch factor of a

∗Department of Computer Science, University of Bojnord, Bo-
jnord, Iran, dbakhshesh@gmail.com
†Combinatorial and Geometric Algorithms Lab., Depart-

ment of Computer Science, Yazd University, Yazd, Iran,
mfarshi@yazd.ac.ir

Hamiltonian path through a set of points arranged in a
grid is Ω(

√
n) (see [13]), the lower bound on the max-

imum degree of a t-spanner is 3. The lower bound of
the maximum degree of a t-spanners for points in con-
vex position is also 3 (see [11]). Das and Heffernan [9]
proved that spanners of maximum degree 3 always exist.

Points in Non-Convex or Convex Position
Reference Degree Upper bound on

the stretch factor
Bose et al. [7] 27 ≈ 8.27

Li and Wang [12] 23 ≈ 6.43
Bose et al. [8] 17 ≈ 23.56

Kanj and Perkovic [14] 14 ≈ 2.91
Bonichon et al. [3] 6 6

Bose et al. [5] 6 ≈ 81.66
Bonichon et al. [4] 4 ≈ 156.82

Kanj et al. [11] 4 20
Points in Convex Position

Kanj et al. [11] 3 20
Biniaz et al.[1] 3 ≈ 5.19

Table 1: Results of bounded degree plane spanners.

One of the famous algorithms for constructing a t-
spanner on a given point set S is the path-greedy span-
ner algorithm or greedy spanner algorithm for short.
The algorithm is as follows. First, the algorithm sorts
all pairs of points in nondecreasing order of their Eu-
clidean distance. Assume that the sorted data is stored
in a list L. Let E be the edge set of the graph com-
puted by the algorithm. First, the edge set E is con-
sidered empty. Next, the algorithm processes the pairs
of points in L in order. Suppose that the algorithm
wants to process the pair (p, q) ∈ L. If the length of
the shortest path between p and q in the graph com-
puted so far is greater than t|pq|, the algorithm adds
the pair (p, q) to E; otherwise, the algorithm processes
the next pair of points in L. The computed graph
by the algorithm is called the path-greedy spanner or
the greedy spanner. Algorithm 1, PathGreedy(S, t),
shows the pseudocode of the greedy spanner algorithm
(see Appendix). Now, we describe a modified version
of the greedy spanner algorithm that we need later. In
PathGreedy(S, t), the algorithm starts with a sorted
list L and empty edge set E. The modified version
of this algorithm, ModifiedPathGreedy(S,E,L, t)

226

32nd Canadian Conference on Computational Geometry, 2020

Algorithm 3: Deg3PlaneSpanner(S) ([1])

input: A non-empty finite set S of points in the
plane that is in convex position

output: A plane degree-3 spanner of S.
1 (p, q) := a farthest pair of points of S;
2 C1, C2 := the two chains obtained by removing p

and q from CH(S);
3 E′ := CH(S)∪Matching(C1, C2);
4 return G′ = (S,E′);

(see Appendix), takes two extra parameters: an edge
set E and a sorted list L. If E = ∅ and L is
the sorted list of all

(
n
2

)
pairs of points of S in

non-decreasing order of their distances, then the out-
put of the two algorithms PathGreedy(S, t) and
ModifiedPathGreedy(S,E,L, t) is same.

In 2017, Biniaz et al. [1] presented an algorithm that
constructs a plane 3+4π

3 -spanner of maximum degree at
most 3 for any set S of points in the plane that is in
convex position. Their algorithm works as follows. At
first, the convex hull of S, CH(S), is added to the span-
ner. Then, it selects a farthest pair (p, q) of points of S.
Then, it adds a special matching between two convex
chains obtained by removing p and q from the convex
hull (see Algorithm 3). The matching for the two con-
vex chains is computed as follows. First, we compute
the closest pair between two convex chains that are sep-
arated by a line. Given this closest pair, we split the
two chains, and recurse on both sides.

In this paper, we focus on constructing a bounded-
degree plane spanner for points in convex position of
degree at most 3. Using the algorithm ModifiedPath-
Greedy, we propose an algorithm that constructs a
plane 3+4π

3 -spanner of degree at most 3 for points in
convex position. Then, we show that the proposed
plane spanner can be computed in O(n2 log n) time.
In [1], Biniaz et al. did not mention the time com-
plexity of their algorithm (Algorithm 3). In [2], Biniaz
et al. present an O(n log7 n)-time algorithm that com-
putes the plane spanner generated by Algorithm 3. We
show that there is no upper bound on the total weight
of the spanner proposed by Biniaz et al. [1], but using
the concept of generalized leapfrog property (see [13]),
we show that for any set S of points in the plane that
is in convex position, the total weight of our proposed
plane spanner is asymptotically equal to wt(MST (S)).

2 Preliminaries

In this section, we present some definitions and nota-
tions that we use in the following sections. Throughout
the paper, we assume that S is a set of n points in the
plane that is in convex position. A farthest pair (p, q)
of points of S is called a diametral pair, p and q are

called diametral points and the Euclidean distance |pq|
is called the diameter of S. We assume, without loss of
generality, that the diametral pair (p, q) of S is horizon-
tal and p is to the left of q. We denote the set of all
points of S\{p, q}, which are above the line segment pq
and below pq by upper and lower, respectively. Let
Dp and Dq be two closed disks with radius |pq| cen-
tered at p and q, respectively. The intersection of Dp

and Dq is denoted by L(p, q) and is called the lune of
p and q. In the following sections, we use the notation
G to refer to the plane spanner proposed in the current
paper, and G′ to refer to the plane spanner generated
by Algorithm 3. In the graphs G or G′, an edge (a, b) is
called a shortcut edge, if a ∈ upper and b ∈ lower or
a ∈ lower and b ∈ upper.

3 A Degree 3 Plane Spanner for Points in Convex
Position

In this section, we propose an algorithm that con-
structs a plane 3+4π

3 -spanner G = (S,E) of degree at
most 3 for S. The idea of the algorithm is as fol-
lows. The algorithm starts with E = CH(S). Then,
we run ModifiedPathGreedy(S,E,L, t), where t =
3+4π

3 and L contains all pairs of points (a, b) with
a ∈ upper and b ∈ lower and sorted by in-
creasing the Euclidean distance |ab| (see Figure 1).
The graph G consists of CH(S) and the output of
ModifiedPathGreedy(S,E,L, t) (see Algorithm 4).

Algorithm 4: GreedyPlaneSpanner(S)

input: a set S of n points in the plane that is in
convex position.

output: a plane 3+4π
3 -spanner G of degree at most

3.
1 (p, q) := a diametral pair of points of S;
2 upper := set of all points of S which are above the

line segment pq;
3 lower := set of all points of S which are below the

line segment pq;
4 L := list of all pairs of points (a, b) with a ∈ upper

and b ∈ lower and sorted by increasing the
Euclidean distance |ab|;

5 E := CH(S)∪
ModifiedPathGreedy(S,E,L, 3+4π

3) ;
6 return G = (S,E);

Now, we prove that the output of algorithm
GreeyPlaneSpanner(S) is 3+4π

3 -spanner. We start
with the following lemmas, which are needed later.

Lemma 1 Let S be a finite set of at least two points
in the plane, and let (p, q) be any diametral pair of S.
Then, the points of S lie in L(p, q).

227

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Lemma 2 [1] Let C be a convex chain with endpoints
p and q. If C is in L(p, q), then the stretch factor of C
is at most 2π

3 .

Theorem 3 The graph G generated by
GreedyPlaneSpanner(S) is a 3+4π

3 -spanner for S.

Proof. Let t = 3+4π
3 and let a and b be two arbitrary

distinct points in S. To prove the theorem, it is suf-
ficient to prove that SFG(a, b) ≤ t. Let (p, q) be the
diametral pair of points selected in Line 1 of Algorithm
4. We consider two cases:

• Case 1. a, b ∈ upper ∪ {p, q} or a, b ∈ lower ∪
{p, q}. We prove this case for a, b ∈ upper∪ {p, q}
(the other case is symmetric). Let Cu be the convex
chain connecting p to q obtained by removing all
points lower from CH(S). By Lemma 1, Cu lies
in L(p, q). Then, by Lemma 2, SFCu

(a, b) ≤ 2π
3 .

Since G contains CH(S), SFG(a, b) ≤ SFCu(a, b).
Hence, SFG(a, b) ≤ 2π

3 ≤ t.

• Case 2. a ∈ upper and b ∈ lower, or a ∈ lower
and b ∈ upper. Suppose, without loss of general-
ity, that a ∈ upper and b ∈ lower. If (a, b) is an
edge of G, then clearly SFG(a, b) = 1 ≤ t. Now,
suppose that (a, b) is not an edge of G. Then, ac-
cording to the construction of G, there is a path
between a and b of length at most t × |ab|, and
therefore SFG(a, b) ≤ t. This proves the theorem.�

Theorem 4 The graph G, generated by
GreedyPlaneSpanner(S) is plane.

Proof. According to the construction of G, any two
edges (a, b) and (c, d) in G with a, b, c, d ∈ upper or
a, b, c, d ∈ lower, do not cross each other. Then, to
prove the theorem, it is sufficient to prove that any two
shortcut edges (a, b) and (c, d) in G do not cross each
other. Suppose, for contradiction, that (a, b) and (c, d)
cross each other. Suppose, without loss of generality,
that the pair (a, b) is processed before the pair (c, d) by
the algorithm ModifiedPathGreedy. Hence, |ab| ≤
|cd|. Suppose, without loss of generality, that a, c ∈
upper and b, d ∈ lower. Let u be the intersection of
(a, b) and (c, d) (see Figure 1). Then, by the triangle
inequality, we have |ca| ≤ |au| + |uc| and |bd| ≤ |bu| +
|ud|. Hence,

|ac|+ |bd| ≤ |au|+ |uc|+ |bu|+ |ud| = |ab|+ |cd| ≤ 2|cd|.
(1)

Let Pca be the convex path between c and a on CH(S)
using the points on upper, and let Pbd be the convex
path between b and d on CH(S) using the points lower.
By Lemma 2, |Pca| ≤ 2π

3 |ca| and |Pbd| ≤ 2π
3 |bd|. Now,

consider the path Q := Pca ∪ (a, b) ∪ Pbd. Then,

|Q| = |Pca|+ |ab|+ |Pbd| ≤
2π

3
|ca|+ |ab|+ 2π

3
|bd|

=
2π

3
(|ca|+ |bd|) + |ab|.

Since |ab| ≤ |cd| and by Equation (1), we have

|Q| ≤ 2π

3
(|ca|+ |bd|) + |ab|

≤ 4π

3
|cd|+ |cd| = 3 + 4π

3
|cd| = t|cd|.

Hence, the algorithm does not add the edge (c, d) to G,
which is a contradiction. Then, (a, b) and (c, d) do not
cross each other. Hence, G is plane. �

Now, we prove that the maximum degree of the graph
G is at most 3.

Theorem 5 The maximum degree of the graph G gen-
erated by GreedyPlaneSpanner(S) is at most 3.

Proof. Let a be a point in S. We show that the degree
of a in G is at most 3. Note that if a = p or a = q,
where (p, q) is the diametral pair of points which is se-
lected by the algorithm, then since CH(S) ⊆ G and
p, q 6∈ upper∪ lower, clearly the degree of a is 2. Now,
suppose that a 6= p, q. Suppose, without loss of gener-
ality, a ∈ upper. Since G contains CH(S), then the
degree of a is at least two. Suppose, for contradiction,
that the degree of a is greater than 3. Hence, there
exist two shortcut edges adjacent to point a. Now, sup-
pose that (a, b) and (a, c) are two edges of G such that
b, c ∈ lower (see Figure 1). Suppose, without loss of
generality, that the algorithm adds the edge (a, b) be-
fore the edge (a, c). Then, |ab| ≤ |ac|. Now, let Pbc be
the convex path between b and c on CH(S) using the
points of lower. By Lemma 2, we have |Pbc| ≤ 2π

3 |bc|.
Now, consider the path Q := (a, b) ∪ Pbc. Now, we
have |Q| = |ab| + |Pbc| ≤ |ac| + 2π

3 |bc|. By the triangle
inequality, we have |bc| ≤ |ab| + |ac| ≤ 2|ac|. Hence,
by combining the two previous inequalities, we have
|Q| ≤ 3+4π

3 |ac|. Then, the algorithm does not add the
edge (a, c) to G, which is a contradiction. Hence, the
degree of a is at most 3. �

4 Time Complexity

We know that the running time of Dijkstra’s single-
source shortest paths algorithm for a weighted graph
is O(n log n + m), where n is the number of vertices
and m is the size of the graph. Moreover, sorting the
list L in Algorithm 4 takes O(n2 log n) time. Hence, a
direct implementation of Algorithm 4 using Dijkstra’s
single-source shortest paths algorithm has the running

228

32nd Canadian Conference on Computational Geometry, 2020

p q

p q

a

b

c

d

u

Pca

Pbd

p q

a

b
Pbc c

Figure 1: (a) The points with red color form U , the points with blue color form L and the yellow region is L(p, q).
(b): Illustrating the proof of Theorem 4. (c): Illustrating the proof of Theorem 5.

p q1

2

3
4

5
6

7

8

9

10

11
12131415

16

Figure 2: Numbering the point set S.

time O(n3 log n). In this section, we show that the pro-
posed plane spanner G computed by Algorithm 4 can
be computed in O(n2 log n) time.

The main idea to reduce the running time is that we
not to use Dijkstra’s single-source shortest paths algo-
rithm, and instead by a quadratic-time preprocessing of
S, we use an algorithm whose running time is O(log n)
for each pair. Since there are O(n2) pairs, then the
overall running time will be O(n2 log n). Note that in
[6] Bose et al. show how to compute the greedy spanner
on a given point set in the plane in O(n2 log n) time.
We could not apply their algorithm here. We guess ap-
plying their algorithm would not give you the desired
results. Now, we describe the algorithm in detail.

We number the points of S in the clockwise direction
as depicted in Figure 2. Let x and y be the numbers
assigned to p and q, respectively. Let T be a binary
search tree (BST) that is initially empty. During the
running of the algorithm, when we add an edge (i, j) to
the graph, we add the numbers i and j to T . For two
numbers i, j ∈ upper (or i, j ∈ lower) with i < j, let
Pij be the path from i to j on CH(S) in the clockwise
direction. Let A be an n × n array. For two numbers
i and j with i < j and i, j ∈ upper (or i, j ∈ lower),
A[i, j] is equal to the length of the path Pij and for

other values of i and j, A[i, j] is equal to zero. Since the
points of S are in convex position, it is not hard to see
that the array A can be computed in O(n2) time. Now,
we are ready to express the algorithm. The algorithm
initially adds CH(S) to the edge set E and computes
the list L. Suppose that the algorithms want to process
a pair (i, j) (i and j are numbers). Note that i ∈ upper
and j ∈ lower. The algorithm searches in T to find
the smallest number k, which is greater than i and the
greatest number h, which is smaller than i. It is not
hard to see that the numbers k and h can be computed
in O(log n). Suppose that k 6= ∅ and h 6= ∅. Then, there
exist two numbers k′, h′ ∈ lower such that (k, k′) ∈ E
and (h, h′) ∈ E. Now, consider two paths P := Pik ∪
(k, k′) ∪ Pk′j and Q := Phi ∪ (h, h′) ∪ Ph′j . Since the
points are placed in convex position, one of two paths P
and Q is the shortest path between i and j. Using the
array A, we have |P | = A[i, k]+ |kk′|+A[k′j] and |Q| =
A[h, i] + |hh′| + A[h′, j]. Then, to determine whether
the pair (i, j) should be added to the edge set E, it is
sufficient to check if |P | > t × |ij| and |Q| > t × |ij|.
For the case k = ∅ and h 6= ∅, it is sufficient to consider
P := Piy ∪ Pyj and Q := Phi ∪ (h, h′) ∪ Ph′j . For the
cases k 6= ∅ and h = ∅, and k = ∅ and h = ∅, the paths
P and Q are defined similarly.

5 Weight of the Spanner

Now, we show that there is no upper bound on the total
weight of the plane spanner G′ proposed by Biniaz et
al. [1], but the total weight of the plane spanner G
proposed in the current paper is asymptotically equal
to the wt(MST (S)).

Let S be a set of n points placed at vertices of a reg-
ular n-gon. Assume that n is sufficiently large. It is
clear that the convex hull edges except one edge is a
minimum spanning tree of S. Consider the plane span-

229

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

p q

Figure 3: The plane spanner G′ on a regular 30-gon.

ner G′ on the point set S. According to Algorithm 3,
the graph G′ is similar to the one shown in Figure 3.
Since G′ contains many shortcut edges, it is clear that
limn→∞ wt(G′) = ∞. This shows that the weight of
the proposed plane spanner by Biniaz et al. [1] is un-
bounded.

Now, we will analyze the total weight of the plane
spanner G. First, the generalized leapfrog property is
defined that we need later.

Definition 1 (Generalized Leapfrog Property [13])
Let t1 and t2 be real numbers, such that 1 < t1 < t2.
A set E of undirected edges in Rd is said to sat-
isfy the (t1, t2)-leapfrog property, if for every
{p1, q1}, {p2, q2}, . . . , {pk, qk} of k pairwise distinct
edges of E,

t1|p1q1| <
k∑

i=2

|piqi|+t2
(
|p1p2|+

k−1∑

i=2

|qipi+1|+ |qkq1|
)
.

Now, we present the Generalized Leapfrog Theorem.

Theorem 6 (Generalized Leapfrog Theorem [13])
There exists an absolute constant φ with 0 < φ < 1,
such that the following holds. Let t1 and t2 be real
numbers, such that 1 < 1 − φ + φt2 < t1 < t2, let S
be a set of points in Rd, and let E be a set of edges,
whose endpoints are from S, and that satisfies the
(t1, t2)-leapfrog property. Then,

wt(E) ≤ cdt1t2 · wt(MST (S)),

where cdt1t2 is a real number that depends only on d, t1,
and t2.

Given a graph; the length of the second shortest path
between two vertices p and q in the graph is denoted by
δ2(p, q). If there is only one path between p and q in
the graph, then we assume that δ2(p, q) = ∞. In the
following, a sufficient condition for the leapfrog property
is given.

Theorem 7 ([15]) Let S be a set of n points in Rd, let
t > 1 be a real number, and let G = (S,E) be an undi-
rected t-spanner for S. Assume that δ2(p, q) > t|pq|, for

p q

a

b

r

s

Figure 4: The path P with the gray color in the proof
of Lemma 9.

every edge (p, q) in E. Then, the edge set E satisfies
the (t, t2)-leapfrog property.

Let G = (S,E) be an undirected t-spanner for S and
F be a subset of E. We easily verified the proof of
Theorem 7 for the set F instead of E. Hence, we obtain
the following result.

Theorem 8 Let S be a set of n points in Rd, let t > 1
be a real number, and let G = (S,E) be an undirected
t-spanner for S and F be a subset of E. Assume that
δ2(p, q) > t|pq|, for every edge (p, q) in F . Then, the
edge set F satisfies the (t, t2)-leapfrog property.

Let S be a set of points in the plane that is in convex
position. Consider the plane spanner G = (S,E) com-
puted by the algorithm GreedyPlaneSpanner(S).
Now, we prove the following result.

Lemma 9 The set of all shortcut edges in G satisfies

the
(

3+4π
3 ,

(
3+4π

3

)2)
-leapfrog property.

Proof. Let t = 3+4π
3 and F is the set of all shortcut

edges in G. By Theorem 8, to prove the lemma, it
is sufficient to prove that for every edge (a, b) ∈ F ,
δ2(a, b) > t|ab|. Let P be a path between a and b in
G having length δ2(a, b).

Suppose that all edges of P are on CH(S). Notice
that, in this case, the path P passes through one of
the diametral points. Since G initially has included the
convex hull edges and (a, b) has been added to the edge
set of G, according to the construction of G, |P | > t|ab|.

Now, suppose that one of the edges of P is not on
CH(S). It means that P contains a shortcut edge. Let
C1 and C2 be two convex chains obtained by removing
the points p and q from CH(S). SinceG is plane and the
points of S are in convex position, the path P consists
of some edges on C1, a shortcut edge (r, s) and some
edges on C2 (see Figure 4). Suppose, without loss of
generality, that r ∈ C1 and s ∈ C2. Note that since G is
plane, it is not hard to see that in the quadrilateral abrs,
there are no shortcut edges except two edges (a, b) and
(r, s). Now, we show that |P | > t|ab|. If the algorithm
adds the edge (r, s) before the edge (a, b), then according

230

32nd Canadian Conference on Computational Geometry, 2020

to the construction of G, |P | > t|ab|. Now, suppose
that (r, s) is added to G after the edge (a, b). Then,
|rs| ≥ |ab|. Let Car be the part of the path P that is
on C1 and Cbs be the part of P that is on C2. Consider
the path Q := Car ∪ (a, b)∪Cbs between r and s. Since
|rs| ≥ |ab|, |P | ≥ |Q|. Since (r, s) is an edge of G and
Q is a path between r and s, which is created before
processing the pair (r, s), |Q| > t|rs|. Hence,

|P | ≥ |Q| > t|rs| ≥ t|ab|.
This completes the proof. �

By Theorem 6 and Lemma 9, wt(F) = O(1) ·
wt(MST (lower ∪ upper)). Now, in the following we
show that wt(MST (lower∪upper)) ≤ 2wt(MST (S)).

Lemma 10 wt(MST (lower ∪ upper)) ≤
2wt(MST (S)).

Proof. Let TSP (S) be the traveling salesperson tour
on the point set S. It is not hard to see that
wt(TSP (lower ∪ upper)) ≤ wt(TSP (S)) (see Exer-
cise 1.7 in [13]). Since wt(MST (lower ∪ upper)) ≤
wt(TSP (lower ∪ upper)), we have wt(MST (lower ∪
upper)) ≤ wt(TSP (S)). On the other hand, it is
well known that wt(TSP (S)) ≤ 2wt(MST (S)) (see
[13]). Hence, by combining two previous inequalities
wt(MST (lower ∪ upper)) ≤ 2wt(MST (S)). �

Now, we conclude this section with the following result.

Theorem 11 For any set S of points in the plane that
is in convex position, we have

wt(G) = O(1) · wt(MST (S)),

where G = (S,E) is the plane spanner computed by
GreedyPlaneSpanner(S).

Proof. Let F be the all shortcut edges in E. Let F ′ be
the set of all edges on CH(S). Clearly, E = F ∪F ′. By
Theorem 6, Lemma 9 and Lemma 10, we have wt(F) =
O(1) · wt(MST (S)). Now, since TSP (S) only con-
tains the convex hull edges (see [10]), we have wt(F ′) =
wt(TSP (S)). Since wt(TSP (S)) ≤ 2wt(MST (S)) (see
[13]), wt(F ′) ≤ 2wt(MST (S)). Now, we conclude that
wt(E) = wt(F) + wt(F ′) = O(1) · wt(MST (S)). �

6 Conclusion

In this paper, we presented an algorithm that con-
structs a plane 3+4π

3 -spanner of degree at most three
in O(n2 log n) time for any set of n points in the plane
that is in convex position. We showed that the total
weight of the proposed plane spanner is asymptotically
equal to the total weight of the minimum spanning tree
of the points.

We conclude the paper with the following open prob-
lems.

p

qa b

c d

e

Figure 5: The point set P .

1. Is the size (number of the edges) of the proposed
plane spanner G less than or equal to the size of
the plane spanner G′ proposed by Biniaz et al. [1]?

To tackle this problem, one direction is to show
that the graph G is a subgraph of G′. We found
the following counterexample for this. Assume the
points of P placed on the sides of the rectangle pdqe
such that |qd| = |cd| = |pe| = 1, |dc| = |qb| = 2π

3
and |ab| = 0.4 (see Figure 5). It is not hard to see
that the graph G contains the edge (a, c), but G′

does not contain (a, c) and contains the edge (b, c)
instead.

2. Does the algorithm PathGreedy(S, 3+4π
3) output

a plane spanner of degree at most three for any set
S of points in the plane that is in convex position?

We guess this problem has a yes-answer. We tried
to show this, but we did not succeed.

Acknowledgment

Some parts of this work have been done at the Open
Problem Session, held at Yazd University, 13-15 July
2019. The first author would like to thank Mohammad
Farshi for his warm hospitality at Yazd.

References

[1] A. Biniaz, P. Bose, J.-L. De Carufel, C. Gavoille, A. Ma-
heshwari, and M. Smid. Towards plane spanners of de-
gree 3. Journal of Computational Geometry, 8(1):11–31,
2017.

[2] A. Biniaz and M. Smid. Personal Communication,
2019.

[3] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perković.
Plane spanners of maximum degree six. In S. Abram-
sky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide,
and P. G. Spirakis, editors, Automata, Languages and
Programming, pages 19–30, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[4] N. Bonichon, I. Kanj, L. Perković, and G. Xia. There
are plane spanners of degree 4 and moderate stretch
factor. Discrete & Computational Geometry, 53(3):514–
546, Apr 2015.

231

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[5] P. Bose, P. Carmi, and L. Chaitman-Yerushalmi. On
bounded degree plane strong geometric spanners. Jour-
nal of Discrete Algorithms, 15:16 – 31, 2012.

[6] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and
M. Smid. Computing the greedy spanner in near-
quadratic time. Algorithmica, 58(3):711–729, Nov 2010.

[7] P. Bose, J. Gudmundsson, and M. Smid. Construct-
ing plane spanners of bounded degree and lowweight.
Algorithmica, 42(3):249–264, Jul 2005.

[8] P. Bose, M. Smid, and D. Xu. Delaunay and diamond
triangulations contain spanners of bounded degree. In-
ternational Journal of Computational Geometry & Ap-
plications, 19(02):119–140, 2009.

[9] G. Das and P. J. Heffernan. Constructing degree-3
spanners with other sparseness properties. Interna-
tional Journal of Foundations of Computer Science,
07(02):121–135, 1996.

[10] V. G. Děineko, M. Hoffmann, Y. Okamoto, and G. J.
Woeginger. The traveling salesman problem with few
inner points. Operations Research Letters, 34(1):106 –
110, 2006.

[11] I. Kanj, L. Perković, and D. Turkoglu. Degree four
plane spanners: Simpler and better. Journal of Com-
putational Geometry, 8(2):3–31, 2017.

[12] X.-Y. Li and Y. Wang. Efficient construction of low
weighted bounded degree planar spanner. International
Journal of Computational Geometry & Applications,
14(01n02):69–84, 2004.

[13] G. Narasimhan and M. Smid. Geometric spanner net-
works. Cambridge University Press, 2007.

[14] L. Perković and I. A. Kanj. On geometric spanners of
euclidean and unit disk graphs. In 25th International
Symposium on Theoretical Aspects of Computer Sci-
ence. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2008.

[15] M. Smid. Errata for the book geometric spanner net-
works. 2013.

Appendix

Algorithm 1: PathGreedy(S, t)

input: a set S of n points in Rd and a real number
t > 1.

output: t-spanner G(S,E).
1 Sort

(
n
2

)
pairs of points in non-decreasing order of

their distances (ties are broken arbitrarily), and
store them in list L;

2 E := ∅;
3 G := (S,E);
4 foreach pair (u, v) ∈ L (in sorted order) do
5 if ShortestPath(G, u, v) > t · |uv| then
6 E := E ∪ {(u, v)};
7 end

8 end
9 return G(S,E);

Algorithm 2: ModifiedPathGreedy(S,E,L, t)

1 G := (S,E);
2 foreach pair (u, v) ∈ L (in sorted order) do
3 if ShortestPath(G, u, v) > t · |uv| then
4 E := E ∪ {(u, v)};
5 end

6 end
7 return G(S,E);

232

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Non-Crossing Matching of Online Points

Prosenjit Bose∗ Paz Carmi† Stephane Durocher‡ Shahin Kamali‡ Arezoo Sajadpour‡

Abstract

We consider the non-crossing matching problem in the
online setting. In the monochromatic setting, a se-
quence of points in general position in the plane is
revealed in an online manner, and the goal is to cre-
ate a maximum matching of these points such that the
line segments connecting pairs of matched points do not
cross. The problem is online in the sense that the deci-
sions to match each arriving point are irrevocable and
should be taken without prior knowledge about forth-
coming points. The bichromatic setting is defined sim-
ilarly, except that half of the points are red and the
rest are blue, and each matched pair consists of one red
point and one blue point. Inspired by the online bipar-
tite matching problem [15], where vertices on one side
of a bipartite graph appear in an online manner, we as-
sume red points are given a priory and blue points arrive
in an online manner.

In the offline setting, both the monochromatic and
bichromatic problems can be solved optimally with
all pairs matched [11]. In the online setting of the
monochromatic version, we show that a greedy family
of algorithms matches 2d(n − 1)/3e points, where n is
the number of input points. Meanwhile, we prove that
no deterministic online algorithm can match more than
2d(n− 1)/3e points, i.e., the greedy strategy is optimal.
In the bichromatic setting, we introduce an algorithm
that matches log n − o(log n) points for instances con-
sisting of n red and n blue points, and show that no
deterministic algorithm can do better. We also consider
the problem under the advice setting, where an online
algorithm receives some bits of advice about the input
sequence, and provide lower and upper bounds for the
amount of advice that is required and sufficient to match
all points.

1 Introduction

Matching is an important topic in combinatorics, par-
ticularly in graph theory (see, e.g., the book by Lovász

∗Carleton University, Ottawa, Canada.
jit@scs.carleton.ca
†Ben-Gurion University of the Negev, Beer-Sheva, Israel.

carmip@cs.bgu.ac.il
‡University of Manitoba, Winnipeg, Canada.

{durocher,shahin.kamali}@cs.umanitoba.ca,
sajadpoa@myumanitoba.ca

and Plummer [17]). When it comes to computational
geometry, matching of points in the plane has applica-
tions that range from circuit design [12] to colour-based
image retrieval [1]. In a monochromatic setting, a col-
lection of points in general position is given and the goal
is to match a maximum number of points, provided they
adhere to some constraints. In the bichromatic variant,
each point is either blue or red, and must be matched
to a point of the opposite color. Variants of the prob-
lems have been considered. For example, one might be
interested in minimizing the total length or the maxi-
mum length of segments in the matching, also known as
bottleneck matching (e.g., [19, 8]). Kaneko and Kano
survey some of the results related to this setting [14].

In the non-crossing matching problem, the goal is to
find a maximum matching so that the segments be-
tween pairs of matched points do not intersect. In
the offline setting, where all points are given as input
in advance, the problem can be easily solved in both
the monochromatic and the bichromatic settings. In
the case of monochromatic points, one can sort them
by their x-coordinate and match consecutive pairs in
the sorted sequence. This will match all points ex-
cept potentially the last one (if the number of points
is odd). For the bichromatic variant [2], also known
as the “Ghosts and Ghostbusters” problem [7], one can
find the ham-sandwich line that bisects the blue and
red points in O(n) time [16], and apply a divide-and-
conquer approach. Both algorithms run in O(n log n)
time for an input of size n, which is best possible [9].
Assuming the number of red and blue points are equal,
all points are matched. A slightly different approach,
with the same running time, is presented in [11]. We
also note that a minimum-length matching is noncross-
ing. In summary, we can match all points optimally
in O(n log n) time in the offline setting. Other variants
of non-crossing matching have been studied (see [17]).
For example, Aloupis et al. [1] considered the computa-
tional complexity of finding non-crossing matching of a
set of points with a set of geometric objects, where an
object can be a convex polygon, a line, or a line segment.

In this article, we are interested in the online variant
of non-crossing matching problems.

Definition 1 The input to the monochromatic on-
line non-crossing matching problem is a set of
points in general position in the plane that appear in
an online, sequential manner. When a point arrives,

233

32nd Canadian Conference on Computational Geometry, 2020

an online algorithm can match it with an existing un-
matched point, provided that the line segment between
them does not cross previous line segments added to the
matching. Alternatively, the algorithm can leave the
point unmatched to be matched later. In taking these
decisions, the algorithm has no information about the
forthcoming points or the length of the input. The algo-
rithm’s decisions are irrevocable in the sense that once a
pair of points is matched, that pair cannot subsequently
be removed from the matching. The objective is to find
a maximum matching. In the bichromatic variant
of the problem, half of the points are red and half are
blue. The red points are given in advance, while the
blue points appear in an online manner. Upon arrival
of a blue point, an online algorithm either matches it
with a red point or leaves it unmatched. The goal is to
find a maximum matching in which the line segments
between matched pairs do not cross.

In the online setting, it is not always possible to match
all points to achieve an optimal solution. As an ex-
ample, consider two points with the same x-coordinate
appear at the beginning. If the online algorithm does
not pair them, its solution is sub-optimal for an input
formed only by these two points. If the algorithms does
pair the first two points, the sequence might be followed
by one point on the left and one on the right of the line
segment between the matched pair. The new points can-
not be matched and hence the solution is sub-optimal
for an input formed by the four points.

We study the online matching problem in the worst-
case scenario, where the input is generated by an adver-
sary. This is consistent with the standard framework
of competitive analysis [18]. The competitive ratio of
an online algorithm is the maximum ratio between the
number of pairs in an optimal offline solution and that
of the online algorithm for sufficiently long sequences.
Since an offline algorithm always matches all points (ex-
cept potentially one), we prefer to express our results
in terms of the number of matched/unmatched points.
Throughout the paper, we assume the length n of the
online sequence is sufficiently large.

1.1 Contribution

For the monochromatic variant of the problem, we con-
sider greedy algorithms with the following greedy prop-
erty : the algorithm never leaves an incoming point un-
matched if it can be matched with some existing point.
We prove that a greedy algorithm can match at least
d2(n − 1)/3e points for any input of n points. More-
over, we prove optimality since no deterministic algo-
rithm can match more than d2(n − 1)/3e points in the
worst case.

For the bichromatic variant, we introduce an algo-
rithm that matches at least log n−o(log n) points for any

input formed by n red and n blue points. Further, we
prove optimality since no deterministic algorithm can
match more points in the worst case. Our results indi-
cate that the bichromatic variant is more difficult than
the monochromatic variant in the online setting.

In addition to the purely online setting, we study the
problem in a relaxed setting where the online algorithm
is provided with some bits of advice about the input.
The advice is generated by an offline oracle, and is avail-
able to the algorithm before the sequence is revealed
(see [3, 5, 6] for a precise definition of advice). For the
monochromatic variant, we show that advice of size 2n
is sufficient to match all n points, and advice of size
blog((n− 2)/3)c is necessary. For the bichromatic vari-
ant, we show advice of size Θ(n log n) is both sufficient
and necessary to match all points; precisely ndlog ne
bits are sufficient and dlog n!e bits are necessary.

2 Monochromatic Non-crossing Matching

In this section, we provide tight upper and lower bounds
for the number of points that can be matched in the
monochromatic non-crossing matching problem.

An online algorithm is said to have the greedy property
if it never leaves a point unmatched when it has the
option to match it.

Theorem 1 Any online algorithm with the greedy prop-
erty matches at least 2d(n−1)/3e points in any instance
of the online monochromatic non-crossing matching
problem on n points.

Proof. Let Gr be a greedy algorithm. The proof works
by partitioning the plane into a set of convex regions
such that each region, except one, is mapped to a pair of
matched vertices. For that, we process the line segments
between matched pairs of Gr in an arbitrary order. Ini-
tially, there is only one part, formed by a bounding box
of the entire point set; this part has no pair associated
with it. Extend each line segment until it intersects
an existing line in the current partition. Note that the
extended segment divides one convex region into two
smaller convex regions, out of which we associate one
with the pair that has been processed, and the other
to the pair that was previously associated with the par-
titioned convex region. Repeating this process for all
line segments results in k + 1 convex regions in the fi-
nal partition, where k is the number of matched pairs
(see Figure 1). For detailed geometric properties of this
convex subdivision, see, e.g., [4, 13]. Since Gr has the
greedy property, there is at most one unmatched point
inside each convex region.

To summarize, the number of unmatched points u is
no more than the number of convex regions, which is
one more than the number of matched pairs m. So, we

234

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

1

2 3

4

5

Figure 1: A partition of the plane into convex regions
in the analysis of a greedy algorithm. The numbers on
the line segments indicate the order they are processed
in the analysis.

have u ≤ m + 1. The statement follows from the fact
that u+ 2m = n. �

Next, we show that no online algorithm matches more
points than does a greedy algorithm in the worst case.

Theorem 2 Let Alg be any deterministic online al-
gorithm for the monochromatic non-crossing matching
problem. There are sequences of n points for which Alg
matches at most 2d(n− 1)/3e points.

Proof. We form an input that is generated in an ad-
versarial manner based on the actions of Alg. The ad-
versary maintains a critical region, which is initially the
entire plane and shrinks as the algorithm proceeds. The
adversary keeps adding points to arbitrary positions in
the critical region. As soon as the algorithm matches
two points a and b, the critical region is updated as fol-
lows. Consider the two sides of the line passing through
a and b. If there is a non-empty set S of unmatched
points on any side of the line in the critical region, then
the critical region is updated to be its sub-region that
is not visible to any point in x ∈ S assuming the line
segment between a and b acts as an obstacle. This can
be done by extending the line segments between x and
a and b (see Figure 2). Since the points are in general
position, the updated critical region is non-empty. Note
that if both sides of the line passing through a and b in-
clude unmatched points, the adversary selects one side
arbitrarily. In case no unmatched point exists in the
critical region, the adversary first generates a point x in
an arbitrary position in the critical region and updates
the critical region as a sub-region not visible by x. This
process continues by sending the subsequent points in
the updated (smaller) critical region.

The main observation is that, after a critical region is
updated, at least one point x remains unmatched since
the line segment between x and any future point crosses
the segment between a and b. In particular, we can
assign at least one unmatched point x to a matched
pair. After updating the critical region, the very first

point generated in the updated region also remains un-
matched. Let u and m denote the number of unmatched
points and matched pairs, respectively. By the above
observations, we have u = m+ 1. The statement of the
theorem follows from u+ 2m = n. �

3 Bichromatic Non-crossing Matching

In this section, we study online algorithms for the
bichromatic non-crossing matching problem and provide
tight upper and lower bounds for the number of points
that can be matched. Recall that the input is formed by
n red points that are known to the algorithm from the
beginning and n blue points that appear in an online
manner and need to be matched with the red points.

We introduce an online algorithm, named the Greedy
Median (Gm) algorithm, that works as follows. Upon
arrival of a blue point a, Gm forms a set S of eligible
red points that can be matched with a without crossing
previous line segments. If S is non-empty, Gm matches
a with the median of the points in S when arranged in
angular order around a. The selection of angular order-
ing is arbitrary, and it can be replaced by any ordering
as long as the line through a and the median of the
points in S bisects S.

Theorem 3 The Greedy Median (Gm) algorithm
matches at least log(n)− o(log n) pairs of points in any
instance of the bichromatic non-crossing matching prob-
lem formed by a set of n red points and a sequence of n
blue points.

Proof. Let M(n) denote the number of matched pairs
by Gm in the worst case in an instance formed by n blue
and n red points (we have M(1) = 1). The algorithm
matches the first blue point with the median of the red
points. Consider the two sides of the line that passes
through the matched pair. One of the two sides contains
at least half of the future blue points, i.e., at least b(n−
1)/2c blue points. There are also b(n−1)/2c red points
on the same side (since the line bisects the red points).
So, we have M(n) ≥ 1 + M(bn−12 c) for n > 1, which
solves to M(n) ≥ log(n)− o(log n). �

Although it is not difficult to match log n − o(log n)
points, as we now show, no online algorithm can guar-
antee to match more than log n− o(log n) points.

Theorem 4 Let Alg be any deterministic online algo-
rithm for the bichromatic non-crossing matching prob-
lem. There are inputs formed by a fixed set of n red
points and a sequence of n blue points for which Alg
matches at most log n− o(log n) points.

Proof. We create an adversarial input in which n red
points are placed in arbitrary positions on an arc of a

235

32nd Canadian Conference on Computational Geometry, 2020

3

2

1

(a)

3

2

1

4
6

5 7

8

(b)

3

2

1

4
6

5 7

8

910

(c)

Figure 2: An illustration of updating the critical region (pink region) by the adversary in the proof of Theorem 2.
The numbers on the points indicate their index in the input sequence. (a) Once points 1 and 2 are matched, there
is no unmatched point in the critical region; the adversary generates point 3 and updates the critical region to its
subregion that is not visible to 3. (b) Assume the algorithm does not match the next points 4, 5, 6, and 7. When it
matches points 5 and 8, points in S = {4, 6} are unmatched on one side of the line passing through 5 and 8. The
adversary updates the critical region to be its subregion not visible by any member of S. (c) Assume the algorithm
does not match the next point 9. When it matches points 10 and 7, the set S = {9} is unmatched on one side of the
line. The critical region is updated to be its subregion not visible to 9.

large circle so that they seem collinear except that the
corresponding arc slightly curves outwards. The blue
points appear in an online manner below the red point
on a similar arc that slightly curves inwards; this arc is
referred to as a critical region at the beginning, and is
updated as the algorithm matches points. Assume at
some point Alg matches an incoming blue point with
a red point, and let L be the line that passes through
the matched pair. The number of red points on one
side of L is at most b(n−1)/2c. The adversary updates
the critical region to only include this side of L. This
ensures that at least d(n−1)/2e red points on the other
side of L remain unmatched; this is because the line
segments between these points and all future blue points
(generated in the updated critical region) crosses L (see
Figure 3). So, each time Alg matches two points, the
number of red points that can still be matched decreases
by a factor of at least 2. Consequently, the number of
matched pairs is at most log n− o(log n). �

1 2

L

Figure 3: Updating the critical region by the adversary
in the proof of Theorem 4. In the beginning, the critical
region is the entire lower arc. Assume Alg does not
match the first blue point but the second one is matched.
The majority of red points appear on the right of the
line L passing through the matched pair. As such, the
adversary updates the critical region to be the left of L.

4 Non-Crossing Matching with Advice

In this section, we study the non-crossing matching
problem under the advice model. We refer the reader
to [5] for a survey on online algorithms with advice. Un-
der the advice model, an online algorithm is provided
with some bits of advice about the input sequence. The
advice can encode any information about the input se-
quence, and is generated by a benevolent offline oracle
that knows the entire input. A central question under
the advice model asks for the number of advice bits
necessary/sufficient to achieve an optimal solution. In
the context of the non-crossing matching problem, this
question translates to the number of advice bits needed
to match all points.

4.1 Monochromatic setting

In this section, we study the monochromatic non-
crossing matching problem under the advice setting.
First, we show that O(n) bits of advice is sufficient to
match all the points.

Theorem 5 There is an online algorithm that receives
(log2 3) n+ o(n) ≤ 1.59n bits of advice and matches all
points (except one if n is odd) in any instance of the
online monochromatic non-crossing matching problem
on n points.

Proof. Consider an offline matching that sorts the
points by their x-coordinate and matches consecutive
pairs of points. Call these pairs of matched points “part-
ners”. Note that all points are matched by this offline
algorithm (except one if n is odd). Now, for each point
p, we generate an advice f(p) ∈ {0, 1, 2}, based on this
offline matching, as follows:

236

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

- when the partner of p appears after p in the online
sequence, we define f(p) = 0.

- when the partner of p appears before p and is lo-
cated to the left of p, we define f(p) = 1.

- when the partner of p appears before p and is lo-
cated to the right of p, we define f(p) = 2.

So, the advice forms a string of length n over an alpha-
bet of size 3. This can be encoded in (log2 3) n+o(n) <
1.59n bits using, e.g., a wavelet tree structure [10].

It remains to show how to match points using the
advice. Assume a point p arrives. If the advice en-
coded for p is 0, the algorithm keeps it unmatched as
its partner has not arrived yet. If the advice is 1 or 2,
then, p should be matched with the point with closest
x-coordinate on its left or right, respectively. Using this
scheme, we obtain a matching that is the same as the
optimal offline solution. �

Lower Bound. In what follows, we show that ad-
vice of size Ω(log n) bits is required in order to match all
points in a given sequence of n points (assume n is even).
Our lower bound argument generates sequences in which
all points are on the circumference of a circle. In the of-
fline setting, we can index the points, in clockwise order,
starting from an arbitrary position. Any matching of a
point with an even index to a point with an odd index
divides the problem into two even-sized sub-problems,
which can be solved recursively. Any such matching is
equivalent to a balanced parenthesis sequence (see Fig-
ure 4). Consequently, in the offline setting, there are
Cn/2 different ways to match all points, where Cn/2 is
the (n/2)th Catalan number.

In order to provide a lower bound for the size of ad-
vice bits required to match all points, we create a fam-
ily of n − 2 input sequences of length n, denoted by
σ1, σ2, . . . , σn−2. All these sequences start with a com-
mon prefix p1, p2, . . . , pn−2, where the pi’s appear in
clockwise order on the circumference of a circle. The
last two points of any sequence σi are xi and yi, where
xi is a point located between pi−1 and pi, and yi is a
point located between pi and pi+1.

Assume an online algorithm Alg (with advice) is ap-
plied on a sequence σi. Define a partial matching as the
(incomplete) solution of Alg for the common prefix of
the sequences in the family (the first n − 2 points). In
the partial solution, some points are matched, call them
partners, and some are unmatched. A partial matching
is said to be valid for σi, iff it can be completed such
that all points in σi are matched at the end.

Lemma 6 Any partial matching is valid for at most
two sequences from the family.

Proof. A valid partial matching for any sequence in
the family should have exactly two unmatched points.

1
2

3

4

5

6
7

12

10

8

9

11

Figure 4: When points are located on the circumference
of a circle, an offline algorithm can match all points by
matching even-indexed points with odd-indexed points.
The parentheses sequence associated with this matching
is (1 (2 (3 (4)5)6)7 (8)9)10 (11)12.

If more than two points are unmatched, some will stay
unmatched at the end since only two more points from
each sequence is left. If all points are matched, the
last two points xi and yi in σi remain unmatched since
the line segment between them crosses the line segment
between pi and its partner. So, we can consider a par-
tial matching Si,j where two points pi and pj are un-
matched. There are two cases to consider:

Case I: assume the line segment between pi and pj does
not cross any line segment between matched pairs in
Si,j . We claim Si,j cannot be valid for any σk, where
k /∈ {i, j}. Consider a line L passing through pk and its
partner pk′ in Si,j . Both pi and pj appear on the same
side of L. Among xk and yk, one appears on the same
side of L while the other appears on the other side. In
short, three unmatched points appear on one side of L
and one on the other side (see Figure 5a). We cannot
match all points without crossing L.

Case II: assume the line segment between pi and pj
crosses a line segment L between pk and its partner
pk′ . So, pi and pj appear on different sides of L, which
implies the remaining two points should be also on dif-
ferent sides of L to be matched with pi and pj . This is
only possible for σk and σk′ (see Figure 5b). Note that
if the line segment between pi and pj crosses more than
one line segment in Si,j , the same argument implies that
the remaining points should be on the two sides of two
existing line segments in Si,j at the same time, which is
not possible (see Figure 5c). �

Using Lemma 6, we can prove the following lower
bound on the size of advice required to match all points.

Theorem 7 A deterministic algorithm requires advice
of size at least blog((n − 2)/3)c in order to guaran-
tee matching all points in any instance of the online
monochromatic non-crossing matching problem on n
points.

Proof. Assume, for the sake of a contradiction, that
there is an algorithm Alg that matches all points

237

32nd Canadian Conference on Computational Geometry, 2020

pi

pj

pk
xk

yk
L

pk′

(a)

pipj

pk
xk

yk

L

pk′

(b)

pipj

pk
xk

yk
L

pk′

pm
xm ym

L′

(c)

Figure 5: An illustration of Lemma 6. We have a par-
tial matching Si,j where all points except pi and pj are
matched. (a) if the line segment between pi and pj does
not cross existing segments in Si,j , it is not possible to
match all points of any sequence σk for k /∈ {i, j}. (b)
if the line passing through pi and pj crosses a line seg-
ment between two matched points pk and pk′ , then it
might be possible to match the remaining points of σk
and σk′ . (c) if the line segment passing through pi and
pj crosses two line segments L and L′ between matched
points, we cannot match the remaining two points.

in any instance of length n with less than α(n) =
blog((n − 2)/3))c bits of advice. In particular, Alg
should match all points for any sequence in the fam-
ily {σ1, . . . , σn−2} as we described above. We partition
this set into 2α(n) ≤ (n−2)/3 sub-families, each formed
by sequences that receive the same advice bits. Since
there are n − 2 sequences and at most (n − 2)/3 sub-
families, there is a sub-family with at least 3 sequences,
that is, there are three sequences σa, σb, and σc that re-
ceive the same advice. Since these three sequences have
the same common prefix and receive the same advice,
Alg treats them similarly for the first n − 2 points.
That is, the partial matching of Alg is the same for
all σa, σb, and σc. By Lemma 6, however, this partial
matching is not valid for at least one of these sequences.
We conclude that Alg cannot match all points for at
least one sequence, a contradiction. �

4.2 Bichromatic setting

We show that advice of size Θ(n log n) is both sufficient
and necessary to match all points in the bichromatic set-
ting. The more complicated nature of the bichromatic
setting implies that advice of size of Θ(n) is insufficient
(unlike the monochromatics setting) and, at the same
time, simplifies our lower and upper bound arguments.

Theorem 8 Consider any instance of the online
bichromatic non-crossing matching problem with a se-
quence of n blue and a fixed set of n red points. There
is a deterministic algorithm that receives ndlog ne bits
of advice and matches all points. Meanwhile, any deter-
ministic algorithm requires advice of size at least dlog n!e
bits in order to match all points.

Proof.
Upper bound: The offline oracle creates an order-
ing of the red points (say ordered by x-coordinate and
ties broken by y-coordinate) and computes an optimal
biochromatic matching on these. Now, for each blue
point x, it encodes an advice of size dlog ne that indi-
cates the label of the red point to which x is matched.
The online algorithm can mimic the offline matching by
forming the same ordering of red points and matching
each blue point to the red point indicated in the advice.
Lower bound: Consider instances of the problem in
which the n red points r1, r2, . . . , rn are placed, from
left to right, on an arc of a large circle so that they
seem collinear. The blue points b1, b2, . . . , bn appear
below the red points on an arc that slightly curves in-
wards (similar to Figure 3). In order to match all points,
the left-most red point (r1) should be matched with the
left-most blue point (b1). Using an inductive argument,
we can show there is a unique matching of all points,
where ri is matched with bi. Consider a family of n!
sequences, each associated with a permutation of the
blue points b1, . . . , bn that indicates the order at which
they appear in the online sequence. Let Alg be a de-
terministic online algorithm with less than dlog n!e bits
of advice. This implies that two sequences σ and σ′ in
the family receive the same advice. Assume the per-
mutations associated with σ and σ′ differ for the first
time at index i, and let x be the i’th point in the input
sequence. In σ, the point x is bk and in σ′ it is bk′ for
some k 6= k′. Since Alg is deterministic and receives
the same advice for σ and σ′, it matches x with the same
red point in both cases. Such a matching, however, is
not consistent with the unique optimal matching for at
least one of the two sequences. As such some points re-
main unmatched in either σ or σ′, and hence Alg fails
to match all points. �

5 Concluding Remarks

Theorems 5 and 7 indicate that advice of size O(n)
and Ω(log n) are respectively sufficient and necessary
to match all points in the monochromatic setting. Clos-
ing the gap between these bounds does not seem to be
easy and requires alternative techniques.

All algorithms studied in this paper are determinis-
tic. We expect that randomization can improve the ex-
pected number of matched points which we propose as
a direction for future research.

238

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Acknowledgement

We thank the anonymous reviewers for their useful sug-
gestions. We acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada
(NSERC). NSERC funds were used for the research visit
that resulted in publication of this paper.

References

[1] G. Aloupis, J. Cardinal, S. Collette, E. D. Demaine,
M. L. Demaine, M. Dulieu, R. F. Monroy, V. Hart,
F. Hurtado, S. Langerman, M. Saumell, C. Seara, and
P. Taslakian. Non-crossing matchings of points with
geometric objects. Comput. Geom., 46(1):78–92, 2013.

[2] M. J. Atallah. A matching problem in the plane. J.
Comput. Syst. Sci., 31(1):63–70, 1985.

[3] H. Böckenhauer, D. Komm, R. Královic, and
R. Královic. On the advice complexity of the k-server
problem. J. Comput. Syst. Sci., 86:159–170, 2017.

[4] P. Bose, M. E. Houle, and G. T. Toussaint. Every set
of disjoint line segments admits a binary tree. Discret.
Comput. Geom., 26(3):387–410, 2001.

[5] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen,
and J. W. Mikkelsen. Online algorithms with advice:
A survey. ACM Comput. Surv., 50(2):19:1–19:34, 2017.

[6] J. Boyar, S. Kamali, K. S. Larsen, and A. López-
Ortiz. Online bin packing with advice. Algorithmica,
74(1):507–527, 2016.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2001.

[8] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in
bottleneck matching and related problems. Algorith-
mica, 31(1):1–28, 2001.

[9] J. Erickson. https://mathoverflow.net/questions/86906.
https://stackexchange.com/. Accessed: 2020-07-21.

[10] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In Proc. 14th Symp.
on Discrete Algorithms (SODA), pages 841–850, 2003.

[11] J. Hershberger and S. Suri. Applications of a semi-
dynamic convex hull algorithm. BIT Comput. Sci.
Sect., 32(2):249–267, 1992.

[12] J. Hershberger and S. Suri. Efficient breakout routing in
printed circuit boards. In J. Boissonnat, editor, Proc.
13th Annual Symposium on Computational Geometry
(SOCG), pages 460–462. ACM, 1997.

[13] M. Hoffmann, B. Speckmann, and C. D. Tóth. Pointed
binary encompassing trees: Simple and optimal. Com-
put. Geom., 43(1):35–41, 2010.

[14] A. Kaneko and M. Kano. Discrete geometry on red
and blue points in the plane—a survey. Discrete &
Computational Geometry, 25:551–570, 2003.

[15] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An
optimal algorithm for on-line bipartite matching. In
H. Ortiz, editor, STOC90, pages 352–358. ACM, 1990.

[16] C. Lo, J. Matousek, and W. L. Steiger. Algorithms for
ham-sandwich cuts. Discrete & Computational Geom-
etry, 11:433–452, 1994.

[17] L. Lovász and M. Plummer. Matching Theory. AMS
Chelsea Publishing Series. North-Holland, 2009.

[18] D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Commun. ACM, 28:202–208,
1985.

[19] P. M. Vaidya. Geometry helps in matching. SIAM J.
Comput., 18(6):1201–1225, 1989.

239

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Restricted-Weight Minimum-Dilation Spanners on Three Points

Kevin Buchin∗ Herman Haverkort† Hidde Koerts

Abstract

Given a planar point set P and a parameter L > 0, we
are interested in finding a Euclidean graph G, possibly
using Steiner vertices, that has total weight at most L
and minimizes the maximum dilation between any pair
of points p, q ∈ P . The dilation between two points
is the ratio between their graph distance and their Eu-
clidean distance.

While this problem can be approached using convex
optimization, the geometry of solutions is not yet well
understood. We investigate this problem for the case
P = {A,B,C} of three points. In this case the solution
consists of a triangle ∆A′B′C ′ and edges AA′, BB′ and
CC ′. We show that if A,B and C are the vertices of
an equilateral triangle ∆ABC, then ∆A′B′C ′ is equi-
lateral and centered in ∆ABC with its vertices on the
bisectors of ∠ABC,∠ACB,∠BAC. We further analyze
the solution for the case that ∆ABC is isosceles and L
is small.

1 Introduction

A Euclidean graph is a graph in which each vertex is
a point in Rn, and each edge (p, q) has weight equal
to the Euclidean distance |pq| between p and q. Let
G(V,E) be a Euclidean graph and let dG(p, q) denote
the shortest distance between p, q ∈ V in graph G, that
is, the smallest total weight of any path from p to q. Let

furthermore DG(p, q) = dG(p,q)
|pq| be the dilation between

p, q ∈ V over graph G. A spanner of a set of points
P ∈ Rn is then defined as a connected graph G = (V,E)
such that P ⊂ V . Depending on the context, one may
require V = P , or one may allow V to contain Steiner
points, that is, points that are not in P . The dilation
DG of the spanner is its maximum dilation over all pairs
of points from P , that is, DG = maxp,q∈P DG(p, q). A t-
spanner is a spanner G with dilation DG ≤ t. Spanners
and related algorithms have extensively been described
by Narasimhan and Smid [15].

Spanners form an important concept in computa-
tional geometry. Geometric spanners have various ap-
plications in for example the searching of metric spaces
[16], the distribution of messages in networks [10], and

∗Department of Mathematics and Computer Science, Eind-
hoven University of Technology, k.a.buchin@tue.nl
†Institute of Computer Science, University of Bonn,

haverkort@uni-bonn.de

the creation of approximate distance oracles [11]. Gen-
erally, geometric spanners can be utilized to approxi-
mate more complex networks, allowing for more time-
efficient approximation algorithms. In the theoretical
analysis of such algorithms, dilation is often used to
prove bounds on the accuracy of said algorithms.

Spanners are frequently studied under further con-
straints regarding a variety of measures. Commonly
considered measures include the number of edges in the
spanner, diameter of the spanner and the total weight
of the spanner. The basic spanner problem concerns
minimizing the number of edges for a given desired dila-
tion [15]. The greedy spanner, as introduced by Althöfer
et al. [2], has been proven asymptotically optimal for the
basic spanner problem [14]. Further approximation al-
gorithms aim for asymptotic complexities of O(n) and
O(|MST |) for the number of edges and the weight re-
spectively [1, 3, 4, 5, 15]. An Integer Linear Program
formulation for the basic spanner problem, was given by
Sigurd and Zachariasen [17]. These results are for the
setting without Steiner vertices.

The knowledge on other settings is less extensive. In
this report, we investigate spanners with Steiner vertices
and constrained in weight and with minimal dilation.
The related Minimum-Weight Spanner Problem (with-
out Steiner points), considering the minimal weight for
a given dilation, has been proven to be NP-hard [7].
Generally, little is known about the exact structure of
optimal spanners. While minimizing the total weight of
the spanner, considering Steiner points naturally allows
for better results. Limited work is available on settings
allowing for Steiner points [6].

We study the optimal geometric structure of solu-
tions in a weight-restricted setting analytically. Specif-
ically, we consider the Restricted-Weight Minimum-
Dilation Spanner Problem with Steiner Points on ge-
ometric problem instances consisting of three points in
R2. Given a maximum weight L, where weight is de-
fined as the sum over the lengths of all edges, we thus
want to find the spanner over P ∪ S, for S a set of
Steiner points that is optimal, that is the spanner min-
imizing the maximum dilation between any two points
in P . Previous work on this problem by Kooijmans [13]
and Verstege [18] has focused on providing algorithms
for determining optimal spanners based on convex op-
timization.

We characterize the general topological structure of
optimal spanners for all problem instances with |P | = 3.

240

32nd Canadian Conference on Computational Geometry, 2020

For the case that the points in P are the vertices of an
equilateral triangle, we provide a complete geometric
description of the optimal spanner. Figure 1 contains
examples of optimal spanners for this case. Likewise, we
provide a description for the case of an isosceles triangle
and low maximum weight L.

Figure 1: Optimal spanners for P consisting of the ver-
tices of an equilateral triangle for increasing maximum
weight

Analyzing geometric properties of optimal spanners
serves the development of fast and well-performing ap-
proximation algorithms, by providing exploitable sub-
structures and generally furthering the understanding
of the problems at hand. As such, this work aims to aid
further research into weight-restricted geometric span-
ners with Steiner vertices.

2 General Triangle

Let P ⊂ R2, |P | = 3, such that the set forms a triangle.
Let these points be labeled A,B,C. As G = (P ∪ S,E)
must be a connected graph, there must exist paths be-
tween each pair of points, which potentially overlap. Let
α, β, γ : [0, 1] → R2 be curves describing the paths be-
tween A and B, B and C, and C and A respectively.
Let furthermore α[x, y] denote the subcurve from α(x)
to α(y) for 0 ≤ x ≤ y ≤ 1.

The proofs of Lemmas 1 to 5 are given in the ap-
pendix.

Lemma 1 An optimal spanner has a maximal dilation
of 1, or the total cost is maximal, thus

∑
e∈E |e| = L.

Lemma 2 In an optimal spanner, curves α, β, γ are in-
jective.

As a result of Lemma 2, we can denote α[x, y] by
α[X → Y] for X = α(x), Y = α(y) with 0 ≤ x, y ≤ 1.
We furthermore denote the subcurve α[x, y] in reverse
direction by α[Y → X]. We similarly denote the sub-
curves α[X → Y] and α[Y → X] excluding the end-
points by α(X → Y) and α(Y → X) respectively.

Lemma 3 Let X,Y be points shared by curves α, β in
an optimal spanner. Then

α[X → Y] = β[X → Y]

Similarly for pairs α, γ and β, γ.

Thus, between two points shared by two curves, the
two curves consist of identical point sets.

Lemma 4 In an optimal spanner for L ≤ |AB| +
|AC| + |BC|, curves α, β, γ consist of straight line seg-
ments between A,B,C and additional Steiner points.

Lemma 5 In an optimal spanner, α, β, γ are contained
in the convex hull of A,B,C.

Lemma 6 An optimal spanner has the following form:
a triangle with each vertex connected to exactly one of
the points A,B,C.

Proof. Let curve α be given arbitrarily. We then con-
sider curves β, γ. As α(1) = β(0) = B, and by Lemma
3, there must exist a point B′ such that α[B → B′] =
β[B → B′] = α∩β. Analogously, there exist a point C ′

such that β[C → C ′] = γ[C → C ′] = β ∩ γ and a point
A′ such that α[A→ A′] = γ[A→ A′] = α ∩ γ.

If α(A′ → B′) ∩ β 6= ∅, let X ∈ α(A′ → B′) ∩ β.
By Lemma 2, α(A′ → B′) ∩ β(B → B′) = ∅. Then by
Lemma 3, α[X → B′] and β[X → B′] must coincide.
However, as in this case α[X → B] = β[X → B] and
B′ ∈ α(X → B), this contradicts with the definition of
B′. Therefore, α(A′ → B′) ∩ β = ∅. Similarly, α(A′ →
B′) ∩ γ = ∅.

Thus in any optimal spanner, α(A′ → B′) ∩ β =
α(A′ → B′) ∩ γ = ∅. Analogously, β(B′ → C ′) ∩ α =
β(B′ → C ′) ∩ γ = ∅ and γ(A′ → C ′) ∩ α = γ(A′ →
C ′) ∩ β = ∅.

We then, using Lemma 5, conclude that any optimal
spanner must have the topology as shown in Figure 2.
From Lemma 4 it follows that the curves between A and

A

B

C

α β

γ

Figure 2: Optimal topology as proven in Lemma 6

A′, B and B′, C and C ′, A′ and B′, B′ and C ′, A′ and
C ′, must be line segments. Thus the final form is as
shown in Figure 3. �

A

B

C

α β

γ

Figure 3: Optimal form as proven in Lemma 6

241

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

As used in the proof of Lemma 6, let A′ be the point
such that α[A → A′] = γ[A → A′] and |α[A → A′]|
maximal. Similarly, let B′ be the point such that α[B →
B′] = β[B → B′] and |β[B → B′]| maximal, and let C ′

be the point such that β[C → C ′] = γ[C → C ′] and
|γ[C → C ′]| maximal.

Lemma 7 In an optimal spanner, A′, B′, C ′ are dis-
tinct or A′ = B′ = C ′.

Proof. Assume that there exists an optimal spanner
where this is not the case. Without loss of generality,
assume that A′ = B′, and thus C ′ 6= A′ = B′. Then,
β[C,A′] = γ[C,A′]. Furthermore, by Lemma 6, and as
A′, C ′ are distinct, |γ[C,A′]| > |γ[C,C ′]|. But this con-
tradicts with the definition of C ′. Thus, our assumption
cannot hold. �

Lemma 8 In an optimal spanner, A′ = B′ = C ′ or
DG(A,B) = DG(A,C) = DG(B,C).

Proof. Assume DG(A,B) > DG(B,C) in an optimal
spanner. Then segment B′C ′ can be moved parallelly
inwards towards the center of triangle A′B′C ′ to re-
duce total cost, while not altering the maximal dila-
tion. Then, from Lemma 1, it follows that the span-
ner cannot be optimal. Thus, DG(A,B) ≤ DG(B,C)
must hold for an optimal spanner with A′, B′, C ′ dis-
tinct. Similarly, because of the ability to move segment
A′B′ parallelly inwards, DG(A,B) ≥ DG(B,C). By
analogous arguments, for a spanner to be optimal with
A′, B′, C ′ distinct, DG(A,B) = DG(A,C) = DG(B,C)
must hold. �

The dilation center X∗ of three points A,B,C is de-
fined as the point X that minimizes the dilation of the
graph with edges AX,BX and CX, where P = A,B,C.
We call G∗, the graph with edges AX∗, BX∗ and CX∗,
the minimum-dilation star. The point X∗ has been
entered into the Encyclopedia of Triangle Centers as
X(3513) [12]. It has been named the 1st Dilation Cen-
ter, and was contributed by Eppstein [8, 9], who also
observed that DG∗(A,B) = DG∗(B,C) = DG∗(A,C).
Let L∗ be the weight of G∗, that is, L∗ = |AX∗| +
|BX∗|+ |CX∗|.

Lemma 9 For any point M in the interior or on the
boundary of ∆ABC, |AM | + |BM | + |CM | < |AB| +
|AC|+ |BC|.

See appendix for the proof of Lemma 9.

Lemma 10 Let LMST be the weight of the minimum
Steiner tree over P . Then, for any weight L such that
LMST ≤ L ≤ L∗, any optimal spanner satisfies A′ =
B′ = C ′.

Proof. We first show that for L = L∗, G∗ is opti-
mal. Assume that there exists another spanner G with
cost at most L∗, and smaller maximum dilation. By
its definition, G∗ is optimal among spanners satisfying
A′ = B′ = C ′. Thus, in G, A′, B′, C ′ must be dis-
tinct. If, in G, X∗ lies outside or of ∆A′B′C ′, then one
of the curves α, β, γ, combined with the line segment
connecting its endpoints, encloses X∗. W.l.o.g. assume
this to be α. Therefore, |α| > |AX∗| + |BX∗|, and
DG(A,B) > DG∗(A,B). Thus, G would be suboptimal.
Therefore X∗ must lie on the boundary or in the inte-
rior of ∆A′B′C ′. But then, by Lemma 9, the cost of G
equals |AA′|+ |BB′|+ |CC ′|+ |A′B′|+ |B′C ′|+ |A′C ′| >
|AA′| + |BB′| + |CC ′| + |A′X∗| + |B′X∗| + |C ′X∗| ≥
|AX∗|+ |BX∗|+ |CX∗| = L∗. Thus, an optimal span-
ner G cannot exist. Therefore, for L = L∗, the optimal
spanner is the network with A′ = B′ = C ′ = X∗.

Now consider L < L∗. Suppose that there exists
a weight L < L∗ for which an optimal spanner G
exists with A′, B′, C ′ distinct. Then, by Lemma 8,
DG = DG(A,B) = DG(A,C) = DG(B,C). Since G∗

is optimal, and G has weight at most L < L∗, we must
haveDG ≥ DG∗ . InG∗, the total length of curves α, β, γ
equals DG∗ ·(|AB|+|BC|+|AC|). Since each edge in G∗

is contained in exactly two paths, this equals 2L∗. How-
ever, in G, edges A′B′, A′C ′, B′C ′ are only contained in
a single path. Thus, DG · (|AB| + |BC| + |AC|) < 2L.
Then, 2L

|AB|+|BC|+|AC| > DG ≥ DG∗ = 2L∗

|AB|+|BC|+|AC| .
This contradicts with the definition of G as an optimal
spanner with weight L < L∗. Therefore, A′ = B′ = C ′

for any optimal spanner with weight L ≤ L∗. �

Lemma 11 For any weight L such that L > L∗,
A′, B′, C ′ are distinct in any optimal spanner.

Proof. By its definition, the dilation star is optimal
among spanners satisfying A′ = B′ = C ′. However, by
Lemma 1, the dilation star cannot be optimal. As such,
no spanner satisfying A′ = B′ = C ′ is optimal. Then,
by Lemma 7, A′, B′, C ′ must be distinct in any optimal
spanner. �

3 Equilateral triangle

Lemma 12 In an optimal spanner for an equilateral
triangle, dG(A,B) = dG(A,C) = dG(B,C).

Proof. By Lemma 7, we only need to consider the
spanners in which A′, B′, C ′ all coincide or are all dis-
tinct. As by the definition of the equilateral trian-
gle |AB| = |AC| = |BC|, it suffices to show that
DG(A,B) = DG(A,C) = DG(B,C) for any optimal
spanner.

The case where A′ = B′ = C ′ holds then directly fol-
lows from Lemma 11 and the fact that the Fermat point
and the dilation center coincide for equilateral triangles.

242

32nd Canadian Conference on Computational Geometry, 2020

The case where A′, B′, C ′ are distinct directly follows
from Lemma 8. �

Lemma 13 Let for a triangle ∆ABC the sum of the
distances from the vertices to the Fermat point, |a′| +
|b′| + |c′|, be given. Then the sum of the length of the
triangle’s edges, |a| + |b| + |c|, is minimal for ∆ABC
equilateral.

A

B

Cb

c
a

a′

b′

c′
F

Figure 4: Illustration of notation used in the proof of
Lemma 13

Proof. Suppose one of the angles of ∆ABC is greater
than or equal to 120◦ in an optimal spanner. With-
out loss of generality, assume ∠ABC ≥ 120◦ be given.
Then, as the Fermat point of ∆ABC coincides with
point B, |a′|+ |b′|+ |c′| = |a|+ |c|. By the law of sines:

|c|
sin(∠ACB)

=
|a|

sin(∠BAC)
=

|b|
sin(∠ABC)

= d

where d is the diameter of the circumcircle. Then:

|b| = d · sin(∠ABC)

=
sin(∠ABC)(|a|+ |c|)

sin(∠BAC) + sin(∠ACB)

To find the minimum for |a|+|b|+|c| given |a′|+|b′|+|c′|,
we want to determine the minimum for |b|. As ∠ABC
and |a|+ |c| given, ∠BAC suffices to describe the entire
triangle. Thus:

d

d∠BAC |b| = sin(∠ABC) · (|a|+ |c|)

· cos(180◦ − ∠BAC − ∠ABC)− cos(∠BAC)

(sin(∠BAC) + sin(180◦ − ∠BAC − ∠ABC))2

Equating to zero and solving using the constraints that
120◦ ≤ ∠ABC < 180◦ and that ∠ABC + ∠ACB +
∠BAC = 180◦, we find an extremum at ∠BAC =
∠ACB = 180◦−∠ABC

2 . As the derivative increases for
increasing ∠BAC, this must be a minimum. Thus,

|b| ≥
√
3
2 (|a| + |c|) =

√
3
2 (|a′| + |b′| + |c′|). Thus,

|a|+ |b|+ |c| ≥
√
3+2
2 (|a′|+ |b′|+ |c′|)

We compare this with ∆ABC equilateral:

|a|+ |b|+ |c| = 3|a| = 3
√

3|a′| =
√

3(|a′|+ |b′|+ |c′|)

Thus, for |a′|+ |b′|+ |c′| given, the sum of the length of
the triangle’s edges is smaller for an equilateral triangle
than for a triangle with an angle greater than 120◦.

Now assume ∠BAC ≤ 120◦, ∠ABC ≤ 120◦ and
∠ACB ≤ 120◦. Let S = |a′| + |b′| be given. As the
Fermat point F is also a Steiner point in the minimum
Steiner tree of ∆ABC, ∠AFB = ∠BFC = ∠AFC =
120◦. Then, by the law of cosines:

|c|2 = |a′|2 + |b′|2 − 2|a′||b′| cos(120◦)

= |a′|2 + |b′|2 + |a′||b′|
= |a′|2 + (S − |a′|)2 + |a′|(S − |a′|)
= |a′|2 + S2 − |a′|S

As S is fixed, |c|2 is solely dependent on |a′|. Therefore:

d|c|2
d|a′| = 2|a′| − S

To find the minimum value for |c| given S, we equate
the derivative to zero.

2|a′| − S = 0

⇐⇒ 2|a′| = S

⇐⇒ 2|a′| = |a′|+ |b′|
⇐⇒ |a′| = |b′|

Thus, |c| is minimal for ∆ABF isosceles. Then from
simple trigonometry, utilizing ∠AFB = 120◦, it follows
that in this case, |c| =

√
3|a′| =

√
3S
2 . Thus, more gen-

erally, |c| ≥
√

3S
2 =

√
3 |a
′|+|b′|
2 , where |c| =

√
3 |a
′|+|b′|
2

is only achieved for |a′| = |b′|.
Similarly for the other edges, by symmetry:

|a| ≥
√

3

2
(|b′|+ |c′|)

|b| ≥
√

3

2
(|a′|+ |c′|)

Then, for the sum of the triangle’s edges:

|a|+ |b|+ |c| ≥
√

3

2
(|b′|+ |c′|) +

√
3

2
(|a′|+ |c′|)

+

√
3

2
(|a′|+ |b′)

=
√

3(|a′|+ |b′|+ |c′|)

As |a| =
√
3
2 (|b′|+ |c′|) ⇐⇒ |b′| = |c′|, and as this also

holds for |b|, |c| by symmetry, |a|+ |b|+ |c| =
√

3(|a′|+
|b′|+ |c′|) ⇐⇒ |a′| = |b′| = |c′|. Thus for |a′|+ |b′|+ |c′|
given, |a|+|b|+|c| is minimal for ∆ABC equilateral. �

Corollary 14 For the sum of the edge lengths of a tri-
angle ∆ABC, |a|+|b|+|c| given, the sum of the distances
from the vertices to the Fermat point, |a′|+ |b′|+ |c′| is
maximal for ∆ABC equilateral.

243

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Theorem 15 Let ∆ABC be an equilateral triangle.
Then for a given L ≥

√
3 · |AB|, the maximal dila-

tion is minimal for the following spanner: an equilateral
triangle centered in ∆ABC with its vertices connected
to the vertices A,B,C such that its vertices lie on the
line segments connecting A,B,C to the Fermat point of
∆ABC.

A

B

C A

B

CA

B

C A

B

CG1 G′
1 G2 G′

2

Figure 5: Graphs used in the proof of Theorem 15

Proof. W.l.o.g. assume |AB| = 1. Let G1 be an op-
timal spanner which does not have this structure. By
Lemma 6, it has the general form as depicted in Fig-
ure 5. Let s1 be the sum of the edge lengths of its
inner triangle, and t1 the sum of the lengths of the
segments connecting the vertices of the inner trian-
gle and A,B,C. Let D1 be its maximum dilation,
max(DG1(A,B), DG1(A,C), DG1(B,C)), and let L1 be
its total cost.

Then, L1 = s1 + t1. Furthermore, as ∆ABC equi-
lateral, |AB| = |AC| = |BC|, and as by Lemma 12
dG1

(A,B) = dG1
(A,C) = dG1

(B,C), it follows that
DG1

(A,B) = DG1
(A,C) = DG1

(B,C). Then:

3D1 = 3 ·max(DG1
(A,B), DG1

(A,C), DG1
(B,C))

= DG1
(A,B) +DG1

(A,C) +DG1
(B,C)

= s1 + 2t1

Now consider a spanner G2, with a centered equilateral
triangle with its vertices on the line segments connect-
ing A,B,C to the Fermat point of ∆ABC, where the
sum of the edge lengths of the inner triangle, s2, equals
s1. Let t2 be the sum of the distances between the in-
ner triangle’s vertices and A,B,C, L2 its total cost and
D2 its maximum dilation. Then, as G1 is an optimal
spanner, L2 ≥ L1 or D2 ≥ D1. Next, we consider our
previously found equations, utilizing s1 = s2:

L2 ≥ L1

⇐⇒ s2 + t2 ≥ s1 + t1

⇐⇒ t2 ≥ t1

D2 ≥ D1

⇐⇒ 3D2 ≥ 3D1

⇐⇒ s2 + 2t2 ≥ s1 + 2t1

⇐⇒ t2 ≥ t1

Thus, both statements are equivalent to t2 ≥ t1.

Next consider replacing the edges of the inner trian-
gles of G1 and G2 by three line segments between the
vertices of the inner triangle to its Fermat point. Let
these new spanners be G′1 and G′2. Let u1 and u2 be
the sum of the lengths of these three segments for G′1
and G′2 respectively. From the total cost of the minimal
Steiner tree of ∆ABC equaling

√
3·|AB|, it follows that

t1 + u1, t2 + u2 ≥
√

3 · |AB|.
First consider the case where the inner triangle of G1

is equilateral. Then u1 = u2, but as it is not centered
with its vertices on the line segments connecting A,B,C
to the Fermat point of ∆ABC, t1 +u1 >

√
3 · |AB|. By

construction, G′2 is the minimum Steiner tree for ∆ABC
and thus t2 + u2 =

√
3 · |AB|. But then, as u1 = u2,

t1 > t2.

Secondly, we consider the case where the inner tri-
angle of G1 is not equilateral. As G′2 is the minimum
Steiner tree for ∆ABC, t2 + u2 =

√
3 · |AB|. By Corol-

lary 14 u1 < u2. But then, as t1 + u1 ≥
√

3 · |AB|,
t1 > t2.

Thus in all cases t1 > t2. Thus G1 cannot be opti-
mal. �

Theorem 16 Let points A,B,C, the vertices of an
equilateral triangle, and

√
3 · |AB| ≤ L ≤ 3 · |AB|,

the maximum total cost, be given. Then, in an optimal
spanner,

A′ = A+
~AB + ~AC

| ~AB + ~AC|
· 3 · lo − L

3
√

3− 3
,

B′ = B +
~BA+ ~BC

| ~BA+ ~BC|
· 3 · lo − L

3
√

3− 3
,

C ′ = C +
~CA+ ~CB

| ~CA+ ~CB|
· 3 · lo − L

3
√

3− 3

with lo = |AB|.

See appendix for the proof of Theorem 16.

4 Isosceles triangle

Let ∆ABC be an isosceles triangle with |AB| = |BC|.
We analyze the case of small L, that is for L ≤ L∗, for
which we know by Lemma 10 that A′ = B′ = C ′.

Lemma 17 In a spanner with X := A′ = B′ = C ′, for
X at a given height with respect to base AC, |AX| +
|CX| is minimal for |AX| = |CX|.

See appendix for the proof of Lemma 17.

Corollary 18 In an optimal spanner, if X := A′ =
B′ = C ′, this point lies on the perpendicular bisector of
AC.

244

32nd Canadian Conference on Computational Geometry, 2020

Proof. Let G be a given optimal spanner, in which
|AX| 6= |CX|. Without loss of generality due to the
symmetry of an isosceles triangle, assume DG(A,B) ≥
DG(B,C). We will consider a spanner G∗, in which
|AX∗| = |CX∗|, but where |X∗X ′∗| equals |XX ′| in
G, where X ′ is the perpendicular projection of X on
AC. Then, by applying Lemma 17 and the Pythagorean
Theorem to |BX|, it follows that the total cost of G∗ is
smaller than the total cost of G.

We further show that the maximal dilation is re-
duced. As |AX| + |CX| minimal for |AX| = |CX|,
DG(A,C) > DG∗(A,C). By the Pythagorean Theo-
rem, |AX∗| < |AX| and |BX∗| < |BX|. But then,
DG(A,B) > DG∗(A,B) = DG∗(B,C). But then, G
cannot be optimal, and thus for any optimal spanner,
|AX| = |CX| must hold. �

Together with Lemma 1 and Lemma 9 this provides
a complete characterization of the spanner for the case
that LMST ≤ L ≤ L∗, where LMST is the weight of
the minimum Steiner tree and L∗ is the weight of the
minimum dilation star. We have not yet found similar
characterizations for larger L. Conjectures based on
computational experiments are included in Section 5.

5 Computational experimentation

To further investigate properties of optimal spanners,
we used an approximation algorithm to find such span-
ners for various problem instances. We chose not to use
exact algorithms like those developed by Kooijmans [13]
and Verstege [18] due to the simplicity of the considered
cases. Consequently, simple approximation algorithms,
such as the evolution-based approach we implemented,
give satisfactory results while avoiding error-prone com-
plex implementations.

In Figure 6, for several problem instances and for in-
creasing maximum weight, the computationally found
approximations are visualized. From the development
of the spanner for increasing maximum weight, we de-
duce multiple conjectures.

Conjecture 1 Let ∆ABC be an isosceles triangle with
|AB| = |BC|. Then the optimal spanner is symmetric
in the perpendicular bisector of AC.

Conjecture 2 Let ∆ABC be an isosceles triangle with
|AB| = |BC|. If ∠ABC ≤ 120◦, |AA′| > 0, |BB′| >
0, |CC ′| > 0 in the optimal spanner for |AF | + |BF | +
|CF | < L < |AB| + |AC| + |BC| with F the Fermat
point of ∆ABC.

Note that in Conjecture 2, the lower and upper bounds
on L are given by the cost of the minimum Steiner tree
and the complete graph respectively.

Figure 6: Approximately optimal spanners for various
problem instances of three points at varying maximum
weight

Conjecture 3 Let L∗ be the weight of the dila-
tion star. Then lim

L↓L∗
∠A′B′C ′ = lim

L↓L∗
∠A′C ′B′ =

lim
L↓L∗

∠B′A′C ′ = 60◦.

Conjecture 4 If in an optimal spanner
|AA′|, |BB′|, |CC ′| > 0, the lines AA′, BB′, CC ′

intersect in a single point.

6 Conclusion

The aim of our work was to analyze the geometry of
solutions to the Restricted-Weight Minimum-Dilation
Spanner Problem with Steiner Points. As presented, we
have determined the topology of solutions for instances
with |P | = 3. Additionally, we can fully describe the
optimal spanner if the points in P are the vertices of an
equilateral triangle, and partially (i.e. if the maximum
weight is small) if they form an isosceles triangle.

We leave multiple open problems. Proofs for optimal
spanners for isosceles triangles and larger weight are still
elusive. Similarly, descriptions of optimal spanners and
corresponding proofs for general triangles, quadrilater-
als (in particular the square), pentagons and further
polygons are yet to be found. In restricted settings, the
previous work by Kooijmans [13] and Verstege [18] pro-
vides insights into the topologies of solutions. Consider-
ing optimal spanners more generally, related problems
include solutions and their structure for other objec-
tive functions in weight-restricted settings, for example,
minimizing the diameter or the number of edges.

245

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] R. Ahmed, K. Hamm, M. J. Latifi Jebelli, S. Kobourov,
F. Darabi Sahneh, and R. Spence. Approximation al-
gorithms and an integer program for multi-level graph
spanners. CoRR, abs/1904.01135, 2019.

[2] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs. Dis-
crete & Computational Geometry, 9(1):81–100, 1993.

[3] S. Arya, D. Mount, and M. Smid. Randomized and
deterministic algorithms for geometric spanners of small
diameter. In Proceedings 35th Annual Symposium on
Foundations of Computer Science, pages 703–712, 1994.

[4] S. Arya, D. M. Mount, and M. Smid. Dynamic algo-
rithms for geometric spanners of small diameter: Ran-
domized solutions. Computational Geometry, 13(2):91–
107, 1999.

[5] S. Arya and M. Smid. Efficient construction of a
bounded-degree spanner with low weight. Algorithmica,
17(1):33–54, 1997.

[6] G. Borradaile and D. Eppstein. Near-linear-time de-
terministic plane Steiner spanners forwell-spaced point
sets. Computational Geometry, 49:8–16, 2015.

[7] P. Carmi and L. Chaitman-Yerushalmi. Minimum
weight Euclidean t-spanner is NP-hard. Journal of Dis-
crete Algorithms, 22:30–42, 2013.

[8] D. Eppstein. The dilation center of a triangle.
https://11011110.github.io/blog/2008/07/10/dilation-
center-of.html, 2008.

[9] D. Eppstein and K. A. Wortman. Minimum dilation
stars. Computational Geometry, 37(1):27–37, 2007.

[10] A. M. Farley, A. Proskurowski, D. Zappala, and
K. Windisch. Spanners and message distribution in net-
works. Discrete Applied Mathematics, 137(2):159–171,
2004.

[11] J. Gudmundsson, G. Narasimhan, and M. Smid. Appli-
cations of geometric spanner networks. In Encyclopedia
of Algorithms, pages 40–43. Springer, 2008.

[12] C. Kimberling. Encyclopedia of Triangle Centers.
https://faculty.evansville.edu/ck6/encyclopedia/ETCPart3.html,
2020.

[13] P. J. A. M. Kooijmans. Fixed-weight minimum-dilation
networks. Master’s thesis, Eindhoven University of
Technology, Department of Mathematics and Computer
Science, 2008.

[14] H. Le and S. Solomon. Truly optimal Euclidean span-
ners. CoRR, abs/1904.12042, 2019.

[15] G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

[16] G. Navarro and R. Paredes. Practical construction of
metric t-spanners. In Proceedings of the Fifth Workshop
on Algorithm Engineering and Experiments, pages 69–
81, 2003.

[17] M. Sigurd and M. Zachariasen. Construction of
minimum-weight spanners. In Proceedings 12th Euro-
pean Symposium on Algorithms, pages 797–808, 2004.

[18] M. Verstege. Fixed-weight minimum-dilation networks.
Master’s thesis, Eindhoven University of Technology,
Department of Mathematics and Computer Science,
2011.

246

32nd Canadian Conference on Computational Geometry, 2020

Appendix

Proof for Lemma 1

Proof. Assume there exists an optimal spanner where the
maximal dilation is greater than 1, and the total cost is not
maximal. Let Lu < L be the total weight of the optimal
spanner.

Firstly, we will consider the case that a single path has
maximal dilation. W.l.o.g. assume that α is said path.
Thus, DG(A,B) > DG(B,C), DG(A,B) > DG(A,C).
Then, as DG(A,B) > 1, α is not a single line segment.
Then we can use the available weight L − Lu to decrease
dG(A,B), thereby decreasing DG(A,B). Thus the solution
is not optimal.

Next, we consider the case that two paths have maximal
dilation. W.l.o.g. assume that α, β are said paths. Thus,
DG(A,B) = DG(B,C) > DG(A,C). Then, as DG(A,B) =
DG(B,C) > 1, neither α nor β is a single line segment. Then
we can use half of the available weight L − Lu to decrease
dG(A,B) and half to decrease dG(B,C), thereby decreasing
DG(A,B), DG(B,C). Thus the solution is not optimal.

Finally, we consider the case where DG(A,B) =
DG(B,C) = DG(A,C). Then, as DG(A,B) = DG(B,C) =
DG(A,C) > 1, none of the paths consist of a single line
segments. Thus we can use a third of the available weight
L−Lu for decreasing dG(A,B), dG(B,C), dG(A,C) each re-
spectively, thereby decreasing the maximal dilation. Thus
the solution is not optimal.

Thus in all cases, the presumed solution is not opti-
mal. �

Proof for Lemma 2

Proof. W.l.o.g. we will consider α. Let α not be injective.
Then there thus exist 0 ≤ x < y ≤ 1 such that α(x) = α(y).

If α[x, y] \ (β ∪ γ) 6= ∅, redefining α to the concatenation
of α[0, x] and α[y, 1], will decrease the total cost while not
increasing the maximum dilation. Thus by Lemma 1, the
solution cannot be optimal.

Otherwise, (β ∪ γ) ∩ α[x, y] = α[x, y]. Then let bj =
inf{b : β(b) ∈ α[x, y]}, cj = inf{c : γ(c) ∈ α[x, y]} be
the indices at which β, γ join α[x, y] respectively, and let
bl = sup{b : β(b) ∈ α[x, y]}, cl = sup{c : γ(c) ∈ α[x, y]} be

the indices at which they leave α[x, y]. If |β[bj , bl]| > |α[x,y]|
2

,
we can redefine β[bj , bl] to α[x, y] \ β[bj , bl], resulting in

|β[bj , bl]| ≤ |α[x,y]|2
without increasing dilation. Analogously,

we can redefine γ[cj , cl] such that |γ[cj , cl]| ≤ |α[x,y]|2
. Then,

if α[x, y]\(β∪γ) 6= ∅ for the redefined curves, the modified so-
lution, and therefore the original solution, cannot be optimal
as previously described. Otherwise, |β[bj , bl]| = |γ[cj , cl]| =
|α[x,y]|

2
, and we can redefine β[bj , bl] to γ[cj , cl] without in-

creasing dilation. Then α[x, y] \ (β ∪ γ) 6= ∅, and thus the
modified solution, and therefore the original solution cannot
be optimal as previously shown.

Thus, in all cases the solution is not optimal, and we con-
clude that α must be injective in an optimal solution. �

Proof for Lemma 3

Proof. Let X,Y be points shared by curves α, β. Assume
that α[X → Y] 6= β[X,Y] in an optimal solution. Then
α[X,Y] \ β[X,Y] 6= ∅ and β[X,Y] \ α[X,Y] 6= ∅.

Suppose that |α[X,Y] \ β[X,Y]| < |β[X,Y] \ α[X,Y]|.
Then we can redefine β[X,Y] to α[X,Y] without increas-
ing dilation, while maintaining or lowering the total cost.
The cost is only maintained if β[X,Y] \ α[X,Y] ⊆ γ. Then,
γ ∩ (β[X,Y] \ α[X,Y]) can also be redefined to segments
of α[X,Y] without increasing the dilation, while reduc-
ing the cost. By Lemma 1, the modified solution, and
therefore the original solution, cannot be optimal. Thus,
|α[X,Y] \ β[X,Y]| ≥ |β[X,Y] \ α[X,Y]|. Analogously,
|α[X,Y] \ β[X,Y]| ≤ |β[X,Y] \ α[X,Y]|.

Thus, |α[X,Y] \ β[X,Y]| = |β[X,Y] \ α[X,Y]|. Then,
as previously shown, we can redefine β[X,Y] \ α[X,Y], and
possibly γ∩(β[X,Y]\α[X,Y]), to α[X,Y] to reduce the total
cost without increasing the dilation. As such, by Lemma 1,
the modified solution, and therefore the original solution,
cannot be optimal.

Analogously for pairs α, γ and β, γ. �

Proof of Lemma 4

Proof. If L = |AB|+ |AC|+ |BC|, the optimal solution is
given by the complete graph, which consists of straight line
segments.

If L < |AB| + |AC| + |BC|, w.l.o.g. let us consider α.
Let α contain a non-straight arc in an optimal solution. Let
α[x, y] be such an arc, with 0 < x < y < 1.

If α[x, y] ∩ β = α[x, y] ∩ γ = ∅, replacing α[x, y] with
a direct line segment decreases cost, while not increasing
dilation. By Lemma 1, the modified solution, and therefore
the original solution cannot be optimal.

If α[x, y] ∩ β ∩ γ = α[x, y], α, β, γ can all be redefined to
a direct line segment to decrease cost, while not increasing
dilation. By Lemma 1, the modified solution, and therefore
the original solution cannot be optimal.

If α[x, y]∩β = α[x, y] and α[x, y]∩γ = ∅, both α, γ can be
redefined to a direct line segment to decrease the cost, while
not increasing dilation. By Lemma 1, the modified solution,
and therefore the original solution cannot be optimal. By
similar argument, the same holds for α[x, y] ∩ β = ∅ and
α[x, y] ∩ γ = α[x, y].

Otherwise, we can introduce z1 < z2 <
. . . < zn, with z1 > x, zn < y, such that
α[x, z1], α[z1, z2], α[z2, z3], . . . , α[zn−1, zn], α[zn, y] all
either reflect one of the previous cases or are a straight line
segment.

Thus, in all cases, non-straight arcs result in a non-
optimal solution. �

Proof for Lemma 5

Proof. By Lemma 4, we can consider the solution to be a
network over a set of points V , consisting of the triangle’s
vertices and additional Steiner points.

Let ha(p) for p ∈ V denote the distance from p to the line
BC if the line segment connecting p and A intersects the

247

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

line BC, and the additive inverse of the distance from p to
the line BC otherwise.

Assume that there exists a point q such that ha(q) pos-
itive in an optimal solution. Then let q1, q2, . . . , qn ∈ V
denote the points with ha(q1) = ha(q2) = . . . = ha(qn) =
maxp∈V ha(p). Now move all qi for 1 ≤ i ≤ n perpendicular
to the line BC by ε towards said line, for ε sufficiently small.
Then any line segment between qi, qj for 1 ≤ i < j ≤ n, is
not changed in length. For segments between p′, q′, where
ha(p′) < ha(q′) = maxp∈V ha(p), by the Pythagorean Theo-
rem, the length is reduced. All remaining segments are not
affected.

As ha(q) > 0, and as each point in V is (in)directly con-
nected to A,B,C, there must exist p′, q′ such that ha(p′) <
ha(q′) = maxp∈V ha(p) and p′, q′ directly connected. Thus,
there must exist a segment which has been shortened, while
none of the segments has increased in length. As such, the
modified solution has a lower cost. By Lemma 1, the mod-
ified solution can thus not be optimal. Furthermore, as the
maximum dilation has thus also not increased, the original
solution can also not be optimal. As such, our assumption
that there exists a point q such that ha(q) > 0 cannot hold.

Analogously, an optimal solution cannot contain a point
q such that the line segment connecting q and B intersects
the line AC, or such that the line segment connecting q and
C intersects the line AB. �

Proof for Lemma 9

Proof. For M in the interior of ∆ABC, we trivially have
|AM | + |MB| < |AC| + |CB|. Similarly, |BM | + |MC| <
|BA|+ |AC| and |AM |+ |MC| < |AB|+ |BC|. Adding these
equations gives 2·(|AM |+|BM |+|CM |) < 2·(|AB|+|BC|+
|AC|).

For M on the boundary of ∆ABC, |AM |+|MB| ≥ |AC|+
|CB| if and only ifM = C. Similarly, |BM |+|MC| ≥ |BA|+
|AC| if and only if M = A and |AM |+ |MC| ≥ |AB|+ |BC|
if and only if M = B. Thus, as A,B,C are distinct, for
any point on the boundary, 2 · (|AM | + |BM | + |CM |) <
2 · (|AB|+ |BC|+ |AC|) must hold. �

Proof for Theorem 16

Proof. Let points A,B,C, the vertices of an equilateral tri-
angle, and L, the maximum total cost, be given. We will
now construct A′, B′, C′. Let lo := |AB| = |AC| = |BC|.
Furthermore, let lc := |AA′|, and let li := |A′B′|. Then, by
Theorem 15, lc = |AA′| = |BB′| = |CC′| and li = |A′B′| =
|A′C′| = |B′C′|.

Then, as by Theorem 15 ∠A′AC = 30◦, lo = 2 · lc ·
cos(30◦) + li. From this equation, it follows that li =
lo−2·lc ·cos(30◦). Furthermore, by Lemma 1, 3·lc+3·li = L.
Then we can solve for lc:

3 · lc + 3 · li = L

⇐⇒ 3 · lo − 6 · lc · cos(30◦) + 3 · lc = L

⇐⇒ 3 · lo − 3
√

3 · lc + 3 · lc = L

⇐⇒ (3− 3
√

3) · lc = L− 3 · lo

⇐⇒ lc =
3 · lo − L
3
√

3− 3

Finally, as by Theorem 15 ∠A′AB = ∠A′AC and |AB| =
|AC|:

A′ = A+
~AB + ~AC

| ~AB + ~AC|
· 3 · lo − L

3
√

3− 3

And by symmetry analogously for B′ and C′. �

Proof for Lemma 17

Proof. Define X ′ as the perpendicular projection of X on
AC, such that ∠AX ′X = 90◦, which is in any case valid by
Lemma 5. Now let |XX ′| be fixed. Then:

|AX|+ |CX| =
√
|AX ′|2 + |XX ′|2 +

√
|CX ′|2 + |XX ′|2

=
√
|AX ′|2 + |XX ′|2

+
√

(|AC| − |AX ′|)2 + |XX ′|2

To find the minimum, we differentiate with respect to |AX ′|:

d(|AX|+ |CX|)
d|AX ′| =

|AX ′|√
|AX ′|2 + |XX ′|2

− |AC| − |AX ′|√
(|AC| − |AX ′|)2 + |XX ′|2

=
|AX ′|√

|AX ′|2 + |XX ′|2

− |CX ′|√
|CX ′|2 + |XX ′|2

Setting the derivative equal to zero, we find:

d(|AX|+ |CX|)
d|AX ′| = 0

⇐⇒ |AX ′|√
|AX ′|2 + |XX ′|2

=
|CX ′|√

|CX ′|2 + |XX ′|2

⇐⇒ |AX ′|2(|CX ′|2 + |XX ′|2) = |CX ′|2(|AX ′|2 + |XX ′|2)

⇐⇒ |AX ′|2|XX ′|2 = |CX ′|2|XX ′|2

⇐⇒ |AX ′|2 = |CX ′|2

And as lengths of line segments are non-negative, |AX ′| =
|CX ′|. But then, by the Pythagorean Theorem, |AX| =
|CX|. �

248

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Fréchet Distance Between Two Point Sets

Maike Buchin∗ Bernhard Kilgus†

Abstract

We define and study the (discrete) Fréchet distance be-
tween two point sets in the plane. One variant of the
well-known Fréchet distance seeks to find a polygonal
curve on a point set with small (discrete) Fréchet dis-
tance to another given polygonal curve. Here, we con-
sider two given point sets and ask if permutations of
theses point sets exist, such that the (discrete) Fréchet
distance of curves defined by the permutations is small.

1 Introduction

The (discrete) Fréchet distance is a popular measure
between two polygonal curves that takes the order of
the points along the curves into account. Intuitively, the
similarity of the shapes of the two curves is measured.
In this paper, we want to measure the similarity between
two point sets by asking if we can find an order of the
points, such that the (discrete) Fréchet distance between
the polygonal curves on the point sets in this order is
small. That is, we ask if the point sets can be ordered
such that the resulting curves have a similar shape.

This is a natural problem within the Fréchet distance
research that has not been considered yet, and there are
some interesting applications of this approach. For in-
stance, it can be used to detect similar linear formations
between two groups where one group is represented by
one point for each entity within the group. Further-
more, for two sets of GPS-positions of two entities for
which the time component is missing, we want to deter-
mine if the positions can be ordered in such a way that
the entities were moving along a similar route.

1.1 Problem Definition

A polygonal curve is a curve P : [1, n] → R2 where
n is a positive integer, such that the restriction of P
to the interval [i, i + 1] is affine, that is P (i + λ) =
(1 − λ)P (i) + λP (i + 1), for each i ∈ {1, 2, . . . , n − 1}.
We call {P (i) | i ∈ [1 : n]} the vertex set of P . To mea-
sure the dissimilarity between two polygonal curves, we
use the Fréchet distance [6] and the discrete Fréchet dis-
tance [11]. For two polygonal curves P,Q : [1, n] → R2

∗Department of Mathematics, Ruhr University Bochum,
Bochum, Germany, Maike.Buchin@rub.de

†Department of Mathematics, Ruhr University Bochum,
Bochum, Germany, Bernhard.Kilgus@rub.de

and Q : [1,m]→ R2 their Fréchet distance is defined as

δF (P,Q) = inf
α : [0,1]→[1,n]
β : [0,1]→[1,m]

max
t∈[0,1]

||P (α(t))−Q(β(t))||,

where α (resp. β) ranges over all continuous non-de-
creasing onto mappings from [0, 1] to [1, n] (resp. [1,m]).

The discrete Fréchet distance is typically defined by
couplings. Let u(P) be the vertex set of P and v(Q)
the vertex set of Q. A coupling L between P and Q is
a sequence (ua1 , vb1), (ua2 , vb2), . . . , (uaj , vbj) of distinct
pairs from u(P)×v(Q) such that a1 = 1, b1 = 1, aj = n,
bj = m, and for all i ∈ {1, 2, . . . , j} we have ai+1 = ai or
ai+1 = ai+ 1 and bi+1 = bi or bi+1 = bi+ 1. The length
of L is defined as maxi d(uai , vbi), where d denotes the
Euclidean distance between two points. The discrete
Fréchet distance between P and Q equals the shortest
possible length of a coupling between P and Q.

Now we define the (discrete) Fréchet distance between
point sets. For this, we use the same notation, δdF (S,R)
and δF (S,R), as for the (discrete) Fréchet distance be-
tween two polygonal curves.

Definition 1 Given a point set S ⊂ R2 of size |S| = n.
A polygonal curve c(S) induced by the point set S is a
polygonal curve with vertex set S. That is c(S) visits
each point of S exactly once.

Definition 2 Let S,R ⊂ R2 be two point sets of size
|S| = n, |R| = m. We define the (discrete) Fréchet
distance between S and R as the smallest possible (dis-
crete) Fréchet distance between a polygonal curve c(S)
induced by S and a polygonal curve c(R) induced by R.

Next we formally state the problem that we study.

Problem 1 Given two point sets we ask if the (dis-
crete) Fréchet distance between the point sets is at most
a given value ε > 0 or not. If so, we want to find two in-
duced curves with (discrete) Fréchet distance at most ε.

1.2 Related Work

Alt and Godau [6] gave algorithms for computing the
Fréchet distance between polygonal curves. For two
polygonal curves P and Q of complexity n and m their
algorithm decides in O(nm) time whether the Fréchet
distance between P and Q is smaller than a given value
ε > 0, and computes the exact Fréchet distance in

249

32nd Canadian Conference on Computational Geometry, 2020

O(nm log(nm)) time [6]. The discrete Fréchet distance
was introduced by Eiter and Mannila, who gave an
algorithm to compute it for two polygonal curves in
O(nm) time [11]. Recently, Bringmann gave conditional
quadratic lower bounds [9] for the Fréchet distance and
discrete Fréchet distance. At nearly the same time,
slightly faster algorithms were given for both the dis-
crete Fréchet distance [4] and the Fréchet distance [10].

Eiter and Mannila defined a related distance mea-
sure, the link distance, between two points sets as the
mimimum sum of point to point distances of a relation
R ⊂ S1×S2 for point sets S1 and S2. For each point s1
of S1, R must contain a pair (s1, s2) and vice versa [12].

To the best of our knowledge, the problem of find-
ing polygonal curves on two given point sets with small
Fréchet distance has not been considered previously.
However, the problem where one polygonal curve P is
given and the objective is to find a polygonal curve Q
on one point set S with small (discrete) Fréchet dis-
tance to P is well studied [1, 13, 16]. There are several
variants of this problem. The all-points variant requires
all points of S to be visited by Q, whereas the subset
variant allows to build the polygonal curve on a subset
of S. Furthermore, one can allow that points of S are
visited more than once (non-unique) or not (unique).

For the discrete Fréchet distance, Wylie and Zhu [16]
showed that both non-unique variants are solvable in
O(nm) time, where n is the complexity of P and m de-
notes the size of S. However, they showed that both
unique variants are NP-complete. For the continu-
ous Fréchet distance, Accisano and Üngör [1] showed
NP-completeness for both unique variants and for the
all-points, non-unique variant. Maheshwari et al. [13]
showed that the continuous subset non-unique variant
is solvable in O(nm2) time. Assisano and Üngör intro-
duced two extensions of the problem, namely allowing
an affine transformation of P to be close to some curve
on the point set S under the Fréchet distance [2] and
dealing with imprecise point sets [3]. However, as for
most of the techniques the order of the given curve is
inherent, these approaches do not carry to our problem.

1.3 Contribution

We consider the discrete and continuous Fréchet dis-
tance between two point sets. For a curve and a point
set, the discrete variant is NP-hard. However, we
first observe that for two given point sets, the discrete
Fréchet distance is equivalent to the Hausdorff distance.
Then we show how to obtain two curves with minimal
discrete Fréchet distance in O((m+ n) log(mn)) time.

In contrast to the discrete variant, we prove that the
continuous variant is NP-hard to approximate for any
constant factor. We develop an exponential time al-
gorithm to decide whether δF (S,R) ≤ ε for two point
sets S and R and a value ε > 0 that exploits the given

Figure 1: Induced curves with discrete Fréchet distance
< ε with and without crossings.

geometry in order to reduce the number of possible per-
mutations of the points significantly.

2 Discrete Fréchet Distance Between Point Sets

In this section, we consider the discrete Fréchet distance
between two point sets and show how to obtain two
induced curves that respect this distance.

We first compare the discrete Fréchet distance with
the Hausdorff distance between two point set. Recall
that the Hausdorff distance between two point sets S
and R is defined as the smallest value ε such that for
every point s ∈ S there exists a point r ∈ R with dis-
tance at most ε to s, and such that for every point
r ∈ R there exists a point s in S with distance at
most ε to r. Hence, we observe, that for two point
sets S,R ⊂ R2, δdF (S,R) = δH(S,R), where δH(S,R)
denotes the Hausdorff distance. The Hausdorff distance
and thus the discrete Fréchet distance can be computed
in O(m+n) log(m+n) time using Voronoi Diagrams as
shwon by Alt et al. [5].

In addition to computing the value of the discrete
Fréchet distance, we also want to find induced curves
realizing the distance. First observe, that there will
typically be many curves realizing a certain distance, see
Figure 1. We show how to obtain curves with discrete
Fréchet distance equal to the discrete Fréchet distance
of the point sets that have a “nice”, i.e., relatively short
and non self-intersecting, representative curve. That
is, we reveal a simple shape that implies an order of
the point sets such that the discrete Fréchet distance
between induced curves respecting this order is small.

To find such curves on S and R, we first determine
a coupling between S and R. For this, we look for a
partition of the points sets S andR into a sequenceM of
pairs of nonempty subsets (Si, Ri) such that

⋃
i Si = S,⋃

iRi = R, Si ∩ Sj = ∅, Ri ∩ Rj = ∅ for all i 6= j,
|Si| = 1 or |Ri| = 1 for all i, and for all i, d(s, r) ≤ ε for
all s ∈ Si, r ∈ Ri. Thus, M defines a coupling on the
points of S and R that realizes δdF (c(S), c(R)) ≤ ε. The
curve c(S) (c(R)) is obtained by connecting the points
of Si (Ri) arbitrarily and by connecting these subpaths
in the order given by M.

To compute M, we build a dictionary D such that
M consists of the key-value pairs of D, where a key is a
singleton entry of a coupling pair (Si, Ri). We assume
that the coordinates of all points in S and R are unique.

In a first step, we map each point s ∈ S to its closest
point r ∈ R and add an entry with key r and an assigned

250

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

list {s} to D, or append the point s to the list if an entry
with key r already exists in D. During this step, some
points are left inR with no entry inD. Thus, in a second
step, we map each of these points to its closest point in
S, and update the entries of D in order to maintain the
properties of M. The following pseudocode describes
this approach in more detail. CP (s) denotes the closest
point of s ∈ S in R and R̂ is a copy of R.

foreach s ∈ S do
r = CP (s)
if r ∈ D then D[r].add(s);
else D.insert({r : {s}});
R̂.remove(r)

foreach r ∈ R̂ do
s = CP (r)
if s ∈ D then D[s].add(r) ;
else

r′ = CP (s)
if len(D[r′]) > 1 then D[r′].remove(s)
D.insert({s : {r}}) ;

else D.remove(r′)
D.insert({s : {r, r′}}) ;

i = 1
foreach s ∈ S do

if s ∈ D then Si = {s}, Ri = D[s], i+ +;
foreach r ∈ R do

if r ∈ D then Si = D[r], Ri = {r}, i+ +;
Algorithm 1: Construction of the partition M

It is easy to verify, that the partitionM obtained by
Algorithm 1 has the demanded properties. Note also,
that the singleton in each coupling pair is the closest
point of one of its coupled points. Using the Voronoi Di-
agrams of S and R, computing CP (s ∈ S) (CP (r ∈ R))
takes O(log(m) (O(log(n)) time and hence the first two
loops can be performed in O(n log(m)+m log(n)) time.
All operations on D take constant time using hashing.
The Voronoi diagrams of S and R can be computed
O(m log(m) + n log(n)) time. Thus we obtain:

Theorem 1 Given two point sets S,R ⊂ R2, where
|S| = n and |R| = m, we can compute induced polygo-
nal curves c(S) and c(R), such that δdF (c(S), c(R)) =
δdF (S,R) in O((m+ n) log(mn)) time.

Next, we describe how to obtain a representative
curve crep with the preferred properties, i.e. simple and
short, and induced curves with small discrete Fréchet
distance to crep. Note that a curve c(T) of shortest
length induced by a point set T is also crossing free,
since untangling a crossing only gives a shorter curve,
see the Appendix.

Computing an induced curve of shortest length equals
the NP-hard problem of finding the shortest length

Hamiltonian path in the complete distance graph. How-
ever there exist a PTAS to approximate the optimal
solution [7]. The approximation obtained is not neces-
sarily a simple path. However, the obtained curve can
be transformed into a simple curve of shorter length
as shown by van Leeuwen et al [15]. They prove that
O(|T |3) untangling operations suffice. As one can find
an intersection in O(|T | log |T |) time [14], the total run-
time of the untangling process is O(|T |4 log |T |).

Given the partitionM computed by Algorithm 1, we
obtain representative point sets TS and TR by choosing
for all i one point s ∈ Si and one point r ∈ Ri. For the
point set TS and TR, we compute simple induced curves
c(TS) and c(TR) as described above. Finally, we choose
the curve of minimal length as the representative crep.

Now, we can construct induced curves c(S), c(R)
with δdF (c(S), c(R)) = ε, δdF (c(S), crep) ≤ ε and
δdF (c(R), crep) ≤ ε by connecting the points in the or-
der given by their projection on crep. Note that c(S)
(c(R)) is simple if TS (TR) is the vertex set of crep. The
other curve may contain crossings. In general, a short-
est curve through S may induce crossings on an eligible
curve though R and vice versa, see Figure 8 (Appendix).

Theorem 2 Given two point sets S,R ⊂ R2, two
induced curves c(S), c(R) with δdF (c(S), c(R)) =
δdF (S,R) and a simple and short representative crep
can be constructed in O((min{m,n})4 log(min{m,n}))
time. The representative crep is a representative of ei-
ther S or R, where each coupling is represented by only
one point, and crep is a (1 + δ) approximation of the
shortest possible curve on these points, for a δ > 0.

3 Fréchet Distance Between Point Sets

Detecting common routes of two entities or finding sim-
ilar linear formations of two groups of entities based on
the discrete Fréchet distance is quite restrictive. For
instance, consider the simple movement of two enti-
ties moving along a straight line. Although the move-
ment is the same, the discrete Fréchet distance between
the point sets can be larger, depending on the sampled
points along the line. The continuous variant corrects
this shortcoming. Except for the start- and endpoints,
the sampled points do not necessarily need to have a
ε-correspondence in the other point set.

For the Fréchet distance between two point sets, we
first observe that in contrast to the discrete variant it
might not be possible to untangle at least one curve if
a solution exists. For instance, imagine both point sets
have points in the four corners of a square, and one point
set also has points close to the two (crossing) diagonals.

Next, we show that deciding or even approximating
the Fréchet distance between two point sets is an NP-
hard problem.

251

32nd Canadian Conference on Computational Geometry, 2020

x

xx̄

x̄

r1
s1

r2
s2

r4
s4

r3
s3 r5

r6

ra1 ra2

ra3
ra4

Figure 2: True assignment of the variable x.

3.1 NP-hardness

We reduce from the following SAT-variant, which was
proven to be NP-hard by Berman et al. [8]. Accisano
et al. [1] used the same SAT-variant to reduce from in
order to show NP-hardness for the continuous unique
variant of a given polygonal curve and a point set.

Problem 2 ((3,B2)-SAT) For a boolean formula
with clauses of size 3, the 3-SAT problem asks if there is
an assignment to the variables that satisfies the formula.
The variant, denoted (3,B2)-SAT, restricts the input to
formulas where each literal occurs exactly twice.

Theorem 3 For any c > 1, there is no polynomial time
c-approximation algorithm for the Fréchet distance be-
tween two point sets S,R ⊂ R2, unless P=NP.

Proof. [Proof Sketch] We construct point sets repre-
senting the variables and clauses of a given (3,B2)-
SAT) instance. The clause-points have no ε-neighbor
in the other point set and are within a sufficiently small
distance only to segments that define an assignment
of a variable. By construction, there is segment for
each clause point within a sufficiently small distance,
if and only if the corresponding assignments of the vari-
ables satisfy the formula. An example of the corre-
spondence between a variable assignment and the con-
structed point sets is illustrated in Figure 2. A detailed
proof can be found in the Appendix.

�

Despite the hardness of the problem, we show that
we can use the given geometric structure to solve the
problem much more efficiently compared to the naive
brute-force method of trying all pairs of induced curves
on S and R which runs in O(n!m!) time.

3.2 Exponential Time Algorithm

First, we introduce the notion of floating and anchored
points and visitor segments. In the following, (indexed)
points s are always points from S and (indexed) points
r are always points from R.

Definition 3 For two point sets S,R ⊂ R2 and a value
ε > 0, a point s is a floating point if there is no point

r, such that d(s, r) ≤ ε. Otherwise, s is called an
anchored point. Furthermore, we say a floating point
s ∈ S is isolated, if there are no two points r1, r2 such
that d(s, r1r2) ≤ ε. We call a segment r1r2 with distance
at most ε to a floating point s a visitor of s.

The runtime of the algorithm we develop in this sec-
tion is exponential in the number of floating points
and incorporates the maximum number of visitors for
a floating point. Basically, for all feasible points-visitor
combinations, we efficiently check if a combination can
be extended to curves realizing the Fréchet distance for
the given value ε. First, we consider some simple cases.

Observation 1 If all points in S and R are anchored
points, the discrete Fréchet distance and therefore the
Fréchet distance between the point sets is smaller than
ε and we can compute the induced curves as shown in
Section 2. Furthermore, if there are isolated points in S
or in R or if there is no anchored pair, we can conclude
that δF (S,R) > ε.

Hence in the following, we assume that the set of float-
ing points and the set of anchored points in S and R
are not empty and no point is isolated.

We start by preprocessing the input data and sub-
sequently iterate over all possible points-visitor combi-
nations where each floating point is assigned a visitor.
Hence, a points-visitor combination consist of subgraphs
of the complete graphs on S and R. For each such com-
bination, we test whether it can be extended to induced
curves with Fréchet distance at most ε, and discard it
whenever we determine that it cannot. We do so in
three main steps:

1. Test if a points-visitor combination is pre-valid.

2. Test if a pre-valid combination can be extended to
a pre-valid subcurve collection.

3. Test if a pre-valid subcurve collection can be ex-
tended to induced curves realizing the Fréchet dis-
tance subject to the value ε > 0.

Preprocessing To determine the floating points and
the anchored points, we compute and store for each
point s ∈ R a list Ls = {r ∈ R | d(s, r) ≤ ε}. Further-
more, we compute and store a list Ms of all segments
of R within ε-distance to s. Analogously, we store such
lists for all points r ∈ R. We set a pointer from each
anchored point s to its entry in the list Lri for all lists
Lri 3 s. Furthermore, we set a pointer from s to each
pair of anchored points (s, ŝ), s 6= ŝ ∈ S and a pointer
from each anchored point pair to its entry in the lists
Mri , if the pair is contained in Mri . We set pointers
analogously for points in R. Computing all list and
thus the preprocessing step takes O(nm2 + n2m) time.

252

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Let aS be the number of floating points in S and let
aR be the number of floating points in R. Furthermore,
for every floating point x of S or R, let k be the maximal
number of visitors of x. Each of the O(kas+aR) points-
visitor combinations consist of all floating points in S∪R
and one segment of Mx for each floating point x.

Step 1 We define pre-valid and an invalid combina-
tions and discard invalid combinations.

Definition 4 A points-visitor combination C is pre-
valid if all points in C have degree at most 2 and if C
does not contain a circle. Furthermore, for each floating
point-visitor pair (s, r1r2) ∈ C, r1 is either an anchored
point or, if r1 is a floating point with visitor s1s2,

• Case 1: either (s1, r1r2) ∈ C or s1 is an anchored
point within ε-distance to r1r2 or

• Case 2: either (s2, r1r2) ∈ C or s2 is an anchored
point within ε-distance to r1r2.

The same must hold for r2. If a combination C is not
pre-valid, we say C is invalid.

Lemma 4 An invalid points-visitor combination can-
not be extended to obtain two induced curves with
Fréchet distance at most ε.

Proof. Obviously, if C contains a circle or a point of
degree > 3, C cannot be extended to induced curves.
Let r1 be a floating point, m(s) be the projection of s
onto r1r2 and m(r1) the projection of r1 onto s1s2. As
r1r2 is the visitor of s and s1s2 is the visitor of r1 in C,
either δF (m(s)r1, s1m(r)) ≤ ε or δF (m(s)r1, s2m(r)) ≤
ε. Thus, either Case 1 or Case 2 must occur. The
argumentation is analogue for r2. �

Step 2 We now proceed with a pre-valid points-
visitor combination C. Let r1r2 be a visitor in C and let
Sr1r2 = {sa, sb, . . . , sl} be the set of all floating points
of S visited by r1r2 in C. We consider the cases where
r1 is floating or anchored. When a point x is added as
an interior point of a subcurve, we delete x from all lists
L and the corresponding segments from all lists M .

Let r1 be a floating point with visitor s1s2 and let s1
be a floating point, that is s1 ∈ Sr1r2 . Then an induced
curve on S with Fréchet distance at most ε to an induced
curve on R must visit s1 before any other point in Sr1r2 .
We analogously determine a point last visited by the
segment r1r2, if r2 is also a floating point such that
its visitor’s endpoint is a floating point. We order the
remaining points of Sr1r2 along c(S) in between s1 and
s3 by their projection along r1r2, see Figures 3,4,5,6.

If s1 is an anchored point, we order the points in Sr1r2
as in the case of s1 being a floating point. Let rs1 be the
closest point to s1 in R and let sα ∈ Sr1r2 be the first

Figure 3: Floating point and visitor, (left) with an-
chored endpoints and (right) with one floating endpoint.

Figure 4: (right) a visitor with two floating endpoints
and (left) two floating points with the same visitor.

Figure 5: (left) Connecting both points visited by the
same segment induces a zag; (right) Point within ε-
distance to a vistors’s endpoint can be currently ignored.

point visited by r1r2 after s1. Now we need to handle
several cases: If there are anchored points sp, sq of S
not in C such that d(rs1 , spsq) ≤ ε, we do not need to
handle rs1 now as we can visit rs1 later via spsq, see
Figure 5(right). Similarly, we do not need to handle rs1
if there is another point st ∈ S, st /∈ C within ε distance
to rs1 , see Figure 6(left). If both of these possibilities to
visit rs1 later do not exist, we need to incorporate rs1
on the curve c(R) in between r1 and

• the point of R (6= r1) with visitor s1s2 in C such
that its projection onto s1s2 is closest to s1 among
all points of R visited by s1s2 in C or

• the nearest neighbor of s2 in R if r1 is the only
point of R visited by s1s2 in C.

This is possible, if and only if d(r1, rs1) ≤ ε. If
d(r1, rs1) > ε, we discard C from further consideration,
see Figure 6(right). If we do not need to handle rs1 im-
mediately and d(r1, rs1) ≤ ε, we store rs1 in a list Π of
points possibly to be added later.

Now if r1 is an anchored point, we similarly order the
points of Sr1r2 along their projection along r1r2 and con-
nect the first point of that order with a point in S that
belongs to the same component as r1 of a pre-computed
ε−coupling of the anchored points, see Figure 3(left).
The same constructions are executed for r2, and anal-
ogously, we construct subcurves on the point set R. In
a last step, we consider each point x ∈ Π and incorpo-

253

32nd Canadian Conference on Computational Geometry, 2020

Figure 6: Point within ε-distance to a vistor’s endpoint
must be added and induces a zag.

rate x on the curve as described above, if |Lx| = 0 and
|Mx| = 0.

For each such subcurve construction, we need to ver-
ify that the subcurves are within Fréchet distance at
most ε. Let sα ∈ Sr1r2 be the first point visited by
r1r2 after s1 and let sω ∈ Sr1r2 be the point visited by
r1r2 before s3. If s1 and sα or sω and s3 induce a zag
such that the Fréchet distance of this zag and the visitor
r1r2 exceeds ε, we discard C from further consideration.
See Figure 5(left) for an example. The same checks are
performed for the constructed subcurves on R.

If C is not discarded, we finish step 2 with a collection
of subcurve pairs on S andR, each with Fréchet distance
at most ε. In particular, all subcurves start and end at
anchored points. We denote such a collection as a pre-
valid subcurve collection.

Step 3 Given a pre-valid subcurve collection SC, we
define ∆S and ∆R as the anchored points of S and R
not in SC. A point s ∈ ∆S is matchable, if |Ls| > 0 after
performing step 2. That is, if there is a point r ∈ ∆R
or a point r in SC of degree one within ε-distance to
s. We say r is a free ε-partner of s. If |Ls| = 0, but
|Ms| > 0, that is if there is a segment g between two
free ε-partners in R or between two degree-one points
of SC or between a degree-one point of SC and a free
ε-partner such that d(s, g) ≤ ε, we say s is visitable.
Note that all other segments in |Ms| have been deleted
during the previous steps. These notations are also used
for points in ∆R.

By definition, there exists a discrete Fréchet coupling
for the union of the matchable points of ∆S, ∆R and
the points of SC with degree one. By taking care of
the order of the components of the coupling, we can
ensure that all visitable points are visited: Let g = r1r2
be the segment with ε distance to the visitable point s.
If a coupling exists, there is a segment s1s2 such that
d(r1, s1) ≤ ε and d(r2, s2) ≤ ε. Thus, we can bend s1s2
around s and have δF (r1r2, (s1, s, s2)) ≤ ε. An eligible
order can be extracted from the lists M of the visitable
points. Therefore, the following lemma holds:

Lemma 5 Given a pre-valid subcurve collection SC on
the point sets S and R. The subcurves of SC can be
concatenated to induced curves c(S), c(R) such that
δF (c(S), c(R)) ≤ ε, if and only if each point s ∈ ∆S
(r ∈ ∆R) is either matchable or visitable.

Hence, if the conditions of Lemma 5 hold, we can
construct two curves with Fréchet distance at most ε as
described for the discrete variant. The following theo-
rem sums up the results of this section.

Theorem 6 Given two point sets S,R ⊂ R2 of size
|S| = n, |R| = m, a value ε > 0 and lists Lx, Mx for all
points in S ∪R as defined above, deciding if δF (S,R) ≤
ε takes O (ka((m+ n− a) + a log a)) time, where a is
the number of floating points in S and R and k is the
maximum number of visitors for a floating point.

Proof. Correctness follows from Lemma 5 and the de-
scription of constructing the subcurves based on a given
points-visitor combination. Note that during the sub-
curve construction, the inserted segments are deter-
mined by the specific points-visitor combination. The
only freedom of choice during the construction is how
to connect one point to another point within ε-distance
to an anchored point. The rule of choosing a point of
within the same component of an ε-coupling prevents
from deleting a point that possibly is the only point
within ε-distance to another anchored point p not con-
sidered yet. That is, if δF (R,S) ≤ ε, we eventually pro-
cess a points-visitor combination that can be extended
to two curves with Fréchet distance at most ε.

For each combination C, we need to process all float-
ing points and possibly 2a anchored points to construct
SC (one floating point can be connected to at most
two anchored points). The processing consists of pro-
jecting, sorting and measuring the Fréchet distance of
curves of length 3 (checking the induced zags). This
takes O(a log a) time. Processing the list Π takes linear
time in the number of floating points. Each time an an-
chored point is used as an interior point of a subcurve,
we delete the corresponding entries of L and M using
the pointers in constant time. During the construction
of SC we only process O(a) anchored points, thus up-
dating the lists takes O(a) time. Once a pre-valid sub-
curve collection is found, the condition of Lemma 5 can
be verified in O(m+n−a) time checking the size of the
lists of points in ∆S and ∆R. �

4 Conclusion

For the discrete Fréchet distance between two point sets,
we showed that we can construct a simple representa-
tive curve by approximating the shortest Hamiltonian
path problem on the points given by a partition of the
two point sets. For the continous variant, we reduced
the possibilities of constructing the induced curves by
carefully exploiting all given geometry. The algorithmic
approach presented here takes into account the number
of floating points and number of segments that are close
to a floating point. That is, if there is a low number of
such segments, the algorithmic approach can be applied
even if the number of floating points is large.

254

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] P. Accisano and A. Üngör. Approximate matching of
curves to point sets. In Proc. Canadian Conference on
Computational Geometry, 2014.

[2] P. Accisano and A. Üngör. Finding a curve in a point
set. CoRR, abs/1405.0762, 2014.

[3] P. Accisano and A. Üngör. Matching curves to im-
precise point sets using Fréchet distance. CoRR,
abs/1404.4859, 2014.

[4] P. K. Agarwal, R. B. Avraham, H. Kaplan, and
M. Sharir. Computing the discrete Fréchet distance
in subquadratic time. In Proc. 24th Annual Symposium
on Discrete Algorithms, pages 156–167, 2013.

[5] H. Alt, B. Behrends, and J. Blömer. Approximate
matching of polygonal shapes (extended abstract). In
Proc. 7th Annual Symposium on Computational Geom-
etry, page 186–193, 1991.

[6] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. International Journal
of Computational Geometry & Applications, 5(1&2):75–
91, 1995.

[7] S. Arora. Polynomial time approximation schemes for
Euclidean TSP and other geometric problems. In Proc.
37th Annual Symposium on Foundations of Computer
Science, page 2, 1996.

[8] P. Berman, M. Karpinski, and A. D. Scott. Approxi-
mation hardness of short symmetric instances of MAX-
3SAT. Electronic Colloquium on Computational Com-
plexity, 2003.

[9] K. Bringmann. Why walking the dog takes time:
Fréchet distance has no strongly subquadratic algo-
rithms unless SETH fails. In 55th Annual Symposium
on Foundations of Computer Science, pages 661–670,
2014.

[10] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer.
Four soviets walk the dog: Improved bounds for com-
puting the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017.

[11] T. Eiter and H. Mannila. Computing discrete Fréchet
distance. Technical report, 1994.

[12] T. Eiter and H. Mannila. Distance measures for
point sets and their computation. Acta Informatica,
34(2):109–133, 1997.

[13] A. Maheshwari, J.-R. Sack, K. Shahbaz, and H. Zarrabi-
Zadeh. Staying close to a curve. In Proc. Canadian
Conference on Computational Geometry, 2011.

[14] M. I. Shamos and D. Hoey. Geometric intersection
problems. In Proc. 17th Annual Symposium on Foun-
dations of Computer Science, pages 208–215, 1976.

[15] J. van Leeuwen and A. A. Schoone. Untangling a travel-
ling salesman tour in the plane. In Proc. 7th Conference
Graph-Theoretic Concepts in Computer Science, pages
87–98, 1981.

[16] T. Wylie and B. Zhu. Following a curve with the dis-
crete Fréchet distance. Theoretical Computer Science,
556:34–44, 2014.

Appendix

Untangling a curve

A curve c(T) of shortest length induced by a point set T also
fulfills the crossing free property: Let e and f be two crossing
segments as shown in Figure 7 and let l(e) be the Euclidean
length of the segment e. Then, by the triangle inequality, we
have l(e1)+ l(f1) > a, l(e2)+ l(f2) > b and l(e1)+ l(f2) > a,
l(e2)+ l(f1) > b and therefore l(e)+ l(f) > l(a)+ l(b). Hence
untangling a curve leads to a shorter curve.

e1
e2f2
f1

a

b

e1
e2f2
f1a b

Figure 7: Replacing two crossing segments, e and f by
two segments, a and b, of shorter total length.

No short crossing free curves

For two point sets S,R and a matching realizing their dis-
crete Fréchet distance, a shortest curve through one of the
point sets may induce crossings in the other and vice versa.

Figure 8: Two point sets S,R (indicated by crosses,
dots), which do not have crossing free shortest realiza-
tions c(S), c(R).

255

32nd Canadian Conference on Computational Geometry, 2020

Proof of Theorem 3

We assume that no two clauses have two literals in common.
Note, that for any formula that violates this assumption, an
equivalent (3,B2)-SAT instance fulfilling the assumption can
be constructed in polynomial time [8].

Similar to [1], the core of the construction are points rep-
resenting clauses of a (3,B2) instance that all must be visited
in order to satisfy the underlying SAT formula. In our proof,
the clause-points are part of the vertex set of c(R). We prove
that for any input variable x, there is either one segment of
c(S) that passes all positive literal’s clauses within ε-distance
and no segment exists passing all negative literal’s clauses
within ε-distance, or vice versa. Otherwise, c(S) cannot be
within Fréchet distance at most ε to any induced curve on R.

Construction of the Point Sets Given a (3,B2)-SAT
instance A, we construct two point sets S and R such that
A is satisfiable if and only if a δF (S,R) ≤ ε, for ε > 0 to
be computed below. For each clause a of A, we embed one
point ra of R in R2. Let P be the set of points ra for all
clauses a. We refer to these points as clause-points. As each
literal l occurs exactly twice in A, l defines a line through two
points of P , namely through the two points corresponding
to the clauses where the literal occurs. Let x be a variable
of A and let rai , i = 1, 2, 3, 4 be the points of P ⊂ R that
correspond to the clauses where x and x̄ occur. These points
must be embedded such that no three points are colinear.
For instance, we can embed them along a (fraction of a)
circle. We place two points s1, s2 of S and two points r1, r2

of R along the line defined by x. The points s1 and r1 and
the points s2 and r2 have the same coordinates, respectively.
Furthermore, the corresponding points rai lie between s1 and
s2. Analogously, we place points s3, s4, r3 and r4 on the line
defined by x̄. We refer these points as variable-points. To
complete the construction of the variable gadget, we place
one point r5 of R on the segment between s1 and s3 and one
point r6 of R on the segment between s2 and s4 and refer
these points as segment-forced-points. See Figure 2 for an
example of a variable gadget.

The core idea of the construction is that any curve induced
by S being a witness of δF (S,R) ≤ ε must contain either the
segment s1s2 or the segment s3s4, each of which defines an
assignment of the corresponding variable.

During the construction of the sets S and R, we need
to ensure that no clause-point and two variable-points that
correspond to two different literals are colinear. Analo-
gously, the construction must exclude any colinearity be-
tween a segment-forced-point and two variable-points of dif-
ferent variables. To this end, we embed all n clause-points
on n consecutive corners of a regular 4n-gon. Subsequently,
we iteratively embed the variable- and segment-forced-points
maintaining the non-colinearity property described above by
computing and avoiding the coordinates of points which vi-
olate this property.

All lines defined by a literal pass the first, second and
third quadrant, where the quadrants are defined by the per-
pendicular lines through the leftmost and rightmost clause-
point. We start by inserting variable-points of R and S in
the first quadrant. We randomly chose one variable, say x,
insert two variable-points s1, s2 of S and r1, r2 of R along
the corresponding literal-lines and insert one point r of R on

the line segment s1s2. Next, we compute all intersections of
the lines defined by s1 and r and by s2 and r, respectively,
with all lines defined by any literal other than x or x̄. We
maintain these intersection points as forbidden coordinates
for inserting further variable-points in a list F . We progress
with inserting variable- and segment-forced points in the first
quadrant and update the list of forbidden coordinates after
each insertion.

After the insertion of all points of R and S in the first
quadrant, we compute all intersections of lines defined by a
variable-point and a clause-point where the corresponding
literal of the variable-point does not occur, with all lines
defined by the literals. We add these points to F and start
inserting variable- and segment-forced points in the third
quadrant such that these coordinates are not contained in
F , again, continuing to update F after each insertion.

Once we have constructed the point sets S and R, we
compute a value ε̂, as the minimum of the minimal distance
of any clause-point of R to a segment defined by two points
which correspond to two different literals and the minimal
distance of any segment-forced point to a segment defined
by two points corresponding to different variables. Note that
ε̂ > 0, as we excluded colinearity in all these cases. Now, we
define ε = ε̂

c
.

Let n be the number of variables in A. It is easy to see
that the construction time is polynomial in n: The number
of computed intersections and the total number of inserted
points are polynomial in n and computing ε runs in polyno-
mial time as there is a quadratic number of pairs of variable
points and a linear number of segment-forced- and clause-
points.

Reducing from (3,B2)-SAT We show that a (3,B2)-
SAT formula A is satisfiable if and only if δF (S,R) ≤ ε.
We say a point of r is visited by a segment s of c(S) if the
distance of r to s is at most ε.

First, let c(S) and c(R) be two induced curves such that
δF (c(S), c(R)) ≤ ε. Clearly, every point of R must be vis-
ited by a segment of c(S), and, vice versa, every point of
S must be visited by a segment of c(R). Each subcurve
of S on the points of a variable gadget, say for the vari-
able x, must contain the two unique segments which cover
the segment-forced-points of R corresponding to the current
variable. Now consider the two pairs of variable-points of S,
each consists of the two points corresponding to the same
literal. Let us denote these pairs as (sx1 , sx2) and (sx̄1 , sx̄2).
Obviously, both segments sx1sx2 and sx̄1sx̄2 cannot be part
of the curve as in this case these segments together with the
segments forced by the segment-forced points form a circle
and thus c(S) is not an induced curve. As by construction,
no clause-point can be visited by a segment between points
corresponding to different literals, any solution must chose
one of the two possible segments defined by the variable
gadget. Note that no two clauses have two literals in com-
mon and therefore the claim follows from an easy counting
argument. The segment contained in the solution induces
an assignment of the variable x and as all clause points are
visited, A is satisfied by the assignments induced by c(S).
There is some freedom of how the congruent segments of
c(R) of the segments defining an assignment are subdivided
by the clause-points which have distance at most ε (and

256

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

x ∨ y ∨ z

x̄ ∨ ȳ ∨ z
x ∨ ȳ ∨ z̄

x̄ ∨ y ∨ z̄

Figure 9: Point set S marked in blue and point set R
marked in red for the (B2,3)-SAT Formula A = (x∨ y∨
z) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z) ∧ (x ∨ ȳ ∨ z̄). Some of the
points in L are shown as crosses. For the blue curve
c(s) and the red curve c(R), we have δF (c(S), c(R)) = 0
and the induced assignment for the variables - positive
for all variables - satisfies A.

by construction distance 0) to a segment. As we consider
the unique case, all clause-points can be added only once
and some clause points have distance 0 to several of these
segments. However, the assignment of the variable is inde-
pendent on how the clause-points are contained.

Second, let α be a satisfying assignment of the formula
A. For each variable gadget, chose the segment between two
variable-points of S which correspond to the assignment of
the variable given by α. Furthermore, add the segments de-
fined by the two variable-points in the first quadrant and the
two variable-points in the third quadrant to c(S). Finally,
connect the subcurves on points of the variable gadget ar-
bitrarily to obtain the complete curve c(S) on all point of
S. Each segment of c(S) induces a segment of c(R). If a
segment of c(S) connects two variable-point which refer to
different variables, then the segment connecting the congru-
ent points of R is added to c(R). Otherwise, if a segments
g of c(S) connects two points which refer to the same vari-
able but different literal, we add a subcurve of c(R) with
congruent start and endpoints as g, both adjacent to the
corresponding segment-forced-point. If g connects variable
points which refer to the same literal, we add the subcurve
which consist of the congruent points of g in R and the corre-
sponding clause-points. Here, we add each clause point only
once on c(R). As δF (c(S), c(R)) = 0 < ε the claim follows.

Figure 9 shows an example construction for a simple
(B2,3)-SAT instance.

257

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Realizing an m-uniform four-chromatic hypergraph with disks

Gábor Damásdi
MTA-ELTE Lendület

Combinatorial Geometry Research Group

Dömötör Pálvölgyi
MTA-ELTE Lendület

Combinatorial Geometry Research Group

Abstract

We prove that for every m there is a finite point set P
in the plane such that no matter how P is three-colored,
there is always a disk containing exactly m points, all of
the same color. This improves a result of Pach, Tardos
and Tóth who proved the same for two colors. The
main ingredient of the construction is a subconstruction
whose points are in convex position. Namely, we show
that for every m there is a finite point set P in the
plane in convex position such that no matter how P is
two-colored, there is always a disk containing exactly m
points, all of the same color. We also prove that for unit
disks no similar construction can work.

1 Introduction

Coloring problems for hypergraphs defined by geometric
range spaces have been studied a lot in different settings.
A pair (P,S), where P is a set of points in the plane
and S is a family of subsets of the plane (the range
space), defines a (primal) hypergraph H(P,S) whose
vertex set is P and for each S ∈ S we add the edge
S ∩ P to the hypergraph. Given any hypergraph G, a
planar realization of G is defined as a pair (P,S) for
which H(P,S) is isomorphic to G. If G can be realized
with some pair (P,S) where S is from some family F ,
then we say that G is realizable with F .

A hypergraph is (properly) c-colorable if its ver-
tices can be colored by c colors such that no edge
is monochromatic. In this paper we focus on the c-
colorability of hypergraphs realizable with disks. It
is an easy consequence of the properties of Delaunay-
triangulations and the Four Color Theorem that any hy-
pergraph realizable with disks is four-colorable if every
edge contains at least two vertices. SinceK4 is realizable
with disks, this is sharp. But are less colors sufficient
if all edges are required to contain at least m vertices
for some large enough constant m? Pach, Tardos and
Tóth [19] have shown that two colors are not enough for
any m, i.e., for any m, there exists an m-uniform hy-
pergraph that is not two-colorable and that permits a
planar realization with disks. Our main theorem is the
following strengthening, which shows that three colors
are also not enough by realizing a four-chromatic hyper-
graph, completely resolving this question.

Theorem 1 For any m, there exists an m-uniform hy-
pergraph that is not three-colorable and that permits a
planar realization with disks.

The proof of Theorem 1 is based on two ideas. The
first one is from [10], where colorings of so-called ABAB-
free hypergraphs were considered. We will use a con-
struction, based on one from [10], to create a point set
that is not two-colorable with respect to disks and, fur-
thermore, the points are close to a prescribed set of
points that lie on a circle. Then using ideas from [1]
and [19], we will combine several copies of this non-
two-colorable construction to create point sets that are
not three-colorable. The non-two-colorable construction
can be of independent interest.

Theorem 2 For any m, there exists an m-uniform hy-
pergraph that is not two-colorable and that permits a
planar realization with disks that all contain some fixed
point.
Moreover, in the realization (P,D), the points P can be
placed arbitrarily close to some given points on a cir-
cle such that the boundary of each disk from D is also
arbitrarily close to this circle.

Previously, such a construction was only known for
pseudo-disks containing a fixed point, and it was also
shown that such hypergraphs are always three-colorable
(already for m = 2) [1].

Note that if we require the points of P to be placed
close enough to the given points on the circle, then the
points of P will be in convex position.

To complement our results, we also show that no sim-
ilar construction for unit disks exists.

Theorem 3 For any k, any finite point set P can be
k-colored such that any unit disk, that contains some
fixed point o /∈ P and 8k−7 points from P, will contain
all k colors.

It is known that without requiring the common point
o, the statement does not hold [17].

By using the well-known equivalence of the hyper-
graphs defined by primal and dual range spaces of the
translates of any set [16, 18], we can conclude the fol-
lowing.

258

32nd Canadian Conference on Computational Geometry, 2020

Corollary 4 For any k, any finite collection of unit
disks D can be partitioned into k parts such that any
point of a fixed unit disk D0 /∈ D that was covered by at
least 8k− 7 members of D will be covered by all k parts.

This statement is sharp in the sense that for a disk
D0 of larger radius it fails already for k = 2, even if
the members of D are required to be very close to
each other; this follows from taking the dual of the
construction from [19]. The function 8k − 7 is unlikely
to be sharp.

The rest of the paper is organized as follows.
For 1 ≤ i ≤ 3, Theorem i is proved in Section
(3i2 − 11i + 14)/2, while in Section 5 we make some
concluding remarks, and we end this Introduction with
a bit more history, and a basic observation.

Pach proved in 1986 that any sufficiently thick cov-
ering of the plane [16] by the translates of a cen-
trally symmetric open convex polygon can be parti-
tioned into two disjoint coverings. The proof followed
from showing that for every such polygon P there is
an m(P) for which any hypergraph, whose edges con-
tain at least m(P) vertices and can be realized with
translates of P , is two-colorable. Several results fol-
lowed, eventually showing that the similar statement is
true for the translates of all convex polygons [7, 21],
while counterexamples were given for non-convex poly-
gons [19, 20] and convex shapes with a smooth bound-
ary [17]. We know much less when instead of trans-
lates, homothetic copies are considered [2, 5, 9, 13] or
about the problem of decomposing into multiple cover-
ings/polychromatic colorings [4, 7, 22]. For more re-
sults, see the decade-old survey [18] or the webpage
https://coge.elte.hu/cogezoo.html.

The above papers mainly focused on two- or poly-
chromatic colorability. Proper three-colorability of
geometric hypergraphs was studied in detail in [8] and
[11]. In the latter paper it was shown that for every
convex polygon P there is an m(P) such that every
m(P)-uniform hypergraph realizable by homothetic
copies of P is proper three-colorable. Our results
imply that this is not the case for disks, disproving a
conjecture from both of the above papers.

In this paper all disks are assumed to be open.1 Let P
be a point set and let D be a family of disks. An impor-
tant folklore observation that we will use many times is
that small perturbations of the points and the disks will
not change the hypergraph H(P,D). To put this into
more precise terms, we will say that two points are ε-
close if their distance is less than ε and two disks/circles

1But note that our results also hold for closed disks, as we
could slightly shrink any finite system of open disks to contain
the same points of a finite point set.

are ε-close if their centers are ε-close and the difference
of their radius is also smaller than ε.

Observation 1 Suppose we have a finite point set P
and a finite set of open disks D such that none of the
points lie on the boundary of any of the disks. Then
there is an ε such that replacing each disk with any ε-
close disk and each point with any ε-close point will not
change the hypergraph H(P,D).

2 A point set that is not two-colorable

Here we prove Theorem 2 by realizing for any m a non-
two-colorable m-uniform hypergraph with disks that all
contain some fixed point.

Our main lemma is the following. Combined with
Observation 1, this gives us a way to perturb the points
of P with changing only a small part of the hypergraph
H(P,D).

Lemma 5 If ε > 0, C is circle, and a, b1, . . . , bt, c are
points on C in this order, then there is a circle C ′ and
points b′1, . . . , b

′
t on C ′ with the following properties.

1. C ′ is ε-close to C.

2. b′i is ε-close to bi for each i ∈ [t].

3. C ′ intersects C between a and b1, and between bt
and c.

4. Each b′i is outside of C.

a

A B
cb1

b2
b3

b′1

b′2
b′3

C ′
C

O

Figure 1: Lemma 5.

Proof. Choose points A and B between between a and
b1 and between bk and c, respectively (see Figure 1).
Choose O on the perpendicular bisector of AB, close
to the center of C. C ′ will be the circle centered at O
passing through A and B. Project b1, . . . , bt onto C ′

using O as center. If O is close enough to the center of
C, this will clearly satisfy the requirements. �

259

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

2.1 Hypergraphs based on rooted trees

The following hypergraph construction was used in [19]
to create several counterexamples for coloring problems.

Definition 6 For any rooted tree T , let H(T) denote
the hypergraph on vertex set V (T), whose hyperedges
are all sets of the following two types.

1. Sibling hyperedges: for each vertex v ∈ V (T) that
is not a leaf, take the set S(v) of all children of v.

2. Descendent hyperedges: for each leaf v ∈ V (T),
take all vertices along the unique path Q(v) from
the root to v.

It is easy to see that H(T) is not two-colorable for
any T . Either there is a monochromatic sibling edge,
or we can follow the color of the root down to a leaf,
finding a monochromatic descendent edge. We can cre-
ate an m-uniform hypergraph by choosing T to be the
complete m-ary tree of depth m. The non-two-colorable
construction of Pach, Tardos and Tóth is also based on
these hypergraphs.

Theorem 7 (Pach, Tardos and Tóth [19]) For
any rooted tree T , the hypergraph H(T) permits a
planar realization (P,D) with disks in general position
such that every disk D ∈ D has a point on its boundary
that does not belong to the closure of any other disk
D′ ∈ D.

In order to be able to later build a point set that is
not three-colorable, we will first extend Theorem 7 by
showing that we can require the points to be close to a
prescribed set of concyclic points and require the disks
to be close to the circle that contains the prescribed
points. (We loose the property that every disk D ∈ D
has a point on its boundary that does not belong to
the closure of any other disk D′ ∈ D, so it is not a
generalization in the strong sense.)

Theorem 8 If γ > 0, C is a circle and q1, q2, . . . , qn
are distinct points on C, then for any rooted tree T on
n vertices, the hypergraph H(T) permits a planar real-
ization (P,D) with disks such that

(I) P = {p1, . . . , pn}, and each pi and qi are γ-close.

(II) Every D ∈ D is γ-close to C.

An important property of rooted trees is that we can
order their vertices in a special way. For a vertex v
let Des(v) denote all descendants of v. Keszegh and
Pálvölgyi [10] have shown that there is an ordering on
the vertices of T such that

1. For each vertex v ∈ V (T) the vertices in S(v) are
consecutive and they appear in the order later than
v.

2. Furthermore, suppose S(v) = {r1, . . . , rk} and
they are in this order. Then the vertices
r1, . . . , rk−1, rk, Des(rk), Des(rk−1), . . . , Des(r1)
are ordered like this, and the rest of the vertices of
T are not in this interval. (The internal order of
each Des(ri) is not specified by this statement.)

Call an order satisfying these properties a siblings first
order [1] of T .

Proof. [of Theorem 8] We start by showing that the
sibling hyperedges can be easily realized and we only
need to consider the descendent hyperedges.

Sibling hyperedges

From the properties of the sibling first order we know
that for each v the vertices of S(v) are consecutive, i.e.,
the points in S(v) are neighbours along the circle C.
We apply Lemma 5 to find a disk that is γ-close to
C, and contains exactly the points of S(v). We also
ensure that no points lie on the boundary of the disk.
We repeat this for each v ∈ V (H), until each sibling
hyperedge is realized. Let DSib denote the set of these
disks. We apply Observation 1 to (P,DSib) to get εSib.
that is, if we move the points such that they remain
εSib-close to their original position, the disks in DSib
will still represent the sibling hyperedges. Therefore, it
is enough to show that we can realize the descendent
hyperedges for any γ.

Descendent hyperedges

It is useful to realize a slightly extended hypergraph.
In H(T), we have a descendent hyperedge for each leaf.
Now we will create a descendent hyperedge for non-leaf
vertices too. So let Q(v) denote the path from the root
to v, and for each vertex v, we will realize the hyperedge
Q(v). The disk realizing Q(v) will be denoted by B(v).
Let this extended hypergraph be denoted by H′(T). We
will realize not only H(T), but H′(T). See Figure 2 for
an example where we omitted the sibling edges.

Figure 2: Disks realizing all paths from the root.

We prove the existence of the required point set by
describing an algorithm that produces a solution. Let

260

32nd Canadian Conference on Computational Geometry, 2020

P = {p1, p2, . . . , pn} denote the vertices of T in a sib-
lings first order. We will create the planar realization
gradually, step by step. The algorithm starts by setting
pi = qi and in each step we will update the position of
some of the pi-s. That is, we identify the vertices of the
hypergraph with planar points, and we will update the
position of the vertices until they realize the hypergraph
H′(T).

During the algorithm, we need to change the po-
sition of the points many times without altering the
hyperedges that we have already realized. For this
reason, we introduce a set of fixed points, Pfix, and a
set of disks, DDes, that corresponds to the descendent
hyperedges. Once a point is in Pfix we will not change
its position any more. Every disk that we create will
be immediately added to DDes, and we will never
change its position. The unfixed points, i.e., the points
in P \ Pfix, will always be kept on the boundary of⋃
D∈DDes

D. Furthermore, if we add B(v) to DDes in the

k-th step of the algorithm, B(v) ∩ P will remain the
same after we finished the k-th step, i.e., it will contain
exactly the points of the path Q(v) in its interior.
Moreover, all descendants of v will be on the boundary
of B(v) after the k-th step, but later they will be moved
off.

The structure of the algorithm is the following. We
go through the vertices in the sibling first order and for
each we do the following. By when we arrive at vertex
pk, the disk B(pk) representing the path Q(pk) from the
root to pk, will be already realized. For each child of pk
we will add a new disk, close to B(pk), that also realizes
the same path from the root to pk. Then we will move
the points such that each new disk contains exactly one
child of pk. We have summarised the structure of the
algorithm in the following pseudo code, while the phases
of a step are depicted in Figure 3.

To be able to do these steps we also need a parameter
δ that will ensure that the points do not move too much
and the disks are close to each other. There will be
only three kinds of operations that we do through the
algorithm.

a) We update the position of a vertex by moving it
at a distance less than the current value of δ. If it
reached its final position, we add it to Pfix.

b) We add a new disk to DDes that is δ-close to one
of the disks already in DDes.

c) We decrease the value of δ.

We start with δ = γ/n2. (The reason for this is ex-
plained later.) Every time a disk is added or the po-
sition of a vertex is changed, we use Observation 1 for
(Pfix,DDes) to update δ to a smaller value, if needed.

Algorithm 1: Structure of the algorithm

Set pi = qi, Pfix = ∅,DDes = ∅.
Add the disk of C, B(p1), to DDes.
Move p1 inside B(p1) and add p1 to Pfix.
for k = 1 to n do

for each child ri of pk do
Add a disk B(ri) representing Q(pk) to
DDes. /* Using Lemma 5 */

Move the required descendants of pk to
the boundary of B(ri).

end
for each child ri of pk do

Move ri inside B(ri). /* now B(ri)
represents Q(ri) */

Add ri to Pfix.
end

end

After any given update of δ, we only move points at
distance less than δ. This ensures two things. Firstly,
the points do not move far from their original position,
and secondly, if we take a new disk that is δ-close to one
of the disks, then it contains the same points of Pfix.

The algorithm makes an initial adjustment on p1, and
then there is one step (k-th step) for each point pk. After
each step the following properties will hold.

(i) Each point pi has either reached its final position or
it lies on the boundary of the disk B(w) where w is
the lowest ancestor of pi for which B(w) is already
defined. Also, in the second case pi does not belong
to the closure of any other disk D′ ∈ DDes.

(ii) Suppose pj is the parent of pi in T . Then in the
j-th step the point pi is added to Pfix and the disk
B(pi) is added to DDes.

(iii) Each disk in DDes contains those points of P that
correspond to the appropriate hyperedge of H′(T).

During the initial adjustment we update p1 to lie in-
side C but δ-close to q1. We add the disk corresponding
to the circle C to DDes. We add p1 to Pfix and then we
update δ by applying Observation 1 for (Pfix,DDes).
Clearly properties (i), (ii) and (iii) are satisfied.

In the k-th step we update the points in Des(pk). (If
pk is a leaf, we continue with the next step.) The process
is depicted in Figure 3, while a detailed description can
be found in the Appendix.

Finally, we need to show that we get a solution for
Theorem 1. Let D contain the disks in DSib and those
disk in DDes that correspond to descendent edges that
end at a leaf. Property (iii) and the argument for the
sibling edges tells us that (P,D) is a planar representa-
tion of H(T).

261

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

For property (I) note that each point moves less than
n2 times since in the k-th step they move less than n
times. We started with δ = γ/n2, so each point is at
most n2 γ

n2 = γ far from their original position. The first
disk was given by C and each disk was taken δ-close to
a previous disk, in at most n steps reaching back to the
first disk. Hence, all disks are γ/n close to C, giving us
property (II). �

r1

r2
r3

Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r1)

r1

r2

r3
Des(r3)

Des(r2)

Des(r1)

B(r2)

B(pk)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r3)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)

Figure 3: The k-th step.

3 A point set that is not three-colorable

Here we prove Theorem 1 by realizing for any m a non-
three-colorable m-uniform hypergraph with disks.

We introduce a general operation for constructing hy-
pergraphs that are not c-colorable, which is similar to
prolonging H(T) with the children of a leaf. Essentially
the same construction was used in [1].

Definition 9 Suppose we have a hypergraph A, a hy-
pergraph B and let F be an edge of A. Then we define
“A extended by B through F” as follows. Take |V (B)|
copies of the edge F and add a new vertex to each copy.
Then we have |V (B)| new vertices. Add a set of edges
such that they form the hypergraph B on these new ver-
tices. The resulting hypergraph is denoted by A+F B.

Suppose A is m-uniform and B is (m + 1)-uniform.
Then, if we extend A by B through each edge of A, we
get a hypergraph that is (m+ 1)-uniform.

Claim 10 Suppose A is not c-colorable and B is not
(c− 1)-colorable. Then any extension of A by B is not
c-colorable.

Proof. Since any coloring of A using c-colors has a
monochromatic edge, and we have only lost the edge
F , our only chance is to color the extended hypergraph
such that the vertices of F are monochromatic. This im-
plies that none of the new vertices have the same color
as the vertices of F . But then the copy of B is (c− 1)-
colored, and thus one of its edges is monochromatic. �

Let Gi denote the hypergraph that has i vertices and
only one edge that contains all the vertices. Clearly, G1
is not c-colorable for any c and Gi is not 1-colorable.
Hence, we can build non-c-colorable hypergraphs start-
ing from these trivial ones and using them in the exten-
sions.

Observation 2 For any rooted tree T the hypergraph
H(T) can be built with a series of extensions, where
each extending hypergraph is one of the Gi-s, and we
start from G1.

Now we are ready to define the non-three-colorable
hypergraphs that we will realize with points and disks.
For each m letH2(m) = H(T) where T is the m-ary tree
of depth m. Clearly, H2(m) is m-uniform and not two-
colorable. We define non-three-colorable m-uniform hy-
pergraphs H3(m) based on them inductively.

First we create a sequence of hypergraphs. Let
F1(m) = G1 and let v denote the single vertex of it. For
for i > 1, let Fi(m) be the hypergraph that we get if we
extend each edge of Fi−1(m) that contains v by H2(m).
Note that Fi(m) has only two types of edges. The first
type are the ones that contain v, each of these contains
exactly i vertices. (They are like the descendent edges.)
The second type are those that were added in a copy
of H2(m), these contain exactly m vertices. (They are
a bit like the sibling edges.) Therefore, Fm(m) is m-
uniform. Also, by Claim 10 and induction, no Fi(m) is
three-colorable.

Let H3(m) = Fm(m). For example, F1(2) is G1 and
H2(2) is a triangle graph. Extending G1 through its
single edge by a triangle gives us the complete graph on
4 vertices, so H3(2) is just K4.

3.1 Realizing H3(m)

Since H3(m) was built by a series of extensions, it is
enough to show that we can do each extension geomet-
rically. This step is essentially the same as in [19].

Lemma 11 Suppose a hypergraph A is realized with
(P,D) such that every disk D ∈ B ⊂ D has a point on
its boundary that does not belong to the closure of any
other disk D′ ∈ D. Then we can also realize A+F H(T)
for any rooted tree T and any edge F ∈ B, with a pair
(P ′,D′), such that any disk D ∈ B and every new copy
of F has a point on its boundary that does not belong to
the closure of any other disk D′ ∈ D′.

Proof. Suppose DF ∈ D is the disk realizing the edge
F . Then DF has a point p on its boundary that does not
belong to the closure of any other disk D′ ∈ D. Take a
small circle C that is tangent to D at p. If we chose the
radius of C to be small enough, then C will not intersect
any of the disks. Now take n = |V (T)| copies of DF and
rotate them slightly around the center of C. If all the

262

32nd Canadian Conference on Computational Geometry, 2020

Figure 4: Extension

rotations are small, the resulting disks will be ε-close
to DF and by Observation 1 they will contain the same
points as DF . Also, if the angles of the rotations are
different, then each new disk has a point on its boundary
that does not belong to the closure of any other disk.

Then we enlarge each copy ofDF slightly, so that they
intersect C but some part of their boundary remains
uncovered by other disks. Place the points q1, . . . , qn
in the intersections and use Theorem 8 to realize H(T).
Since each disk in the realization of H(T) is close to C,
they do not contain any point of P. �

4 Stabbed unit disks

Here we prove Theorem 3, that given a fixed origin o,
any point set P can be k-colored such that every unit
disk that contains the origin and at least 8k − 7 points
of P contains all k colors.

We call unit disks containing o stabbed unit disks.
Take a representative disk for every P ′ ⊂ P that can be
obtained as the intersection of a stabbed unit disk and
P. Since P is finite, the collection of these representa-
tive disks, D, is also finite. We divide the plane into
four quarters by two perpendicular lines through o.

Lemma 12 The boundaries of two stabbed unit disks
intersect at most once in each quarter.

(See Figure 5.)

o

o

o

Figure 5: From stabbed disks to pseudolines.

Proof. Denote the two intersection points of the
boundary of the two disks, D1 and D2, by x1 and x2.
Since D1 and D2 have equal radii, the length of the arc
they contain from each other is less than half of their
perimeter. Thus, using Thales’s theorem, for any inner
point p of D1 ∩D2 the angle x1px2 is at least 90◦. This
proves the statement as o ∈ D1 ∩D2. �

This means that in each quarter the boundaries of
the disks behave as pseudolines. Let us partition our
point set P into four parts, P1,P2,P3,P4, depending
on which quarter the points are in. We will color each
Pi separately.

Denote the quarter that contains the points of Pi by
Qi. Prolong the section of the boundaries falling into
this quarter, i.e., D∩Qi for each D ∈ D, such that they
do not intersect outside Qi and all of them stretches
from “left infinity” to “right infinity”. Without loss
of generality, we can suppose that o is above all these
curves. The (upward) regions that are bounded by such
curves form (upward) pseudohalfplanes. Generalizing a
theorem of Smorodinsky and Yuditsky [22], the follow-
ing polychromatic coloring result is known about them.

Theorem 13 (Keszegh-Pálvölgyi [10]) Given a fi-
nite collection of points and pseudohalfplanes, the points
can be k-colored such that every pseudohalfplane that
contains at least 2k − 1 points will contain all k colors.

We can apply this theorem to Pi (ignoring P\Pi) and
our regions. From this we get that any stabbed disk that
contains at least 2k− 1 points of P from the quarter Qi
will contain all k colors. Repeating this for all four Pi,
we obtain by the pigeonhole principle that any stabbed
disk containing at least 4(2k− 2) + 1 = 8k− 7 points of
P contains all k colors.

For k = 2, this gives that 9 points per disk are enough,
though this is probably far from being tight. From be-
low, we could only find a construction showing that 3
points per disk is not enough.

5 Open questions

One of the most interesting questions left open is about
unit disks. Is there an m such that every point set in
the plane can be three-colored such that every unit disk
containing exactly m points contains at least two colors?

In fact, this conjecture has a strengthening in the
dual, cover-decomposition problem. Is there an m such
that every m-fold covering of P by disks can be parti-
tioned into three parts such that any two parts cover
P?

If there is a counterexample to these questions, then it
has to be quite different from ours, as already the two-
color version [17] needed the realization of a different
hypergraph.

Acknowledgment

We would like to thank Balázs Keszegh for useful discus-
sions and for reading the draft of this manuscript and
also our anonymous reviewers for their valuable sugges-
tions.

263

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] Eyal Ackerman, Balázs Keszegh, and Dömötör
Pálvölgyi. Coloring hypergraphs defined by stabbed
pseudo-disks and ABAB-free hypergraphs. Acta Math.
Univ. Comenian. (N.S.), 88(3):363–370, 2019.

[2] Eyal Ackerman, Balázs Keszegh, and Máté Vizer. Col-
oring points with respect to squares. Discrete & Com-
putational Geometry, 58(4):757–784, Dec 2017.

[3] Noga Alon, Guoli Ding, Bogdan Oporowski, and Dirk
Vertigan. Partitioning into graphs with only small com-
ponents. J. Combin. Theory Ser. B, 87(2):231–243,
2003.

[4] Andrei Asinowski, Jean Cardinal, Nathann Cohen,
Sébastien Collette, Thomas Hackl, Michael Hoffmann,
Kolja Knauer, Stefan Langerman, Micha l Lasoń, Piotr
Micek, Günter Rote, and Torsten Ueckerdt. Coloring
hypergraphs induced by dynamic point sets and bot-
tomless rectangles. In Algorithms and data structures,
volume 8037 of Lecture Notes in Comput. Sci., pages
73–84. Springer, Heidelberg, 2013.

[5] Jean Cardinal, Kolja Knauer, Piotr Micek, and Torsten
Ueckerdt. Making triangles colorful. J. Comput. Geom.,
4(1):240–246, 2013.

[6] Louis Esperet and Gwenaël Joret. Colouring planar
graphs with three colours and no large monochromatic
components. Combin. Probab. Comput., 23(4):551–570,
2014.

[7] Matt Gibson and Kasturi Varadarajan. Optimally de-
composing coverings with translates of a convex poly-
gon. Discrete Comput. Geom., 46(2):313–333, 2011.

[8] Balázs Keszegh. Coloring half-planes and bottomless
rectangles. Computational geometry, 45(9):495–507,
2012.

[9] Balázs Keszegh and Dömötör Pálvölgyi. Convex poly-
gons are self-coverable. Discrete Comput. Geom.,
51(4):885–895, 2014.

[10] Balázs Keszegh and Dömötör Pálvölgyi. An abstract
approach to polychromatic coloring: Shallow hitting
sets in ABA-free hypergraphs and pseudohalfplanes. In
Ernst W. Mayr, editor, Graph-Theoretic Concepts in
Computer Science - 41st International Workshop, WG
2015, Garching, Germany, June 17-19, 2015, Revised
Papers, volume 9224 of Lecture Notes in Computer Sci-
ence, pages 266–280. Springer, 2015.

[11] Balázs Keszegh and Dömötör Pálvölgyi. Proper color-
ing of geometric hypergraphs. In Symposium on Com-
putational Geometry, volume 77 of LIPIcs, pages 47:1–
47:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2017.

[12] Jon M. Kleinberg, Rajeev Motwani, Prabhakar Ragha-
van, and Suresh Venkatasubramanian. Storage man-
agement for evolving databases. In Proceedings 38th
Annual Symposium on Foundations of Computer Sci-
ence, pages 353–362, 1997.

[13] István Kovács. Indecomposable coverings with homo-
thetic polygons. Discrete & Computational Geometry,
53(4):817–824, 2015.

[14] Nathan Linial, Jǐŕı Matoušek, Or Sheffet, and Gábor
Tardos. Graph coloring with no large monochromatic
components. Electronic Notes in Discrete Mathematics,
29:115 – 122, 2007. European Conference on Combina-
torics, Graph Theory and Applications.

[15] Sergey Norin, Alex Scott, Paul D. Seymour, and
David R. Wood. Clustered colouring in minor-closed
classes. Combinatorica, 39(6):1387–1412, 2019.

[16] János Pach. Covering the plane with convex polygons.
Discrete Comput. Geom., 1(1):73–81, December 1986.

[17] János Pach and Dömötör Pálvölgyi. Unsplittable cov-
erings in the plane. Advances in Mathematics, 302:433–
457, 2016.

[18] János Pach, Dömötör Pálvölgyi, and Géza Tóth.
Survey on decomposition of multiple coverings. In
Geometry–Intuitive, Discrete, and Convex, pages 219–
257. Springer, 2013.

[19] János Pach, Gábor Tardos, and Géza Tóth. Indecom-
posable coverings. In Discrete geometry, combinatorics
and graph theory, volume 4381 of Lecture Notes in Com-
put. Sci., pages 135–148. Springer, Berlin, 2007.

[20] Dömötör Pálvölgyi. Indecomposable coverings with
concave polygons. Discrete Comput. Geom., 44(3):577–
588, 2010.

[21] Dömötör Pálvölgyi and Géza Tóth. Convex polygons
are cover-decomposable. Discrete & Computational Ge-
ometry, 43(3):483–496, Apr 2010.

[22] Shakhar Smorodinsky and Yelena Yuditsky. Polychro-
matic coloring for half-planes. J. Combin. Theory Ser.
A, 119(1):146–154, 2012.

264

32nd Canadian Conference on Computational Geometry, 2020

Appendix

Detailed description and proof of correctness of non-
two-colorable construction

From properties (i) and (ii) we know that at the start of
the k-th step every point in Des(pk) lies on the boundary of
B(pk), and they do not belong to any disk in DDes. Suppose
S(pk) = {r1, . . . , rl}. To maintain the three properties, we
want to add the disks B(r1), . . . , B(rl), and by the end of
the k-th step we want to place the points of Des(ri) on the
boundary of B(ri).

r1

r2
r3

Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r1)

r1

r2

r3
Des(r3)

Des(r2)

Des(r1)

B(r2)

B(pk)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)
B(pk)

B(r3)

r1

r2

r3 Des(r3)

Des(r2)

Des(r1)

Figure 6: Figure 3 repeated.

To achieve this, we apply Observation 1 and Lemma 5 for
each child in the following way. First apply Observation 1
for the points in Des(pk) and disks in DDes \{B(pk)}. Since
the points in Des(pk) doesn’t belong to the boundary of any
other disk this is possible. We update δ to the result if it
smaller than the current value.

Then we apply Lemma 5 for the boundary of the disk
B(pk), the bi-s are the points {r1, . . . , rl} ∪ Des(rl) ∪ · · · ∪
Des(r1) and ε is chosen to be the current value of δ. The
points a and c have to be chosen carefully. We know that
the points in {r1, . . . , rl} ∪ Des(rl) ∪ · · · ∪ Des(r1) lie on
an arc of B(pk) that is not covered by any disk in DDes.
We choose a and c on the two ends of this arc such that
they are also not covered by any disk. Lemma 5 gives us a
circle C′, this defines B(r1), which is added to DDes. The
position of the points in {r1, . . . , rl}∪Des(rl)∪· · ·∪Des(r1)
is updated according to the result of Lemma 5. As usual δ
is also updated.

When we apply Observation 1 for the i-th time (i > 1) we
apply it for the points {ri, . . . , rl} ∪Des(rl) ∪ · · · ∪Des(ri)
and disks in DDes \ {B(ri−1)}.

When we apply Lemma 5 for the i-th time (i > 1), we
apply it for the boundary of B(ri−1), the bi-s are the points
in {ri, . . . , rl} ∪Des(rl) ∪ · · · ∪Des(ri) and ε is the current
value of δ. The point a is chosen between ri−1 and ri. The
point c is chosen after the points of {ri, . . . , rl} ∪Des(rl) ∪
· · ·∪Des(ri) but before the points of Des(ri−1)∪· · ·∪D(r1).
If Des(ri−1)∪· · ·∪D(r1) is empty, c is chosen before the arc
of B(ri−1) reaches any other disk. In the i-th case we get
B(ri), which is added to DDes, and new positions for the
points {ri, . . . , rl} ∪ Des(rl) ∪ · · · ∪ Des(ri) on B(ri). We
update δ after each application of Lemma 5.

Finally, we finish the k-th step by moving r1, r2, . . . , rl
inside B(r1), B(r2), . . . , B(rl) respectively, but at most δ far.

Since ri was lying on the boundary of B(r1), we can also
ensure that they are not moved into any other disk. Then
we add r1, . . . , rl to Pfix. We update δ again by applying
Observation 1 to (Pfix,DDes).

Let us see why properties (i), (ii), (iii) remain true during
the run of the algorithm. Suppose they are true after the
(k − 1)-th step.

The first part of property (i) and property (ii) is main-
tained since we have created the disks B(r1), . . . , B(rl), and
by the end of the k-th step the points of Des(ri) are on the
boundary of B(ri). Points (r1, . . . , rl) were added to Pfix.

The second part of property (i) could be violated in two
ways. It could be that one of the new disks covers a point
it should not. We have always chosen a and c such that this
is avoided. The other possible violation is that we move a
point into a disk. This is avoided, since if a vertex v lies
on a disk D before moving, then we have updated δ for the
disks in DDes \ {D} right before moving the point. Also the
movement is done by Lemma 5 so v cannot move into D.

As for property (iii), note that the only new disks in DDes

are B(r1), . . . , B(rl). Since (iii) was true before the step,
B(pk) contains the points of Q(pk) and each of those are
in Pfix. When we add B(r1), it is δ-close to B(pk), so it
contains exactly the points in Q(pk). Similarly, when B(ri)
is added it is δ-close to B(ri−1), so each of B(r1), . . . , B(rl)
contains the points of Q(pk). When finally we move the
points r1, r2, . . . , rl inside B(r1), B(r2), . . . , B(rl), respec-
tively, we achieve that B(ri) contains the points of Q(ri).

We also need to check property (iii) for the disks that
were already in DDes. Consider a disk D ∈ DDes. No point
inside D was moved, since they are in Pfix. The points in
P \ Pfix remain outside of D, since ri only moves into one
of the new disks and the rest of the points remain on the
boundary of

⋃
D∈DDes

D. Hence property (iii) remains true.

Connection to clustering for planar graphs

We say that a graphG is c-colorable with clusteringm if each
vertex can be assigned one of c colors so that each monochro-
matic component has at most m vertices. For example, pla-
nar graphs are four-colorable with clustering 1 due to the
Four Color Theorem. Clustering questions gained popular-
ity recently, see [3, 6, 14, 15]. It has been shown [12] that for
each m there exists a planar graph that is not three-colorable
with clustering m. We reprove this result using Theorem 1.

Theorem 14 (Kleinberg et al. [12]) For each m > 0
there exists a planar graph that is not three-colorable with
clustering m.

Proof. Take the point set P that realizes the non-three-
colorable hypergraph H3(m), and perturb the points so that
no four lie on a circle. Consider the Delaunay graph of this
point set, that is, we connect two points if they can be sepa-
rated from the rest with a circle. From Theorem 1 we know
that any three-coloring of this graph contains m monochro-
matic points that can be separated from the rest by a circle
and it is well-known that m such points always form a con-
nected component in the Delaunay graph, thus a monochro-
matic cluster in our case. �

265

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Red-Blue Point Separation for Points on a Circle

Neeldhara Misra∗ Harshil Mittal† Aditi Sethia‡

Abstract

Given a set R of red points and a set B of blue points in
the plane, the Red-Blue point separation problem asks
if there are at most k lines that separate R from B, that
is, each cell induced by the lines of the solution is either
empty or monochromatic (containing points of only one
color). A common variant of the problem is when the
lines are required to be axis-parallel. The problem is
known to be NP-complete for both scenarios [1, 10], and
W[1]-hard parameterized by k in the former setting [5]
and FPT in the latter [8]. We demonstrate a polynomial
time algorithm for the special case when the points lie on
a circle. Further, we also demonstrate the W-hardness
of a related problem in the axis-parallel setting, where
the question is if there are p horizontal and q vertical
lines that separate R from B. The hardness here is
shown in the parameter p.

1 Introduction

Given a set R of red points and a set B of blue points in
the plane, the Red-Blue Separation (RBS) problem
asks if there are at most k lines that separate R from
B, that is, each cell induced by the lines of the solution
is either empty or monochromatic (containing points of
only one color). Equivalently, R is separated from B
if, for every straight-line segment ` with one endpoint
in R and the other one in B, there is at least one line
in the solution that intersects `. A common variant of
the problem is when the solution lines are required to
be axis-parallel (APRBS). Questions about the discrete
geometry on red and blue points in general, and their
separability using geometric objects in particular, are
of fundamental interest. This makes RBS a well-studied
problem on its own right. It is also motivated by the
problem of univariate discretization of continuous vari-
ables in the context of machine learning [4, 9].

RBS is known to be NP-complete [10], APX-hard [1],
and W[1]-hard when parameterized by the solution
size [5]. The approximation hardness holds for the
APRBS problem also, while in contrast the parameter-
ized intractability is known only for the general RBS
problem. Specifically, it is known that an algorithm run-

∗IIT Gandhinagar, neeldhara.m@iitgn.ac.in
†IIT Gandhinagar, mittal harshil@iitgn.ac.in
‡IIT Gandhinagar, aditi.sethia@iitgn.ac.in

ning in time f(k)no(k/ log k), for any computable func-
tion f , would disprove ETH [5]. This reduction cru-
cially relies on selecting lines from a set with a large
number of different slopes — in particular, the number
of distinct slopes of the lines used is not bounded by a
function of k.

For the case where k = 1 and k = 2, the problem is
solvable in O(n) and O(n log n) time respectively [7].
The problem is known to be FPT parameterized by the
number of blue points (or the number of red points). A
2-approximation algorithm is also known for APRBS [1]
by casting the separation problem as a special case of
the rectangle stabbing problem1. We note that the
2-approximation algorithm and APX-hardness applies
even to the separation of monochromatic point sets
(where the goal is to separate all points from each other)
and this problem is also known to admit a approxima-
tion (OPT log OPT)-approximation [6].

Our Contributions We first address a question raised
in the discussions from [1]: Do special cases admit bet-
ter approximation ratios or even exact solutions? We
make partial progress on this question by answering it
in the affirmative when the input points lie on a circle
(which would be a special case2 of points in convex po-
sition). In particular, we show that when points lie on
a circle, both RBS and APRBS admit exact polynomial-
time algorithms. Interestingly, the RBS problem is sig-
nificantly simpler in this special case compared to its
axis-parallel counterpart. For the latter, the size of the
optimal solution is captured by a structural parameter
of a graph that is naturally associated with the point
set. Our proof is algorithmic and can be used to solve
the associated computational question.

Further, we introduce a natural variant of APRBS,
which is the (p, q)-APRBS problem. Here, as before, we
are given a set of red and blue points, and the question
is if there is a set of at most p horizontal lines and at
most q vertical lines that separate R from B. We show
that this problem is W[2]-hard when parameterized by
p alone. Finally, we also show by a simple observation

1This is based on the idea that lines separating R from B must
stab all rectangles formed by red and blue points at the corners.

2We speculate that these ideas would also be relevant for the
more general scenario of points in convex position. While the
algorithm for RBS in fact works as-is for points in convex position,
the details for the axis-parallel variant are less obvious.

266

32nd Canadian Conference on Computational Geometry, 2020

that the 2O(|B|) algorithm for APRBS from [5] can be
improved to 2O(k log |B|).

The rest of the paper is organized as follows. We for-
mally define the problems that we address in Section 2
and focus on the case of points on a circle in Section 3 for
both RBS and APRBS. We describe the W[2]-hardness
result for (p, q)-APRBS parameterized by p in Section 4.
Due to lack of space, we make our remarks about the
improved algorithm in the full version of the paper [11].

2 Preliminaries

For positive integers x, y, let [x] be the set of integers
between 1 and x, and [x, y] the set of integers between
x and y. Given a set of points R ∪ B in the plane, R
is said to be separated from B by a collection of lines
L if every straight-line segment with one endpoint in R
and the other one in B is intersected by at least one line
in L. We adopt the convention of requiring a “strict”
separation, which is to say that no point in R ∪ B is
on a separating line. We let n := |R ∪ B|, r = |R| and
b = |B|. The computational problems that we study are
the following.

Red-Blue Separation. (RBS) Given a set R of red
points and a set B of blue points in the plane and a
positive integer k as input, determine if there exists a
set of at most k lines that separate R from B.

Axis-Parallel Red-Blue Separation. (APRBS)
Given a set R of red points and a set B of blue points in
the plane and a positive integer k as input, determine
if there exists a set of at most k axis-parallel lines that
separate R from B.

(p,q)-Axis-Parallel Red-Blue Separation.
((p,q)-APRBS) Given a set R of red points and a set B
of blue points in the plane and positive integers p and
q as input, determine if there exists a set of at most p
horizontal and q vertical lines that separate R from B.

3 Points on a Circle

In this section, we focus on the special case when all the
points lie on a circle C. Let P = (R∪B) denote a set of
n points on a circle, with r red points and b blue points.
As usual, R (respectively, B) denotes the set of red (re-
spectively, blue) points. Without loss of generality, we
assume that all points of P lie on an unit circle centered
at the origin. Fix an order σ on R∪B based on the or-
der of their appearance on the circle, starting at (1, 0)
and moving around the circle counterclockwise. We let
ri and bj denote the ith red and the jth blue point that
we encounter in this order. For a point p on the circle,
we let col(p) denote the color of the point p.

We call a maximal sequence of monochromatic points in
σ a chunk. Let CP denote the set of chunks of P . In the
order of their appearance on the circle, we denote the
individual chunks by C1, . . . , Cw. The color of a chunk
is the color of any point belonging to it. We refer to
a chunk consisting of red (blue) points as a red (blue)
chunk. We overload notation and let col : CP → {R,B}
be a function that returns the color of a chunk. The
arc of C starting at the last point on the rth chunk and
the first point on the (r + 1)th chunk is called a switch.
Let SP denote the set of switches of P . Note that any
instance with w chunks has w switches. We denote the
switches by S1, . . . , Sw in the order of their appearance
on the circle. Also note that w must always be even,
and that there are w

2 red chunks and w
2 blue chunks.

We say that a switch S is stabbed by a line ` if `∩S 6= ∅.
We first make the following observation.

Proposition 3.1 Let P = (R ∪ B) be a red-blue point
set on a circle. If L is a set of lines that separates R
from B, then every switch must be stabbed by some line
in L.

Proof. Suppose that there exist a switch Si ∈ SP that
is not stabbed by any line from the set L. Note that
Si separates the chunks Ci and Ci+1. Without loss of
generality, suppose col(Ci)= R and col(Ci+1)=B. Since
Si is not stabbed by any line from L, the last point of
Ci and first point of Ci+1 are not separated, which leads
to the contradiction of the fact that L separates R from
B. Therefore, every switch must be stabbed by some
line in L. �

Based on Proposition 3.1, we have that in an instance
with w switches, w

2 is a lower bound on the optimum,
since any line can stab at most two chunks. In the next
subsection, we show that this can always be achieved
by a set of general lines. For axis-parallel lines, we
strengthen the lower bound further using an auxiliary
graph structure on the switches, and demonstrate an al-
gorithmic argument to match the stronger lower bound.

3.1 The Case of General Lines

With arbitrary lines, our strategy is simple: we “pro-
tect” each monochromatic chunk of a fixed color with
a single line passing through it’s adjacent switches. In
particular, consider any chunk Ci such that col(Ci) = B.
Fix an arbitrary point pi in the switch3 Si−1 and an-
other point qi in the switch Si. Let `i be the line passing
through pi and qi and let L := {`i | col(Ci) = B}. In
other words, L is the set of lines thus defined based on
blue chunks. Note that there are w

2 lines in this solu-
tion, since we introduce one line for each blue chunk.
Moreover, it is also easy to check that these lines sep-

3If i = 1, then we let S−1 := Sw.

267

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

arate R from B, since every blue chunk belongs to a
separate cell of this configuration.

3.2 The Case of Axis-Parallel Lines

When we are restricted to axis-parallel lines in the so-
lution, then the strategy described in the previous sub-
section would fail since the lines that are described need
not be axis-parallel. A similar strategy does give us a
simple 2-approximation, which we describe informally.
Observe that each monochromatic chunk can be pro-
tected by a “wedge” consisting of a pair of axis-parallel
lines. Indeed, consider the points pi and qi defined as
before, and let T be the unique rectangle whose sides
are axis-parallel and which has pi and qi as diagonally
opposite corner points. Clearly, one of the other two cor-
ner points c lies inside C. We can now choose the two
axis-parallel lines that contain the edges of the rectangle
which intersect at c, and we have a wedge-like structure
that protects the chunk (depending on the length of the
chunk, note that the points of the chunk may be dis-
tributed over multiple cells). This gives us a solution
with w lines, and is therefore a two-approximate solu-
tion.

We now demonstrate a stronger lower bound for the
setting of axis-parallel lines. To this end, we introduce
some terminology and define an auxiliary graph based
on the point set P . We say that a pair of switches face
each other if there exists a horizontal or vertical line
that stab both of them. A switch which faces at least
one other switch is said to be nice, a pair of switches
facing each other is called a nice pair, and a switch that
is not nice is said to be isolated. We define a graph based
on P that has a vertex for every switch, and an edge
between every pair of vertices corresponding to switches
that are nice pairs. Formally, for a red-blue point set
P = (R ∪B) with w switches S1, . . . , Sw, we define the
graph GP = (VP , EP) as follows: VP = {vj | 1 ≤ j ≤
w} and EP = {(vi, vj) | (Si, Sj) is a nice pair}.

Observe that every isolated switch of P corresponds to
an isolated vertex of GP . Recall that an edge cover of
a graph G is a set of edges such that every vertex of
the graph is incident to at least one edge of the set.
Note that a minimum-sized edge cover can be found by
greedily extending a maximum matching of a graph G.
We use the abbrevation MEC to refer to a minimum
edge cover. Let IP ⊆ VP be the set of isolated vertices
of GP and let HP := GP \ IP . We define κ(GP) :=
|IP | + MEC(HP), where MEC(G) denotes the size of a
minimum edge cover of the graph G. Our first claim is
that any instance P = (R ∪ B) of APRBS requires at
least κ(GP) lines to separate R from B. Next, we will
show that this bound is tight.

Before stating the claims formally, we make some re-

marks about the bound. Note that this coincides with
the bound obtained as a consequence of Proposition 3.1
when GP has a perfect matching. Further, the bound is
w when GP is the empty graph, or equivalently, when
every switch is an isolated switch. In this scenario, note
that the approach described for the two-approximate so-
lution will, in fact, yield an optimal solution. The intu-
ition for the bound in the generic case is the association
between lines and edges in a MEC: indeed, every edge e
in GP corresponds to a family of lines that stab switches
corresponding to the endpoints of e. Our goal is to show
that we can pick one line corresponding to each edge in
the MEC and one line for each isolated switch in such
a way that we separate R from B. However, it is easy
to come up with examples where this does not happen,
and indeed, the argument for the upper bound follows
by making a bounded number of modifications to the
set of lines that was proposed with guidance from the
MEC. On the other hand, this association runs both
ways, so we can recover subset of edges from any col-
lection of lines separating R from B, using that stab
two switches. If a solution uses fewer than κ(GP) lines,
the hope is that the edges recovered lead us to an edge
cover that has fewer edges than the MEC, which would
be a contradiction. We now formalize both sides of this
argument. We begin with the lower bound.

Lemma 3.1 Let P = (R ∪ B) be a red-blue point set
on a circle. Let L be a set of k axis-parallel lines that
separate R from B. Then k ≥ κ(GP).

Proof. Consider any solution L that uses k axis-
parallel lines. By Proposition 3.1, we know that ev-
ery switch must be stabbed by some line from L. In
particular, suppose there are α lines in L that stab a
pair of (nice) switches, and β lines that stab one switch.
Clearly, β ≥ |IP |, the number of isolated vertices in GP .

Let X be the set of non-isolated vertices in GP which
are not covered by the edges corresponding to the α
lines stabbing pairs of nice switches. Now, note that the
switches corresponding to these non-isolated vertices in
X must be stabbed by one of the β lines. So, β ≥
|X| + |IP |. Recall that HP = GP \ IP and MEC(HP)
covers every non-isolated vertex of GP . Observe that
MEC(HP) ≤ α + |X|, since the edges corresponding to
the α lines stabbing pairs of switches can be extended by
a collection of |X| edges, one each for each non-isolated
vertex that is not accounted for so far, to obtain a MEC
for HP . Adding both the inequalities above, we get:

α+ β + |X| ≥ |X|+ |IP |+ MEC(HP)

⇒ α+ β ≥ |IP |+ MEC(HP);⇒ k ≥ κ(GP),

as desired. �
We now turn to the upper bound. In this section, we
state some claims without proofs due to lack of space

268

32nd Canadian Conference on Computational Geometry, 2020

and refer the reader to the full version of the paper for
the detailed arguments.

Lemma 3.2 Let P = (R ∪ B) be a red-blue point set
on a circle. There exists a collection of at most κ(GP)
lines that separate R from B.

The proof of the upper bound is algorithmic, and we
demonstrate it with a series of claims. To begin with,
let FP ⊆ EP be a MEC of HP and let t := |IP |.
We define a set of lines L0 as follows. For every edge
e = (vi, vj) ∈ FP , let `e be an arbitrary axis-parallel
line passing through the switches Si and Sj . For every
isolated switch Sr, let `r be an arbitrary axis-parallel
line stabbing Sr. Now define L0 as the collection of all
of these lines, i.e:

L0 = {`e | e ∈ FP } ∪ {`r | vr ∈ IP }.

Note that |L0| = κ(GP). If L0 separates R from B, then
we are done. Otherwise, we will obtain another set of
axis-parallel lines that “dominates” L0 in that it has the
same size as L0, separates all pairs of points separated
by L0 and at least one additional pair. To formalize
this, we introduce the notion of a strictly dominating
solution. For a set of lines L, let sep(L) ⊆ R×B denote
the set of red-blue point pairs that are separated by L.
Given two collections of axis-parallel lines L and L?,
we say that L? strictly dominates L if |L?| ≤ |L| and
sep(L) (sep(L?). We will now show that there exists a
sequence of sets of axis-parallel lines L0, L1, . . . , Lg such
that Li strictly dominates Li−1 for all 1 ≤ i ≤ g and
Lg separates R from B. Note that the number of steps
is bounded by rb. Throughout, we will maintain the
invariant that every switch is stabbed by at least one
line. Note that this is true, in particular, for L0.

Claim 3.1 Every switch is stabbed by at least one line
from L0.

For a collection of axis-parallel lines L, we say that a
cell of L is corrupt if it is non-monochromatic, that is,
if it contains at least one red point and at least one
blue point. Note that L0 contains at least one corrupt
cell, otherwise we would be done. We consider all the
possible ways in which a cell can intersect the circle
underlying our point set.

Claim 3.2 Let R be an axis-parallel rectangle and let
C be a circle centered at the origin. Then R∩C is either
empty or consists of at most four disjoint arcs of C.

Next, we note that any corrupt cell must contain at least
two disjoint arcs of the circle.

Claim 3.3 Let L be a set of lines that stabs every
switch at least once, and let R be a corrupt cell of L.
Then R ∩ C contains at least two disjoint arcs of the
circle C.

We say that a cell R is large if R∩C contains three or
four disjoint arcs of C. We note that any instance can
have at most one large cell.

We are now ready to describe the high-level strategy for
obtaining a sequence of strictly dominating solutions. It
turns out that if a corrupt cell consists of exactly two
disjoint arcs, then depending on the “location” of the
cell, there is a simple strategy that allows us to clean up
the cell by flipping the orientation of one of the lines in
the solution. In particular, and informally speaking, the
strategy works for corrupt cells that are “above” (“be-
low”) the origin if all cells above it are monochromatic,
or corrupt cells “to the left” (“to the right”) the origin if
all cells before (after) it are monochromatic. This gives
us a natural sweeping strategy to clean up corrupt cells
from four directions, while potentially getting stuck at
a large cell “at the center”. When the large cell is the
only corrupt one, it turns out that there are a fixed
number of configurations it can have when considered
along with its surrounding cells, and for each of these
cases, we suggest an explicit strategy to clean up the
large cell to arrive at a solution with no corrupt cells at
all. We now formalize this argument.

Let L denote the current solution: to begin with, L
is L0, and we describe a process to obtain a solution
L′ that strictly dominates L if L is not already a valid
solution. Note that L divides the plane into vertical
and horizontal strips, which we will refer to as the rows
and columns of the solution. Also, we call a cell of this
configuration empty if it does not contain any points of
P . We first focus on corrupt cells that are not large.
Consider a cell R whose intersection with C consists of
exactly two disjoint arcs, say A1 and A2. Note that A1

and A2 lie in distinct quadrants. We call R a horizontal
cell if these arcs lie in the first and second or the third
and fourth quadrants; and we call R a vertical cell if
these arcs lie in the first and fourth or the second and
third quadrants. Note that the remaining possibilities
do not arise with cells that are not large. We refer the
reader to Figure 1 in the full version of the paper for a
visual representation of these cases.

Consider the corrupt horizontal cell whose center has
the largest y-coordinate in absolute value. This is either
the top-most corrupt cell above the x-axis (Case 1) or
the bottom-most corrupt cell below the x-axis (Case 2).
If there are no corrupt horizontal cells, then consider
the corrupt vertical cell whose center has the largest
x-coordinate in absolute value. This is either the left-
most corrupt cell to the left of the y-axis (Case 3) or the
right-most corrupt cell to the right of the y-axis (Case
4).

Let us consider Case 1. Here, observe that any row
above the row containing the cell R consists of at most

269

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

one non-empty cell and that all such cells are monochro-
matic by the choice of R. Now, if the cell above R
is monochromatic red and the arc in the first (second)
quadrant consists of red points, then the top line of R
can be flipped to a vertical line about the top-left (top-
right) corner of the cell R. It is easy to check that this
solution strictly dominates L. The case when the cell
above R is monochromatic blue can be argued similarly.
We refer the reader to Figure 2 in the full version of the
paper for an illustration of the switching strategies in
these scenarios.

Case 2 is similar to Case 1 except that we argue relative
to the cells belowR rather than above it. In Cases 3 and
4, we flip vertical lines to a horizontal orientation, and
the argument is based on monochromatic cells that lie to
the left and right of R, respectively. All the details are
analogous to the case that we have discussed. Therefore,
as long as the current solution has a corrupt cell that
is not large, this discussion enables us to find a strictly
dominating solution.

Now, the only case that remains is the situation where
we have exactly one corrupt cell which is large. For a
large cell we have four surrounding monochromatic or
empty cells. The three or four arcs contained inside the
large cell may also have red or blue points in different
configurations. It turns out that each of these cases
admits a new solution which makes all cells monochro-
matic. This can be established by inspection, and we
refer the interested reader to the supplementary mate-
rial that goes over all the individual cases4. Meanwhile,
we refer the reader to Figure 3 in the full version of
the paper for a stereotypical case and the correspond-
ing strategy. Based on this discussion, we conclude with
the formal statement of the main result of this section.

Theorem 3.1 RBS and APRBS can be solved in poly-
nomial time when the input points lie on a circle.

4 W-hardness of (p,q)-Separation

In this section, we focus on the (p, q)-APRBS problem.
Before describing our result, we briefly comment on
the relationship between this problem parameterized by
only the budget for horizontal lines (or vertical lines, by
symmetry) and APRBS parameterized by the size of the
entire solution. If APRBS had turned out to be W[1]-
hard or W[2]-hard parameterized by k, then it would im-
ply that (p, q)-APRBS is unlikely to be FPT parameter-
ized by either p or q, since such an algorithm can be used
as a black box to resolve the former question with only
a polynomial overhead (guess p, q such that p+ q = k).
On the other hand, if (p, q)-APRBS turns out to be FPT
parameterized by either p or q, then this would imply

4Please see the full version of this work for more details [11].

that APRBS is also FPT for the same reason. We show
that (p, q)-APRBS is W[2]-hard when parameterized by
p, the number of horizontal lines used in the solution.
Therefore, our observation here establishes the hardness
of the problem for a smaller parameter, and it does not
have any direct implications for APRBS. Our result is
also not implied by what is known about APRBS, since
it turns out that the problem is FPT parameterized by
k.

We reduce from the Colorful Red-Blue Dominat-
ing Set (C-RBDS) problem, which is defined as follows.
The input is a bipartite graph G = (R,B,E(G)) along
with a partition of R into k parts R1] · · ·] Rk. The
question is if there exists a subset S ⊆ R such that
|Ri ∩ S| = 1 for all 1 ≤ i ≤ k and that dominates ev-
ery vertex in B; in other words, for all v ∈ B, there
exists a u ∈ S such that (u, v) ∈ E(G). Such a set is
called a colorful red-blue dominating set for the graph
G. This problem is well-known to be W[2]-hard when
parameterized by k [2]. Our reduction is inspired by
the reduction from SAT used to show the hardness of
the problem of separating n points from each other [1].
One aspect that is specific to our setting is ensuring that
the budget for lines in one orientation is controlled as a
function of the parameter.

Theorem 4.1 (p, q)-APRBS is W[2]-hard when param-
eterized by p.

Proof. Let G = (R = R1] · · ·] Rk, B); k) be an in-
stance of C-RBDS. Without loss of generality, we as-
sume that every vertex v ∈ B has the same degree
d and that d is even5. We may also assume that all
Ri’s have the same number of vertices (padding Ri

with maxk
j=1{|Rj |}− |Ri| dummy isolated vertices if re-

quired). We let |R1| = · · · = |Rk| = m and n := |B|.
We also assume that k is even, again without loss of
generality. Finally, we impose an arbitrary but fixed or-
dering on each Ri and on the sets N(v) (neighbours of
v in G) for every v ∈ B.

It will be convenient to think of the point set of the
reduced instance as lying within a sufficiently large
bounding box, say B. To describe the placement of
the points, we impose an uniform (k + 2) × (n + 1)
grid on B, which divides B into k+ 2 horizontal regions
H0, H1, . . . ,Hk, Hk+1 (labeled from bottom to top) and
(n+ 1) vertical regions V0, V1, . . . , Vn (labeled from left
to right) which we call tracks. Each horizontal track Hi

for i ∈ [k] is divided further into m+ 2 horizontal strips

5When this is not the case, let ∆ := maxv∈B{d(v)}. We may
introduce an additional “dummy color” class R0 with a forced
dummy vertex (for example, by adding a d-star whose center is
in B and whose leaves are in R0), and for every vertex v ∈ B we
may introduce ∆ − d(v) new pendant red neighbors of v in R0.
If d happens to be odd, use ∆ + 1 in this process instead of ∆ to
ensure that d is even.

270

32nd Canadian Conference on Computational Geometry, 2020

and each vertical track Vj for j ∈ [n] is divided further
into 2d vertical strips. Within a horizontal track, the
first and last horizontal strips are called buffer zones.
Further, when we refer to the pth horizontal strip within
any horizontal track, the buffer zones are not counted.
We refer the reader to Figure 4 in the full version of
this paper for a visual representation of the reduced in-
stance.

For i ∈ [k], j ∈ [n], α ∈ [m], and β ∈ [2d], we refer to
the intersection of the αth horizonal strip in Hi and the
βth vertical strip in Vj as Zij [α, β]. We note that two
points that share the same x-coordinate (y-coordinate)
have to be separated by a vertical (horizontal) line. We
now describe three sets of points that we need to add:
the first will lead us to a choice of a vertex from each
Ri, the second set encodes the structure of the graph,
and the third set ensures that the chosen set is indeed
a dominating set by forcing the use of a budget in a
certain way.

Selectors. Consider the first vertical track. Here, for
any even (odd) i ∈ [k], we add a red (blue) point to the
top buffer zone and a blue (red) point to the bottom
buffer zone of the ith track. These 2k points are called
the selectors. We ensure that all selectors have the same
x-coordinate. Intuitively, the selector points ensure that
any valid solution is required to use at least one horizon-
tal line drawn in each of the k horizontal tracks — and
the budget will eventually ensure that any valid solution
uses exactly one. Which horizontal strip these lines end
up in will act as a signal for our choice of vertices in the
dominating set in the reverse direction.

Functional Points. Next, consider any vertex vj ∈ B.
For every u ∈ N(B), we add a pair of red and blue
points in Zij [α, 2β] if u is the αth vertex of Ri and is
the βth neighbor of vj . These points are added to the
bottom-left and top-right corners of the box. If β is odd
(even)6, then the bottom-left corner gets a blue (red)
point and the opposite corner gets the red (blue) point.
These pairs of points will be referred to as the functional
pairs. The functional pairs encode the structure of the
graph, and we would like to ensure that the responsi-
bility of separating at least one functional pair in each
vertical track falls on a horizontal line used to separate
the selectors. We force this by choosing an appropri-
ately small budget for vertical lines, which ensures that
not all separations can be accounted for using vertical
lines. However, we still need to control how the vertical
budget is utilized across different tracks. To this end,
we introduce a special gadget that forces the use of a
certain number of vertical lines in each vertical track.

6The organization of colors based on the parity of the columns
in the case of functional pairs and rows in the case of selectors
is to ensure that there are no additional separation requirements
other than the ones that we desire to encode.

Guards. In the horizontal track H0, we place d points,
all with the same choice of y-coordinate which is ar-
bitrary but fixed. Within the jth vertical track, x-
coordinate of the sth point is chosen so that the point
lies in the middle of the (2s)th vertical strip of Vj . The
color of the first vertex in the track Vi is blue if i is odd
and red if i is even. This ensures that for 2 ≤ i ≤ n, the
first point in the ith track has the same color as the last
point of the (i− 1)th track. The colors of the remaining
points are chosen so that consecutive points within the
same track have distinct colors. Equivalently, the sth

guard vertex in the ith track is blue (red) if s and i are
both odd (even), and is red (blue) if s is odd (even) and
i is even (odd). We refer to these points as guards.

We briefly discuss the role of the guard vertices: we note
that the guards can be separated from each other by
(d−1) vertical lines, and since all guards have the same
y-coordinate, this is the only way to separate them.
However, there is no set of (d − 1) lines that can sep-
arate all the guards and all the associated functional
pairs in any vertical track. The budget for the vertical
lines will be such that we can only afford to separate the
guards as we are required to do, and we will be forced
to separate at least one functional pair using a horizon-
tal line, which will essentially ensure that the selectors
have chosen vertices corresponding to a dominating set.

We let p := k + 2 and q := (d − 1)n + 1. This mostly
completes the description of the construction. Due to
lack of space, we defer the argument for equivalence and
some minor details in the construction to the full version
of the paper [11]. �

5 Concluding Remarks

We showed that RBS and APRBS are polynomial-time
solvable when points lie on a circle. Further, we intro-
duced a natural variant that separates out the budget
for horizontal and vertical lines in the axis-parallel vari-
ant, and demonstrated that (p, q)-APRBS is W[2]-hard
when parameterized by p. We expect a natural adap-
tation of these arguments to work for points in convex
position as well. In the general setting, since APRBS
is FPT when parameterized by k [8], the question of
whether the problem admits a polynomial kernel would
be natural to explore further. Our W[1]-hardness reduc-
tion for (p, q)-APRBS may provide some starting points
towards an answer in the negative — in its present form
the parameter k of the reduced instance depends on
k, d, and n. APRBS would not admit a polynomial ker-
nel (under standard complexity-theoretic assumptions)
if this dependence can be reduced to k and n only [3].

271

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] G. Călinescu, A. Dumitrescu, H. J. Karloff, and P. Wan.
Separating points by axis-parallel lines. International
Journal of Computational Geometry and Applications,
15(6):575–590, 2005.

[2] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Springer, 1st edition, 2015.

[3] M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization
lower bounds through colors and ids. ACM Transac-
tions Algorithms, 11(2):13:1–13:20, 2014.

[4] U. M. Fayyad and K. B. Irani. Multi-interval discretiza-
tion of continuous-valued attributes for classification
learning. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence., pages 1022–1029.
Morgan Kaufmann, 1993.

[5] P. Giannopoulos, E. Bonnet, and M. Lampis. On the
parameterized complexity of red-blue points separa-
tion. Journal of Computational Geometry, 10(1):181–
206, 2019.

[6] S. Har-Peled and M. Jones. On separating points by
lines. Discret. Comput. Geom., 63(3):705–730, 2020.

[7] F. Hurtado, M. Mora, P. A. Ramos, and C. Seara. Sep-
arability by two lines and by nearly straight polygonal
chains. Discrete Applied Mathematics, 144(1-2):110–
122, 2004.

[8] S. Kratsch, T. Masaŕık, I. Muzi, M. Pilipczuk, and
M. Sorge. Optimal discretization is fixed-parameter
tractable. CoRR, abs/2003.02475, 2020.

[9] J. Kujala and T. Elomaa. Improved algorithms for uni-
variate discretization of continuous features. In Pro-
ceedings of the 11th European Conference on Princi-
ples and Practice of Knowledge Discovery in Database
(PKDD), volume 4702 of Lecture Notes in Computer
Science, pages 188–199. Springer, 2007.

[10] N. Megiddo. On the complexity of polyhedral sepa-
rability. Discrete Computational Geometry, 3:325–337,
1988.

[11] N. Misra, H. Mittal, and A. Sethia. Red-blue point sep-
aration for points on a circle, arXiv/2005.06046, 2020.

272

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A lower bound on the number of colours needed to nicely colour a sphere

Péter Ágoston∗

Abstract

The Hadwiger–Nelson problem is about determining
the chromatic number of the plane (CNP), defined as
the minimum number of colours needed to colour the
plane so that no two points of distance 1 have the same
colour. In this paper we investigate a related problem
for spheres and we use a few natural restrictions on the
colouring. Thomassen showed that with these restric-
tions, the chromatic number of all manifolds satisfying
certain properties (including the plane and all spheres
with a large enough radius) is at least 7. We prove that
with these restrictions, the chromatic number of any
sphere with a large enough radius is at least 8. This
also gives a new lower bound for the minimum colours
needed for colouring the 3-dimensional space with the
same restrictions.

1 Introduction

1.1 Colourings of the plane

Figure 1
Figure 2

The Hadwiger–Nelson problem is a well-known prob-
lem in combinatorial geometry. It asks to determine the
chromatic number of the plane (CNP), i.e., the mini-
mum number of colours needed to colour the plane so
that no two points of distance 1 have the same colour.
Alternatively, it is the chromatic number of the graph
of unit distances on the plane. Since 1950 it has been
known that 4 ≤ CNP ≤ 7. The lower bound was
obtained by Nelson (1950), but it can be most eas-
ily proven by using a graph called the Moser spindle
(Figure 1) (Moser, Moser (1961) [M]), while the upper
bound was given by Isbell (1950), using the colouring in

∗MTA-ELTE Lendület Combinatorial Geometry (CoGe) Re-
search Group, Eötvös Loránd University, Budapest, Hun-
gary, supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017- 00002).
agostonp@cs.elte.hu

Figure 2. Since 2018, it is also known that CNP ≥ 5
(de Grey [dG]).

The problem has some variations:
If we restrict the colour classes to be measurable,

the best known lower bound for the number of colours
needed is also 5 (Falconer (1981) [F]) and the best
known upper bound is also 7 (also from Figure 2).

If we restrict the colour classes to be the unions of
shapes bounded by Jordan curves (such a shape is called
a tile and such a colouring is called a tile-based colouring
or simply a tiling), then the best known lower bound for
the number of colours needed is 6 (Townsend (2005) [T])
and the best known upper bound is also 7.

Thomassen also defined a type of tiling:
A colouring of a surface with a metric is nice, if it is

a tiling, all tiles have diameter less than 1, all pairs of
tiles with the same colour have distance more than 1
and all tiles are simply connected. We refer to such a
colouring as a nice tiling.

He also proved the following theorem:

Theorem 1 [T] Suppose a surface S satisfies the fol-
lowing three conditions for some natural number k:
1. Every noncontractible simple closed curve has di-

ameter at least 2.
2. If C is a simple closed curve of diameter less than

2, then the area of int(C) is at most k.
3. The diameter of S is at least 12k + 30.
Then every nice tiling contains at least 7 colours.

Since the plane satisfies the conditions, the theorem
proves that every nice tiling of the plane contains at
least 7 colours.

Note that the statement for the plane also follows
from a relatively easy proof using Lemma 2 and the
fact that a triangulated planar graph has 3n− 6 edges.

1.2 Colouring of spheres

We can define the chromatic number of a sphere of
radius r similarly to the planar case: it is the mini-
mum number of colours needed to colour the points of
a sphere of radius r such that no two points with Eu-
clidean distance 1 have the same colour.

Much less is known of the value of this number com-
pared to the planar case.

It is known that the chromatic number of a sphere of
radius r is at least 4 if r ≥ 1√

3
. For r >

√
3
2 Moser’s

273

32nd Canadian Conference on Computational Geometry, 2020

spindle gives the lower bound, for smaller values, a gen-
eralized version of Moser’s spindle is used. (Simmons
(1976) [S])

It is also known that the chromatic number of any
sphere is at most 15, even with all of the above defined
restrictions, as the 3-dimensional space has a 15-tiling
(Radoičić, Tóth (2003)[RT]), which can be used to gen-
erate such a colouring.

Recently, a 7-colouring of large enough spheres have
also been found by Tom Sirgedas, as part of the Poly-
math 16 project.1

Also, the minimal number of colours needed for a nice
tiling of a large enough sphere is at least 7, which follows
from Theorem 1.

The main result of this paper is improving this num-
ber to 8.

Note that some sources mentioned earlier that the
chromatic number of all spheres is at most 7 [BMP]
[HDCG]. It seems (from personal communication
through Dömötör Pálvölgyi) that the authors expected
that a colouring similar to that of Isbell in Figure 2
also works for spheres. The present paper disproves
this assumption, though it does not contradict to the
chromatic number of spheres being at most 7.

This result also improves the lower bound for the min-
imal number of colours needed for a nice tiling of the
3-dimensional space, for which problem the best known
bound was 6 for the general colouring case (Nechushtan
(2002) [N]).

2 Results

2.1 Preliminary statements

Definition 1 We call a colouring of a graph nice, if
there are no two different vertices within distance at
most 2, which are coloured with the same colour. Alter-
natively, a nice colouring can be defined as a colouring
of G, which is also a proper colouring for G2 (the square
of G).

Lemma 2 If a tiling of a surface is nice, then applying
the same colouring to the adjacency graph of the tiles
also gives a nice colouring.

The proof is in the Appendix.

Lemma 3 If S is a sphere with radius r ≥ 2
π and A ⊆

S such that the spherical diameter of A is less than 1,
then there is a unique connected component of S \ A,
which contains all points of S with the exception of at
most an open disk of radius 1.

The proof is in the Appendix.
1https://groups.google.com/forum/#!topic/hadwiger-nelson-

problem/tSOs7MypGxE

Lemma 4 If S is a sphere with radius larger than 2
π

and the adjacent tiles A,B ⊆ S both have spherical di-
ameter less than 1, then there is a unique connected
component of S \ (A ∪B), which contains all points of
S with the exception of at most an open disk of radius
1.

The proof is in the Appendix.
For any set A ⊆ S or two sets A,B ⊆ S, call the

unique component described above the large component
of S \ A or S \ (A ∪B), respectively, and all the other
components the small components.

2.2 The main result

Theorem 5 There is no nice tiling with at most 7
colours of a large enough (radius r ≥ 18) sphere S, even
if we generalize the definition and allow tiles not to be
simply connected.

In order to make the proof more legible, we give an
outline of the main steps.

Suppose that there exists such a colouring of S and
take the adjacency graph G of the tiles such that all tiles
are represented by one of their points. First, by deleting
some vertices and edges, we get rid of all multiple edges
and cut vertices and get a graph G′, which is a triangu-
lated planar graph and still has the property that all of
its pairs of neighbouring vertices have distance less than
2. If we had a nice tiling of S, we also have a colouring
of this graph, which is not only nice, but also no two
vertices with distance at most 1 get the same colour.
This will lead to a contradiction.

Since G′ is a triangulated planar graph with maxi-
mum degree at most 6 (otherwise its colouring could
not be nice), it has at most 12 vertices with degree less
than 6 (exactly 12 if counted with multiplicity given by
the differences of 6 and the degrees of these vertices).
These vertices are called irregular vertices.

Also, for some subsets of G′ that only have vertices
with degree 6, there exists a function to an infinite trian-
gular grid such that the mapping is a local isomorphism
in all vertices.

Now we have three cases.
The first case is when all of the irregular vertices are

close to each other. In this case, we find a cycle c1 of
bounded length separating them from most of S. And
from the mapping we can get from the latter part to
the triangular grid, we can prove that this part has a
bounded graph size. So we can get to a contradiction
by finding a vertex far away from the irregular vertices,
which exists if r is large enough.

In the second case the irregular vertices can be di-
vided into two groups both of cardinality 6 (counted
with multiplicity), where the elements of the two groups
have a large enough distance from each other, while in-
side one group, the distances are bounded. In this case,

274

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

we can construct two cycles c2 and c3 of bounded length
separating these two groups, which are close enough to
the first and the second group, respectively. Then again
we get a contradiction from the mapping of the part
between the two cycles to the triangular grid: we find
a cycle in this part that goes through two nearly an-
tipodal points, but its graph length is not larger than
max(l(c2), l(c3)).

Finally, the last case is when there is at least one way
to divide the irregular vertices into two groups such that
no two points from different groups are close to each
other and the cardinality of the two groups (counted
with multiplicity) is not divisible by 6. In this case,
we get a contradiction by examining the exact way to
colour parts of the infinite triangular grid.

Figure 3: Case 1, Case 2 and Case 3

Now we continue with a detailed proof.

Proof. For the sake of simplicity, first we will use spher-
ical distances in the calculations (so we are now solving
the problem when tiles have spherical diameter at most
1 and tiles of the same colour have spherical distance
more than 1) and we will only convert the problem to
the Euclidean distance definition in the end. So now
suppose that S has a radius r ≥ 17.9.

Suppose we have a nice tiling of S.
Take the graph G where the tiles T1, ...Tn are rep-

resented by vertices v1, ...vn and the neighbouring ones
are connected. The colouring of the tiles gives a nice
colouring of this graph by Lemma 2, which we will use
in the proof.

We can also get rid of vertices or edges, and prove the
statement for the remaining subgraph as it also implies
that the original graph cannot be coloured with a nice
colouring with 7 or less colours either. First, eliminate
the multiple edges (a multiple edge can occur if two
tiles have a border made out of disjoint segments): if we
find a pair of parallel edges between vi and vj , we can
just merge them and delete everything between them
(between meaning the vertex set corresponding to the
small components of S \ (Ti ∪ Tj)). We also eliminate
cut vertices (these correspond to not simply connected
tiles) by deleting all vertices corresponding to the tiles
in the small components of S \ vi for any cut vertex vi.
Also, we can eliminate those complete graphs with more
than 3 vertices that represent points where more than

3 tiles meet: we just take an arbitrary triangulation of
them as if the tiles would not exactly meet in one point.
This way we have got a triangulated planar graph G′,
and from now on, triangles will always mean the empty
3-cycles of G′. If G′ has n′ vertices, it has 3n′−6 edges,
which means that the sum of the degrees of its vertices is
6n′−12. And since there are no vertices with neighbours
of the same colour (the colouring for G′ is also nice), all
vertices have degree at most 6. So there are at most 12
vertices having degree less than 6. Call them irregular
vertices and for any irregular vertex, let its multiplicity
be the difference of its degree from 6. From the above,
there are exactly 12 irregular vertices, if we count them
with multiplicity. Also, call the set of irregular vertices
I and call the elements of V (G′) \ I regular vertices.

Now draw G′ on S so that vi ∈ Ti and the edges
are represented by simple Jordan curves satisfying the
following conditions:

1) The two endpoints of the image of an edge e has
the two vertices e is incident to as its endpoints.

2) If the border of two tiles Ti and Tj contains more
than one point, then draw the edge between vi and vj
so that it only contains points from these two tiles. This
also means that all points of the edge have distance less
than 2 from both vi and vj .

3) For any point in which more than three tiles meet,
the edges corresponding to pairs of tiles which only bor-
der each other in this point only run through border seg-
ments starting from the meeting point. Also, the edges
should run so close to the common border point of the
tiles that all points of all edges have distance less than
2 (measured on S) from both of the endpoints of that
particular edge.

Lemma 6 Any (open or closed) disk D on S with ra-
dius at least 1 contains at least one vertex from G′.

The proof is in the Appendix.
So it is enough to prove the following (stronger) ver-

sion of Theorem 5:
Suppose we have a sphere S with radius r ≥ 17.9 and

a fully triangulated planar graph G′ on the surface of
S, which has n′ vertices, all of its vertices have distance
less than 2 on S, all open unit disks on S contain at least
one vertex and all of the points of all of its edges have
distance less than 2 from both of its respective endpoints.
Then G′ cannot be coloured with 7 colours in a way
so that any two vertices of the same colour have graph
distance at least 3 in G′.

Now continue with some definitions:
For any two subsets of S, let their spherical distance

be their spherical distance on S (denoted by distS(a, b)).
For any two subgraphs Ga and Gb of G′, let

their graph distance mean the smallest graph distance
in G′ occuring between their vertices (denoted by
distG′(a, b)).

275

32nd Canadian Conference on Computational Geometry, 2020

For any 3-cycle c in G′ that has a side, which is
Let the graph length of a path or closed path p in G′

be the number of its edges. We denote it by l(p).
Let the spherical broken line of a path or closed path

p in G′ be the curve defined by connecting neighbouring
vertices of p with spherical segments instead of the edges
connecting them.

Let the broken line length of a path or a closed path p
inG′ be the length of the spherical broken line belonging
to p. We denote it by L(p).

Let the i-neighbourhood of a vertex v of G′ be the
subgraph of G′ induced by those vertices, which have
graph distance at most i from v (denoted by Ni(v)).

Let the strict i-neighbourhood of a vertex v of G′ be
the subgraph ofG′ induced by those vertices, which have
graph distance exactly i from v (denoted by ni(v)).

For a vertex v and a set S of vertices, let e(v, S) mean
the number of edges starting from v and ending in any
of the vertices of S.

We will use the following lemmas later in the proof:

Lemma 7 For any path or closed path p in G′, L(p) <
2l(p).

Proof. All edges connect points in neighbouring tiles
meaning that they have a distance less than 2 as both
of the endpoints have a distance at most 1 from an ar-
bitrarily chosen border point. And by summing these
inequalities, we get the statement. �

Lemma 8 If we take a subgraph G∗ of G′, which does
not include any irregular vertices and is defined by a
simply connected region S∗ on S such that those ver-
tices are included, which are inside S∗ and those edges
are included, which are fully inside S∗, then there ex-
ists a function ϕ from the vertices and edges of G∗ to
an infinite triangular grid T (for the sake of simplicity,
suppose that it is made up of regular triangles) fulfilling
the following criteria:
1) It keeps the incidence relation between vertices and

edges.
2) For any vertex v ∈ G∗, if for two edges e1 and e2

in G∗, that have v as an endpoint, there are exactly k
edges of G′ between them going around v in a positive
order, then there are exactly k edges of T between ϕ(e1)
and ϕ(e2) going in a positive order around ϕ(v).
The above colouring is unique up to isometries pre-

serving orientation.

The proof is in the Appendix.

Lemma 9 We can find a similar ϕ function if G∗ is
defined by a subset S′ of S that is homeomorphic to
S1 × [0, 1] (like S minus two disjoint disks) and still
does not contain irregular vertices and we also require
G∗ to be connected, but here the codomain of ϕ will be
the set of (possibly infinite) sets of vertices in case of

vertices and the set of (possibly infinite) sets of edges
for edges. Here we require from ϕ that for any vertex
v ∈ G∗, and an edge e ∈ G∗ incident with v all of the
elements of ϕ(v) are incident with at least one element
of ϕ(e). We also require that for any vertex v ∈ H and
any element v′ ∈ ϕ(v), we can choose an element from
all the ϕ’s of the edges incident to v such that they are
all incident to v′ and for any two of them, they have
exactly as many edges between them going around v′ in
a positive order as the corresponding edges in G∗ have
going around v in a positive order.

The proof is in the Appendix.
Analogously to the colouring of the plane by Isbell,

call a colouring of the vertices of the infinite triangu-
lar grid T an Isbell colouring if it is constructed in the
following way:

We take a vertex in the grid and colour it and
its neighbours with 7 different colours. We then tile
the grid with the disjoint translates of this coloured
hexagon.

Such a colouring is trivially nice and periodical, thus
any Isbell colouring of T can be generated using any
of the vertices of T as the starting vertex. Also, for
all colourings of the starting hexagon, there are ex-
actly two ways to colour T depending on how we place
the hexagons compared to each other. Also, all Isbell
colourings can be generated with the above procedure
starting from any hexagon formed by a vertex and its 6
neighbours.

Lemma 10 The graph in Figure 4 can only be nicely
7-coloured by a part of an Isbell colouring.

The proof is in the Appendix.

Figure 4
Figure 5

Lemma 11 If we embed the graph in Figure 5 in the
infinite triangular grid, then any colouring of it is con-
tained in at most one Isbell colouring of T .

Proof. The hexagon part determines the colouring of
that particular hexagon, while the remaining vertex
leaves at most one of the two colourings that can
be generated from that particular colouring of the
hexagon. �

276

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Definition 2 If we have a cycle c in G′ then let one of
its sides be called as the inside and the set of vertices
of G′ in it be called Vi, while the set of edges in it be
called Ei, while the other one being the outside and call
the set of vertices of G′ in it Vo and the set of edges in
it Eo. The curvature of c is

∑
v∈c

2− e(v, Vi).
(Note that if c does not contain irregular ver-

tices, then this definition is trivially equivalent with∑
v∈c

e(v, c ∪ Vo)− 4.)

Lemma 12 The curvature of a cycle c is equal to 6
minus the number of irregular vertices in the inside of
c (counted with multiplicity).

The proof is in the Appendix.
Let H be the graph with vertex set I and edges con-

necting the pairs of vertices, which have graph distance
at most 3 in G′.

Now take a connected component Hi of H and take
a spanning tree of Hi. For any edge e of this spanning
tree find a path of length at most 3 in G′ connecting the
two endpoints of e (per definition, such a path exists)
and take the union of these paths, which is a graph in
G′. Take a spanning tree of this graph and call it H ′i.
Do this for all components of H and call the union of
these trees H ′.

Lemma 13 The H ′i’s have graph distance at least 2
from each other in G′.

The proof is in the Appendix.

Lemma 14 If the number of vertices in Hi (counted
with multiplicity) is ni, then |V (H ′i)| ≤ 3ni −
2, |E(H ′i)| = |V (H ′i)| − 1 ≤ 3ni − 3 and
{v ∈ G′|distG′(v,Hi) = 1} ≤ 5ni

The proof is in the Appendix.
Now take an Hi and take the union Ui of the trian-

gles (borders included) that have at least one vertex in
common with Hi.

i4

i2

i1

i3

i5 i6

Figure 6: A part ofG′ with the cho-
sen paths connecting the vertices of
I highlighted

i4

i2

i1 i3

i5

i6

Figure 7: The
part of H corre-
sponding to this
part of G′

i4

i2

i1

i3

i5 i6

Figure 8: The corresponding part of H ′ denoted by
bold, the Ui’s denoted by grey and the c′is denoted by
red.

Lemma 15 There exists a point Oi ∈ S for which all
the vertices of H ′i fit into a disk Di of radius 3ni − 3
around Oi, all the vertices belonging to Ui fit into a disk
D′i of radius 3n−1 around Oi and all the edges belonging
to Ui fit into a disk D′′i of radius 3n− 3 around Oi.

The proof is is in the Appendix.
Let ci be the cycle that borders the connected compo-

nent of S\Ui that contains S\D′′i . c1 is trivially formed
by vertices having graph distance 1 from H ′i meaning
that it has at most 5ni vertices because of Lemma 14.
Also, per definition, it is inside D′′i .

Now we have three cases:

Case 1: H is connected.
Let H1 be the only component of H. Then l(c1) ≤ 60

as of Lemma 14 and its vertices fit into an open unit
disk D′1 of radius 35 around O1, while its edges fit into
an open unit disk D′′1 of radius 37 around O1.

Lemma 16 For any vertex v of G′ ∩ S1, its graph dis-
tance from c1 is at most 10.

The proof is in the Appendix.
But there is a vertex of G′ inside the open unit disk

around the antipodal of O1, which has distance more
than rπ − 36 > 20 from D′1. And since all of this disk
is outside D′′1 (the distance of O1 and its antipodal is
at least π · 17.9 > 56 > 37 + 1), the vertex inside it is a
vertex of S1, so it should have graph distance at most
10 and thus, spherical distance less than 20 from all the
vertices of c1, which is a contradiction.

Case 2:
H has two connected components and both have ver-

tex number 6 (counted with multiplicity). Call these
components H2 and H3

Lemma 15 and the subsequent statement yield that
there exists a cycle c2 of graph length at most 30 sepa-
rating H ′2 from all the vertices outside a disk D′′2 of ra-
dius 19. Similarly there exists a cycle c3of graph length

277

32nd Canadian Conference on Computational Geometry, 2020

at most 30 separating H ′3 from all the vertices outside
a disk D′′3 of radius 19. Now define the interior of c2
(int(c2)) as the component of S \ c2 containing H ′2 and
the interior of c3 (int(c3)) as the component of S \ c3
containing H ′3. Since all the vertices of c2 and c3 have
graph distance 1 from H ′2 and H ′3, respectively, from
Lemma 13 neither H ′2 has a common vertex with c3,
neither H ′3 has a common vertex with c2. So neither of
c2 or c3 has vertices both in the interior and the exterior
(the opposite component to interior) of the other one.
Also, it is not possible that their interiors are covering
S completely as they both fit into an open disk of radius
19 and S cannot be covered by two disks of this size. So
we have two possibilities:

The interior of one of c2 and c3 is completely inside
the interior of the other one. In this case, we can apply
the argument used in Case 1 as the one having the other
one in its interior also has all the vertices from I inside
it, has length at most 30 < 60 and fits into a disk of
radius 19 < 35 < 37.

In this case, define G2 as the graph
((ext(c2) ∪ c2) ∩ (ext(c3) ∪ c3))∩G′ (where ext(c2) and
ext(c3) denote the exteriors of c2 and c3 (the opposite
side as their interiors)).

(A third possibility would be that ext(c2) ⊆ int(c3)
and ext(c3) ⊆ int(c2), but it is clearly impossible due
to their sizes.)

Now from Lemma 9 we can find a ϕ function running
from G2 to the infinite triangular grid T .

Now we will use the following lemma:

c2 c3

Figure 9

Lemma 17 There exists a series of cycles (Γ0, ...,Γk
for some k) in G′ with Γ0 = c2 and Γk = c3 satisfying
3 conditions:
1) All of them have graph length at most 30, and thus,

broken line length less than 60.
2) For any i, j with |i− j| = 1 and any vertex v of Γi,

there is a vertex of Γj neighbouring v in G′ and thus,
having spherical distance less than 2 from it.
3) For any i, j with |i− j| = 1 and any edge e of Γi,

there is a vertex of Γj having graph distance at most 1
from both of the endpoints of e in G′, and thus, having
spherical distance less than 4 from all of the points of e.

The proof is in the Appendix.
Now we can finish the proof for Case 2 using the fol-

lowing lemma:

Lemma 18 At least one of Γ0, ...,Γk goes through two
points that have spherical distance at least rπ − 5.

The proof is in the Appendix.
And since all of these curves have graph length at

most 30, from Lemma 7 they also have broken line
length less than 60. But from Lemma 18, there is
one with broken line length more than 2 · (rπ − 5) ≥
2 · (17.9π − 5) > 102, which is a contradiction.

Case 3: Neither of the conditions of the previous
cases hold.

Lemma 19 If Case 3 holds, then there exists a cycle
c4 in G′, all of whose vertices have graph distance at
least 2 from all the irregular vertices and which separates
them into two groups so that both of the groups has a
cardinality not divisible by 6 (counted with multiplicity).

The proof is in the Appendix.

Lemma 20 For all vertices of c4, a spanning subgraph
of the 2-neighbourhood can be obtained as the image of
an incidence and orientation preserving function Ψ from
the hexagonal graph in Figure 4.

The proof is in the Appendix.

Lemma 21 The curvature of c4 is divisible by 6.

The proof is in the Appendix.
And this gives us a contradiction as the curvature of

c4 is not divisible by 6 according to Lemma 12

So it is impossible to have a nice tiling of a sphere
if we are using spherical distances and r ≥ 17.9. From
this, it is impossible to have a nice tiling of a sphere if
we are using Euclidean distances and r ≥ 18 as if we
have a sphere of radius r ≥ 18 with a nice tiling, then
a scaled version of the tiling would give a nice tiling for
a sphere of radius 1

2 arcsin 1
2r

≥ 17.9 using the spherical
distance version, which is a contradiction. �

3 Acknowledgement

I would like to thank my supervisor Dömötör Pálvölgyi
for suggesting the problem, for his help in preparing this
manuscript and all his guidance throughout the last few
years. I would also like to thank Balázs Keszegh for his
professional support.

278

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[BMP] P. Brass, W. O. J. Moser, J. Pach: Re-
search Problems in Discrete Geometry (2005)

[C] D. Coulson: On the chromatic number of plane
tilings, J. Aust. Math. Soc. 77 (2004), 191–196.

[dG] A. D. N. J. de Grey: The chromatic number of
the plane is at least 5, Geombinatorics (2018), 28:
18–31.

[F] K. J. Falconer: The Realization of distances in
measurable subsets covering Rn, J. Combin. The-
ory Ser. A 31 (1981) 184–189.

[HDCG] Handbook of Discrete and Computational
Geometry, Third Edition J.E. Goodman, J.
O’Rourke and C. D. Tóth, editors, CRC Press
LLC, Boca Raton, FL, 2017. ISBN 978-1498711395
(68 chapters, xix + 1928 pages).

[M] L. Moser, W. Moser: Solution to Problem 10,
Can. Math. Bull. 4 (1961)

[N] O. Nechushtan: On the space chromatic number,
Discrete Mathematics 256 (2002), 499–507.

[RT] R. Radoičić, G. Tóth: Note on the Chro-
matic Number of the Space, Discrete and Compu-
tational Geometry. Algorithms and Combinatorics
25 (2003) 695–698., a preprint can be found at
http://www.cs.bme.hu/∼geza/chromatic.pdf

[S] G.J. Simmons: The chromatic number of the
sphere. J. Austral. Math. Soc. Ser. A,21:473–480,
1976.

[T] S. P. Townsend: Colouring the plane with no
monochrome unit, GeombinatoricsXIV(4) (2005),
181–193.

[Th] C. Thomassen: On the Nelson Unit Distance
Coloring Problem, Amer. Math. Monthly 106
(1999) 850–853.

3.1 Appendix

Proof of Lemma 2
The statement not being true would mean that there

is a nice tiling for some surface, for which two vertices
corresponding to tiles of the same colour have graph
distance 1 or 2, but in the first case, their distance on
the surface would be 0, while in the second, it would be
less than 1, as the diameter of their common neighbour
is less than 1. So the colouring would not be nice, so
the statement is true.
Proof of Lemma 3
If we take an open disk D of radius 1 around any

point of A, it covers A, so S \D ⊆ S \A and since S \D

is connected, all of its points are in the same connected
component of S \ A. And this component is unique as
S \ D is a closed disk of radius rπ − 1, so none of the
other components satisfy the property described in the
statement of the lemma.

Proof of Lemma 4
If we take an open disk D of radius 1 around a com-

mon border point of A and B, it covers both A and B,
so S \ D ⊆ S \ (A ∪B) and since S \ D is connected,
all of its points are in the same connected component
of S \ (A ∪B). And this component is unique as S \D
is a closed disk of radius rπ − 1 > 1, so none of the
other components satisfy the property described in the
statement of the lemma.

Proof of Lemma 6
If the center O of D belongs to a tile that is repre-

sented inG′, then the vertex representing it has distance
less than 1 from it, so it is inside D.

If O belongs to a tile that is not represented in G′

because it is in the small component of S \ t for some
tile t that is represented in G′ or in the small component
of S \ (t1 ∪ t2) for some tiles t1 and t2 represented in G′
(it is possible that O is also in the small component for
some tile or tiles that are not represented in G′), then
we can find a segment going through O that has both
of its endpoints in the same tile represented in G′ or at
least on its borders and which has length less than 1. So
it has distance less than 1 from the vertex representing
this tile, which is thus in D.

Proof of Lemma 8

→

The statement can be proven by induction for the
number of vertices of G∗:

If G∗ does not have any vertices, the statement is
trivial. Now suppose that it has m vertices and for
all smaller vertex numbers, we have already proven the
statement.

Suppose G∗ is connected, otherwise the statement is
trivial (its connected components can be defined by con-
nected subsets of S, from which we can apply the induc-
tion hypothesis).

There is at least one (in fact, at least 4) irregular
vertex in G′, and it is not contained in G∗, thus if G∗ is
not empty, there is a vertex v inside G∗, which has at
least one neighbour in G′ \G∗.

If v is a cut vertex in G∗, then examine the parts it
separates G∗ to (v included). All such graphs also can

279

32nd Canadian Conference on Computational Geometry, 2020

be determined by a simply connected subset of S and
they all have a smaller number of vertices than G∗ had,
and since we already have ϕ’s for these smaller graphs,
by choosing ϕ(G∗) arbitrarily and rotating the images
of the components around it appropriately, we get an
appropriate ϕ.

If v is not a cut vertex, then suppose there are two
edges e and e′ of G′ \G∗ starting from v. Then we can
find points P ∈ e \ S∗ and P ′ ∈ e′ \ S∗ that means
that the curve starting from P and ending in P ′ going
through v on e and e′ separates S∗ into at least two
separate parts. Thus, since v is not a cut vertex, at
most one of the above parts contains any vertices of G∗
meaning that the edges inside G∗ that are starting in
v form a connected interval among all the edges in G′

starting from v. And because G′ being triangulated,
they form a chain in which all the neighbouring pairs of
edges have 1 edge between them around their common
vertex in the appropriate orientation. So the ϕ function
belonging to G∗ \ v translates them to the subset of a
regular hexagon around one vertex in T , so ϕ(v) can
be placed in its center, and the new ϕ we get (by also
translating the edges from v into appropriate places)
satisfies the conditions.

If G∗ is connected, then ϕ is unique with respect to
isometry as starting from a vertex and deciding which
direction will be which, we always can continue in only
one way.

Proof of Lemma 9

Take a simply connected covering space of S′.

Again, we can suppose that we only care about con-
nected subgraphs.

We can find a function ϕ′ from the pre-image of G∗
(call this pre-image G∗′) to T in the same way we did
it above, despite G∗′ containing an infinite number of
vertices and edges: we simply use induction by always
expanding G∗′, but never deleting anything from it and
also we always keep the graph connected. And since the
ϕ′ of these

And from this we get the ϕ function mentioned in
the statement: in any vertex or edge it will take the set
of the ϕ′’s of the pre-images of the particular vertex or
edge.

And this ϕ will satisfy the conditions of the lemma as
a consequence of the definition of covering spaces.

Proof of Lemma 10

Figure 10

1 4

56

7

2 3

Figure 11

1 4

56

7

2 3

7

324

3

5

4

6 5 7

6

2

Figure 12

1 4

56

7

2 3

2

732

4

3

5

4 6 5

7

6

Figure 13

Colour the central vertex and its neighbours first (Fig-
ure 11). We now have to colour the remaining 12 ver-
tices so that all border vertices of the central hexagon
get exactly one neighbour from all colours (except for
its own colour). And since for all colours from 2 to 7,
there are exactly 3 coloured vertices that lack a neigh-
bour with that colour and all of the uncoloured vertices
border 1 or 2 of the coloured ones, we must use all six
of these colours at least twice. But since there are 12
uncoloured vertices in total, we must use all of them ex-
actly twice. From the above conditions, there are only
two possibilities for choosing the vertices with colour 2
and from here, all the other colours follow (see Figure 12
and Figure 13).

Proof of Lemma 12
We will contract c into one triangle from the triangu-

lation in the inside of c using the following steps:

→

Figure 14: Step type 1

1. If we find an edge in Ei that connects two vertices
va and vb which are both on c and have distance 2 in

280

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

c, then we throw out the two edges between va and vb
and replace them with this edge and we also reduce Ei
accordingly (as seen in Figure 14).

→

Figure 15: Step type 2

2. If we find a vertex vc in Vi that is neighbouring two
vertices vd and ve in c that are neighbouring each other
in c, then we delete the edge vdve from c and replace it
with the edges vdvc and vcve and then reduce Vi and Ei
accordingly (as seen in Figure 15).

First I will prove that with always performing one of
the steps above until it becomes impossible, the proce-
dure we get is finite and ends in c being a triangle with
its empty side being the inside:

If we are only looking at the subgraph of c∪Ei which
is spanned by the vertices of c, it contains at most n−
3 diagonals, so there is a vertex vf (actually, at least
3) of c with no diagonals starting from it. And then
if c is not already a triangle, the edge vf forms with
one of its neighbours (vg) either belongs to a triangle
that connects vg with the other neighbour of vf or to
a triangle that connects both vf and vg with a vertex
from Vi. In the first case, we can perform step 1, while
in the second case, we can perform step 2. (And if c
is a triangle with its empty side being the inside, then
we cannot perform any of the steps.) And the number
of triangles inside c always decreases with exactly 1, so
the procedure is always finite.

If we perform step 1, the curvature of c does not
change as the two summands belonging to va and vb
increase by 1, while the summand 2 − 0 = 2 belonging
to the vertex we have thrown out gets out from the sum.

If we perform step 2 and vc is a regular vertex, the
curvature of c does not change either, since the two
summands belonging to vd and ve increase by 1 each
and the new summand belonging to vc is 2− 4 = −2.

If we perform step 2 and vc is an irregular vertex with
multiplicity k, the curvature of c increases with k, since
the two summands belonging to vd and ve increase by 1
each and the new summand belonging to vc is 2−4+k =
k − 2.

So since in the beginning all irregular vertices were
in Vi and in the end no vertices remained in Vi and
the curvature increased with k exactly if we deleted an
irregular vertex of multiplicity k from Vi, otherwise it
remained unchanged, the curvature have increased with

the number of irregular vertices originally in Vi (counted
with multiplicity). Also, the curvature of the triangle
(with the empty side being the inside) is trivially 6, and
this finishes the proof.

Proof of Lemma 13
Per definition, dist(v, V (Hi)) ≤ 1 for all v ∈ V (H ′i).

So if two vertices of some distinct graphs H ′i and H ′j
have distance at most 1, then there also exist two ver-
tices of Hi and Hj with distance at most 3, which con-
tradicts to Hi and Hj being separate components of H.

Proof of Lemma 14
Since Hi has ni vertices counted with multiplicity, it

has at most ni vertices counted without multiplicity.
And we have drawn |V (Hi)| − 1 ≤ ni − 1 paths all of
length at most 3 (and thus all having at most 2 interior
vertices) between them, thus, their union has at most
3ni − 2 vertices. And since H ′i is a subgraph of this
union, it also has at most 3ni − 2 vertices. And since it
is a tree, |E(H ′i)| = |V (H ′i)| − 1 ≤ 3ni − 3.

So only the third statement remains to be proved.
H ′i contains ni irregular vertices (counted with multi-
plicity), so

∑
v∈H′i

degG′(v) = 6 · |V (H ′i)| − ni. And from

these, |{(v, e)|v ∈ V (H ′i), e ∈ E(G′ \H ′i), v ∈ e}| =∑
v∈H′i

degG′(v)− 2 · |E(H ′i)| = 4 · |V (H ′i)| − ni + 2. And

all edges of H ′i border exactly two triangles and all tri-
angles are bordered by at most two edges of H ′i since
H ′i is a tree. Denote the number of triangles with one
side in H ′i by k1 and the number of triangles with two
sides in H ′i by k2. From the above, we know that
k1 + 2k2 = 2 · |E(H ′i)| = 2 · |V (H ′i)| − 2. The number of
edges of G′ \H ′i connecting two vertices of H ′i is at least
k2, since any triangle with two sides in H ′i has such an
edge as its third edge, and such an edge cannot belong
to two different such triangles as then there would be a
4-cycle in H ′i. Thus, the number of edges of G′ having
one endpoint in H ′i, while the other one in G′ \H ′i is at
most |{(v, e)|v ∈ V (H ′i), e ∈ E(G′ \H ′i), v ∈ e}|−2k2 =
4 · |V (H ′i)|−ni + 2− 2k2 as all such edges are in G′ \H ′i
and all edges of G′ \H ′i connecting two vertices from H ′i
were counted twice in the above calculation. Now take
a vertex v for which distG′(v,H ′i) = 1 and take the set τ
of triangles which have a side in H ′i and their third ver-
tex is v. It is trivial that every such triangle is bordered
by exactly two edges connecting v to H ′i and all edges
are contained as an edge of at most two such triangles.
Also, the latter inequality cannot be strict in case this
particular edge is also bordering a triangle that is not
in τ . So at least one of the following possibilities hold:

1) There are more than |τ | (so at least |τ |+ 1) edges
connecting v with H ′i

2) No edges connecting v with H ′i border the union
of the triangles from τ .

But 2) is only possible if τ is empty (in which case,

281

32nd Canadian Conference on Computational Geometry, 2020

1) still holds as there is at least one edge connecting
v with H ′i) or if τ contains all triangles bordering v in
which case the cycle formed by the neighbours of v is a
subgraph of H ′i, which is a contradiction as H ′i is a tree.
So 1) holds.

And by summing up such inequalities for
all v’s having graph distance 1 from H ′i, we
get that |{v|v ∈ V (G′), distG′(v,H ′i) = 1}| ≤
|{(v, w)|(v, w) ∈ E(G′), v ∈ V (H ′i), w ∈ V (G \H ′i)}| −
k1 ≤ 4·|V (H ′i)|−ni+2−2k2−k1 = 2·|V (H ′i)|+4−ni ≤
5ni.

Proof of Lemma 15

Since |V (H ′i)| ≤ 3ni−2, if H ′ is a centered tree, there
is a vertex with graph distance at most 1.5ni − 1 from
all of its vertices, while if it is a bicentered tree, there is
an edge, whose endpoints both have graph distance at
most 16 from all of its vertices. In the former case, the
vertices of H ′ fit into an open disk of radius 32 because
of Lemma 7, while in the latter case, the vertices of H ′
fit into an open disk of radius 33 because of Lemma 7.
So in both cases the vertices of H ′ fit into a disk D1 of
radius 33 centered around a point on S called O1. And
since the vertices of U have graph distance at most 1
from H ′i, they

Proof of Lemma 16

Figure 16

Take the cycle c′1 in T represented by the blue cycle in
Figure 16, where the red one represents ϕ(c1) (and the
purple segments are their common edges). If we name
the length of the ith side of c′1 Ai for 1 ≤ i ≤ 6 and we
choose a vertex pi of ϕ(c1) on all 6 of them, then for all
i (i = 1, 2, 3) the two parts of ϕ(c1) separated by pi and
pi+3 both have at least |Ai+1|+ |Ai+2| segments parallel
with Ai+1 or Ai+2 (i counted modulo 3), so ϕ(c1) has
at least 2 |Ai+1|+ 2 |Ai+2| such segments in total. And
from summing up the three inequalities we get this way,
if we combine it with |Ai|+ |Ai+1| = |Ai+3|+ |Ai+4|, we
get l(c1) = l(ϕ(c1)) ≥

6∑
i=1

|Ai| = l(c′1) (the first equality

is trivial).

B1

B2

B3

ϕ(v)

A2

A5

A1

A3

A4

A6

Figure 17

Now take a vertex v in G1. If we call the segments
going through ϕ(v) parallel with A1, A2 and A3 and
ending in c′1 B1, B2 and B3, respectively (as in Fig-
ure 17), then we can write the following inequalities:
|Bi| ≤ |Ai| + |Ai−1|

2 + |Ai+1|
2 (for i = 1, 2, 3 if i is

counted mod 6)
|Bi| ≤ |Ai+3| + |Ai+2|

2 + |Ai+4|
2 (for i = 1, 2, 3 if i is

counted mod 6)

Summing up these 6 inequalities, we get
3∑
i=1

2 |Bi| ≤
6∑
i=1

2 |Ai| and if we combine this with the fact that the

distance of ϕ(v) from c′1 is at most min(|B1|,|B2|,|B3|)
2 we

get distG′(ϕ(v), c′1) ≤
⌊
l(c′1)
6

⌋
≤
⌊
l(c1)
6

⌋
≤ 10 (where

distG′(ϕ(v), c′1) denotes the graph distance of ϕ(v) and
c′1 in G′.

Now if we define Pmin as a path of minimal length
from ϕ(v) to c′1, we can start a path from v so that the
images of its vertices by ϕ are the vertices of Pmin in the
same order. And we can always take a step such that
the image of the next vertex will be the next vertex in
Pmin until we reach c1. And this can happen the latest
when the ϕ of the path reaches c′1, so distG′(v, c1) ≤
distG′(ϕ(v), c′1) ≤ 10.

Proof of Lemma 17
We will first contract G2 into a cycle using the fol-

lowing six kinds of steps:
(The figures below represent the ϕ(G2) and ϕ(c2),

which means that red broken line (ϕ(c2)) occasionally
can seemingly cross itself. From the curvature of both
c2 and c3 being 0, it is easy to see that the sum of the
angles of the turns is 0 for both ϕ(c2) and ϕ(c3), thus
for any vertex or edge from G2, its images by ϕ are
periodical translates of each other.)

282

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

→
Figure 18: A vertex with degree 2 in G2 is removed from
G2 and c2 is changed accordingly.

→
Figure 19: A vertex with degree 3 in G2 is removed from
G2 and c2 is changed accordingly.

→
Figure 20: c2 is shifted in some direction towards c3
without adding anything to G2.

The other three possibilities are doing the same kinds
of steps with c3.

Now we will prove that with such steps, we always
can contract G2 into a cycle without adding any vertex
to G2 in any step.

First, suppose that c2 and c3 have no common edges.
Then if any of ϕ(c2) and ϕ(c3) is not a line, we can
find a convex turn in one of them (a vertex of c2 or c3
in which degG2

(c2) ≤ 3 or degG2
(c3) ≤ 3, respectively)

because both of them has a curvature of 6. So one of
the first two kind of steps (or their c3 counterparts) can
be applied.

Now suppose that c2 and c3 have no common edges,
but both of them are a line. In this case, we can apply
Step type 3 without adding any vertex to G2.

Now suppose that there is at least one edge in which
c2 and c3 meet. In this case there is at least one subset
Ŝ of S between c2 and c3 that is simply connected and
is fully bordered by c2 and c3. And if we count Ŝ as the
interior, its border has a curvature of 6, so even if in the
two vertices, where c2 and c3 meet, the border takes a
sharp convex turn (one, in which the degree towards Ŝ is
2, it still has to take a convex turn somewhere elsewhere,
in which case, we can leave this particular vertex from
c2 or c3.

Thus, the only case we cannot take such a step is if
c2 and c3 coincide. And since the number of triangles
between c2 and c3 always decreases with at least one,
in finitely many steps, the procedure ends in G2 being
a cycle.

Now take every step in which c2 was changed and
name the original c2 c

(0)
2 , c2 after the first step changing

it c(1)2 , c2 after the second such step c(2)2 , ... until we get
to c

(p)
2 (where p is the number of steps changing c2).

Similarly, if the number of steps changing c3 is q, we
can define cycles c(0)3 , c(1)3 , ..., c

(q)
3 .

Now take k = p + q and define Γ0 = c
(0)
2 , Γ1 = c

(1)
2 ,

..., Γp = c
(p)
2 = c

(q)
3 , Γp+1 = c

(q−1)
3 , ..., Γk = p

(0)
3 .

For these cycles, the first condition of the lemma triv-
ially applies, since all of the above steps decrease the
graph length for both c2 and c3, so since originally, c2
and c3 did not have graph length more than 30, none of
the Γi’s (i = 0, 1, ..., k) have. So their broken line length
is not more than 60.

The second and the third condition also can easily
checked for both the c(i)2 (i = 0, 1, ..., p) and the c(i)3

(i = 0, 1, ..., q)

Proof of Lemma 18

First, for all i = 0, ..., k let Γ′i be the antipodal curve
of Γi. Now define int(Γi) as the connected component
of S \ Γi, which includes the vertices of I2, and let the
other connected component be called ext(Γi). Now de-
fine int(Γ′i) and ext(Γ′i) as the antipodal sets of int(Γi)
and ext(Γi), respectively. Now define a function f(i) =
distS(V (Γi), ext(Γ

′
i)) − distS(V (Γi), int(Γ

′
i)). The first

half is 0 if and only if at least one of the vertices of Γi is
in ext(Γ′i) ∪ (Γ′i), while the second half is 0 if and only
if at least one of the vertices of Γi is in int(Γ′i) ∪ (Γ′i).
Thus, at least one of the two halfs is always zero and the
sign of f(i) is determined by which one is not zero. And
since V (Γ0) ⊆ D′′2 and int(Γ′0) is inside the antipodal of
D′′2 , they are disjoint and their distance is positive. Sim-
ilarly, V (Γk) and ext(Γk) are disjoint and their distance
is positive. Thus, f(0) < 0 and f(k) > 0. Now take the
first i, for which f(i) is positive. If f(i− 1) ≤ −3, that
means that all the vertices of Γi−1 have a distance at
least 3 from int(Γ′i−1), so the vertices of Γi are further
from int(Γ′i−1) than 1, since all of them has distance
less than 2 from at least one of the vertices of Γi−1.
But also, for all border points of int(Γi−1), there exists
a point of ext(Γi) with distance less than 4 from it, so
f(i) = distS(V (Γi), ext(Γi)) < 4−1 = 3. Thus, at least
|f(i− 1)| < 3 or |f(i)| < 3 is true, so one of the two
cycles includes a vertex and another point, whose an-
tipodals have spherical distance 3. And since the latter
is 2 away from a vertex of the same cycle, we have found
two vertices on one of the cycles with distance at least
rπ − 5 from each other.

Proof of Lemma 19

283

32nd Canadian Conference on Computational Geometry, 2020

Figure 21: A part of G

→

Figure 22: The same
part of G3

Let the components of H be H4, H5, ... Now take the
graph G3 which we get from G′ by deleting all the ver-
tices that have graph distance at most 1 (with respect
to G′) from any of the points of I and all the edges that
are incident to these vertices. All the irregular vertices,
which are in different connected components of H are in
different connected components of S \G3, since if there
would be a path on S connecting two irregular vertices
in different components of H, the triangles, edges and
vertices it meets would all have graph distance at most
1 from some irregular vertex, which gives us a contra-
diction.

Now take an Ha which does not have a vertex number
divisible by 6 (counted by multiplicity). If the point set
G3 contains a simple closed curve that separates the
vertices of Ha from all the other irregular vertices, then
this curve only can be a cycle in G3 and it is applicable
for c4. If G3 does not contain such a curve, it only can
mean that the connected component of S\G3 belonging
to Ii (call it Ci) separates the rest of S into at least two
parts of which at least two contains a positive number of
irregular vertices. Then we can separate Ci from both
of these two parts by a cycle ca and cb, and it is trivial
that both of these cycles separate the irregular vertices
into two non-empty sets and at least one of the cycles
divides I unevenly, so it can be chosen for c4.

Proof of Lemma 20
Call the vertices of c4 u0, ..., ul(c4)−1 in the positive

order they appear in c4.
Take an arbitrary vertex ui ∈ c4. The neighbours of

ui form a 6-cycle (call its vertices wi,0, ..., wi,5 in the
positive order they appear in the cycle) because they
are connected by the sides opposite to ui of the trian-
gles having ui as a vertex. Since not only ui, but also its
neighbours are regular vertices, they all have exactly 3
edges remaining and for any wi,j , these remaining ver-
tices are forming an interval in n1(wi,j). And from the
triangulatedness of G′, for any j, the rightmost of these
three neighbours of wi,j is the same as the leftmost one
of wi,j−1 (counted mod 6), while the central one is con-

nected with the other two. So if we name the common
neighbour of wi,j−1 and wi,j as ti,j−1,j and the common
neighbour of wi,j , ti,j−1,j and ti,j,j+1 as ti,j , then all the
drawn edges exist. So although the N2(ui) might not
be isomorphic with the graph in Figure 4 because of the
ti,j ’s and ti,j−1,j ’s not being regular (it is possible, that
some of the vertices listed above coincide or there exist
edges not shown in the drawing), a (spanning) subgraph
of it can be obtained as the result of a Ψi function pre-
serving incidence between vertices and edges and is also
preserving triangles and orientation. Also, once we have
decided the rotation of Ψi regarding the neighbours of
Ψ−1(ui), the function is unique.

Proof of Lemma 21
For all i (i = 0, ..., l(c4) − 1) let the Isbell colouring

we coloured Ψ−1i (N2(ui)) with be named χi.

Figure 23

Similarly as in Lemma 10, there is a unique function
preserving incidences between vertices and edges that
projects the graph in Figure 23 into N2(ui) ∩N2(ui+1)
counted mod l(c4) for i = 0, ..., l(c4) − 1. Thus, we
can suppose Ψi and Ψi+1 are the same on N2(ui) ∩
N2(ui+1). And since this graph contains a subgraph
that is isomorphic with that in Figure 5, from Lemma 11
we know that χi = χi+1. Thus, Ψ−1i (N2(ui)) is coloured
with the same Isbell colouring for all i = 0, ..., l(c4)− 1.
And since Ψi is an isomorphism on N1(ui), the N1(ui)
are also all coloured with the same Isbell colouring.

Now colour T with this colouring (call it χ0) and de-
fine a function g from ordered pairs of colours to direc-
tions in T : for any ordered pair of colours, take the or-
dered pairs of neighbouring vertices of T coloured with
these two colours. It is trivial from the definition of an
Isbell colouring that the direction of the vector connect-
ing the two members of such an ordered pair is uniquely
defined by the ordered pair of the colours. Let this di-
rection be the g of this pair. Also define a function h
from the ordered pairs of vertices in c4, which is defined
as the g of the ordered pair of colours belonging to the
particular vertices. And from N1(u1) being coloured
with χ0, we know that ∠h(ui−1, ui), h(ui, ui+1) = (2 −
(e(ui, int(c4))))· π3 , where int(c4) is defined as the side it
goes around in a positive direction). And from this and
l(c4)−1∑
i=0

∠(f(ui, ui+1), f(ui+1, ui+2)) = 0, we get that the

curvature of c4 is divisible by 6.

284

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

2048 Without Merging

Hugo A. Akitaya* Erik D. Demaine� Jason S. Ku�

Jayson Lynch§ Mike Paterson¶ Csaba D. Tóth�

Abstract

Imagine t ≤ mn unit-square tiles in anm×n rectangular
box that you can tilt to cause all tiles to slide maximally
in one of the four orthogonal directions. Given two tiles
of interest, is there a tilt sequence that brings them to
adjacent squares? We give a linear-time algorithm for
this problem, motivated by 2048 endgames. We also
bound the number of reachable configurations, and de-
sign instances where all t tiles permute according to a
cyclic permutation every four tilts.

1 Introduction

2048 is a popular open-source video game by then-
19-year-old Gabriele Cirulli [Cir14, Wik20] that took
the world by storm in 2014. It was inspired by an-
other game called 2048 by Saming, which in turn was
inspired by a similar game called 1024!, which in turn
was inspired by the genesis game Threes! by Vollmer,
Wohlwend, and Hinson released just two months ear-
lier, all of which inspired many other variants. See
[LU18] for more on the history and descriptions of sev-
eral game-variant rules. Cirulli’s 2048, Threes!, Fives,
Det2048, and Fibonacci all feature the same kind of
movement, also identical to the 2011 physical puzzle
game Tilt [BDF+19, BLC+19, BGC+20]: unit-square
tiles in a rectangular box with only four global tilt con-
trols — sliding all tiles maximally in an orthogonal di-
rection among {N,E, S,W}. Each tile has a label, and
certain labeled tiles merge together (into a single newly
labeled tile) when slid into each other; the goal is gen-
erally to produce a tile with a particular label. Each
game also has a (possibly randomized) algorithm for in-
troducing new tile(s) after each move. Most of these
games (in their perfect-information form) are NP-hard
[LU18, AAD16].

*School of Computer Science, Carleton University,
hugoakitaya@gmail.com

�CSAIL, MIT, edemaine@mit.edu
�EECS, MIT, jasonku@mit.edu
§CSAIL, MIT, jaysonl@mit.edu
¶Dept of Computer Science, University of Warwick, UK, M.S.

Paterson@warwick.ac.uk
�CSU Northridge and Tufts University, cdtoth@eecs.tufts.edu

Our results. In this paper, we consider a variant where
no tile merging can happen, no additional tiles are in-
troduced (as in [AAD16]), and there are no fixed obsta-
cles (as in most games above, but unlike Tilt and e.g.
1024!). This minimal variant, which we call 2048 with-
out merging , intends to capture some core mathemat-
ical structure of the many game variants listed above.

In particular, we study the problem of whether two
particular tiles can be made adjacent by a sequence of
tilt operations, which is motivated by a subproblem aris-
ing near the end of a 2048 game, where the board has
two 1024-labeled tiles and the player wants to make
them adjacent so that another tilt merges them into
a 2048-labeled tile. This problem was posed by Mike
Paterson in 2018. We solve this problem in Section 3
by giving an O(t)-time algorithm to decide, given an
initial m × n board configuration of t ≤ mn tiles and
two marked tiles t1 and t2, whether there exists a tilt
sequence that brings t1 and t2 to adjacent squares. In
the positive case, our algorithm also outputs the min-
imum tilt sequence. This algorithm generalizes to de-
cide in O(st) time whether any pair among s special
tiles (1024s) can be made adjacent. In particular, this
running time is O(t) for s = O(1) and always O(t2).

We also consider the combinatorial structure of the
motion of all tiles, which is roughly described by pow-
ers of a single permutation. In Section 4, we give a lower
bound of 2Ω(

√
t) and an upper bound of 2O(

√
t log t) on

the number of different states that can be reached by a
tilt sequence from an initial m× n board configuration
with t = Θ(mn) tiles. Section 5 shows that there ex-
ist initial m× n board configurations with permutation
cycles of length Ω(mn) and, for even m and n, there is
a configuration in which every tile is part of the same
permutation cycle. In the latter configurations, each tile
can reach any possible target square via a tilt sequence
of length O(mn).

2 Definitions and Basics

We base our terminology on [BLC+19, BGC+20]. A
board is a rectangular region of the 2D square lattice,
whose 1× 1 cells we refer to as squares. We represent
an m×n board B by {(x, y) | x ∈ {0, 1, . . . ,m− 1}, y ∈
{0, 1, . . . , n−1}} where (0, 0) represents the bottom-left
square. Let T be a set of t objects called (slidable)

285

32nd Canadian Conference on Computational Geometry, 2020

tiles. A configuration is an injective function C :
T → B. We call a square full if it is in the image of C,
and empty otherwise.

Tilt is an operation that takes a configuration C and
a direction d ∈ {N,E, S,W} and returns a configuration
C ′ as follows. A tilt is horizontal if d ∈ {E,W}, or
vertical if d ∈ {N,S}. We describe a tilt for d = N ; the
other cases are symmetric. For all rows j from top to
bottom, and for all columns i, if (i, j) is full, then move
the tile at (i, j) (marking (i, j) empty) to the topmost
square (i, j′) in the ith column marked as empty, where
j′ ≥ j (marking (i, j′) as full).

A tilt sequence is a sequence of tilts applied to a
configuration represented by a sequence of directions
D = (d1, d2, . . . , dk). Two tilt sequences are equivalent
if they produce the same configuration. A row (col-
umn) is called monotone non-increasing if every full
square is to the left of (below) every empty square in the
row (column). Monotone non-decreasing is defined
analogously. We call a configuration SW -canonical if
every row and every column is monotone non-increasing.
Alternatively, C is SW -canonical if a tilt with direction
S or W would return C. Symmetrically, we can define
NE-, NW -, and SE-canonical configurations.

Lemma 1 After one horizontal and one vertical tilt,
not necessarily in this order, we get a canonical config-
uration.

Proof. Without loss of generality, we apply the tilt
sequence (S,W). After the first tilt, every column is
monotone non-increasing. Consequently, the number of
full squares in a row is monotone (non-increasing) from
bottom to top. Similarly, the second tilt makes every
row monotone non-increasing. By definition, a horizon-
tal tilt does not change the number of full squares in
each row. The columns in the resulting configurations
are also monotone non-increasing. The result is a SW -
canonical configuration. �

The following lemma will allow us to focus only on
a clockwise or counterclockwise tilt sequence, i.e., a
substring of (N,E, S,W)∗ or (N,W,S,E)∗ (where the
Kleene Star notation A∗ denotes sequence A repeated
zero or more times).

Lemma 2 Every shortest tilt sequence between two
configurations is either a clockwise or counterclockwise
tilt sequence.

Proof. It is clear by definition that the tilt sequence
(S, S) is equivalent to (S). Similarly, (N,S) is equiv-
alent to S. Then the shortest tilt sequence between
configurations either has length less than 2 or one of its
two first tilts is horizontal and the other one is verti-
cal. Without loss of generality, let (S,W) be the prefix
of such sequence. By Lemma 1, after these two initial

tilts we get a SW -canonical configuration and hence the
third tilt cannot be in the S orW direction. It cannot be
E, since (S,E) is equivalent and shorter than (S,W,E).
Hence the sequence starts with (S,W,N). We can then
induct on the length of the sequence to show that all
subsequent tilts must follow a clockwise order. �

The following lemma allows us to describe the move-
ment of the tiles using permutations.

Lemma 3 After every four tilts in a shortest sequence,
the union of the filled squares form the same shape, but
with permuted tile positions.

Proof. Suppose C is a SW -canonical configuration
where the length of row i is ai and the length of col-
umn j is bj . Since every row and column in C is mono-
tone non-increasing, a0 ≥ . . . ≥ am−1, and we find that
bj = |{i | ai ≥ j}|. After a horizontal tilt in direction
E to reach configuration C ′, all the row lengths remain
as before and are monotone non-increasing. Since C ′

is a SE-canonical configuration the column lengths are
non-decreasing and bn−1−j = |{i | ai ≥ j}|, as before
but counting from the right. So the sequence of col-
umn lengths is now reversed, i.e., bm−1, . . . , b0. From
C ′ a vertical tilt in direction N would reverse the row
length order, and so on, and a complete cycle of four
tilts will return row and column lengths to their origi-
nal sequences. �

Let g be the permutation referred by Lemma 3. Our
techniques will be based on the cyclic subgroup gener-
ated by g and its cycle decomposition. For example, if
the initial configuration is given by a lower-triangular
matrix in a square board where exactly the squares on
and below the main diagonal are full, the permutation
g will induce cycles of length 3.

If C is a cycle in the permutation generated by g,
and s1, s2 ∈ C, then the cycle index ind(s1, s2) is the
smallest nonnegative integer i such that gi(s1) = s2,
that is, i successive application of g carries s1 to s2. We
say that two cycles are adjacent if there exists a pair
of adjacent squares with one square in each cycle.

3 Algorithm

In this section we give an algorithm that decides the
following problem. Given an initial configuration C0 on
an m × n board, and two tiles t1, t2 ∈ T , can a tilt
sequence produce a configuration Ck in which t1 and t2
are in adjacent squares? If yes, output a shortest such
sequence. We denote by Ci the configuration obtained
after the ith tilt.

1. Guess the first two tilt directions from {(S,W),
(S,E), (N,W), (N,E), (E,N), (E,S), (W,N),
(W,S)}, checking whether t1 and t2 are adjacent

286

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 1: Application of tile sequence (N,E, S,W) on a single ring of Cn resulting in permutation g(Cn). Each tile
moves cyclically counterclockwise by k positions, where 2k is the width of the ring, e.g., the tile marked in blue.

in C0 and C1. The obtained configuration C2 is in
canonical form.

2. Guess a type of canonical configuration from {SE,
SW, NE, NW}, computing the first configuration
in the sequence, i.e., a configuration C ′ in {C2, C3,
C4, C5}.

3. Compute the permutation g equivalent to four tilts
in clockwise or counterclockwise direction depend-
ing on the guessed first two tilts.

4. Compute the cycle decomposition of g.

5. Let C1 and C2 be the cycles containing t1 and t2
respectively. By restricting our attention to the el-
ements of C1 and C2, successively applying g results
in lcm(|C1|, |C2|) possible different permutations of
these elements. For example, if C1 = C2, then the
number of such states is |C1|. Check in each of these
states whether t1 is adjacent to t2.

Theorem 4 Given an initial configuration C0 on an
m× n board, and two tiles t1, t2 ∈ T , a shortest tilt se-
quence required to make t1 and t2 adjacent can be com-
puted in O(|T |) time.

Proof. The correctness of our algorithm follows di-
rectly from Lemmas 1–3. After the first two configu-
rations, a clockwise or counterclockwise tilt sequence
produces only canonical configurations. In Step 1, the
algorithm tries all possible starting tilts and both ro-
tation directions. Step 2 considers all possible types of
canonical configurations. Steps 3–5 considers all pos-
sible relative positions of t1 and t2 given a rotation
direction of the tilt sequence and a type of canonical
configuration. Hence, the algorithm is correct.

Most of the algorithm runs in O(|T |) time. Steps 1–2
add a 8 · 4 = 32 multiplicative factor to the runtime.
Steps 3–4 can be executed in O(|T |) time by simulating
four tilts to obtain a directed graph representing g, and
obtaining the cycles of g containing t1 and t2 via a DFS
from such vertices. Here we use that a tilt operation can

be simulated in O(|T |) time using counting sort on the
coordinates; for instance, a horizontal tilt determines
the x order of tiles in each row, then moves the tiles to
one extreme of the board without changing such order.

In Step 5, we need more care. A näıve implementation
iterates through all lcm(|C1|, |C2|) = O(|T |2) different
possible positions of t1 and t2 since both |C1| and |C2|
are O(|T |). The resulting running time is O(|T |2).

We can reduce the runtime of Step 5 to O(|T |) as fol-
lows. For all |C1| ≤ |T | possible positions of t1, we can
try all possible adjacent squares (up to four), checking
whether a tilt sequence can bring tiles t1 and t2 simulta-
neously to those squares, as follows. Suppose the desired
positions are indeed in C1 and C2 respectively, say the
pth and qth positions of C1 and C2 respectively, counting
from the initial positions of t1 and t2 with zero index-
ing. By Bézout’s Identity [JJ98], the set of all integer
linear combinations i|C1|+ j|C2| is exactly the set of in-
teger multiples of d = gcd(|C1|, |C2|). Thus the desired
tiles can meet at the specified position exactly if p ≡ q
(mod d). We can then find the actual number of tilts by
using the Chinese Remainder Theorem. Since we only
need to compute d once, spending O(|T |) time, and we
can test each of the 4|C1| meeting positions in constant
time, the total runtime is O(|T |). �

Generalization to |S| special tiles. We can generalize
Theorem 4 to the case of a subset S ⊆ T of special
tiles, where 2 ≤ |S| ≤ |T |. Specifically, we consider
the following problem. Given an initial configuration
C0 on an m × n board, and a subset S ⊆ T of |S|
special tiles, can a tilt sequence produce a configuration
Ck in which two special tiles are in adjacent squares?
If yes, output a shortest such sequence. We modify our
previous algorithm, designed for the case |S| = 2, by
replacing Step 5 with the following:

5*. For each pair {s1, s2} of adjacent squares that be-
long respectively to special cycles Ci and Cj of g
(that is, cycles containing at least one special tile
in S), check whether any of the special tiles in Ci

287

32nd Canadian Conference on Computational Geometry, 2020

and Cj can simultaneously move to s1 and s2 by
successively applying g, as follows:

� Let d = gcd(|Ci|, |Cj |).
� For each t ∈ Ci ∩ S, compute the cycle in-

dex ind(t, s1) (as defined in Section 2), and
let I1 = {ind(t, s1) mod d | t ∈ Ci ∩ S}.

� Similarly, compute I2 = {ind(t, s2) mod d |
t ∈ Cj ∩ S}.

� Check whether I1 ∩ I2 6= ∅.

Theorem 5 Given an initial configuration of |T | tiles
on an m × n board and a set S ⊂ T of special tiles, a
shortest tilt sequence required to make two special tiles
adjacent can be computed in O(|S| · |T |) time.

Proof. For the correctness of the algorithm, assume
that there exist two special tiles t1 ∈ Ci ∩S, t2 ∈ Cj ∩S
and an integer h ≥ 0 such that gh(t1) = s1 and
gh(t2) = s2, where s1 and s2 are adjacent squares in
a canonical configuration C ′. Then h ≡ ind(t1, s1)
(mod |Ci|) and h ≡ ind(t2, s2) (mod |Cj |). By Bézout’s
Identity, ind(t1, s1) ≡ ind(t2, s2) (mod d), where d =
gcd(|Ci|, |Cj |). Conversely, if ind(t1, s1) ≡ ind(t2, s2)
(mod d), then there exits an integer h ≥ 0 such that h ≡
ind(t1, s1) (mod |Ci|) and h ≡ ind(t2, s2) (mod |Cj |).

As noted above, Steps 1–4 of the algorithm run in
O(|T |) time. In Step 5*, we can memoize the gcd of
the lengths of all pairs of adjacent special cycles. For
each such pair {Ci, Cj}, the Euclidean algorithm com-
putes gcd(|Ci|, |Cj |) in O(log(|Ci| + |Cj |)) = O(log |T |)
time. There are at most |S| special cycles, and hence
O(|S|2) pairs of special cycles. Furthermore, every pair
of adjacent cycles contain a pair of adjacent squares,
and since each square has at most four neighbors, there
are O(|T |) adjacent pairs of squares. Therefore, the
gcds can be computed in O(min{|S|2, |T |} log |T |) time.
This time bound is always O(|S| · |T |): if |S|2 ≤ |T |,
then we have O(|S|2 log |T |) = O(|S| · |S| log |T |) =
O(|S|

√
|T | log |T |) = O(|S|·|T |); and if |T | ≤ |S|2, then

we have O(|T | log |T |) = O(|T |
√
|T |) = O(|T | · |S|).

Step 5* iterates through all O(|T |) pairs (s1, s2) of ad-
jacent squares. Suppose that s1 ∈ Ci and s2 ∈ Cj where
Ci and Cj are special cycles. Given the precomputed in-
dices of g, the index sets I1 and I2 can be computed in
O(|Ci ∩ S|+ |Cj ∩ S|) = O(|S|) time. Checking whether
I1∩I2 = ∅ via hashing takes O(|I1|+|I2|) = O(|S|) time.
For each index in I1 ∩ I2, we can then find the actual
number of tilts using the Chinese Remainder Theorem,
in overall |I1 ∩ I2| = O(|S|) time. After memoizing the
gcd of adjacent special cycles, Step 5* of the algorithm
thus runs in O(|S| · |T |) time. �

4 Bounds on Reachable Configurations

Lower bound. For even n, consider the configuration

Cn =

[
F L
F F

]

on an n × n board where F is a full n/2 × n/2 square,
and L is a n/2× n/2 matrix where exactly the squares
below the main diagonal are full (see Figure 1). Let the
outer ring be the set of extremal tiles in N , E, S, or W
direction, and define inner rings recursively. The outer
ring contains 7(n/2− 1) + 3 tiles, while each successive
inner ring contains 7 fewer tiles. So Cn comprises n/2
rings, with 7k+3 tiles in ring k for k ∈ {0, . . . , n/2−1},
where the innermost ring 0 is an L-shaped tromino.

Lemma 6 Each ring in Cn is self-contained (does not
mix with adjacent rings), and the cyclic order of ele-
ments around the ring does not change after applying g.

Proof. By symmetry, it suffices to show that each ring
in C ′n, the NW -canonical configuration obtained after
a N tilt from Cn, is exactly a ring in Cn, and that the
cyclic order of tiles does not change. The outermost
ring is composed of the first and last columns, and the
extremal tiles in each remaining column. After the tilt,
all such tiles remain extremal and their order along the
convex hull remains the same. No other tiles become ex-
tremal because the number of tiles in adjacent columns
differ by at most one. Hence, the outermost ring re-
mains the same. If we look at the remaining tiles after
removing the outermost ring, they form a configuration
Cn−2 in the (n−2)×(n−2) board obtained after remov-
ing the extremal rows and columns. The configuration
C ′n−2 obtained after a N tilt from Cn−2 can be obtained
in the same way from C ′n. Hence, the second outermost
ring also remains the same in Cn and C ′n. By induction,
all rings remain the same. �

Theorem 7 The number of different configurations
reachable from Cn is eΘ(n) = eΘ(

√
t) where t is the num-

ber of tiles in Cn.

Proof. We first show that, after applying g, the ele-
ments in ring k (with width 2k) shift by k positions
counterclockwise along its ring. By Lemma 6 it suffices
to show that the top-left tile x moves down by k. As
shown in Figure 1, x does not move after the N and E
tilts, moves down by k after the S tilt, and again does
not move after the W tilt.

We prove the claimed bound by focusing on a subset
of rings and bounding the number of different states of
the tiles in the selected rings that are obtained by suc-
cessively applying g. We can restrict to rings with prime
lengths of the form 7k+3. In such cases, the ring induces
a single cycle in g because the length of the ring and the

288

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 2: Application of the tilt sequence (N,E, S,W) to Cmn resulting in the permutation g(Cmn), depicting the
movement of tile subsets {L1, L2, L3, L4, L5, L6, R1, R2, R3, R4, R5}. Each of these subset moves as a rigid block.

amount that each element shifts around the ring after g
are coprimes and each element will eventually visit every
position in the ring. Using a variant of the prime num-
ber theorem for arithmetic progressions [Dab89, Tao09],

∑

p ≤ x
p ≡ a mod q

log p ≡ x

ϕ(q)
(1 + o(1))

if (a, q) = 1, where ϕ is Euler’s totient function. In
particular, the product of primes
p ≤ n/2, p ≡ 3 (mod 7), is eΘ(n) = eΘ(

√
t). �

Upper bound. Starting from a SW -canonical configu-
ration containing t tiles in anm×n board, the number of
reachable configurations equals the least common multi-
ple of the cycle lengths. Every cycle has length at most t
(the number of tiles), hence the lcm of the cycle lengths
is bounded above by lcm(1, 2, . . . , t) = et(1+o(1)).

We can improve upon this bound by realizing that
the sum of the cycle lengths must be t. The maximal
least common multiple of a partition of t into positive
integers is known as Landau’s function [Nic13], and it

is asymptotically eΘ(
√
t log t).

5 Long Cycles

In this section we provide a construction for an initial
m× n board configuration Cmn with Θ(mn) tiles with
a single permutation cycle. We can assume that m and
n are even, or else we construct the instance of size
(2bm/2c)× (2bn/2c) and add an empty row and/or col-
umn. Refer to Figure 2. We leave empty the last n/2+1
(n/2) squares in the top (second to top) row of Cmn.
The remaining squares are filled with tiles.

We now show that the permutation g induced by the
tilt sequence (N,E, S,W) has a single cycle. We first
describe g by giving a successor function based on the
coordinates of a given square, then we describe an algo-
rithm that outputs in order all elements in a cycle in g
and show that the number of outputs equals the number

of tiles. Let s(x, y) be such a successor function where
s(x, y) is the coordinates of the square after the square
(x, y) in g. Let ∆(x, y) = s(x, y) − (x, y) be the vector
from (x, y) to its successor. Refer to Figure 2. We par-
tition the occupied squares in the board into 11 regions
as follows, where p(x, y) denotes the region containing
square (x, y):

p(x, y) =





L1 if 0 ≤ x < m/2− 1 and 2 ≤ y < n

L2 if x = m/2− 1 and 1 ≤ y < n− 1

L3 if 0 ≤ x < m/2− 1 and y = 0

L4 if 1 ≤ x < m/2− 1 and y = 1

L5 if x = 0 and y = 1

L6 if x = m/2− 1 and y = 0

R1 if m/2 + 1 ≤ x < m and 0 ≤ y < n− 4

R2 if x = m/2 and 0 ≤ y < n− 3

R3 if m/2 + 1 ≤ x < m and y = n− 4

R4 if m/2 + 1 ≤ x < m and y = n− 3

R5 if x = m/2 and y = n− 3

Now we define ∆(x, y) based on the above partition,
which can be easily verified by following the tiles ini-
tially in each region after four clockwise tilts as shown
in Figure 2.

∆(x, y) =





(0,−2) if p(x, y) = L1

(0,−1) if p(x, y) = L2

((m/2 + 1), 0) if p(x, y) = L3

(m/2, 0) if p(x, y) = L4

(m/2,−1) if p(x, y) = L5

(m/2, 1) if p(x, y) = L6

(0, 2) if p(x, y) = R1

(0, 1) if p(x, y) = R2

(−m/2, 2) if p(x, y) = R3

(−(m/2 + 1), 2) if p(x, y) = R4

(−m/2, 1) if p(x, y) = R5

289

32nd Canadian Conference on Computational Geometry, 2020

84

85

86

87

88

0

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 62

63

64

65

66

67

68

69

70 71

72

73

74

75

76

77

78

79 80

81

82

83

Figure 3: An example output cycle of g applied to Cmn

for m = n = 10. Indexing starts with 0 at (m
2 , 0) in-

creasing to 88 at (0, 1), where increasing indices are out-
lined with increasing opacity.

We now describe an algorithm that outputs one cycle
of g starting with square (m/2, 0). Refer to Figure 3 for
an example of output of the algorithm.

1. For 0 ≤ j < n− 2: output (m
2 , j)

2. For 0 ≤ i < m
2 − 1:

(a) For 0 ≤ j < n
2 : output (i, n− 2− 2j)

(b) For 0 ≤ j < n
2 − 1: output (m

2 + 1 + i, 2j)

3. For 0 ≤ j < n− 1: output (m
2 − 1, n− 2− j)

4. For 0 ≤ i < m
2 − 1:

(a) For 0 ≤ j < n
2 − 1: output (m− 1− i, 1 + 2j)

(b) For 0 ≤ j < n
2 : output (m

2 −2−i, n−1−2j)

Theorem 8 The permutation g of the tilt sequence
(N,E, S,W) on configuration Cmn has a single cycle
of length mn−m− 1.

Proof. It suffices to show that the algorithm above cor-
rectly outputs a cycle in order, and that it outputs all
mn−m− 1 full squares of Cmn. We now focus on the
former. Step 1 outputs all squares in R2 and R5 from
bottom to top. This matches the successor function for
R2. The successor of the square in R5 is (0, n−2) which

is the first position output by Step 2. Step 2(a) outputs
squares in L1 and a square in L3 at the end of the loop,
according to the successor function in L1, i.e., two units
below the previous one. The first square output by each
execution of Step 2(b) is the successor of the square in
L3 output by Step 2(a), i.e., m/2 + 1 units to the right.
Step 2(b) outputs squares in R1 and a square in R3 at
the end of the loop, according to the successor func-
tion in R1, i.e., two units above the previous one. The
next output square is by either another execution of
Step 2(a), or by Step 3, both obey the successor func-
tion of R3, ∆(x, y) = (−m/2, 2). Step 3 outputs squares
in L2 from top to bottom and then outputs the square
in L6, obeying the successor function in L2. The next
square is (m− 1, 1) in R1 satisfying the successor func-
tion in L6. Step 4(a) outputs squares in R1 and a square
in R4 at the end of the loop, according to the successor
function in R1, i.e., two units above the previous one.
The first square output by each execution of Step 4(b)
is the successor of the square in R4 output by Step 4(a),
i.e., ∆(x, y) = (−m/2−1, 2). Step 4(b) outputs squares
in L1 and a square in L4 at the end of the loop or, in
the last execution of the loop, it outputs the square in
L5. The order is the same as specified in L1.

The number of outputs of the algorithm is:

(n− 2) + (m/2− 1)(n/2 + n/2− 1) +
(n− 1) + (m/2− 1)(n/2− 1 + n/2)

= mn−m−1,

which is equal to t, as desired. �

6 Open Problems

A few interesting problems in this space remain open:

1. Close the gap between 2Ω(
√
t) and 2O(

√
t log t) for the

number of reachable configurations in 2048 without
merging.

2. Are there examples where all t tiles permute in a
single cycle, for even t? (Our construction works
only for odd t.)

3. Can Theorem 5 be improved, that is, is it possible
to decide in o(st) time whether any pair of s special
tiles among t total tiles in a given configuration can
be made adjacent?

4. What happens in higher dimensions, such as 3D,
where Lemma 2 no longer holds? (This question
was posed by Martin Demaine in 2018.)

Acknowledgments

We thank Fae Charlton, Martin Demaine, and Leonie
Ryvkin for helpful discussions on this topic.

290

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[AAD16] Ahmed Abdelkader, Aditya Acharya, and Philip
Dasler. 2048 without new tiles is still hard. In
Erik D. Demaine and Fabrizio Grandoni, editors,
Proceedings of the 8th International Conference
on Fun with Algorithms, volume 49 of LIPIcs,
pages 1:1–1:14, 2016.

[BDF+19] Aaron T. Becker, Erik D. Demaine, Sándor P.
Fekete, Jarrett Lonsford, and Rose Morris-
Wright. Particle computation: complexity, algo-
rithms, and logic. Natural Computing, 18(1):181–
201, 2019.

[BGC+20] Jose Balanza-Martinez, Timothy Gomez, David
Caballero, Austin Luchsinger, Angel A. Cantu,
Rene Reyes, Mauricio Flores, Robert T.
Schweller, and Tim Wylie. Hierarchical shape
construction and complexity for slidable poly-
ominoes under uniform external forces. In Pro-
ceedings of the 31st ACM-SIAM Symposium on
Discrete Algorithms, pages 2625–2641, 2020.

[BLC+19] Jose Balanza-Martinez, Austin Luchsinger,
David Caballero, Rene Reyes, Angel A. Cantu,
Robert T. Schweller, Luis Angel Garcia, and Tim
Wylie. Full tilt: Universal constructors for gen-
eral shapes with uniform external forces. In Pro-
ceedings of the 30th ACM-SIAM Symposium on
Discrete Algorithms, pages 2689–2708, 2019.

[Cir14] Gabriele Cirulli. 2048. Github repository,
2014. https://github.com/gabrielecirulli/2048.
Playable version at https://play2048.co/.

[Dab89] Hédi Daboussi. On the prime number theorem
for arithmetic progressions. Journal of Number
Theory, 31(3):243–254, 1989.

[JJ98] Gareth A. Jones and J. Mary Jones. Divisibil-
ity. In Elementary Number Theory, pages 1–17.
Springer, London, 1998.

[LU18] Stefan Langerman and Yushi Uno. Threes!, fives,
1024!, and 2048 are hard. Theoretical Computer
Science, 748:17–27, 2018.

[Nic13] Jean-Louis Nicolas. On Landau’s function g(n).
In Ronald L. Graham, Jaroslav Nešetřil, and
Steve Butler, editors, The Mathematics of Paul
Erdős, I, Algorithms and Combinatorics, pages
207–220. Springer, 2013.

[Tao09] Terence Tao. The prime number the-
orem in arithmetic progressions, and
dueling conspiracies. Blog post, 2009.
https://terrytao.wordpress.com/2009/09/
24/the-prime-number-theorem-in-arithmetic-
progressions-and-dueling-conspiracies/.

[Wik20] Wikipedia. 2048 (video game). https://en.
wikipedia.org/wiki/2048 (video game), 2020.

291

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

External Exploration of a Convex Polygon

Kyle Clarkson∗ William Evans†

Abstract

In this work we consider competitive strategies for the
convex polygon inspection problem where a mobile agent
must explore the exterior of a convex polygon in the
plane without prior knowledge of the polygon’s shape.
The agent starts at a point exterior to the polygon and
can see infinitely far in all directions; however, the poly-
gon occludes its sight. Using only what it observes,
the agent must traverse a route that does not intersect
the polygon to see all edges. We present two strategies
for the agent to employ, the better of which guarantees
that the resulting route is at most 4.5π ≈ 14.14 times
the length of the shortest route from the starting point
that sees all edges. This result is an improvement on
recent work by Tiktinsky et al. [24] in which the au-
thors derived a strategy which has length at most 89.83
times the shortest possible route. The key ideas behind
our strategies make use of techniques by Icking et al.
[17, 18] to optimally look around a single corner, which
we extend to multiple corners of the polygon, as well as
the angle hull of a polygon by Hoffmann et al. [15].

1 Introduction

Algorithms that consider the traversal of an entity in
a region have been of interest to many researchers over
the years—from the theoretical perspective in which an
agent with some task is modelled as a mobile point
in the plane with perfect controls and sensor readings
[21, 9, 11, 7], to the application perspective in which mo-
bile robots with uncertainty in their actions and sensors
must perform various operations in the world such as
infrastructure inspection [2, 3]. For such problems one
is typically interested in the length of the route taken,
in particular what is the shortest route the entity can
take to complete the task.

We take the former perspective and consider the fol-
lowing problem. A mobile agent in the plane, initially
positioned at a point s external to a convex polygon, can
see any point q on the boundary of the polygon from
position p if the line segment pq does not intersect any
obstacle. Here, the only obstacle is the polygon itself.
The goal of the agent is to see all edges of the polygon

∗Department of Computer Science, University of British
Columbia, clarkson@cs.ubc.ca
†Department of Computer Science, University of British

Columbia, will@cs.ubc.ca

by traversing the shortest path possible in the plane;
once the agent has seen all edges its task is finished.
In this work we consider when the polygon’s edges are
unknown to the agent in advance (yet the agent knows
the polygon is convex) and only revealed by moving to
see them. We are interested in a strategy for the agent
to see all edges such that for any polygon and starting
position, the distance traversed by employing the strat-
egy is at most a constant times the optimal (shortest)
path to see all edges from the same starting position.

2 Related Work

The notion of a point-agent that must see all edges of
a body in the plane is a well studied problem in the
area of computational geometry. The Watchman Route
problem is concerned with such an agent who, given
some starting position in the interior of a simple poly-
gon, must traverse the interior of the polygon to see all
edges and then return to the starting position, form-
ing a cycle. Nearly four decades ago Chin and Ntafos
[5] first considered this problem as a generalization of
the Art Gallery Guarding problem [22]. Many others
have studied this problem and its variants. Such works
include considering when the polygon has holes in its
interior, in which determining whether there exists a
watchman route with length at most some amount is
NP-complete [10] and the design of efficient algorithms
for determining the shortest watchman route for simple
polygons without holes [5, 6, 23]. The difference be-
tween our problem and the watchman route problem is
that we do not require the route to return to its starting
position and that the agent is inspecting the exterior of
a single convex polygon.

An offline algorithm is an algorithm that has access
to its entire input when it begins, such as the position
of edges which compose the polygon. In contrast, an
online algorithm is one that obtains its input during its
execution. In our problem, only when the agent sees an
edge will it learn the location of that edge. For this rea-
son one does not expect an online algorithm to produce
the optimal inspection path that can be found by an of-
fline algorithm. However one can hope to construct an
online algorithm which will generate an inspection path
that is not too much longer than the optimal inspec-
tion path. We say that an online algorithm (a strategy)
is c-competitive if the length of the path produced by
the online algorithm is at most c times the length of the

292

32nd Canadian Conference on Computational Geometry, 2020

optimal path produced by an offline algorithm for all in-
stances of the problem and some constant (competitive
ratio) c. In this work we are interested in finding a c-
competitive strategy for the convex polygon inspection
problem.

The Watchman Route problem has also been consid-
ered in the online scenario, that is, the watchman does
not have knowledge of the polygon in advance and only
learns it when edges are seen. We recommend the sur-
vey by Ghosh and Klein [13] which considers several
exploration tasks for a mobile robot that must search
in the plane. Of particular relevance to our work is
how an agent should move to inspect around several
corners. We discuss this problem in more depth later,
but for a strategy to be competitive it must consider
both paths that follow the boundary of the polygon
and those that move away from the boundary to look
around a sequence of corners. We consider techniques
first introduced by Icking, Klein, and Ma for looking
around a single corner when the angle of the corner is
unknown [18]. When the angle of the corner is known
the shortest path to look around the corner is a straight
line segment. However when the angle is unknown the
best competitive strategy follows a curved trajectory.
The authors derive the optimal online strategy by solv-
ing a differential equation in polar form (a closed-form
solution seems difficult to obtain). The shape of the re-
sulting path is a curve that “spirals” towards the corner
with length at most ≈ 1.212 times that of the optimal
path. Dorrigiv, López-Ortiz, and Tawfik expanded on
the one-corner case by considering the optimal average-
case strategy where the angle of the corner is drawn
from a homogeneous probability distribution [8].

For problems which involve more than one angle, ap-
proaches (including ours) use strategies based on circu-
lar arcs, which have useful geometric properties. Hoff-
mann et al. [16] use such an approach as part of their
solution to the online watchman route problem. Here
the authors give a strategy for exploring the interior of
a simple, non-convex polygon which results in a cycle
with length at most 26.5 times of the length of the op-
timal watchman route for the polygon. They base their
strategy on a fundamental construction called the angle
hull of a polygon [15].

The recent work of Tikinsky et al. achieve a competi-
tive strategy for the convex polygon inspection problem
which yields a path with length at most 89.83 times
that of the optimal. This strategy works by defining
the notion of scope. As the agent moves to explore
the polygon, it keeps track of the unexplored region.
Initially this region is unbounded, but as the agent ex-
plores it becomes bounded. This region is described by
a triangle ∆uWv where u, v are vertices of the polygon
and W is a point exterior to the polygon. The scope is
the angle ∠uWv. Initially, the agent performs a spiral

search to bound the region, then follows a second spiral
search to reduce the region even more. Once the region
is small enough the agent moves towards the point W
to see the remaining edges. Both this work and ours
make use of a spiral search strategy in which an agent
can competitively move in both the counterclockwise
and clockwise directions around the polygon to inspect
its edges. This problem is an instance of the m-lane
cow-path problem for m = 2, which has been studied by
numerous researchers under different names and itself is
a member of a family of problems called search games
[12, 1, 19, 20].

3 Our Results

In Section 4 we give a 2π-competitive strategy for the
subproblem of searching around several corners (a chain
of edges) when the direction of traversal is known. Then
in Section 5 we show how any c-competitive strategy
for this subproblem can be incorporated into a compet-
itive strategy for the convex polygon inspection problem
by using a doubling approach to search in both direc-
tions around the polygon. When we use the strategy of
Section 4 for the chain subproblem, we obtain an 18π-
competitive strategy for the convex polygon inspection
problem.

We present our main result in Section 6 where we
expand on the work of Hoffmann et al. [15] to show
that an agent which follows arcs generated by the an-
gle hull of the chain of edges is π/2-competitive for the
subproblem. By using the search procedure described
in Section 5, we obtain a 4.5π-competitive strategy for
the convex polygon inspection problem. In Section 7,
we describe several open problems.

4 The Corner-Radius Strategy

To tackle the convex polygon inspection problem, we
first consider a simpler subproblem where the agent only
needs to traverse in one direction, say counterclockwise,
around the polygon. Imagine that the agent must see
only a chain (a consecutive subsequence) of edges from a
convex polygon and that the furthest clockwise edge of
the chain is seen from the agent’s starting position. We
call this the convex chain problem. If the agent knows
the positions of the edges, then the shortest inspection
path is simply the shortest counterclockwise collision-
free path to a point on the extension of the last chain
edge. However if the edge positions are not known, what
is a competitive strategy for the agent to see the chain?

The crux of this problem is how can an agent look
around a sequence of corners competitively. Icking et
al. [18] investigated competitive strategies for looking
around a single corner (from a start point both on and
off the chain) and described the optimal competitive

293

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

φ
φ

s s

Figure 1: Two cases in which the optimal route, in red
(double-headed arrow), either moves straight towards
the corner or straight to the closest point on the exten-
sion of the next edge. In blue (single arrow) is a circular
arc with length at most π times the length of the red
arc.

strategy. Of course, a strategy to move directly to the
corner may not be competitive if the angle between the
next edge’s extension and the current edge is acute (see
Figure 1.) In such a case, the path should follow the
shortest straight line segment to the next edge’s exten-
sion. Since the online agent does not know this angle,
it could guess that the angle is small and continuously
revise its guess as it follows the optimal strategy for the
assumed angle. This leads to a path that follows an
arc of the circle centered at the corner, which yields a
competitive ratio of at most π.

While a circular arc may work for one corner, it is
yet to be shown that this approach will be competitive
for several corners. We now show that the strategy of
following a trajectory of circular arcs, where the cir-
cles are centered on the furthest seen vertices of the
chain, results in a 2π-competitive strategy for the con-
vex chain problem. Denote this strategy as the corner-
radius strategy. We first assume that the starting po-
sition s is located on the chain, then consider the case
where the starting position is off the chain. Without loss
of generality, we further assume no edge of the chain
(or polygon) is colinear with its neighbouring edges.
Depending on the structure of the chain, the optimal
route may follow the boundary of the chain, immedi-
ately leave the boundary from starting position s, or
follow the boundary for some number of edges, then
leave the boundary. Note that the optimal route leaves
the boundary at a point where it can follow a perpen-
dicular to the last edge’s extension without intersecting
the polygon. To show that the corner-radius strategy is
competitive, we first partition the optimal path O into
two subpaths: O‖ which is the part of the optimal path
that follows the boundary of the chain, and O⊥ which is
the part of the optimal path that is off of the boundary
and meets the extension of the last edge at a right an-
gle. Next for each edge ei, numbered from the furthest
clockwise edge, we consider how its length contributes
to either O‖ or O⊥. Finally we show that for each edge

φ1

φ2
φ3

φ4

e1

e2 e3

e4

e5s

Figure 2: The corner-radius strategy for an instance of
the convex chain problem. The optimal path is shown
in red and the arcs of the corner-radius strategy in blue.
The optimal path leaves the boundary of the chain after
traversing edge e2.

ei, the corner-radius strategy will contribute at most 2π
times the amount the optimal route contributes for edge
i.

For i = 1 to n − 1, let φi denote the angle between
edge i and the extension of edge i+ 1. Suppose edge u,
0 ≤ u < n, is the last edge on the boundary traversed
by the optimal route. (where u = 0 represents when
the optimal path leaves the boundary at s.) By our
partitioning scheme, we have

|O| = |O‖|+ |O⊥|

=

u∑

j=1

|ej |+
n−1∑

j=u+1

|ej | sin(φj + φj+1 + · · ·+ φn−1)

(1)

where the terms |ej | sin(φj + φj+1 + · · · + φn−1) come
from further decomposing O⊥ into the bottom lengths
of a collection of right triangles; the lengths are the pro-
jections of edges u+1 to n−1 onto the line perpendicular
to the extension of the last edge with length |O⊥|; see
Figure 2.

We now consider the length of the corner-radius strat-
egy, ACR. To look around corner i, the strategy follows
a circle whose center is the endpoint of edge i that is
closer to the end of the chain. As s is located at the
start of the chain, the radius of this circle (the dis-
tance between the agent and the corner) is the sum
|e1| + |e2| + · · · + |ei|. Therefore we can express the
length of the arc the agent traverses to look around cor-
ner i as ai = φi(|ei|+ |ei−1|+ · · ·+ |e1|). After summing
over all n− 1 corners, we rearrange terms to isolate the
contribution of each edge’s length to ACR and split the

294

32nd Canadian Conference on Computational Geometry, 2020

s

Figure 3: The starting position is off of the boundary
of chain. The original chain with initially seen edges
are grayed out and the new chain starting at s consists
of three edges. The optimal path and the path gener-
ated by the corner-radius strategy are the same for both
chains.

terms to match those in O‖ and O⊥:

|ACR| =
n−1∑

i=1

φi(

i∑

j=1

|ej |) =

n−1∑

j=1

|ej |(
n−1∑

i=j

φi)

=
u∑

j=1

|ej |(
n−1∑

i=j

φi) +
n−1∑

j=u+1

|ej |(
n−1∑

i=j

φi)

We make the following observations. First since the
chain originated from the boundary of a convex poly-
gon, the sum of all angles φi is at most 2π. Second,
for all edges i > u,

∑n−1
j=i φj ≤ π/2. This follows as

the optimal route leaves the boundary after travers-
ing edge u. Third, it can easily be verified that for
x ∈ (0, π/2), x ≤ π

2 sin(x) ≤ 2π sin(x). Combining the
above, we have,

|ACR| ≤ 2π
u∑

j=1

|ej |+ 2π
n−1∑

j=u+1

|ej | sin(
n−1∑

i=j

φi)

≤ 2π|O|
Finally we consider the scenario where the starting

position s is not on the boundary. Under the conditions
of the convex chain problem, the agent sees the furthest
clockwise edge (and perhaps other edges) of the chain
from s. Suppose we form a new convex chain by re-
placing the edges seen from s with the segment from
s to the furthest counterclockwise vertex seen from s.
Observe that from s the optimal path that sees the orig-
inal chain is the same optimal path that sees the new
chain. Further the path generated by the strategy will
be the same for both chains. By our previous analysis
the corner-radius strategy achieves a competitive ratio
of at most 2π for the new chain and thus the same for
the original chain; see Figure 3.

We summarized the above analysis in the following
statement.

Theorem 1 The corner-radius strategy is 2π-
competitive for the convex chain problem.

5 A Two-Sided Search Strategy

We return to our original problem where the agent must
inspect a polygon, yet it is not clear in what direction
around the polygon the agent should traverse. From
the previous section, one approach seems clear. From
starting position s, use the corner-radius strategy to
explore the polygon in one direction for some distance.
If the agent has not finished inspecting the polygon, it
returns to s retracing the arcs it traversed from s, then
uses the corner-radius strategy to explore the polygon in
the other direction for some larger distance than before.
The agent repeats this process of searching both sides,
increasing the distance it traverses each time, until the
inspection is complete.

To ensure that the resulting path length is at most
a constant times the optimal path’s length, we use an
approach for the well-known cow-path problem in which
a cow, located at the origin, is searching for a gate in
a fence (a point on the x-axis) located at distance d ≥
λ away. In the offline case the cow moves distance d.
However in the online case the cow does not know d or
if the x-coordinate of the gate is positive or negative.
The question is what strategy can the cow employ such
that, for all possible locations of the gate, it traverses a
distance at most c times d for some constant c? Baeza-
Yates at al. [1] showed that a doubling strategy where
the distances traversed are λ, 2λ, 4λ, . . . results in a total
traversal distance that is at most 9d. The result relies on
the online strategy knowing a lower bound λ on d. We
describe how an agent can calculate such a lower bound
given what it sees from its initial position in Section 8.2
of the Appendix. Bose et al. [4] consider how search
strategies can be improved when both lower and upper
bounds are specified on the distance d.

Let C denote a c-competitive strategy for the convex
chain problem. The two-sided, C strategy (TS,CS) for
the convex polygon inspection problem uses the strat-
egy C to define the path traced by the search in each
direction around the polygon and doubles the distance
(initially traversing distance λ) in each iteration of the
search. We now show that TS,CS is a 9c-competitive
strategy for the convex polygon inspection problem.
This implies that the two-sided, corner-radius strategy
is 18π-competitive. First observe that TS,CS can be
viewed as a type of cow-path problem where there are
two gates, L and R, which the cow must search for, yet
only realizes it has found any gate once both are discov-
ered. The points L and R correspond to points on the
extension of edges where the shortest inspection path
moves in one direction around the polygon to reach L
from s, then moves in the other direction from L to R
ending the inspection. Second, the arcs that are gener-
ated by TS,CS are the same arcs which are generated by
two instances of the convex chain problem: one in which
the agent moves in one direction from s to see edges up

295

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

to the edge whose extension L lies on, and an instance
that moves in the other direction from s to see the edges
up to the edge whose extension R lies on. Let P be the
gate, one of L or R, that is reached last by TS,CS, ep
denote the edge whose extension P lies on, and |ATS |
the overall distance traversed by TS,CS. Let p denote
the length of the shortest inspection path from s to see
edge ep on the corresponding convex chain instance.

The C strategy will generate a distance that is at most
cp. As TS,CS uses the arcs of C to search for P , an
application of the cow-path analysis implies |ATS | ≤
9cp. Finally, the shortest inspection path that sees all
edges of the polygon must reach both L and R not just
whichever point P is; thus the length of the optimal
path is bounded below by p, and so,

Theorem 2 The two-sided, C strategy is 9c-
competitive for the convex polygon inspection problem,
where c is the constant competitive ratio of the convex
chain strategy C.

6 The Angle Hull Strategy

In the previous section we arrived at a competitive strat-
egy by solving two subproblems: how to competitively
search around several corners in one direction and how
to search in two directions around the polygon. By
employing a better strategy for the first subproblem,
we can achieve a better competitive ratio for the con-
vex polygon inspection problem. We now describe a
π/2-competitive strategy for the convex chain problem
which when employed in the same manner as previously
described (i.e. a doubling search around both sides of
the polygon) results in a 4.5π-competitive strategy for
the convex polygon inspection problem.

To improve on the corner-radius strategy, we would
like the agent to still circle around the chain, but to not
venture too far away from it. With the corner-radius
strategy the arcs generated were centered on vertices of
the chain. A better approach is to place the center of
such circles within the interior of the chain (that is, the
side of the chain in which the agent does not traverse.)
To this end our strategy uses the concept of the angle
hull, first introduced by Hoffmann et al. [14, 15], which
for a convex polygon is the set of connected, circular
arcs around the polygon such that a camera with a 90
degree field of view facing the polygon would see only
the boundary of the polygon with no white space; see
Figure 4. Hoffmann et al. show that the length of the
angle hull is at most π/2 times the length of the bound-
ary of the polygon. The angle hull is also an inspection
path for the polygon. However, since the optimal in-
spection path may be shorter than the length of the
boundary, it is not obvious that the angle hull provides
a competitive online strategy for our inspection prob-
lem. We show that it does result in a strategy that is

π/2 competitive for the convex chain problem.
In the angle hull strategy, the agent follows a sequence

of circular arcs from an initial position s such that the
angle between the lines of sight from the agent to the
left-most and right-most vertices of the observed chain
form a right angle, until the agent sees the last edge of
the chain. If the agent’s initial view angle at s is not 90
degrees, we replace the edges seen from s with a single
edge from s to the remaining chain as in Section 4.

Theorem 3 The angle hull strategy is π
2 -competitive

for the convex chain problem.

Proof. Let e1, e2, . . . , en be the sequence of edges in the
convex chain with s the first vertex of the chain. The
optimal path follows the chain up to the uth vertex and
then leaves the chain to follow a segment perpendicu-
lar to the extension of the last edge (e.g. in Figure 4,
u = 2.) Let ai be the ith circular arc followed by the
angle hull strategy with di the diameter of the circle
connecting the extreme vertices of the subchain seen
from ai. Let eis , eis+1

, . . . , eit be the edges in this sub-
chain. Clearly, di ≤ |eis | + |eis+1

| + · · · + |eit |. Let αi
be the angle spanned by ai so it’s length is diαi. Note:
to match the notation used by Hoffmann et. al [15], αi
is measured not from the circle’s center but from the
circle’s perimeter, which implies 0 < αi ≤ π/2. The ith

angle belongs to edge j if the edge can be seen from arc
ai. Let αjs + · · ·+αjt denote the sum of angles belong-
ing to the jth edge. The length of the angle hull path is
thus:

|AAH | =
n−1∑

i=1

αidi ≤
n−1∑

i=1

αi(|eis |+ · · ·+ |eit |)

=

n−1∑

j=1

|ej |(αjs + · · ·+ αjt)

The agent will visit the extension of some chain edges
twice, the first time allowing the agent to see the edge
and the second when the agent can no longer see the
edge (e.g. edges 1 and 2 in Figure 4.) For these edges
the sum of the angles belonging to the edge is π/2.

Let u be the final edge whose extension is crossed
twice by the agent. Observe that u is also the last edge
in which the optimal path follows the boundary of the
chain. This can be seen by noting both the optimal
path and path from the strategy will terminate at the
same point as both reach the extension of the last edge
with a 90 degree angle field of view. For edges j > u,
we claim that αjs + · · ·+αjt = φj+ · · ·+φn−1. This fol-
lows from the fact that exactly the angles φj , . . . , φn−1
belong to the edge j. In fact, αjs , . . . , αjt is simply a
finer partition of those angles.

For example, consider edge u+ 1. As its extension is
not crossed twice, the angles that belong to edge u+ 1

296

32nd Canadian Conference on Computational Geometry, 2020

a1

a2

a3
a4

a5

a6

c1
c2

c3

c4

c5

c6
φ1

φ2

φ3

φ4

s

o3 o4

Figure 4: An instance of the angle hull strategy. The agent on arc a2 sees both endpoints of the subchain formed by
edges 1 & 2. The center of the circle of arc ai is a cross labelled ci. The angles α3 and α4 correspond to the angles
in the light green and dark green shaded regions, and α5 and α6 for the light purple and dark purple shaded regions
respectively. Note that α3 + α4 + α5 + α6 = φ3 + φ4 and α5 + α6 = φ4.

are φu+1, φu+2, . . . , φn−1 and the angles of the arcs that
can see edge u+ 1 are α(u+1)s , . . . , α(u+1)t .

Using this relationship, we have

n−1∑

j=u+1

|ej |(αjs + · · ·+ αjt) =

n−1∑

j=u+1

|ej |(φj + · · ·+ φn−1).

Thus we have

|AAH | ≤
π

2

u∑

j=1

|ej |+
n−1∑

j=u+1

|ej |(φj + · · ·+ φn−1)

≤ π

2




u∑

j=1

|ej |+
n−1∑

j=u+1

|ej | sin(φj + · · ·+ φn−1)


 .

Note that for j > u, the sum φj + · · · + φn−1 ≤ π/2
and x ≤ π

2 sin(x) for x ∈ (0, π/2). As the length of the
optimal path is given by equation (1), we have |AAH | ≤
π
2 |O|. �
Let the two-sided, angle hull strategy be the strategy
similar to the two-sided, corner-radius strategy only
that it employs the angle hull strategy instead of the
corner-radius strategy. Then as described in Section 5,
we have:

Theorem 4 The two-sided, angle hull strategy is 4.5π-
competitive for the online polygon inspection problem.

7 Conclusion

We presented two competitive strategies for an agent
whose task is to view the entire exterior of any un-
known convex polygon from any starting position. Key

to both strategies is the subproblem of how to compet-
itively search around several corners where the agent
only needs to move in one direction. We showed how the
corner-radius strategy is 2π-competitive and the angle
hull strategy, an extension of work done by Hoffmann et
al., is π/2-competitive for this subproblem. To solve our
original problem of seeing a convex polygon, we incor-
porated each strategy in a doubling approach, based on
the two-lane cow-path problem, to explore in both direc-
tions around the polygon. We showed how our strategies
were 18π-competitive and 4.5π-competitive respectively
for the convex polygon inspection problem.

This is an improvement on the competitive ratio pre-
sented by Tiktinsky et al. [24], however it is unlikely
to be tight. The best possible ratio for looking around
one corner is ≈ 1.212 [18], which might extend to mul-
tiple convex corners and, using the doubling approach,
to a ≈ 10.91-competitive strategy for the polygon in-
spection problem. One might also consider better ways
to inspect the entire polygon than a doubling search.
For example, Tiktinsky et al.’s notion of scope, which
characterizes the unexplored region of the plane, might
help restrict the search to improve the competitive ratio
as well.

297

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] R. A. Baeza-Yates, J. C. Culberson, and G. J. Rawlins.
Searching in the plane. Information and Computation,
106(2):234–252, 1993.

[2] H. Baik and J. Valenzuela. Unmanned aircraft system
path planning for visually inspecting electric transmis-
sion towers. Journal of Intelligent & Robotic Systems,
95(3-4):1097–1111, 2019.

[3] J. A. Besada, L. Bergesio, I. Campaña, D. Vaquero-
Melchor, J. López-Araquistain, A. M. Bernardos, and
J. R. Casar. Drone mission definition and implementa-
tion for automated infrastructure inspection using air-
borne sensors. Sensors, 18(4):1170, 2018.

[4] P. Bose, J.-L. De Carufel, and S. Durocher. Revisiting
the problem of searching on a line. In European Sym-
posium on Algorithms, pages 205–216. Springer, 2013.

[5] W.-P. Chin and S. Ntafos. Optimum watchman routes.
In Proceedings of the Second Annual Symposium on
Computational Geometry, pages 24–33, 1986.

[6] W.-P. Chin and S. Ntafos. Shortest watchman routes in
simple polygons. Discrete & Computational Geometry,
6(1):9–31, 1991.

[7] T. Danner and L. E. Kavraki. Randomized planning
for short inspection paths. In Proceedings of the IEEE
International Conference on Robotics and Automation,
volume 2, pages 971–976, 2000.

[8] R. Dorrigiv, A. López-Ortiz, and S. Tawfik. Optimal
average case strategy for looking around a corner. In
Proceedings of the 24th Canadian Conference on Com-
putational Geometry, pages 277–282, 2012.

[9] M. Dror, A. Efrat, A. Lubiw, and J. S. Mitchell. Touring
a sequence of polygons. In Proceedings of the 35th ACM
Symposium on the Theory of Computing, pages 473–
482, 2003.

[10] A. Dumitrescu and C. D. Tóth. Watchman tours
for polygons with holes. Computational Geometry,
45(7):326–333, 2012.

[11] S. P. Fekete, J. S. Mitchell, and C. Schmidt. Minimum
covering with travel cost. Journal of Combinatorial Op-
timization, 24(1):32–51, 2012.

[12] S. Gal. Minimax solutions for linear search problems.
SIAM Journal on Applied Mathematics, 27(1):17–30,
1974.

[13] S. K. Ghosh and R. Klein. Online algorithms for search-
ing and exploration in the plane. Computer Science
Review, 4(4):189–201, 2010.

[14] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. Mov-
ing an angle around a region. In Scandinavian Work-
shop on Algorithm Theory, pages 71–82. Springer, 1998.

[15] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The
polygon exploration problem ii: The angle hull. Techni-
cal Report 245, Department of Computer Science, Fer-
nUniversität Hagen, 1998.

[16] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The
polygon exploration problem. SIAM Journal on Com-
puting, 31(2):577–600, 2001.

[17] C. Icking, R. Klein, and L. Ma. How to look around a
corner. In Proceedings of the 5th Canadian Conference
on Computational Geometry, pages 443–448. University
of Waterloo, 1993.

[18] C. Icking, R. Klein, and L. Ma. An optimal competitive
strategy for looking around a corner. Technical Report
167, Department of Computer Science, FernUniversität
Hagen, 1994.

[19] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in
an unknown environment: An optimal randomized al-
gorithm for the cow-path problem. Information and
Computation, 131(1):63–79, 1996.

[20] D. Kirkpatrick and S. Zilles. Competitive search in
symmetric trees. In Workshop on Algorithms and Data
Structures, pages 560–570. Springer, 2011.

[21] R. Klein. Walking an unknown street with bounded
detour. Computational Geometry, 1(6):325–351, 1992.

[22] J. O’Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, 1987.

[23] X. Tan, T. Hirata, and Y. Inagaki. Corrigendum to
“An Incremental Algorithm for Constructing Shortest
Watchman Routes”. International Journal of Compu-
tational Geometry & Applications, 9(03):319–323, 1999.

[24] E. Tiktinsky, S. Gul, S. Shamshanov, and R. Cohen.
Online exploration outside a convex obstacle. arXiv
preprint arXiv:1807.02773, 2018.

8 Appendix

8.1 Structure of the Optimal Path

Every polygon edge lies on a line which is called the extension
of the edge. The edge partitions its extension into two rays:
a cw-ray from the furthest clockwise edge’s endpoint and a
ccw-ray from the other endpoint. A ray may be crossed by
an inspection path from left-to-right (facing in the direction
of the ray) and/or from right-to-left.

Claim 1 A shortest inspection path bends only at edge ex-
tensions.

Proof. The set of edges visible from a moving point changes
only when the point crosses an edge extension. Thus, by the
triangle inequality, any shortest inspection path is composed
of straight-line segments between crossings of edge exten-
sions. �

Claim 2 A shortest inspection path crosses an edge’s cw-
ray (or ccw-ray) in each direction at most once.

Proof. Suppose an optimal path crosses a ray twice in the
same direction. Let z be the point where the path last
crosses a ray such that the path already crossed this ray
in the same direction previously at some point x. Between
x and z, the path must cross the ray in the opposite direc-
tion, at some point y, otherwise the path would have cir-
cumscribed the polygon between x and z and would not be
optimal since it crosses the ray again at z.

298

32nd Canadian Conference on Computational Geometry, 2020

x

y

z

v

s

t

ej

ei

ei+1

Figure 5: Edges ei, ei+1, and ej of the polygon are
shown where the ray of j is crossed twice while travers-
ing clockwise. A shorter path can be constructed by
replacing the path from x to y which does see the edge
j (possibly other edges) with a path from x to y that
does not see edge j, as shown in red.

Since the path continues after z, it finishes inspection by
seeing the final edge i at position t while continuing to tra-
verse in this direction. In order to see edge i, it cannot
recross the ray containing z again (or else z would be chosen
as this crossing). Let i+1 be the edge that shares a common
endpoint with edge i and would be seen if the path continued
to move in this direction from z. As the path ended upon
seeing edge i, this implies that edge i+1 was seen previously
in between points y and z. Let this point on the extension of
i + 1 be v. Since the polygon is convex, in order to see edge
i the path from v, through z, and to t must see all the edges
seen by the subpath from x to y as well - see Figure 5. This
implies that the subpath from x to y is redundant and can
be replaced by the segment parallel to xy which does not
cross the ray of j, shortening the path. A contradiction. �

These two claims imply:

Theorem 5 A shortest inspection path of a convex polygon
P starting from a point outside P consists of a clockwise sub-
path around P followed by a counterclockwise subpath around
P , or vice versa. Either of these subpaths may be empty.

8.2 Initial Step Size

Let S be the subchain of edges seen from the agent’s ini-
tial position at s. Let a and b be the open endpoints of S.
To determine a lower bound on the length of the optimal

a

b

s

p2

p1 = a

p3 = b

Ap2

Bp2

Ap1

Bp1

Ap3

Bp3

Figure 6: Three rays through p1 = a, p2, and p3 = b.
For each ray, the lines parallel to the ray are shown as
dash dotted lines.

path we return to the notion of scope defined by Tiktin-

sky et al. [24]. The rays −→sa and
−→
sb (along with the line

ab) define the unknown region in which the remaining edges
lie. For all starting positions s, this region is unbounded,
and any inspection path must close this region by first mak-
ing these boundaries parallel to one another, then collapsing
them such that the unknown region becomes empty (i.e. all
edges are seen.)

To determine a lower bound on the optimal we ask what is
the shortest path from s that will make the boundaries of the
unknown region parallel. We determine such a quantity as
follows. We cast a collection of rays from s through a point
p ∈ ab, where p walks from a to b. For each such ray −→sp,
let Ap and Bp be the lines parallel to −→sp that pass through
a and b respectively; see Figure 6. To make the boundaries
parallel the agent needs to move from s to Ap and Bp. As
both must be reached, the distance of traversal is at least the
maximum of the two. Let d(s, L) be the shortest distance
from s to a line L. Thus we are interested in minimizing the
quantity over points p to determine a lower bound on the
optimal:

O ≥ min
p∈ab

max{d(s,Ap), d(s,Bp)}}.

Since max{d(s,Ap), d(s,Bp)} ≥ 1
2
(d(s,Ap)+d(s,Bp)) and

the latter term is at least the distance between the two lines
Ap and Bp, which, for such rays, is minimized when p = a
or p = b, we have

O ≥ min
p∈{a,b}

(d(Ap, Bp)

2

)

where d(Ap, Bp) is the minimum distance between the two
lines Ap and Bp. Note that in the last inequality we only
need to cast two rays and compute the correspond lines Aa

and Ab for the two values of p. Therefore the agent can
efficiently compute the lower bound.

299

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

City Guarding with Limited Field of View

Ovidiu Daescu * Hemant Malik�

Abstract

Drones and other small unmanned aerial vehicles are
starting to get permission to fly within city limits.
While video cameras are easily available in most cities,
their purpose is to guard the streets at ground level.
Guarding the aerial space of a city with video cameras
is a problem that so far has been largely ignored.

In this paper, we present bounds on the number of
cameras needed to guard a city’s aerial space (roofs,
walls, and ground) using cameras with 180◦ range of vi-
sion (the region in front of the guard), which is common
for most commercial cameras. We assume all buildings
are vertical and have a rectangular base. Each camera
is placed at a top corner of a building.

We considered the following two versions: (i) build-
ings have an axis-aligned ground base and, (ii) build-
ings have an arbitrary orientation. We give necessary
and sufficient results for (i), necessary results for (ii),
and conjecture sufficiency results for (ii). Specifically,
for (i) we prove a sufficiency bound of 2k + bk4 c+ 4 on
the number of vertex guards, while for (ii) we show that
3k + 1 vertex guards are sometimes necessary, where k
is total number of buildings in the city.

1 Introduction

Drones and other small unmanned aerial vehicles
(UAVs) are already allowed to experimentally fly within
city limits. For example, in August 2019, Uber an-
nounced it has selected the city of Dallas to experi-
ment with flying drones and small UAVs, within the
city. Monitoring the aerial space of big cities is thus be-
coming a critical problem that yet has to be addressed.
Video cameras are easily available in most cities, but
their purpose is to guard the streets at ground level.
Guarding the aerial space of a city with cameras is a
problem that has been largely ignored.

City guarding is related to the famous art gallery
problem [29] and its many variations [41] studied in
the past few decades. In almost all these studies, the
art gallery lies in the plane (2D), assuming a polygonal
shape with or without holes. In the art gallery problem,
the goal is to determine the minimum number of point
guards sufficient to see every point of the interior of a
simple polygon. A point q is visible to guard g if the
line segment joining q and g lies completely within the

*The University of Texas at Dallas, daescu@utdallas.edu
�The University of Texas at Dallas, malik@utdallas.edu

polygon. When the guards are restricted to vertices of
the polygon only, they are referred to as vertex guards.

In the orthogonal art gallery problem, all edges of the
polygon are either horizontal or vertical. In some ver-
sions of the art gallery problem, the polygon is allowed
to have h holes. When guarding such polygons, it is al-
lowed to place the guards at the vertices of the enclosing
polygon and the vertices of the holes.

For guarding an orthogonal polyhedron point guards
are less effective. There exist examples of polyhedra
with n vertices where guards placed at every vertex do
not cover the whole interior of the polyhedra; instead
O(n3/2) non-vertex guards are required [34].

The problem is also related to the following prob-
lem [8]: Given k pairwise disjoint isothetic rectangles in
a plane, place vertex guards on rectangles such that ev-
ery point in free space (plane area excluding the interior
of the quadrilaterals) is visible to at least one guard.

The city guarding problem was introduced in [4], and
is a 2.5D variant of the 2D orthogonal art gallery with
holes. The input consists of k buildings, within an area
bounded by an axis-parallel rectangle (this can be re-
laxed to the whole plane, assuming cameras have unlim-
ited distance visibility), with each building being verti-
cal and having an axis parallel rectangular base (a ver-
tical rectangular prism), and the goal is to place the
minimum number of guards that can see in any direc-
tion (referred as 360◦ field of vision), at the top corners
(vertices) of some buildings, to guard the aerial space of
the city. The height of a building is a strictly positive
real number. In [4], they consider three variations of city
guarding: (i) Roof Guarding: determine the minimum
number of vertex guards required to guard the roofs (ii)
Ground and Wall Guarding: determine the minimum
number of vertex guards necessary to guard the ground
and the walls, and (iii) City Guarding: determine the
minimum number of vertex guards required to guard
the (aerial space of the) city, which means the roofs,
walls, and the ground. As with the 2D art gallery prob-
lem ([2]), the 2.5D city guarding problems are NP-hard
and, by a simple reduction, so are the corresponding
versions studied in this paper.

We consider the three variations of the city guarding
problem with a restriction on the visibility range of the
guards. Specifically, a guard is only able to see the re-
gion in front of it, i.e., the range of vision of a guard is
bounded by 180◦, instead of the 360◦ in [4]. This corre-
sponds to the capabilities of most commercial cameras.

300

32nd Canadian Conference on Computational Geometry, 2020

In all our proofs each guard is placed at the top corner
of a building and is oriented such that the seen and
unseen regions of the guard are separated by a vertical
plane parallel with one of the sides of the building where
the camera is placed. Thus, when building bases are
isothetic (axis-aligned) rectangles, a camera will face in
one of four directions: East, West, North, or South (E,
W, N, S). From now on, we assume cameras are placed
as stated here, unless otherwise specified, and may omit
mentioning camera orientation throughout the paper.

The two versions we consider are: (A) Buildings have
an axis-aligned rectangular base (isothetic rectangles),
(B) Buildings have a (arbitrary oriented) rectangular
base. To solve the two versions, we address the following
variations of the art-gallery problem:
(V1) Given an axis-aligned rectangle P with k disjoint
axis-aligned rectangular holes, place vertex guards on
hole boundaries such that every point inside P is visible
to at least one guard, where the range of vision of a
guard is 180◦.
(V2) Given an axis-aligned rectangle P with k dis-
joint (arbitrary oriented) rectangular holes, place vertex
guards on hole boundaries such that every point inside
P is visible to at least one guard, where the range of
vision of a guard is 180◦.

For the first problem (V1), we prove a sufficiency
bound of 2k + bk4 c+ 4 on the number of vertex guards.
To obtain this bound, we provide a novel, divide and
conquer algorithm. For the second problem (V2), we
show that 3k+1 vertex guards are sometimes necessary
and conjecture that the bound is tight.

A comparison of our sufficiency and necessity results
with those in [4] is shown in Table 1. Our solutions
set an essential foundation for monitoring drones flying
within city limits, using video cameras.

[4] Guard vision
range: 360◦ (axis-
aligned rectangle
buildings)

Guard vision range:
180◦ (axis-aligned
rectangle buildings)

Guard vision range:
180◦ (non-axis-
aligned rectangle
buildings)

Roof Guarding
b 2(k−1)3 c+ 1 k k

Ground and Wall
Guarding k + bk4 c+ 1 2k + bk4 c+ 4 3k + 1

City Guarding
k + bk2 c+ 1 2k + bk4 c+ 4 3k + 1

Table 1: Sufficient and necessary results comparisons.
A tight bound is shown in blue color, a sufficiency bound
in red color and a necessary bound in green color.

Related Work. Guarding polygons, with or without
holes, has a long history in computational geometry.
For guarding an orthogonal polygon with n vertices,
Kahn et al. [28] showed that bn4 c vertex guards are occa-
sionally necessary and always sufficient. O’Rourke [32]
showed that 1 + b r2c vertex guards are necessary and
sufficient to guard the interior of an orthogonal polygon
with r reflex vertices. Later, Castro and Urrutia [18]

provided a tight bound of b 3(n−1)8 c on the number of

orthogonal guards placed on the vertices, sufficient to
cover an orthogonal polygon with n vertices.

O’Rourke [33] proved that any orthogonal polygon
with n vertices and h (orthogonal) holes can always
be guarded with bn+2h

4 c vertex guards. Hoffmann [24]
proved that bn3 c vertex guards are always sufficient to
guard an orthogonal polygon with n vertices and arbi-
trary number of holes. Later in 1998, Abello et al. [1]

provided a tight bound of b 3n+4(h−1))
8 c for the number

of guards placed at the vertices of an orthogonal poly-
gon with n vertices and h holes.

In 1994, Blanco et al. [8] considered the problem of
guarding the region of the plane excluding the interior
of n quadrilateral holes (obstacles). Given n pairwise
disjoint quadrilaterals in the plane whose convex hull
has no cut-off quadrilaterals, they showed that 2n vertex
guards are always sufficient to cover the free space and
all guard locations can be found on O(n2) time. If the
quadrilaterals are isothetic rectangles, the guards can
be placed in O(n) time. These results directly apply to
problems (V1) and (V2) we address in this paper, and
they immediately imply that 4n guards with 180◦ vision
always suffice, and those guards can be found in O(n)
and O(n2) time, respectively.

In 2008, Bao et al. [4] proposed the city guarding
problem where one is given a city with k vertical build-
ings, each having an axis-aligned rectangular base. The
guards are to be placed only at the top vertices of

the buildings. They showed that b 2(k−1)3 c + 1 vertex
guards are sometimes necessary and always sufficient to
guard the roofs (Roof Guarding Problem). They further
proved that k + bk4 c+ 1 vertex guards are always suffi-

cient to guard the ground and the walls, and k+bk2 c+1
vertex guards are always sufficient to guard the aerial
space, which includes all roofs and walls of the buildings,
and the ground. Their results directly apply to problem
(V1) and imply that 2k + 2bk4 c + 2 vertex guards with
180◦ vision are always sufficient to guard the walls and
ground, and 2k+ 2bk2 c+ 2 are needed to guard the city.

It follows from Table 1 that our results are a sig-
nificant improvement over those that can be inferred
from [8, 4]. Due to space constraints, we refer the reader
to Appendix A for detailed related work.

We start with the following theorem, that allows us
to limit our attention to guarding the roofs and walls of
the buildings, and the ground.

Theorem 1 If guards are placed so that the roofs,
walls, and the ground of the city are guarded, then every
point in the aerial space of the city is guarded.

Proof. Let p be a point in the aerial space of the city
and assume p is not guarded. Let p′ be the vertical
projection of p onto the ground (or a building roof)
and let g be a guard that sees p′ (such g exists since
the ground of the city is guarded). Then g, p and p′

301

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

B1

B2

B3

B4

Bk

Figure 1: City Setup

define a vertical plane π. Consider the vertical triangle
defined by g, p, and p′. If any portion of a building
intersects the triangle side gp at some point q then the
line segment qq′ is part of that building, where q′ is
the vertical projection of q onto the ground. Since the
line segment qq′ intersects the triangle side gp′ it then
follows that p′ is not visible from g, a contradiction. �
A similar result holds if we aim for walls and ground
guarding only (no roof guarding requirement), including
the space between the buildings.

2 Axis-Aligned Rectangle-Base Buildings

Given a rectangular city with k disjoint vertical build-
ings, each having an axis-aligned rectangular base, the
goal is to place the minimum number of cameras that
can see only the half-space in front of them (denoted
as 180◦ range of vision), at the top corners (vertices) of
the buildings to guard the city (roofs, walls, ground, and
aerial space). Thus, when a guard (camera) is aligned
with a wall of the building it is placed on the half-space
seen by the guard is bounded by a vertical plane con-
taining that wall.

2.1 Roof Guarding

Theorem 2 Given a city with k disjoint axis-aligned
rectangular buildings, k vertex guards are always suffi-
cient and sometimes necessary to guard the roofs.

Proof. The sufficiency bound is trivial (place one guard
on each roof). For the necessary part, consider a set
S = {B1, B2, B3, . . . , Bk} of k buildings, as shown in
Figure 1, with the following setup: (i) the height hBi

of
building Bi is greater than the height hBj

of building
Bj , ∀ i, j such that 1 ≤ i < j ≤ k, and (ii) ∀ i < j − 1,
building Bj−1 totally blocks the visibility between Bi
and Bj . In such situation, we need one guard to cover
the roof of each building (details in Appendix B). �

2.2 Ground and Wall Guarding
Vertically projecting the city on the ground results in
a rectangle polygon with k rectangular holes. As men-
tioned earlier, the number of guards required to guard
the walls and ground is no larger than the number of
guards needed for the following problem:

SubProblem 1 (V1) Given an axis-aligned rectangle
P with k disjoint axis-aligned rectangular holes, place
vertex guards on hole boundaries such that every point

inside P is visible to at least one guard, where the range
of vision of guards is 180◦.
On the other hand, it is easy to see that a lower bound
on the number of guards for Subproblem 1 can be used
to obtain a lower bound for guarding the walls and the
ground of a city with k rectangular buildings: map the
holes to buildings of the same height.

It is worth noticing though that the two problems are
not equivalent, that is, for a given input, fewer guards
might be needed to guard the walls and ground than the
number needed to guard the holes defined by projecting
the buildings to the ground.

Observe that 2k + bk2 c + 2 vertex guards, placed on
holes, can be obtained from [4] by replacing a 360◦ guard
with two 180◦ guards. In what follows, we show how to
improve this bound. For each hole, extend the right ver-
tical edge in the upward (North) direction through the
interior of the polygon until it encounters some horizon-
tal edge of a hole or the outer rectangle. After extending
the vertical edges, extend both horizontal edges of each
hole in the left (West) direction through the interior of
the polygon until it encounters some vertical edge or
extended vertical edge of a hole or the outer rectangle.
The steps above divide the polygon into 2k+1 shapes.
Each shape corresponds to a monotone staircase (both
in x and y-direction). Only one guard is required to
guard each staircase, placed at the South-East corner
of the staircase, facing West. Out of 2k + 1 guards, 2k
guards are placed on the vertices of the holes while one
guard is placed on a vertex of the rectangle P . Refer to
Figure 2 for visual details.

Theorem 3 2k+1 guards are always sufficient to guard
the walls and ground of a rectangular city with k dis-
joint axis-aligned rectangular buildings, with at most
one guard placed at a corner of the bounding rectangle.

If however, we do not allow a guard to be placed at a
corner of the enclosing rectangle P , then the number of
guards needed could increase significantly. In the rest of
this section, we prove an upper bound on the number of
vertex guards, placed only on vertices of the holes (the
setup in [8, 4]).

Let S be the set of k buildings in the city, contained
in the axis-aligned rectangle P defined by the points

Figure 2: Extension of the right vertical edge and hor-
izontal edges of each hole. 2k + 1 guards are always
sufficient to guard the walls and ground.

302

32nd Canadian Conference on Computational Geometry, 2020

(a) Rising Staircase. (b) Reverse Rising Staircase.

(c) Reverse Falling Staircase (d) Falling Staircase

Figure 3: Type of staircases and placement of guards.

[0, 0;x, y]. Let xMs , x
M
f be the starting and finishing

boundry sequence along x-axis and yMs , y
M
f be the start-

ing and finishing boundry sequence along y-axis. We
define four types of staircases (see Figure 3): (i) Rising
staircase (RS): xMs = 0, yMf = y, xMf is non decreas-

ing along the positive y-axis, and yMs is non decreas-
ing along the positive x-axis (ii) Falling staircase (FS):
xMf = x, yMf = y, xMs is non increasing along the pos-

itive y-axis, and yMs is non increasing along the posi-
tive x-axis (iii) Reverse rising staircase (RRS): xMf = x,

yMs = 0, xMs is non decreasing along the positive y-axis,
and yMf is non decreasing along the positive x-axis (iv)

Reverse falling staircase (RFS): xMs = 0, yMs = 0, xMf is

non increasing along the positive y-axis, and yMf is non
increasing along the positive x-axis

A rising staircase is constructed as follows: extend the
horizontal edges of each hole towards the right (East)
direction, then extend the vertical edges towards the
South direction. The closed orthogonal polygon formed
by the top edge and the left edge of P , and the extended
edges of the holes, corresponds to a rising staircase.
Falling, reverse rising, and reverse falling staircases are
constructed similarly. Note that for each staircase a re-
flex vertex corresponds to a vertex of a hole. Thus, the
number of buildings involved in a staircase is equal to
the number of reflex vertices on the staircase.

We find the staircase comprising the minimum num-
ber of buildings. WLOG assume the staircase involving
the minimum number of buildings is RRS (otherwise,
we can rotate the input so that the staircase corresponds
to RRS). For this staircase, place a guard on each re-
flex vertex, facing right (East), and an additional guard
on the first (bottom) stair, with the guard facing down
(South), as shown in Figure 3. The number of guards
required to cover the staircase is one more than the num-
ber of steps (stairs) in it. In the worst case, each of the
four staircases must have the same number of stairs,
otherwise we can use one with the smallest number as
RRS.

In what follows, we provide a divide and conquer ap-
proach to find an upper bound on the number of guards.
For some building B, the vertical span of B is the paral-
lel strip defined by the vertical sides of B and containing

Bi

Bj
BL

BB

BR

BT

Figure 4: Staircases RS (dash dot / red), FS (dash dot
/ orange), RRS (dotted / blue) and RFS (dashed /
green). Buildings above Bi lie in its vertical span and
buildings right of Bj lie in its horizontal span.

B. The horizontal span is defined accordingly. Let BL
be the leftmost building, BT be the topmost building,
BR be the rightmost building, and BB be the bottom-
most building of the city. A building Bi is called an
internal building if Bi 6∈ {BL, BT , BR, BB}. The pair
of staircases (i) RS,FS (ii) FS,RRS (iii) RRS,RFS
and (iv) RFS,RS are called adjacent staircases while
the pairs (v) RS,RRS, and (vi) FS,RFS are called
opposite staircases.

Assume two adjacent staircases, say RS and FS,
share the same building Bi 6∈ {BL, BT , BR, BB}. Then,
all buildings that lie in the upper half-plane defined
by the line supporting the upper horizontal edge of Bi
(buildings above Bi) are in the vertical span of Bi (see
Figure 4). Similarly, if staircases RRS and FS include
the walls of the same building Bj 6∈ {BL, BT , BR, BB},
then all buildings that lie on the right of Bj are in the
horizontal span of Bj .

Notice it is possible that, from the set of building
pairs (BL, BT), (BT , BR), (BR, BB), and (BB , BL), the
pair in one of the sets corresponds to the same building.
In this situation (call it Case 0), one of the staircases
consists of only one stair, and two guards are required
to guard the staircase. Using a placement of guards like
in Theorem 3, 2k + 2 guards are required to cover the
walls and ground of such a rectangular city. Thus, from
now on, we assume this is not the case.

Consider the four staircases RS,FS,RFS, and RRS.
We can have four cases:
Case 1: No adjacent pair of staircases share the same
internal building, and no opposite pair of staircases
share the same building.

WLOG assume that RRS contains the minimum
number of stairs; place the guards in a similar fash-
ion as in Theorem 3. Overall, we place two guards on
each building and the rest on the reflex vertices of the
staircase RRS.

The upper bound on the number of vertex guards
required to cover the staircase of P is achieved when

303

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

the number of buildings involved in the construction of
each staircase is the same. Let the staircases RS and
RRS contain δ distinct buildings. Staircase FS contains
δ − 2 distinct buildings because building BT is already
counted in staircase RS and building BR is counted in
staircase RRS. Similarly, RFS contains δ − 2 distinct
buildings. Note that δ + δ + δ − 2 + δ − 2 = k and
thus δ = bk4 c + 1. Therefore, to guard each staircase,

we require δ + 1 = bk4 c+ 1 + 1 = bk4 c+ 2 guards.

We place 2 guards on each building and bk4 c+2 guards

to cover the staircase. Therefore, 2k + bk4 c + 2 guards
are required to cover the walls and ground.
Case 2: At least one pair of opposite staircases shares
the same building, and no adjacent staircases share the
same interior building.

Let the staircases RS and RRS share a building Bi.
Refer to Figure 5 and note that extending the top edge
of Bi to the left until it hits P will not result in an in-
tersection with the other buildings. Similarly, extending
the bottom edge of Bi to the right until it hits P will
not result in an intersection with the other buildings.
We divide the city into two sub-cities, city1 and city2
(green and orange boundaries in Figure 5), by extend-
ing the top edge of Bi towards left and the bottom edge
towards the right. Let Bi be included in both sub-cities.

All buildings in city1 lie either above or towards the
right of Bi. We place two guards on each building, one
at the North-West corner and one at the South-East cor-
ner, both facing East. We further place a third guard on
the North-West corner of Bi, facing West. All buildings
in city2 lie either below or towards the left of Bi. We
place two guards on each building, one at the South-
East corner and one at the North-West corner, both
facing West. We further place an additional guard on
the South-East corner of Bi facing East. In total, we
have placed six guards on Bi. However, two guards are
duplicates, so we only have four guards on Bi. Thus,
2k+2 guards are required to cover the walls and ground
of the city.

Bi Bi

city1

city2

Figure 5: Building Bi is shared by staircases RS and
RRS. Staircase RS is shown in dash dot / red color
and staircase RRS is shown in dotted / blue color.

Case 3: At least one pair of adjacent staircases shares
the same interior building, and no pair of opposite stair-
cases shares the same building.

We use the following recursive approach to compute

Bj Bj

city1j

city2j

(a) No buildings within the horizontal
span of Bj

Bj Bj

city1j

city2j

(b) There exist buildings within the hori-
zontal span of Bj

Figure 6: Building Bj shares its walls with RS and FS.
Divide city into two sub-cities, city1j and city2j .

an upper bound on the number of guards. Let Bi be
a building shared by two adjacent staircases, say RS
and FS, as shown in Figure 6. Let αi be the number
of buildings that lie above Bi and βi be the number of
buildings (excluding Bi), that lie in the lower half-plane
defined by the line supporting the upper horizontal edge
of Bi. Note that αi + βi + 1 = k. Let C be the set
containing all such buildings Bi (walls included in more
than one staircase). Let Bj ∈ C be the building that
minimizes the value |αj − βj |, such that αj , βj ≥ 3.

If such building does not exist then each building Bj
in set C has αj ≤ 3 or βj ≤ 3. We can use a similar
argument as the one discussed in Case 2. Recall that
in the worst case all staircases should have an equal
number of buildings/stairs. It is easy to notice that
there exist at most three buildings shared by a staircase
pair (i) RS,FS (ii) FS,RRS (iii) RRS,RFS, or (iv)
RFS,RS, as αi < 3 or βi < 3. Let each of RS,RRS
contain δ distinct buildings. Staircases FS,RFS con-
tain δ − 6 distinct buildings, as three buildings are in-
cluded in each of RS and RRS. There are k buildings,
2×δ+2×(δ−6) = k, thus 4×δ−12 = k, and δ = bk4 c+3.

To guard the staircase we need at most bk4 c+ 4 guards,

resulting in 2k + bk4 c+ 4 guards overall.
If there exists a building Bj such that αj , βj ≥ 3,

we proceed as follows. Let the staircases RS and FS
share building Bj . There can be two cases: (i) there
are no buildings within the horizontal span of Bj (refer
to Figure 6a) and (ii) there exist buildings within the
horizontal span of Bj (refer to Figure 6b).

Consider the first case where none of the buildings lie
within the horizontal span of Bj . We divide the city into
two sub-cities, city1j with αj buildings and city2j with βj
buildings. All the buildings in one of the sub-cities lie

304

32nd Canadian Conference on Computational Geometry, 2020

inside the vertical span of Bj . Let this sub-city be city1j .

We add Bj to city1j , which results in a total of (αj + 1)

buildings in city1j , and follow Case 0, which results in
a total of 2(αi + 1) + 1 guards to guard the walls and
ground of this sub-city, as shown in Figure 6a. For city2j ,
we consider the Case it falls in and place the guards
accordingly. For the placement of guards, we treat the
two sub-cities as independent cities. It is important to
notice that only one of city1j and city2j above can be in
Case 3, while the other one is in Case 0. Thus, only one
of the two cities could need further divisions.

Assume Case 3 keeps occurring, and we need to di-
vide the city m times. During each division, the sub-city
with corresponding building Bj contains greater than
or equal to four buildings and one additional guard is
required to guard such sub-city. Let the first division
divide the city into two sub-cities with k1, k− k1 build-
ings each. The second division splits the sub-city with
k−k1 buildings into k2, k−k1−k2 buildings and so on,
down to sub-cities with km, k−

∑m
i=1 ki buildings. Each

resulting sub-city does not need to be divided further.
Let k′ =

∑m
i=1 ki. For each sub-city with k1, k2, . . . km

buildings, we require 2ki + 1 guards, where ki ≥ 4, and
for the last sub city we need at most 4 + b(k − k′)/4c
additional guards. Thus, the total number of guards
required to guard the city is:
2k1+1+2k2+1+ · · ·+2km+1+2(k−k′)+4+bk−k′4 c =

2k+m+4+bk−k′4 c ≤ 2k+4+k′/4+bk−k′4 c ≤ 2k+bk4 c+4
Consider the second case where buildings lie within

the horizontal span of Bj . We divide the city into two
sub-cities, city1j with αj buildings and city2j with βj
buildings, such that all buildings in one of the sub-cities
lie inside the vertical span of Bj . Let this sub-city be
city1j . We add Bj to city2j , which results in a total

of (βj + 1) buildings in city2j . For the placement of

guards, city1j is in Case 0, and we place two guards

on each building of city1j , and one guard on building Bj
facing towards city1j , which results in a total of 2(αi)+1

guards to cover the walls and ground of city1j , as shown

in Figure 6b. For city2j , we consider the case it falls in
and places the guards accordingly. For the placement
of guards, we treat the two sub-cities as independent
cities. Using a similar explanation as in the first case,
we obtain the upper bound of 2k + bk4 c+ 4.
Case 4: At least one pair of opposite staircases and one
pair of adjacent staircases share the same building.

We place guards according to Case 2 and conclude
that 2k + 2 guards are sufficient to cover the walls and
ground of the city.

The derived upper bound obviously holds when the
guards can have arbitrary orientation and we have:
Theorem 4 2k + bk4 c + 4 guards are always sufficient
to guard the walls and ground of a rectangular city with
k disjoint axis-aligned rectangular buildings, with all
guards placed on vertices of the buildings.

We also obtain the following Theorem, restricting the
visibility of guards in [8] to 180◦:

Theorem 5 Given k pairwise disjoint isothetic rectan-
gles in the plane, 2k+ bk4 c+ 4 vertex guards are always
sufficient to guard the free space.

2.3 City Guarding

Theorem 6 Given a city with k disjoint axis-aligned
buildings within an axis-aligned rectangle P , the num-
ber of axis-aligned cameras with 180◦ range of vision
needed to guard the city (roofs, walls, and ground) is
upper bounded by (i) 2k + bk4 c + 4 when cameras are
placed on buildings only, and (ii) 2k + 1 when at most
one camera can be placed at a corner of P .

Proof. The solution described earlier in Section 2.2 es-
tablished either 2k + bk4 c + 4 guards in case (i) and or
2k + 1 guards in case (ii) to cover the ground and the
walls of the city. In both (i) and (ii), on each build-
ing, we place at least two guards, on diagonal corners,
facing in the same direction. Thus, one of these two
guards also guards the roof of the building. Therefore,
2k + bk4 c + 4 guards are always sufficient to guard the
city in case (i) and 2k + 1 in case (ii). �

3 Arbitrary Oriented Rectangle Buildings

Given a rectangular city with k vertical buildings, each
having a rectangular base, the goal is to place cameras
with 180◦ range of vision, at the top corners (vertices) of
the buildings, to guard the city. In all our proofs, each
guard is aligned with a wall of the building it is placed
on, similar to the axis-aligned version. The same city
structure in Theorem 2 leads to:

Theorem 7 Given a city with k disjoint rectangular
buildings, k vertex guards are always sufficient and
sometimes necessary to guard the roofs.

As before, the problem of guarding the ground and
the walls reduces to:

SubProblem 2 (V2) Given an axis-aligned rectangle
P with k disjoint rectangular holes, place vertex guards
on hole boundaries such that every point in P is visible
to at least one guard, where the range of vision of guards
is 180◦.

Theorem 8 3k + 1 vertex guards are sometimes nec-
essary to guard a rectangular polygon P with k disjoint
rectangular holes, where guards are placed only at ver-
tices of the holes.

For guarding the city we have:

Theorem 9 3k+ 1 vertex guards are sometimes neces-
sary to guard a city with k vertical buildings with rect-
angular base, where guards are placed only at the top
vertices of the buildings.

Proofs of Theorem 8 and Theorem 9 are given in Ap-
pendix C. We conjecture the bounds are tight.

305

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] James Abello, Vladimir Estivill-Castro, Thomas
Shermer, and Jorge Urrutia. Illumination of or-
thogonal polygons with orthogonal floodlights. In-
ternational Journal of Computational Geometry &
Applications, 8(01):25–38, 1998.

[2] Mikkel Abrahamsen, Anna Adamaszek, and Till-
mann Miltzow. The art gallery problem is ∃R-
complete. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing,
pages 65–73, 2018.

[3] Alok Aggarwal. The art gallery theorem: its vari-
ations, applications and algorithmic aspects. 1984.

[4] Lichen Bao, Sergey Bereg, Ovidiu Daescu, Simeon
Ntafos, and Junqiang Zhou. On some city guarding
problems. In International Computing and Com-
binatorics Conference, pages 600–610. Springer,
2008.

[5] VHF Batista. On the complexity of the edge
guarding problem. In Proc. 26th European Work-
shop on Computational Geometry, Dortmund, Ger-
many, 2010, pages 53–56, 2010.

[6] N Benbernou, Erik D Demaine, Martin L De-
maine, Anastasia Kurdia, Joseph O’Rourke, God-
fried Toussaint, Jorge Urrutia, and Giovanni Vigli-
etta. Edge-guarding orthogonal polyhedra. In Pro-
ceedings of the 23rd Canadian Conference on Com-
putational Geometry, pages 461–466, 2011.

[7] Iliana Bjorling-Sachs and Diane L. Souvaine. An
efficient algorithm for guard placement in polygons
with holes. Discrete & Computational Geometry,
13(1):77–109, 1995.

[8] Gregoria Blanco, Hazel Everett, Jesus Garcia
Lopez, and Godfried Toussaint. Illuminating the
free space between quadrilaterals with point light
sources. In PROC. COMPUTER GRAPHICS
INT.,. WORLD SCIENTIFIC. Citeseer, 1994.

[9] Édouard Bonnet and Tillmann Miltzow. An ap-
proximation algorithm for the art gallery problem.
arXiv preprint arXiv:1607.05527, 2016.

[10] Prosenjit Bose, David Kirkpatrick, and Zaiqing Li.
Worst-case-optimal algorithms for guarding planar
graphs and polyhedral surfaces. Computational Ge-
ometry, 26(3):209–219, 2003.

[11] Javier Cano, Csaba D Tóth, and Jorge Urrutia.
Edge guards for polyhedra in three-space. In Pro-
ceedings of 24th Canadian Conference on Compu-
tational Geometry (CCCG), pages 163–167, 2012.

[12] Vasek Chvatal. A combinatorial theorem in plane
geometry. Journal of Combinatorial Theory, Series
B, 18(1):39–41, 1975.

[13] Richard Cole and Micha Sharir. Visibility prob-
lems for polyhedral terrains. Journal of symbolic
Computation, 7(1):11–30, 1989.

[14] Jurek Czyzowicz, Eduardo Rivera-Campo, and
Jorge Urrutia. Illuminating rectangles and trian-
gles in the plane. Journal of Combinatorial Theory,
Series B, 57(1):1–17, 1993.

[15] Jurek Czyzowicz, Eduardo Rivera-Campo, Jorge
Urrutia, and Joseph Zaks. Protecting convex sets.
Graphs and Combinatorics, 10(2-4):311–321, 1994.

[16] Jesús Garćıa López de la Calle. Problemas al-
goŕıtmico-combinatorios de visibilidad. PhD thesis,
Universidad Politécnica de Madrid, 1995.

[17] Pedro J de Rezende, Cid C de Souza, Stephan
Friedrichs, Michael Hemmer, Alexander Kröller,
and Davi C Tozoni. Engineering art galleries. In
Algorithm Engineering, pages 379–417. Springer,
2016.

[18] Vladimir Estivill-Castro and Jorge Urrutia. Opti-
mal floodlight illumination of orthogonal art gal-
leries. In CCCG, pages 81–86, 1994.

[19] H Everett and G Toussaint. On illuminating iso-
thetic rectangles in the plane,”, 1990.

[20] Hazel Everett and Eduardo Rivera-Campo. Edge
guarding a triangulated polyhedral terrain. In
CCCG, pages 293–295, 1994.

[21] Steve Fisk. A short proof of chvátal’s watchman
theorem. J. Combinatorial Theory (B), 24:374,
1978.

[22] Frank Hoffmann. On the rectilinear art gallery
problem. In International Colloquium on Au-
tomata, Languages, and Programming, pages 717–
728. Springer, 1990.

[23] Frank Hoffmann, Michael Kaufmann, and Klaus
Kriegel. The art gallery theorem for polygons with
holes. In [1991] Proceedings 32nd Annual Sympo-
sium of Foundations of Computer Science, pages
39–48. IEEE, 1991.

[24] Frank Hoffmann and Klaus Kriegel. A graph-
coloring result and its consequences for polygon-
guarding problems. SIAM Journal on Discrete
Mathematics, 9(2):210–224, 1996.

306

32nd Canadian Conference on Computational Geometry, 2020

[25] C Iwamoto and T Kuranobu. Improved lower and
upper bounds of face guards of polyhedral ter-
rains. IEICE Trans. Inf. & Syst.(Japanese Edi-
tion), 95:1869–1872, 2012.

[26] Chuzo Iwamoto, Junichi Kishi, and Kenichi
Morita. Lower bound of face guards of polyhe-
dral terrains. Information and Media Technologies,
7(2):737–739, 2012.

[27] J. Urrutia J. Czyzowicz. Personal communication.
1996.

[28] Jeff Kahn, Maria Klawe, and Daniel Kleitman. Tra-
ditional galleries require fewer watchmen. SIAM
Journal on Algebraic Discrete Methods, 4(2):194–
206, 1983.

[29] Victor Klee. Is every polygonal region illuminable
from some point? The American Mathematical
Monthly, 76(2):180–180, 1969.

[30] Horst Martini and Valeriu Soltan. Survey paper.
Aequationes Math, 57:121–152, 1999.

[31] TS Michael and Val Pinciu. Guarding orthogonal
polygons with h holes: A bound independent of h.

[32] Joseph O’Rourke. An alternate proof of the rec-
tilinear art gallery theorem. Journal of Geometry,
21(1):118–130, 1983.

[33] Joseph O’Rourke. Galleries need fewer mobile
guards: a variation on chvátal’s theorem. Geome-
triae Dedicata, 14(3):273–283, 1983.

[34] Joseph O’Rourke. Art gallery theorems and algo-
rithms, volume 57. Oxford University Press Ox-
ford, 1987.

[35] Thomas C Shermer. Recent results in art galleries.
PROCEEDINGS-IEEE, 80:1384–1384, 1992.

[36] Diane L Souvaine, Raoul Veroy, and Andrew
Winslow. Face guards for art galleries. In Proceed-
ings of the XIV Spanish Meeting on Computational
Geometry, pages 39–42. Citeseer, 2011.

[37] Cs D Tóth. Art galleries with guards of uni-
form range of vision. Computational Geometry,
21(3):185–192, 2002.

[38] Csaba D Tóth. Art gallery problem with guards
whose range of vision is 180. Computational Ge-
ometry: Theory and Applications, 3(17):121–134,
2000.

[39] Csaba D Tóth. Guarding disjoint triangles and
claws in the plane. Computational Geometry, 25(1-
2):51–65, 2003.

[40] L Fejes Tóth. Illumination of convex discs. Acta
Mathematica Hungarica, 29(3-4):355–360, 1977.

[41] Jorge Urrutia. Art gallery and illumination prob-
lems. In Handbook of computational geometry,
pages 973–1027. Elsevier, 2000.

[42] Giovanni Viglietta. Reprint of: Face-guarding
polyhedra. Computational Geometry: Theory and
Applications, 48(5):415–428, 2015.

[43] Giovanni Viglietta. Optimally guarding 2-reflex or-
thogonal polyhedra by reflex edge guards. arXiv
preprint arXiv:1708.05469, 2017.

[44] Pawe l Żyliński. Orthogonal art galleries with holes:
A coloring proof of aggarwal’s theorem. the elec-
tronic journal of combinatorics, 13(1):20, 2006.

A Related Work

A.1 Simple Polygons Results

Given a simple polygon P in the plane, with n ver-
tices, Chvatal [12] proved that bn/3c vertex guards are
always sufficient and sometimes necessary to guard P .
Chvatal’s proof was later simplified by Fisk [21] using
the existence of a three-coloring of a triangulated poly-
gon.

When the view of the guard is limited to 180◦,
Toth [38] showed that bn3 c point guards are always suf-
ficient to cover the interior of P (thus, moving from
360 to 180 range of vision keeps the same sufficiency
number). F. Santos conjecture that b 3n−35 cπ vertex
guards are always sufficient and occasionally necessary
to cover any polygon with n vertices. Later in 2002,
Toth [37] provided a lower bound on the number of
point guards when the range of vision α is less than
180◦. When α < 180◦, there exist a polygon P that
cannot be guarded by 2n

3 − 3 guards. For α < 90◦

there exist P that cannot be guarded by 3n
4 − 1 guards,

and for α < 60◦ there exist P where the number of
guards needed to cover P is at least b 60α c

(n−1)
2 . In

2016, Bonnet and Miltzow [9] provided an O(log OPT)
-approximation algorithm for the placement of points
guards that entirely cover P .

A.2 Orthogonal Polygons Results

In 1983, Kahn et al. [28] showed that if every pair of
adjacent sides of the polygon form a right angle, then
bn4 c vertex guards are occasionally necessary and always
sufficient to guard a polygon with n vertices.

In 1983, O’Rourke [32] showed that 1 + b r2c vertex
guards are necessary and sufficient to cover the interior
of an orthogonal polygon with r reflex vertices. Castro

and Urrutia [18] provided a tight bound of b 3(n−1)8 c on

307

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

the number of orthogonal guards placed on the vertices,
sufficient to cover an orthogonal polygon with n vertices.

A.3 Polygon with Holes Results

For a polygon P with n vertices and h holes, the value n
is the sum of the number of vertices of P and the number
of vertices of the holes. Let g(n, h) be the minimum
number of point guards and gv(n, h) be the minimum
number of vertex guards necessary to cover any polygon
with n vertices and h holes.

O’Rourke [33] gave a first proof on guarding polygons
with holes and showed that gv(n, h) ≤ bn+2h

3 c. Shermer

conjectured that gv(n, h) ≤ bn+h3 c and this is a tight
bound. He was able to prove that, for h = 1, gv(n, 1) =
bn+1

3 c. However, for h > 1 the conjecture remains open.
Shermer’s result can be found in [34, 35].

Sachs and Souvaine [7] and Hoffmann et al. [23]
showed that no art gallery problem with n vertices and
h holes requires more than bn+h3 c point guards and pro-
vided an O(n2) algorithm to find such placement, which
is based on triangulation and 3-coloring.

A.4 Orthogonal Polygon with Holes Results

For this version, all polygons and holes are orthogo-
nal and axis-aligned. Let orth(n, h) be the minimum
number of point guards and orthv(n, h) be the mini-
mum number of vertex guards necessary to guard any
orthogonal polygon with n vertices and h holes. Note
that orth(n, h) ≤ orthv(n, h).

O’Rourke’s method extends to show that:
orthv(n, h) ≤ bn+2h

4 c. Shermer [34] conjectured

that orthv(n, h) ≤ bn+h4 c which Aggarwal [3] estab-
lished for h = 1 and h = 2. Zylinski [44] showed that
bn+h4 c vertex guards are always sufficient to guard
any orthogonal polygon with n vertices and h holes,
provided that there exists a quadrilateralization whose
dual graph is a cactus.

O’Rourke also conjectured that orth(n, h) is indepen-
dent of h: orth(n, h) = bn4 c, which was verified by Hoff-
mann [22]. In 1990, Hoffmann [22] showed that bn4 c
point guards are always sufficient and sometimes nec-
essary to guard an orthogonal polygon with n vertices
and an arbitrary number of holes. In 1996, Hoffmann
and Kriegel [24] showed that ≤ bn3 c vertex guards are
sufficient to watch the interior of an orthogonal polygon
with holes.

Consider orthv(n, .) as the maximum of orthv(n, h)
over all h. Hoffmann conjectured that orthv(n, .) ≤
b 2n7 c, disproving the earlier conjecture of Aggarwal [3]
that orthv(n, .) ≤ b 3n11 c. In 2013, Michael and Pin-
ciu [31] improved this bound and showed that an orthog-
onal gallery with n vertices and an unspecified number
of holes can be guarded by at most 17n−8

52 vertex guards
(17 / 52 = 0.3269).

In 1998, Abello et al. [1] provided a first tight bound of

b 3n+4(h−1))
8 c for the number of orthogonal guards placed

at the vertices of an orthogonal polygon with n vertices
and h holes which are sufficient for the cover the poly-
gon and described a simple linear-time algorithm to find
the guard placement for an orthogonal polygon (with or
without holes).

In 2016, Rezende et al. [17] showed the chronology of
developments, and compared various current algorithms
aiming at providing efficient implementations to obtain
optimal, or near-optimal, solutions.

A.5 Families of Convex Sets (Triangles and Quadri-
laterals) on the Plane Results

In 1977, Toth [40] considered the following problem:
Given a set F of n disjoint compact convex sets in a
plane, how many guards are sufficient to cover every
point in the boundary of each set in F . Toth proved
that max{2n, 4n− 7} point guards are always sufficient
to cover n disjoint compact convex sets in a plane. Ev-
erett and Toussaint [19] proved that the families of n
disjoint squares n > 4, can always be guarded with n
point guards. For families of disjoint isothetic rectangles
(rectangles are isothetic if all their sides are parallel to
the coordinate axes.), Czyzowicz et al. [14] proved that
b 4n+4

3 c point guards suffice and conjectured that n + c
point guards would suffice, c is a constant. If the rect-
angles have equal width, then n+1 point guards suffice,
and n− 1 point guards are occasionally necessary. Re-
fer [30] for more details.

In 1994, Blanco et al. [8] considered the problem of
guarding the region of the plane, excluding the inte-
rior of the quadrilaterals (free space). Given n pairwise
disjoint quadrilaterals in the plane whose convex hull
has no cut-off quadrilaterals, they showed that 2n ver-
tex guards are always sufficient to cover the free space
and all locations could be found on O(n2) time. If the
quadrilaterals are isothetic rectangles, all locations can
be placed in O(n) time.

Urrutia [41] showed that any family of n disjoint rect-
angles can be guarded with at most n+ 1 point guards.
A big rectangle encloses the elements of F , and con-
sider this as an orthogonal polygon with holes. The
total number of vertices is now 4n + 4. Using the re-
sults from guarding orthogonal polygon with holes, this
can be guarded with n+ 1 guards.

Garcia-Lopez [16] proved that b 5m9 c vertex lights are
always sufficient and bm2 c vertex guards are occasionally
necessary to guard the free space generated by a family
of disjoint polygons with m vertices. To cover the free
space generated by any family of n disjoint quadrilat-
erals, he proved that 2n vertex lights are always suffi-
cient and occasionally necessary and that b 5n+3

3 c point
guards are always sufficient. He conjectured that n+ c
point lights can always cover the free space generated

308

32nd Canadian Conference on Computational Geometry, 2020

by m disjoint quadrilaterals, c is a constant which was
proved false by Czyzowicz and Urrutia [27].

Czyzowicz et al. [15] proposed the following problem:
Given a set F of n disjoint compact convex sets in a
plane, how many guards are sufficient to protect each
set in F . A set F is protected by a guard g if at least one
point in the boundary of F is visible from g. They prove

that b 2(n−2)3 c point guards are always sufficient and oc-
casionally necessary to protect any family of n disjoint
convex sets, n > 2. To protect any family of n isothetic
rectangles, dn2 e point guards are always sufficient, and
bn2 c point guards are sometimes necessary.

Czyzowicz et al. [14] showed that any family of n dis-
joint triangles can be guarded with at most b 4n+4

3 c point
guards are sufficient and n − 1 are occasionally neces-
sary to guards. They also showed that n + 1 guards
are always sufficient and n − 1 guards are occasionally
necessary to illuminate any family of n homothetic tri-
angles and conjectured that there is a constant c such
that n + c point guards sufficient to guard any collec-
tion of n triangles. Later, Toth [39] showed that b 5n+2

4 c
guards can monitor the boundaries and the free space
of n disjoint triangles.

A.6 Polyhedral Terrain Results

A polyhedral terrain is a polyhedral surface in three
dimensions such that its intersection with any vertical
line is either empty or a point. A polyhedral terrain is
triangulated if each of its faces is a triangle. Notice that
a polyhedral terrain has a different structure than a city
with vertical buildings. The results related to guarding
polyhedral terrain focus on edge and face guards [20,
13, 5, 10, 26, 25].

A.7 Polyhedron Results

A polyhedron in R3 is a compact set bounded by a
piece-wise linear manifold. For guarding an orthogonal
polyhedral, points guards are less effective. There exist
polyhedra with n vertices where guards placed at ev-
ery vertex do not cover the whole interior and O(n3/2)
non-vertex guards are required for interior coverage [34].
Thus, results related to guarding R3 polyhedrons focus
on edge and face guards [41, 11, 36, 42, 6, 43].

A.8 City Guarding Results

In 2008, Bao et al. [4] proposed the city guarding prob-
lem where one is given a rectangular city with k vertical
buildings, each having a rectangular base. The guards
are to be placed only at the top vertices of the buildings.

They showed that b 2(k−1)3 c+ 1 vertex guards are some-
times necessary and always sufficient to guard the roofs
(Roof Guarding Problem), k+bk4 c+1 vertex guards are
always sufficient to cover the ground and the walls, and

k + bk2 c+ 1 vertex guards are always sufficient to cover
the city aerial space, which means all roofs and walls of
the buildings, and the ground.

B Proof of Theorem 2

Proof. The sufficiency bound is trivial. For the neces-
sary part, consider a set S = {B1, B2, B3, . . . , Bk} of k
buildings, shown in Figure 7a, with the following setup:

1. the height hBi
of building Bi is greater than the

height hBj of building Bj , ∀ i, j such that 1 ≤ i <
j ≤ k, and

2. ∀ i < j − 1, building Bj−1 totally blocks the visi-
bility between Bi and Bj .

B1

B2

B3

B4

Bk

(a) City Setup

(i)

(ii)

Bi

Bi+1

Bi

Bi+1

(b) Possible guards position

Figure 7: k guards are needed to guard the roofs.

We need to place the first guard on building B1 to
guard its roof, because hB1

> hBi
,∀i > 1. There are

four possible positions to place a vertex guard on build-
ing B1. Let the guard be placed on one of the right ver-
tices (placing the guard on one of the left vertices results
in symmetric cases). Consider the two relevant orien-
tations of the guard, shown in Figure 7b, out of three
possible positions that can see the roof of B1, where the
arrow corresponds to the direction in which the guard
is guarding the roof. Notice that a guard facing West is
placed at the lower vertex of B1 rather than at the top
vertex. Due to the limited visibility of the guard, there

309

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

is no vertex on building B1 from where roofs of both
building B1 and B2 are completely visible. Therefore,
the next guard should either be placed on building B2

or on B1, such that the roof of building B2 is completely
visible after placing this guard. If we place the second
guard on B1, then the next guard must be placed on
building B3 because no point on the roof of building B3

is visible by the previously placed guards. Thus, we can
place the next guard on building B2. The rest follows
by induction on the number of buildings, as we are left
with a similar problem on k − 1 buildings. �

C Necessity Proof of Theorem 8

Necessity: For the necessity part, consider the input
in Figure 8, with the following properties:

1. Bi lies within the span of Bj ,∀j < i.

2. None of the edges of Bi is partially or completely
visible from any vertex of Bj , ∀ j < i−1 and from
any vertex of Bm, ∀ m > i+ 1.

3. From each potential position of a vertex guard on
Bi, the guard is able to see at most one edge of
Bi+1.

4. There is no guard position on Bi from where an
edge of Bi−1 and an edge of Bi are visible.

B1

B2

B3

B4

Figure 8: City Structure where 3k + 1 guards are nec-
essary to guard the polygon

Consider the space ℘i between two consecutive holes
Bi and Bi+1, as shown in Figure 9. Because of property
2, ℘i is not visible to any guard placed on building Bj
where j ∈ [1, i)∪(i+1, k]. Therefore, ℘i is only visible to
the guards either placed on Bi or Bi+1. It is easy to no-
tice that there are twelve possible guard positions on Bi
and Bi+1 from where ℘i is visible (partially from each
position, see Figure 9), and these guards cover three
walls, one wall of Bi and two walls of Bi+1. Note that
these guards do not cover any other wall (partially or

entirely), and the mentioned three walls are not visible
(partially or entirely) to any other potential guard. Out
of twelve possible guard positions, the minimum num-
ber of guards required to guard ℘i is two (either both
placed on Bi or one placed on Bi and another on Bi+1.
Therefore the space between any two consecutive holes
is only guarded by the guards placed on these holes, and
the minimum number of guards required to guard such
space is two.

Consider the left wall, wiL of hole Bi. Because of
the structure of the city, wiL is not visible to any guard
placed on Bj for j 6= i. Hence, wiL can only be guarded
by a guard placed on Bi, and there are four possible
guard positions from where wiL is visible(see Figure 9).
However, none of these guards positions cover any other
wall in the city. Therefore, we need one guard to cover
the left wall of each hole.

Bi

Bi+1

Figure 9: ℘ is shaded in green. Potential guard posi-
tions to cover ℘ are shown in red and potential guard
positions to cover the wiL is shown in orange.

There are k−1 spaces ℘i in total, between consecutive
buildings (i = 1, 2, . . . , k−1). Thus, 2(k−1) guards are
needed to guard their union. As argued, each left edge
of a hole needs an additional guard, resulting in 3k − 2
guards. The top and right edges of B1 and the bottom
edge of Bk are not guarded, so in total, at least 3k + 1
guards are needed.

A 3k + 1 guard placement, for k = 4, is shown in
Figure 8 and is obtained as follows. We start placing
guards on B1. Three of its walls (left, top and right) are
not visible by any potential guard placed on Bi ,∀i > 1
(property 1). We place three guards to cover these walls.
Consider the space ℘1 between B1 and B2. We need two
guards to cover ℘1; let one of these guards be placed on
B1 and the other on B2 (see Figure 8). After placing
these two guards, all walls of B1 are visible, and two
walls of B2 (top and right) are visible. We need an
additional guard to cover the left wall of B2, and this
guard does not cover any other wall in the city. Consider
now the space ℘2 between the hole B2 and B3 and place
two guards to cover ℘2; let one of these guards be placed

310

32nd Canadian Conference on Computational Geometry, 2020

on B2 and the other on B3. After placing these two
guards, all walls of B1 and B2 are guarded, and two
walls of B3 are guarded. We placed four guards on
B1 and three guards on B2. We continue this process,
and three guards are required to guard each building
Bi ∀i > 2. This results in 3k + 1 guards as we place
three guards on each building Bi ,∀i ∈ (1, k], and four
guards on B1. Guard locations and directions are shown
in Figure 8.

311

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Blind Voronoi Game

Omid Gheibi∗ Hamid Zarrabi-Zadeh†

Abstract

In the classical Voronoi game, two players compete over
a user space by placing their facilities in a certain order,
each trying to maximize the number of users served by
their facilities. We introduce a new variant of the game,
so called blind Voronoi game, in which the distribution
of users in the underlying space is initially unknown to
the players. As the game proceeds, players obtain a par-
tial information about the distribution, which is limited
to the distance of closest users to the facilities placed
so far. We investigate mixed strategies for the players
in this blind setting. In particular, we show that in the
two-round blind Voronoi game on a line segment, there
is a mixed strategy for the second player that guaran-
tees him at least 1/3 of users in expectation. In two
dimensions, we show that our strategy guarantees an
expected payoff of 1/5 for the second player, when users
are arbitrary distributed in the plane. We generalize our
strategy to any d-dimensions and to any number of k
rounds, for k, d ≥ 1.

1 Introduction

The Voronoi game was introduced by Ahn et al. [1] as
a competitive facility location problem. The game con-
sists of two players P1 and P2, and a set of users in an
underlying space. Th players compete over the users by
alternatively placing their facilities in the space, each
trying to maximize the number of users served by their
facilities, assuming that each user seeks service from the
closest facility.

The Voronoi game has been the subject of active re-
search over the past decade, and various variants of the
problem have been studied in the literature, such as
Voronoi game on line segments [3], in the plane [10], on
graphs [2, 11, 12], and in simple polygons [6]. The prob-
lem has been also studied both in one round [7, 9], where
P1 places all his facilities before P2 starts placing his
facilities, and in the k-round version, where players al-
ternate by placing one facility at a time for k rounds [4].
The problem has been also studied in the discrete and
continues spaces. In the former, users are considered as
discrete points in the space (e.g., in [3, 4, 5]), while in

∗Department of Computer Engineering, Sharif University of
Technology, gheibi@ce.sharif.edu

†Department of Computer Engineering, Sharif University of
Technology, zarrabi@sharif.edu

the latter, users are distributed continuously over the
space (e.g., in [1, 7, 10]).

In this paper, we introduce a new variant of the
Voronoi game which we call the blind Voronoi game.
The blind version differs from the previous variants of
the game in that the distribution of users is initially
unknown to the players. During the game, players ob-
tain a partial information about the distribution, which
is limited to the distance of closest users to the facil-
ities placed so far. The blind version of the game is
suitable in real situations of the facility location prob-
lem, in which no prior information about the location
or distribution of the users is available to the players.
In other words, players are “blind” to the location and
distribution of the users in the space.

We study the k-round discrete blind Voronoi game,
in which two players P1 and P2 compete over a user
space by placing one facility at a time, for a total of k
rounds. The user distribution is initially unknown to
the players, and the only information available to each
player during the game is the distance of closest users
to the current facilities. The payoff of each player is
defined as the fraction of users served by his facilities.
The goal of P2 is to maximize his expected payoff in the
worst case, where the expectation is taken over the ran-
dom choices of the player, and the worst case is taken
over all possible user distributions. On the other hand,
P1’s goal is to minimize P2’s expected payoff. We note
that maximizing payoff for P1 is not a proper goal, as
there is always a distribution of users in which the ex-
pected number of users for P1 is zero: just consider a
distribution very dense at the last facility of P2. More-
over, we note that a pure strategy for the second player
will not work, as the player has no information about
the location of users, and hence, the adversary can eas-
ily adjust a distribution for which the player’s payoff is
zero. Therefore, in order to guarantee a payoff greater
than zero, the second player needs to use a mixed strat-
egy, i.e., use randomization.

We investigate the k-round discrete blind Voronoi
game in d-dimensional Euclidean space. In one-
dimensional two-round game, where users are discretely
distributed on a line segment, we show that the second
player has a mixed strategy that guarantees him an ex-
pected payoff of 1/3, regardless of the initial distribution
of the users. When users are discretely distributed in
the plane, our mixed strategy guarantees an expected
payoff of 1/5 for the second player in the two-round

312

32nd Canadian Conference on Computational Geometry, 2020

game. We generalize our strategy to any d-dimensions
and to any number of k rounds, d, k ≥ 1, yielding an
expected payoff of 1/(kd + 1) for the second player in
the worst case.

2 Preliminaries

Let ℓ be a line segment, and π be a distribution of users
on ℓ. Given two points u, x ∈ ℓ, we say that u is served
(or is covered) by x, if u is closer to x than any other
facility on ℓ. Given a point x ∈ ℓ and a distribution
π on ℓ, we denote by Nπ(x) the number of users in
the distribution served by x. We assume that no two
users or facilities can share the same location. We call
two facilities adjacent if no user lies on the line segment
between them. The payoff of each player is defined as
the fraction of users served by his facilities. We denote
the minimum expected payoff of P2 at the end of the
game by Π2. The goal of P2 is to maximize Π2, while
P1’s goal is to minimize Π2.

A candidate set C is a set of points along with a
probability function p that assigns to each point x ∈ C
a probability p(x) such that

∑
x∈C p(x) = 1. We denote

by G(C) the minimum expected number of users served
by C, i.e., G(C) = minπ

{∑
x∈C p(x)Nπ(x)

}
, where the

minimum is taken over all possible distributions π of
the users. Each point in a candidate set is called a
candidate point. A candidate set C with a maximum
possible G(C) is called an optimal candidate set.

3 Blind Voronoi game on a line segment

In this section, we consider the two-round blind Voronoi
game on a line segment. Let ℓ be the underlying line seg-
ment. We solve the game in a top-down approach, anal-
ogous to the backward induction in extensive games.
Namely, we first suppose that all moves are done, ex-
cept the last move of P2. After resolving the last move
of P2 , we suppose that the first moves of P1 and P2 are
finished, and resolve the second move of P1. Similarly,
we resolve the first move of P2, assuming that P1 has
placed his first facility, and finally we consider the first
move of P1.

We start by the last move of P2. Depending on the
order of facilities on the line and their adjacency, several
cases can arise as depicted in Figure 1. In this figure,
f and s denote the facilities of the first and the second
player, respectively. Moreover, the empty circles show
candidate points for the second facility of P2. The cases
are distinguished as follows. We assume, w.l.o.g., that
the leftmost facility on the line segment is f . (The other
case is symmetric.) Thus the first three facilities of the
players have two possible permutations: either ffs or
fsf . Cases (a) to (d) of Figure 1 correspond to different
arrangements for ffs, based on whether two facilities

f f s

n1 n2

(a)

f f s

n2n1

(b)

f s f

n1

(c)

f f

n1

s

n2

(d)

f f s

n1 n2

(e)

f s f

n1 n2

(f)

n1

f f

n1 n2

(g)

n1

s

Figure 1: Seven cases for the last move of P2

are adjacent or not. (Adjacent facilities are shown close
to each other with no empty circle in between.) Cases
(e) to (g) of the figure demonstrate different arrange-
ments for fsf . Any other configuration is analogous or
symmetric to one of these cases.

As illustrated in the figure, all candidate points for
the second facility of P2 are chosen adjacent to P1’s
facilities. The next lemma shows that this is indeed the
best choice for the candidate sets.

Lemma 1 Any optimal candidate set for the last move
of P2 consists of candidate points adjacent to P1’s facil-
ities, on those sides which are free from adjacent facili-
ties. The probability of choosing each of these candidate
points in an optimal candidate set must be equal.

Proof. Let C be an optimal candidate set for P2’s last
move. Let ρ(y) denote the probability that a point y ∈ ℓ
is covered by C, i.e., the sum of probabilities of candi-
date points that cover y. Note that

G(C) = min
π

{∑

x∈C

p(x)Nπ(x)

}

= min
π

{∑

u∈π

ρ(u)

}

≥ n · min
y∈ℓ

{ρ(y)} ,

where π is taken over all possible distributions of users
on ℓ, and y is taken over all points in ℓ where users
may be located. Since there is a distribution π where
all users are dense at a point y that minimizes ρ(y),
we have G(C) = n · miny∈ℓ {ρ(y)}. This means that

313

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

we must cover every point y ∈ ℓ with some positive
probability, otherwise G(C) = 0. The only way to cover
a point y adjacent to a P1 facility is with an adjacent
candidate, and therefore, ρ(y) = p(y) for such points.
Moreover, the set of adjacent candidates covers all of ℓ.
Thus, the minimum of ρ(y) is attained at an adjacent
point.

It follows that the optimal strategy is to maximize
the minimum of ρ(y) = p(y) at adjacent points. This is
achieved by selecting uniformly from just the adjacent
points. If one adjacent point is more likely than another,
its probability can be reduced and the minimum raised.
If a non-adjacent point is in the candidate set C, it
can be removed and its probability distributed evenly
among the adjacent points, also raising the minimum of
ρ(y). □

Lemma 2 For cases (a) to (g) of Figure 1, the value
of Π2 is 1

4 , 1
2 , 1

3 , 1, 1
4 , 1

3 , and 1
2 , respectively.

Proof. Fix one of the cases in Figure 1. Let C be the
set of candidate points in that case, and k be the number
of candidate points in C. Let I be the portion of line
segment ℓ not already covered by P2, and n1 be the
number of users lying in I (see Figure 1). The candidate
points in C are chosen in such a way that they jointly
cover the whole area of I. As the probability of choosing
each candidate point is equal by Lemma 1, the expected
number of users served by the candidate points in C is
n1/k. Considering that the number of users already
served by P2 is n2 = n − n1 ≥ 0, the expected number
of users served after the last move of P2 is n2 + (n −
n2)/k ≥ n/k. Since n2 can be zero in a distribution, the
above inequality reduces to an equality at its minimum.
Therefore, Π2 = 1

k in the corresponding case. Since the
size of the optimal candidate sets in cases (a) to (g)
are 4, 2, 3, 1, 4, 3, 2 respectively, the statement of the
lemma follows. □

By Lemma 2, the minimum value of Π2 achievable by
the second player is 1/4. However, this minimum value
corresponds to two cases that the second player can
avoid by choosing a proper strategy for placing his first
facility. We show this in the next lemma.

Lemma 3 The best move for the first facility of P2 is
to place his facility adjacent to the first facility of P1.

Proof. If the first move of P2 is not adjacent to the first
move of P1 (see Figure 2a), then P1 can place his last
facility in the second round in such a way that either
case (a) or case (e) of Figure 1 occurs, for which we
already know that Π2 is 1/4 by Lemma 2. On the other
hand, if P2 places his first facility adjacent to the first
facility of P1, he can guarantee a value of Π2 ≥ 1/3 in
all cases derived from his move. □

f s

n1 n2

(a)

f s

n2n1

(b)

Figure 2: Two cases for the first move of P2

Lemmas 1–3 together yield the following theorem.

Theorem 4 There is a strategy for the second player
in the two-round blind Voronoi game on a line segment
that guarantees Π2 ≥ 1

3 .

Remark. It is easy to see that the first player has al-
ways a strategy to force Π2 to be at most 1/3. The first
move of P1 is arbitrary, as there is still no other facil-
ity, and there is no information about the users. If P2
places his first facility adjacent to the first facility of P1,
which is indeed the best strategy for P2 by Lemma 3,
then P1 in his second move, can put his second facility
far from the first two facilities, in order to either case
(c) or case (f) of Figure 1 arises, in both of which Π2 is
1/3.

4 Blind Voronoi game in Rd

In this section, we generalize our result for the blind
Voronoi game in one dimension to any fixed dimension
d ≥ 2, and for any number of rounds k ≥ 2. In the
following, we denote by r(f) the distance of a facility f
to its nearest user.

Recall that the main idea behind our strategy in one
dimension was to cover all points on the line where users
may be located by a set of candidate points. We gener-
alize this idea to d dimensions as follows. Let F be a set
of facilities placed by the first player in Rd. We call a
set C of points in Rd a proper candidate set with respect
to F , if in the Voronoi diagram of C ∪ F , the unoin of
Voronoi cells of C cover all regions in Rd that may con-
tain users. This ensures P2 to cover every point that
a user may be located with some positive probability,
when choosing at random from the candidate set.

To present the generalized idea, we start by explain-
ing our strategy in two dimensions. Suppose that P1
has placed his first facility at a point f in the plane.
Consider a circle B centered at f with radius r(f)/2.
We choose three points evenly spaced on the boundary
of B as our candidate set C. (See Figure 3.) Note that
the Voronoi cell of f in the Voronoi diagram of C∪{f} is
contained in B, and hence, is empty of any user. There-
fore, all users are covered by the union of the Voronoi
cells of C, and hence, C is a proper candidate set. Now,
if P2 chooses uniformly at random from C, he receives
one third of the users in expectation in the worst case.

314

32nd Canadian Conference on Computational Geometry, 2020

f

x

B

Figure 3: A facility f and its closest user x. Three
candidate points are evenly spaced on the boundary of
a circle B centered at f of radius ∥x − f∥/2.

Now, suppose that P1 places his second facility on a
point f ′. Again, we choose three points evenly spaced on
a circle centered at f ′ with radius r(f ′)/2, and add these
three points to C. Now, C has six candidate points, one
of which is already chosen by P2 in the first round. (See
Figure 4.) Moreover, C is a proper candidate set with
respect to {f, f ′}, as the Voronoi cells of f and f ′ are
both empty of any user. Now, P2 chooses from the re-
maining 5 candidate points of C uniformly at random,
and hence, receives at least 1/5 of the users in expecta-
tion. This yields a strategy for the second player in the
two-round blind Voronoi game in the plane that guar-
antees Π2 ≥ 1

5 .

To extend our strategy to higher dimensions, we first
define some notions. Given a point p ∈ Rd and a real
value r > 0, we denote by B(p, r) a d-dimensional ball
of radius r centered at p. The distance of a point p to a
point set S is defined as minq∈S ∥p − q∥. A straightfor-
ward extension of our two-dimensional idea to higher
dimensions would be as follows. Let f be a facility
of P1, and let r = r(f)/2. We choose d + 1 points
evenly spaced on the boundary of B(f, r) as the candi-
date points. However, in d ≥ 5 dimensions, the Voronoi
cell of f is no longer contained in B(f, r(f)), and hence,
there may be users outside B(f, r(f)) covered by f . To
overcome this issue, we need to choose the radius r small

f

f ′

Figure 4: The Voronoi diagram of C ∪ {f, f ′}

u

p

`
v

r

Figure 5: Point p at distance ℓ to the center of a regular
simplex.

enough to make sure that the Voronoi cell of f is empty
of any user. The following lemma is crucial for finding
such a proper radius.

Lemma 5 Let S be a regular d-dimensional simplex
whose circumsphere has radius r, and let p be a point at
distance ℓ to the center of S. Then the distance of p to
the vertex set of S is at most

√
r2 + ℓ2 − 2rℓ

d
.

Proof. Fix a vertex v of S. Suppose, w.l.o.g., that S is
centered at the origin, and that v = (−r, 0, 0, . . . , 0). As
the angle subtended by any two vertices of S through
the origin is arccos(−1/d) [8], the x-coordinate of any
other vertex of S is r/d. Now, consider a point p in
the halfpence x ≥ 0 at distance ℓ to the origin. Due to
symmetry of S, the maximum distance of p to the vertex
set of S is attained when p lies on the line through v and
the origin, i.e., p = (ℓ, 0, 0, . . . , 0). Now, fix an arbitrary
vertex u of S \{v}. We can assume w.l.o.g. (by rotating
around the x-axis) that u lies in the xy-plane. As u
has distance r to the origin, the y-coordinate of u is√

r2 − (r/d)2. (See Figure 5.) Therefore, the distance
of p to u (and to any other vertex of S \ {v}) is

√(
ℓ − r

d

)2

+ r2 −
(r

d

)2

=

√
r2 + ℓ2 − 2rℓ

d
.

□

Lemma 5 is interesting on its own. For example, it im-
plies that any point on the circumsphere of a regular
simplex S has distance at most

√
(2 − 2/d)r to the ver-

tex set of S, where r is the radius of the circumsphere
of S.

We are now ready to provide a general strategy for
the blind Voronoi game in any fixed dimensions. In the
following we denote by VD(P) the Voronoi diagram of
a point set P .

Theorem 6 For all integers k, d ≥ 1, there is a strategy
for the second player in the k-round blind Voronoi game
in Rd that guarantees Π2 ≥ 1

kd+1 .

315

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Proof. Suppose we are in the k-th round, k ≥ 1, and let
F be the set of k facilities placed by P1. For each facility
f ∈ F , we define Cf as a set of d+1 points evenly spaced
on the boundary of a ball of radius r(f)/d centered at
f . We take C =

∪
f∈F Cf as the candidate set for P2.

We claim that C is a proper candidate set. To prove
this, we show that the Voronoi cell of every point of F
in VD(C ∪F) is empty of any user. Fix a facility f ∈ F ,
and let r = r(f)/d. Consider an arbitrary user u, and
let ℓ be the distance of u to f . Note that ℓ ≥ r(f) = rd.
Now, by Lemma 5, the distance of u to the point set Cf

is at most
√

ℓ2 + r(r − 2ℓ
d), which is strictly less than ℓ

for all values 0 < r < 2ℓ
d . The latter inequality holds,

since r ≤ ℓ/d by our choice of r, and therefore, u is
closer to a point in Cf than to f . Hence, u cannot lie
in the Voronoi cell of f in VD(C ∪ F), which completes
the proof of the claim.

Now, the generalized strategy for the second player is
as follows. During the first k−1 rounds, P2 places k−1
facilities arbitrarily on k − 1 candidate points of C. In
the k-th round, P2 places his k-th facility uniformly at
random on one of the remaining candidate points of C.
Let S be the final set of facilities placed by P2. Since
S ⊆ C, for any facility s ∈ S, the Voronoi cell of s in
VD(C ∪ F) is completely contained in the Voronoi cell
of s in VD(S ∪F). In other words, any user lying in the
Voronoi cell of s in VD(C∪F) is covered by s at the end
of the game. Let R ⊂ S be the k − 1 facilities placed
by P2 before the last round, and let n1 be the number
of users lying in the Voronoi cells of R in VD(C ∪ F).
As the Voronoi cells of F in VD(C ∪ F) are empty, the
remaining n − n1 users are covered by the Voronoi cells
of the candidate points in C \ R. Since the probability
of choosing each candidate point in C \ R is equal in
the last round, the expected number of users lying in
the Voronoi cell of the selected facility in the last round
is (n − n1)/(kd + 1), where kd + 1 is the size of C \ R.
Therefore, the expected number of users lying in the
Voronoi cells of S in VD(C∪F) is n1+(n−n1)/(kd+1) ≥
n/(kd + 1), which completes the proof. □

5 Conclusion

In this paper, we introduced a new variant of the
Voronoi game, so called blind Voronoi game, in which
the distribution of users is initially unknown to the play-
ers. We provided a mixed strategy for the second player
in the two-round blind Voronoi game that guarantees an
expected payoff of 1/3, when users are distributed on a
line, and an expected payoff of 1/(2d + 1), when users
are arbitrary distributed in Rd. Our strategy can be
applied to other variants of the problem, such as the
k-round m-facility game, where each player places m
facilities at each of the k rounds. Other variants of the
problem remain open for further research, such as blind

Voronoi game on graphs and blind Voronoi game in sim-
ple polygons.

Acknowledgments. The authors would like to thank
the anonymous reviewers for their valuable comments.

References

[1] H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, and
R. van Oostrum. Competitive facility location: the
Voronoi game. Theoret. Comput. Sci., 310(1):457–467,
2004.

[2] S. Bandyapadhyay, A. Banik, S. Das, and H. Sarkar.
Voronoi game on graphs. Theoret. Comput. Sci.,
562:270–282, 2015.

[3] A. Banik, B. B. Bhattacharya, and S. Das. Optimal
strategies for the one-round discrete Voronoi game on
a line. J. Comb. Optim., 26(4):655–669, 2013.

[4] A. Banik, B. B. Bhattacharya, S. Das, and S. Das. Two-
round discrete Voronoi game along a line. In Proc. 3rd
Internat. Workshop Frontiers Algorithmics, pages 210–
220, 2013.

[5] A. Banik, B. B. Bhattacharya, S. Das, and S. Das. The
1-dimensional discrete Voronoi game. Operations Re-
search Letters, 47(2):115–121, 2019.

[6] A. Banik, S. Das, A. Maheshwari, and M. Smid. The
discrete Voronoi game in a simple polygon. Theoretical
Computer Science, 2019.

[7] O. Cheong, S. Har-Peled, N. Linial, and J. Matousek.
The one-round Voronoi game. In Proc. 18th Annu.
ACM Sympos. Comput. Geom., pages 97–101, 2002.

[8] H. S. M. Coxeter. Regular polytopes. Dover, New York,
1973.

[9] M. de Berg, S. Kisfaludi-Bak, and M. Mehr. On one-
round discrete Voronoi games. In Proc. 30th Annu. In-
ternat. Sympos. Algorithms Comput., pages 37:1–37:17,
2019.

[10] S. P. Fekete and H. Meijer. The one-round Voronoi
game replayed. Comput. Geom. Theory Appl., 30(2):81–
94, 2005.

[11] M. Mavronicolas, B. Monien, V. G. Papadopoulou, and
F. Schoppmann. Voronoi games on cycle graphs. In
Proc. 33rd Internat. Sympos. Math. Found. Comput.
Sci., pages 503–514, 2008.

[12] X. Sun, Y. Sun, Z. Xia, and J. Zhang. The one-round
multi-player discrete Voronoi game on grids and trees.
In International Computing and Combinatorics Confer-
ence, pages 529–540. Springer, 2019.

316

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Line Segment Visibility: Theoretical and Experimental Results

Jonathan Lenchner * Eli Packer �

Abstract

We study a family of line segment visibility problems
related to classical art gallery problems, which are mo-
tivated by monitoring requirements in commercial data
centers. Given a collection of non-overlapping line seg-
ments in the interior of a rectangle and a requirement
to monitor the segments from one side or the other we
examine the problem of finding a minimal set of point
guards.

Although we give a handful of new theoretical results,
the focus of this paper is the development of new heuris-
tics and to report on our experimental results.

1 Introduction

The problems in this paper arise from the need to cost
effectively monitor cooling and heat production in com-
mercial data centers. We model a data center as a two-
dimensional rectangular enclosure where the objects of
interest from a monitoring perspective are the air in-
take regions of servers that are housed within racks.
The monitoring technique of interest is to use stati-
cally placed thermal imaging cameras. Thermal imag-
ing cameras are relatively expensive and so the challenge
is to deploy as few of these cameras as possible while still
viewing, in total, all of the air intake regions.

In traditional art gallery problems an entire polygo-
nal region must be kept under surveillance. In our case
a prescribed collection of non-overlapping line segments
in the interior of a rectangle must be guarded, and typi-
cally it is important just to see one side of each segment.

In this work we focus on pragmatic aspects of these
line segment guarding problems. We introduce a new
family of problems that we call “all-but-δ” coverage
where we allow ourselves to omit some arbitrarily small
δ along each segment. In various extremal cases that we
shall encounter one or more cameras can be employed to
see all points along a collection of segments except for
an arbitrarily small length along one of the segments.
If we insist on seeing every point along all the segments
we must waste a camera just to see this arbitrarily small
sub-segment. To make the problem a bit more practical
we thus consider the additional covering problem where

*IBM T.J. Watson Research Center, Yorktown Heights, NY
10598, USA; lenchner@us.ibm.com

�Intel Corporation, Tel Aviv 6971011, Israel;
eli.packer@intel.com.

we admit this all but an arbitrarily small amount, δ,
of leeway along all segments. We mention, but do not
prove, a set of combinatorial bounds giving how many
guards are needed to cover n segments in the worse case,
noting how full coverage and “all-but-δ” coverage differ
in a series of examples. We then show that even in
the simplest guarding models the problem of finding a
minimal guard set is NP-Complete. Lastly, we provide
heuristics for finding guard sets along with some exper-
iments to evaluate the heuristics in randomly generated
data centers.

2 Related Work

Our work is closely related to classical art gallery prob-
lems (see [7], [9], [10] and [13]). In our case a prescribed
collection of n non-overlapping line segments in the in-
terior of a rectangle must be guarded, and moreover,
typically it is required to see each segment from one
particular side. Czyzowicz et al. [4], Toth [11] and Ur-
rutia [13] studied the problem without the presence of
a boundary, and where line segment visibility could be
from either side – a variant of our problem family that
we call the “Solver’s Choice” problem – establishing var-
ious combinatorial bounds.

The art gallery problem was first posed in 1973 by
Klee [9] when he asked how many guards are sufficient to
guard the interior of a simple polygon. In 1986 Lee and
Lin proved that finding the minimum number of guards
for an arbitrary simple polygon is NP-hard [7]. Over
the years numerous variants of the art gallery problem
have been presented and studied. For the art gallery
problem variants closest to the current work [4, 11, 13],
NP-hardness has never been established.

For over three decades interest in art gallery problems
mainly focused on theoretical aspects. However, since
the experimental work of Amit et al. [3] in 2010, a num-
ber of experimental projects have been reported, most
of which provide approaches to the classical problem
variant. The aim of this recent body of experimental
work has been to find close-to-optimal solutions in rea-
sonable time. We refer the reader to a survey of some
of these projects [6].

3 Problem Setup

We make the following assumptions: segments are as-
sumed to be non-overlapping/non-intersecting and may

317

32nd Canadian Conference on Computational Geometry, 2020

not touch the rectangular boundary. A (point) guard’s
line of site stops when it intersects a segment. A guard
collinear with a line segment does not see any point on
either side of the segment. Guards may be placed any-
where in the interior of the rectangle but not on a line
segment.

We consider cases where the segments to be mon-
itored are either all vertical or, failing that, all axis-
aligned. These cases are the two most typical cases
found in modern data centers. Segments of arbitrary
orientation have also been studied [11, 13] though we
have not. Within these cases we identify several vari-
ants of the basic visibility problem. If visibility must
be from a given side, but that side is specified by the
problem poser, we say the problem is an instance of the
Poser’s Choice problem. These problems correspond
to the case where one is given a data center and it must
monitored, as is, as cost effectively as possible. We con-
sider two cases of the Poser’s Choice problem, one in
which the Poser must be consistent and always request
the same side of segments to be guarded (say the top
side for horizontal segments, and the left side of vertical
segments, in the axis-aligned case), or a second model
where the problem poser can require either side of any
segment be guarded.

If, on the other hand, the solver has the choice of
which side to monitor the segments from, we say that
it is an instance of the Solver’s Choice problem. This
model corresponds to the case where one can alter the
orientation of the equipment (which side the air intakes
face) in order to make monitoring more cost-effective.
We also consider two variants of the Solver’s Choice
problem: a variant where the solver must monitor the
entire segment, but may monitor some points from one
side and some points from the other side, and a vari-
ant where the solver must monitor the entire segment
from one side. A final variant is where the solver must
monitor the entire segment from both sides.

We use the terms “guards” and “cameras” inter-
changeably. We decided to constrain our attention to a
bounding rectangle rather than a more general polygon
because most data centers are rectangular or very nearly
rectangular. It also allows us to align with prior work,
since in the case of combinatorial bounds (the only as-
pect of these problems that have been considered by
other authors), the presence of a rectangular boundary
is equivalent to there being no boundary at all.

4 Combinatorial Bounds

Table 4(a) collects combinatorial bounds from [4], but
mostly our own, for all of these problem variants. We
recommend the reader refer to this figure as we proceed.
Given space constraints and the focus of this paper we
shall not provide proofs for most of these bounds. Some

of the bounds are covered in our prior work [5, 8]. How-
ever, we shall provide a couple of examples establishing
lower bounds and sketch one result because of it rele-
vance in the all-but-δ analogs.

In the all-but-δ variations we are satisfied with guard-
ing all segments except for a length of δ along each seg-
ment, for a fixed arbitrarily small δ > 0. Table 4(b)
collects combinatorial bounds for these problem vari-
ants. In all of these cases we ask what is the worst-case
number of guards needed to see a set of N segments.

In all the arguments involving combinatorial bounds
we first extend segments so that each endpoint is within
some arbitrarily small ε of the bounding rectangle or a
neighboring segment. By doing so the problems become
uniformly harder.

The combinatorial bounds when all segments are ver-
tically aligned are rudimentary and covered in [5]. It
is easy to convince oneself that the same bounds exist
whether or not we allow ourselves to omit some arbi-
trarily small δ along each segment. The first case where
there is a provably different bound for the case where
one must see every point along all segments compared
with seeing all but δ is the case of axis aligned seg-
ments and the Poser’s Choice problem variant. In this
case, Figure 1, due to Toth [12], provides an example of

Figure 1: A set of n segments (in black) for the Poser’s
Choice problem, requiring 2n

3 cameras. A camera that
sees everything within a given “H” but a small amount
along the left segment has been placed just above and
to the right of the associated horizontal segments.

n segments that require 2n
3 cameras to see all segment

sides entirely. The little red “tick marks” indicate which
sides of the segments the camera must guard. It is not
difficult to see that two cameras are required to com-
pletely see the 3 segments comprising each “H.” Using
one camera in each “H”, e.g., the one’s pictured, will
necessarily leave some small unseen sub-segment along
one of the component vertical segments. Note that 2n

3
cameras does not serve as a lower bound for the all-
but-δ variant of Poser’s Choice. Indeed, it turns out
that we can establish an n

2 lower bound in this case.
Following Czyzowicz et al. [4], we take any partition
of the bounding rectangle derived from an axis-aligned
finite set of segments, e.g., as depicted in Figure 2 and
think of the result as a set of rectangular “rooms.” We
then form a graph where the nodes are the rooms and
there is an edge between any two rooms that have an

318

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 2: n = 11 segments extended so they come
within some very small ε of one another, or of one of
the rectangular walls, leaving n + 1 = 12 rectangu-
lar “rooms.” A matching, as described in the text is
shown. Cameras corresponding to the two edges con-
necting (R1, R7) and (R4, R5) are depicted, just above
and to the left of the segment separating rooms R1 and
R7, and just below and to the left of the segment sepa-
rating rooms R4 and R5. The first of the cameras sees
all of the requisite side of rooms R1 and R7, while the
second camera must omit some arbitrarily small seg-
ment along the top “wall” above rooms R4 and R5, if
this segment side needs to be guarded.

open “door” between them. An application of Tutte’s
Theorem enables one to conclude that a near perfect
matching exists in this graph. If we are happy to omit
an arbitrarily small δ from the walls of these rooms we
can ensure our ability to see the needed segment sides
in any pair of rooms in the near perfect matching with
a single camera, thus establishing the claimed n

2 +O(1)
lower bound.

A related example is that given in Figure 3 for the axis

Figure 3: A set of n axis aligned segments follow-
ing the repeating pattern vertical-horizontal-vertical-
horizontal-vertical, beginning on the left. The set re-
quires d 2n

5 e cameras to entirely see all segments from
the solver’s choice of sides assuming one must see a seg-
ment entirely from one side. Two cameras sufficient to
see the first 5 segments are shown.

aligned Solver’s Choice variant in the case where one
must see a segment entirely from one side or another.
Starting from the left, we have a repeating sequence of
vertical-horizontal-vertical-horizontal-vertical segments
(i.e. VHVHV, VHVHV, ...), all segments stretching to
within a very small ε of the bounding rectangle or the

closest adjacent segments. A simple analysis shows that
in order to see the left three segments in this figure en-
tirely without leaving a small unseen subsegment on ei-
ther of the first two vertical segments one must position
two cameras each no further right than just fractionally
beyond the second vertical segment – such a set of two
cameras is depicted in the figure. Given that the vertical
segments extend to within ε of the bounding rectangle,
these two cameras see a negligible amount of any seg-
ment beyond the 5th segment from the left. But then,
starting at the 6th segment, we have the same visibility
problem we started out with, and thus conclude that
this arrangement of segments requires the stated d 2n

5 e
cameras to see everything.

Note, however, that if it were sufficient to see all but
some arbitrarily small length δ of each segment, then
we could actually get away with one camera for every
three segments in this example. The segments may be
thought of as a sequence of triplets of segments. Using
the previous notation, they cycle through the sequence
VHV, HVV, HVH, VVH and then back to VHV. One
may guard all but δ of each VHV triplet by placing
a guard just above and to the right of the horizontal
segment, and any of the other triplets can be guarded
entirely with a single strategically placed camera. In
this all-but δ variant of Solver’s Choice we know of no
worse case then the one that required dn3 e cameras for
all vertical segments.

The tables in Figure 4 describe the state of our knowl-
edge regarding both upper bounds (prefixed by ‘U’) and
lower bounds (prefixed by ‘L’), for each of the problems
we have examined, up to constant factors. Table 4(a)
gives the bounds for the complete coverage problems
and Table 4(b) gives the bounds where we require all
but some arbitrarily small δ of the segments to be seen.

5 Hardness Results

The proofs in this section are relegated to the Appendix.

Lemma 1 If we constrain all n segment si =
[(ai, bi), (a

′
i, b
′
i)] to have rational coordinates, and ` de-

notes the maximum absolute value of any of the numera-
tors, m the maximum value of any of the denominators,
and, furthermore, we define the complexity of the prob-
lem to be max(lg `, lgm,n), then all of the problem vari-
ants we have considered thus far are in NP. Without the
constraint of rational coordinates all problem variants
are in NP within the real RAM model of computation.

Theorem 2 Given a set of all vertical segments, it is
NP-Complete to find a minimum set of guards that see
all segments from the left side, where the problem com-
plexity is defined as in Lemma 1.

319

32nd Canadian Conference on Computational Geometry, 2020

Figure 4: What we know about the various combinatorial bounds. U denotes the upper bound, L the lower bound.
All results are modulo additive constants. Citations to results that are not our own are given in square brackets.

Theorem 3 The following variants are NP-hard: (a)
Finding a minimum set of guards for vertical segments
where the poser chooses the sides to be guarded. (b)
Finding a minimum set of guards for vertical segments
where both sides are to be guarded. (c) Finding a min-
imum set of guards for segments with any orientation
where the poser chooses the sides to be guarded. (d) All
the variants stated in this theorem and the preceding one
where the visibility region of each guard is restricted to
lie within a cone of some given angle emanating from
the guard. (e) Same as Theorem 2 where at least one
point on each segment has to be guarded. (f) Finding a
minimum set of guards for vertical segments where the
solver chooses the sides to be guarded.

The proofs of all these variations involve just small
changes to the proof of Theorem 2 and are therefore
omitted. We note that Theorems 2 and 3 also hold for
the all-but-δ case, as we describe in the Appendix.

6 Heuristics: Mixed Integer Programming

We used a Mixed Integer Programming (MIP) tool to
solve guarding problems, not for segment sides, but for
a closely related problem that is more faithful to the ge-
ometry of a computer data center. In these problems we
are given a set of rectangles inside a bounding rectan-
gle and for each rectangle we are required to guard the
Poser’s Choice of sides from the outside. We shall later
consider the Solver’s Choice variant of this problem.

The main idea is to place guard candidates (denoted
by G) within the cells of a grid and among these can-
didate locations, select a smallest set that guards all
required edges (denoted by E). To increase the guard-
ing quality, as a second priority we prefer guards that
are both near edges and see the edges from wider angles
(both properties mean better sight resolution). To eval-
uate the guarding quality, we proceed as follows. For
any edge e ∈ E seen by a candidate guard gi ∈ G, let ec

be the center of e and ve be a unit vector, perpendicu-
lar to e and directed inside the rectangle of e. Let vei
be a unit vector directed from gi to ec. Let dei be the
distance from ec to gi and let aei = 1−ve ·vei where the
operator · represents dot product. aei then measures
the viewing angle from gi. Then qei = dei + raei mea-
sures the viewing quality where r > 0 balances between

the distance and the angle measures. Let qi =
Σ

e∈Ei
qei

|Ei|
where Ei is the set of edges visible from gi. As qi is a
function of distances and viewing angles with respect to
all visible edges, it will serve as the candidate’s qual-
ity measure. Let Q = max1≤i≤m(qi), where m is the
number of candidates, be the largest such measure over
all candidates. As we need to make sure that the solu-
tion contains a minimum set of guards regardless of the
guarding quality, we penalize each guard i by (Q|G|+qi).
By using this penalty, it is easy to verify that a mini-
mum set of guards is generated and as a second priority,
candidates with better guarding qualities are preferred.

Let Mn×m be a matrix whose entry mi,j is 1 if and
only if candidate gj ∈ G guards edge ei ∈ E by the

above definition. Let ~C be the decision variables of our
model. It is a vector of size m with i-th element Ci

corresponding to whether gi ∈ G is chosen (Ci = 1) or
not (Ci = 0). Then the formulation as an IP instance
is:

Minimize: Σi∈{1...m}((qi +Q|G|)Ci)

Subject to: M · ~C ≥ ~1, ~C ∈ {0, 1}m

where · is the matrix multiplication operator.
We start with a sparse grid, and incrementally exe-

cute the MIP with denser and denser grids until the so-
lution stabilizes. We define stabilization as a sequence
of MIP executions where no improvement of the best
solution occurs. We denote the length of this sequence
by STABLE ITERS and use it as a program parameter.

When the instance is too large, there is a risk that
the MIP will not complete its execution within a rea-

320

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

sonable amount of time. Hence, we limit the MIP’s
running time so that when a user-specified wait time,
MAX WAIT, expires, we relax the integer constraints
on the guard candidates and let them take arbitrary non
negative values (so shifting to Linear Programming, or
LP for short). Given the LP results, we find a guarding
set by iterating over them in the reverse order of their
LP values (so from high to low), adding guards as long
as not all required segments are guarded.

A high level description of the algorithm is given in
the pseudo-code below. The parameters for the algo-
rithms are:

� racks - racks with associated edges to be guarded

� gs - initial grid size

� gsif - how much to increase the grid density by with
each iteration. If we want to increase the grid den-
sity by 1% each time, then gsif = 1.01

� STABLE ITERS, MAX WAIT - defined above

Algorithm 1 Guarding Placement(racks, gs, gsif,
STABLE ITERS, MAX WAIT)

1: i⇐ 0
2: best⇐∞
3: bestSolution⇐ NIL
4: solver⇐ IP
5: while i < STABLE ITERS do
6: grid ⇐ build a grid with size gs
7: Compute the visibility matrix M
8: solution ⇐ execute solver
9: if solution found within time MAX WAIT then

10: if solution.size < best then
11: best ⇐ solution.size
12: bestSolution ⇐ solution
13: i⇐ 0
14: end if
15: i⇐ i+ 1
16: gs⇐ gs ∗ gsif
17: else
18: i⇐ 0
19: solver ⇐ LP
20: end if
21: end while
22: return bestSolution

In the Solver’s Choice guarding model, when we are
considering rectangles rather than segments, we desig-
nate pairs of opposite sides of each rectangle that should
be guarded and the problem solver has the choice of
which one to guard. To model this problem we re-
place the visibility matrix M with a pair of matrices
ML,MR, where ML describes what guards see the Left

or Top edges of the associated rectangles and MR de-
scribes what guards see the Right or Bottom edges of
the associated rectangles. In the IP and LP instances
we replace M · ~G ≥ ~1 with (ML +MR) · ~G ≥ ~1.

There is one catch with this model. When we go
through the pre-processing step of breaking segments
into sub-segments that are entirely seen by the respec-
tive candidate guards, as in the proof of Lemma 1),
the solution may end up seeing some sub-segments of a
given segment from one side and some from the other.
Thus, the model corresponds to the left-most case of
Solver’s Choice from Figure 4a. At this point we only
know how to get our heuristc to work for the Solver’s
Choice variant where one must see one side or the other
entirely if we don’t allow shared guarding of segments
by multiple cameras. We have not yet run experiments
for either of the Solver’s Choice visibility models.

7 Experiments

We used the Python MIP package [2] to execute both
the MIP and LP. We ran on a 64-bit Windows OS ma-
chine with Intel (R) Core(TM) i7-6700 CPUs running at
4.00GHz, configured with 4 cores and 8 logical proces-
sors. To increase the speed, we used the Numba pack-
age [1] to parallelize the construction of the visibility
matrix, M . Taking advantage of the Nvidia GPU card
GeForce GTX 1080 installed on our machine, Numba
speeded up the running time by roughly a factor of 500.
Using this speedup, a brute force computation of M was
fast enough to be negligible compared to the execution
time of the solver.

In our experiments we created random, disjoint, axis
aligned rectangles inside a bounding box to simulate
racks. For each rack we randomly selected one side to
be guarded. The racks were laid down on a 1000x1000
unit grid so that each edge was of maximum length 50
units. We started our iterations with candidate guards
placed within cells of size 50x50 units.

We carried out experiments with different numbers
of racks (10 to 300 with steps of 10). Some illustrative
examples with the found guard sets are shown in Figure
5. For each size, we ran several experiments and have
reported on the average performance. As we reached
as many as 100x100 guarding candidates on a 200 rack
set, our IP solver worked on input with 10000 decision
variables and 200 constraints. We allowed the IP to run
for 1000 seconds before switching to an LP.

Since the IP was the main bottleneck, we focus here
on the time taken to complete, when the heuristic actu-
ally came up with a real solution (as opposed to cases
where the grid was too sparse to provide a solution).
The performance is shown in Figure 6 (note the log
scale). When the number of racks exceeded 260, the
program switched very early on to an LP and as a result

321

32nd Canadian Conference on Computational Geometry, 2020

completed very fast. Hence, these instances are omitted
from Figure 6. Using a log scale the exponential growth
in time of the MIP solver becomes evident. Neverthe-
less, we have succeeded in emulating instances that are
proportional in size to large real-world data centers.

Figure 7 shows how the number of requisite guards
scales with the number of racks. We note an approxi-
mately linear relationship, with, on average, about one
guard needed for every 10 racks. The slightly increased
slope once the number of racks reached 260 may be at-
tributable to the switch to using the rounded LP solver.

(a) 190 Racks

(b) 250 Racks

Figure 5: Data centers with with 190 and 250 randomly
generated racks. The racks are drawn in blue, with
the sides that need to be guarded given in green. The
generated guard set is displayed in red.

8 Conclusions

Motivated by monitoring requirements in data centers
we introduced a variety of line segment guarding models
including the more practical all-but-δ variant. In addi-

Figure 6: Time taken to run the IP for different numbers
of racks.

Figure 7: Number of guards for different numbers of
racks.

tion, we described some new best combinatorial bounds
for these problems and showed that all problems are NP-
Complete to solve exactly. Our recent focus has been on
developing heuristics that scale to the size of large com-
mercial data centers (several hundred thousand square
feet or more). One such heuristic places candidate
guards within successively finer grids and solves the as-
sociated IP until a stable solution is found. When the
problem instances get too large and the IP fails to re-
turn a solution within a threshold amount of time we
resort to LP-rounding. Much work remains, namely to
run experiments on the Solver’s Choice variants, to pro-
vide theoretical guarantees on the performance of our
heuristic, as well as to benchmark how well the heuris-
tic does in cases where we know tight bounds from the
combinatorial analysis. On the pure theory side there
remains for us to tighten the combinatorial bounds and
move from segment visibility to the rectangle visibility
model.

322

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[1] http://numba.pydata.org.

[2] https://pypi.org.project/mip.

[3] Y. Amit, J. S. B. Mitchell, and E. Packer. Locat-
ing guards for visibility coverage of polygons. Inter-
national Journal of Computational Geometry Applica-
tions, 20:601–630, 2010.

[4] J. Czyzowicz, E. Rivera-Campo, J. Urrutia, and
J. Zaks. On illuminating line segments in the plane.
Discrete Mathematics, 137:147–153, 1995.

[5] R. Das, J. Kephart, J. Lenchner, and E. Packer. Inter-
nal surveillance problems in data centers. Fall Work-
shop on Computational Geometry, 2008.

[6] P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hem-
mer, A. Kroller, and D. C. Tozoni. Engineering art
galleries. CoRR, abs/1410.8720, 2014.

[7] D. T. Lee and A. K. Lin. Computational complexity of
art gallery problems. IEEE Transactions on Informa-
tion Theory IT-32, pages 276–282, 1986.

[8] J. Lenchner and E. Packer. Visibility problems con-
cerning one-sided segments. Fall Workshop on Compu-
tational Geometry, 2012.

[9] J. O’Rourke. Art gallery theorems and algorithms. Ox-
ford University Press, Oxford, 1987.

[10] T. Shermer. Recent results in art galleries. Proceedings
of the IEEE, 90(9):1384–1399, 1992.

[11] C. Tóth. Illuminating disjoint line segments in the
plane. Discrete and Computational Geometry, 30:489–
505, 2003.

[12] C. Tóth. Personal communication, 2008.

[13] J. Urrutia. Art gallery and illumination problems. In
J. Sack and J. Urrutia, editors, Handbook of Computa-
tional Geometry, pages 973–1027. Elsevier Science Pub-
lishers, Amsterdam, 2000.

Appendix

Proof of Lemma 1. Given a claimed guard set {ci}Mi=1,
we must simply show that we can verify that the guard set
covers the set of segments to be guarded, S = {si}Ni=1, in
polynomial time. The problem then reduces to verification
of coverage of single arbitrary segment from among the set
S, say s1. Let us consider the problem of determining what
sub-segments of s1 are visible from a representative camera
we denote by C. WLOG we may assume s1 is vertically
aligned with endpoints A1 = (x1, a1), B1 = (x1, b1) and b >
a. Further, in the consideration of the effect of segments
among {s2, ..., .sN} that may be blocking C’s view of s1, we
only care about the projection of each si onto [A1, B1] from
the vantage point of C. See Figure 8. Thus if s2 = [A2, B2]
with A2 = (x2, a2), B2 = (x′2, b2) then we care about the
projection of A2 and B2 onto [A1, B1] from c. If only B2 ∈
4(C,A1, B1), as depicted in Figure 8, then we replace A1

with B2p, which is the projection of B2 onto [A1, B1]. If
only A2 ∈ 4(C,A1, B1) then we replace B1 with the A2p,
the projection of A2 onto [A1, B1], while if both A2, B2 ∈

Figure 8: The analysis of camera C’s view of segment
s1 = [A1, B1], which we assume to be vertically oriented.
In considering segment s2’s impact on C’s visibility we
consider the projection of its endpoint B2 onto [A1, B1]
– designated by B2p = (x1, b2p) in the Figure.

4(C,A1, B1) then we must keep track of two sub-segments,
[A1, B

′
1], [A′1, B1], rather than the former one, where now

B′1 < A′1 (unless C,A2, B2 are collinear).

The computation of the coordinates of the new endpoints
involves just a constant number of additions, subtractions,
multiplications and divisions of the numerators and denom-
inators of the prior endpoint coordinates, and each time we
consider an additional intervening segment from [s2, ..., sN}
we break the original segment s1 into at most one new sub-
segment. In the end, for each camera, we are left with an
ordered sequence of at most N visible sub-segments of the
original segment, that must be merged with the analogous
sequences of sub-segments from each of the other cameras
to verify complete coverage of the original segment s1.

For this purpose, we will sort the y-coordinates of all end-
points, and for each number in the list also keep track of
whether it is associated with the bottom (B) endpoint of a
segment or the top (T) endpoint of a segment. In the sorted
list insure that for endpoints with equal y-values, that the
Bs come before the Ts. Finally we walk once through the
sorted list of pairs (yj ,Γj),Γj ∈ {T,B}, treating each B
as an open parenthesis, and each T as a close parenthesis.
When the number of close parentheses equals the number of
open parentheses, say when the pair (yk, T) is encountered,
we check whether there is a gap between yk and (yk+1, B)
in the next pair, assuming that (yk, T) is not itself the last
entry in the sorted list. If any such gap is found, or if, in the
sorted list of endpoints, the smallest number does not equal
the bottom coordinate of the segment, s1, or if the largest
number does not equal the top coordinate of the segment s1
then there is a coverage problem. Otherwise the coverage is
complete. This sorting and verification process only requires
the comparison of two reals or rationals, depending on the
problem setup and analogous model of computation, and so
the entire verification process can be performed in polyno-
mial time. Thus all of our guarding problems are in NP in
their respective models of computation.

Proof of Theorem 2 We show a reduction from 3-SAT.
Let N be the number of variables and M be the number of

323

32nd Canadian Conference on Computational Geometry, 2020

clauses. Let K = max(N,M).

Figure 9: Reduction from 3-SAT: On the left are gadgets
for variables w, x, y and z. On the right are gadgets for
clauses (w ∨ x ∨ ȳ) and (w ∨ x̄ ∨ z). Guards associated
with the respective literals are indicated as circles to
the left of the respective truth or false gaps. The line of
site of a guard to the critical rightmost segment of each
clause is indicated with a dotted line. Lines of sight for
guards in the same clause are each of the same color.

Figure 9 illustrates the reduction. Each variable gadget
consists of a batch of six segments (placed on the left side of
the figure) and each clause gadget consists of a batch of five
segments (placed on the right side of the figure). The entire
structure is placed within a large-enough bounding box.

Each variable gadget consists of two identical columns of
three segments, shifted horizontally by a small amount. The
length of each segment is K−1

3K
and the vertical gaps be-

tween the segments are of length 1
2K

. Thus, the vertical
length of the entire gadget is 1 unit. The variable gadgets
are placed from top to bottom. The vertical distance be-
tween the columns of each gadget is set to 1

K3 . Thus, the
vertical length of the entire variable gadget structure is up-
per bounded by K+ (K−1)∗ 1

K3 . We also shift the gadgets
in a way that the horizontal distance between every two
neighboring gadgets is 1

K2 .
In each variable gadget we refer to the gaps between the

top two segments and the middle two segments (from two
columns) as the truth gap, and the gap between the middle
two segments and the bottom two segments as the false gap.
We refer to either gap as a literal gap. As we see later, there
is a correspondence between locating guards slightly left of
the left gaps and the assignments of the variables.

The clause gadgets are located on the right in a vertical
structure. Each gadget consists of one short vertical segment
on the right and four vertical segments with the same x-
coordinate to its left. Let some clause gadget be denoted by
c and let r be the right segment of c, and let L refer to the
four segments to the left of r. The length of r is set to 1

k4 and

its horizontal distance from L is K
1.1K−1

. The total length of
L is one unit and r is placed vertically in the middle of L so
that if the vertical coordinate of the bottom of L is y, the
bottom coordinate of r will be y + 0.5− 1

2K4 .
We define the guarding instance so that all segments have

to be guarded from the left. Based on the construction

above, the segments L will block r from seeing almost the
entire structure of the variable gadgets. The three gaps in
between the segments of L constitute the only way that r
can see the variable gadget structure. They are fine-tuned
so that r sees the gaps in the variable gadgets that corre-
sponds to the gadget literals (as described above). For that,
the three gaps in between the segments of L are located
on the line connecting the middle of r to the middle of the
corresponding literal defined above. Based on our construc-
tion, due to triangle similarities and angle computations, if
we place a guard 1

K6 units to the left of the left gap of the
corresponding litreral, it will see the entire right segment r
of the corresponding clause gadget.

For example, consider Figure 9 which corresponds to a
formula with three clauses (two of which are given in detail)
and four variables (w, x, y and z). Consider the middle
clause gadget c′ that corresponds to (w ∨ x ∨ ȳ): r′ sees the
three literal gaps that correspond to w, x and ȳ (the lines
of sight from the guards to the critical segment r′ are drawn
with dashed lines). The third clause, (w∨ x̄∨ z), is similarly
depicted.

Next we prove that a 3-SAT formula with N variables is
satisfied if and only if the segments are guarded by N guards.
⇒ Direction: Suppose the 3-SAT formula is satisfiable. We
place one guard near each corresponding literal gap as de-
scribed above. Next we show that all segments are guarded:

� Since the guard is located to the left of a gap, very close
to it near one of the gaps, he guards the segments of its
gadget.

� The four left segments of the clause gadgets are guarded
by all guards due to our construction and since the
guards can see through the variable gadgets.

� Due to our construction and since the 3-SAT formula
is satisfied, the right segments of all clause gadgets are
guarded by at least one guard.

⇐ Direction: Suppose all segments are guarded by N
guards. In order to guard the right three segments of each
variable gadget, we are forced to place a guard either inside
the vertical slab defined by the two columns of each of the
N variable gadgets or very close to their left gaps, consum-
ing all the guards. As all the right segments of the clause
gadgets are guarded as well, it means that at least one of the
guards guard each of the right segments. Thus some or all
of the guards are placed in the line of sight of the right seg-
ments. As each of the guards is associated with a variable,
together with this constraint the value of some or all of the
variables are determined so that the formula is satisfied.

We finally note that the reduction is polynomial in the size
of the input: each variable and each clause was translated
to a constant number of segments. Also, the length of the
segments are polynomial in the input, thus the necessary
precision is polynomial as well.

To see that Theorem 2 generalizes to the all-but-δ case,
observe that we are alternately hiding and revealing more
than a single point on the right-most segments from the
guards associated with the respective variable gadgets, and
hence we can coordinate hiding/revealing a sufficiently small
length δ along all the segments.

324

Session 4B

325

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Some Geometric Applications of Anti-Chains

Sariel Har-Peled∗ Mitchell Jones†

Abstract

We present an algorithmic framework for comput-
ing anti-chains of maximum size in geometric posets.
Specifically, posets in which the entities are geometric
objects, where comparability of two entities is implicitly
defined but can be efficiently tested. Computing the
largest anti-chain in a poset can be done in polynomial
time via maximum-matching in a bipartite graph, and
this leads to several efficient algorithms for the following
problems, each running in (roughly) O(n3/2) time:

(A) Computing the largest Pareto-optimal subset of a
set of n points in Rd.

(B) Given a set of disks in the plane, computing the
largest subset of disks such that no disk contains
another. This is quite surprising, as the indepen-
dent version of this problem is computationally
hard.

(C) Given a set of axis-aligned rectangles, computing
the largest subset of non-crossing rectangles.

1 Introduction

Partial orderings. Let (V,≺) be a partially ordered
set (or a poset), where V is a set of entities. An anti-
chain is a subset of elements D ⊆ V such that all pairs
of elements in D are incomparable in (V,≺). A chain
is a subset C ⊆ V such that all pairs of elements in
C are comparable. A chain cover C is a collection of
chains whose union covers V . Observe that any anti-
chain can contain at most one element from any given
chain. As such, if C is the smallest collection of chains
covering V , then for any anti-chain D, |D| ≤ |C|. Dil-
worth’s Theorem [3] states that the minimum number
of chains whose union covers V is equal to the anti-chain
of maximum size.

Implicit posets arising from geometric problems. We
are interested in implicitly defined posets, where the el-
ements of the poset are geometric objects. In particular,

∗Department of Computer Science; University of Illi-
nois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
sariel@illinois.edu; http://sarielhp.org/.

†Department of Computer Science; University of Illi-
nois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
mfjones2@illinois.edu; http://mfjones2.web.engr.illinois.

edu/.

if one can compute the largest anti-chain in these im-
plicit posets, we obtain algorithms solving natural geo-
metric problems. To this end, we describe a framework
for computing anti-chains in an implicitly defined poset
(V,≺), under the following two assumptions: (i) com-
parability of two elements in the poset can be efficiently
tested, and (ii) given an element v ∈ V , one can quickly
find an element u ∈ V with v ≺ u.

As an example, let P be a set of n points in the plane.
Form the partial ordering (P,≺), where q ≺ p if p dom-
inates q. One can efficiently test comparability of two
points, and given q, can determine if it is dominated
by a point p by reducing the problem to an orthogonal
range query. Observe that an anti-chain in (P,≺) corre-
sponds to a collection of points in which no point domi-
nates another. The largest such subset can be computed
efficiently by finding the largest anti-chain in (P,≺), see
Lemma 6.

Previous work. Posets have been previously utilized
and studied in computational geometry [10, 5, 8]. For
the poset (P,≺) described above, Felsner and Wernisch
[5] study the problem of computing the largest subset
of points which can be covered by k-antichains.

Our results. We describe a general framework for com-
puting anti-chains in posets defined implicitly, see The-
orem 4. As a consequence, we have the following appli-
cations:

(A) Largest Pareto-optimal subset. Let P ⊆ Rd be a set
of n points. A point p ∈ Rd dominates a point
q ∈ Rd if p ≥ q coordinate wise. Compute the
largest subset of points S ⊆ P , so that no point in S
dominates any other point in S. In two dimensions
this corresponds to computing the longest down-
ward “staircase”, which can be done in O(n log n)
time (our algorithm is not interesting in this case).
However, for three and higher dimensions, it corre-
sponds to a surface of points that form the largest
Pareto-optimal subset of the given point set.

(B) Largest loose subset. Let D be a set of n regions
in Rd. A subset S ⊆ D is loose if for every pair
d1, d2 ∈ S, d1 6⊆ d2 and d2 6⊆ d1. This is a weaker
concept than independence, which requires that no
pair of objects intersect. Surprisingly, computing
the largest loose set can be done in polynomial
time, as it reduces to finding the largest anti-chain

326

32nd Canadian Conference on Computational Geometry, 2020

Figure 1.1: Left: A set of points on lines. Middle: A point reaching another. Right: An isolated subset.

Computing largest subset of Entities Running time Ref

Pareto-optimal Points in Rd, d > 2 Õ(n1.5) Lemma 6

Loose Arbitrary regions in Rd O(n2.5) Corollary of Lemma 1

Arbitrary regions in Rd with a dynamic range
searching data structure, Q(n) time per operation

O(n1.5Q(n)) Lemma 10

Disks in the plane Õ(n1.5) Corollary 12

Non-crossing Axis aligned rectangles in R2
Õ(n1.5) Lemma 15

Isolated Points on lines in R2 O(n3) Lemma 17

Table 1.1: Our results, where Õ hides factors of the form logc n (c may depend on d).

in a poset. Compare this to the independent set
problem, which is NP-Hard for all natural shapes
in the plane (triangles, rectangles, disks, etc).

(C) Largest subset of non-crossing rectangles. Let R be a
set of n axis-aligned rectangles in the plane. Com-
pute the largest subset of rectangles S ⊆ R, such
that every pair of rectangles in S intersect at most
twice. Equivalently, S is non-crossing , or S forms
a collection of pseudo-disks.

(D) Largest isolated subset of points. Let L be a collec-
tion lines in the plane (not necessarily in general
position), and let P be a set of points lying on the
lines of L. A point p ∈ P can reach a point q ∈ P
if p can travel from left to right, along the lines of
L, to q. A subset of points Q ⊆ P are isolated if
no point in Q can reach any other point in Q using
the lines L, see Figure 1.1.

Our results are summarized in Table 1.1.

2 Framework

2.1 Computing anti-chains

The following is a constructive proof of Dilworth’s The-
orem from the max-flow min-cut Theorem, and is of

course well known [9]. We provide a proof for the sake
of completeness.

Lemma 1 Let (V,≺) be a poset. Assume that compara-
bility of two elements can be checked in O(1) time. Then
a maximum size anti-chain in (V,≺) can be computed
in O(n2.5) time.

Proof. Given (V,≺), construct the bipartite graph G =
(U,E), where U = V − ∪ V + and V −, V + are copies
of V . Add an edge (v−, u+) to E when v ≺ u in
(V,≺). Next, compute the maximum matching in G
using the algorithm of Hopcroft-Karp [6], which runs
in time O

(
|E|
√
|U |
)

= O(n2.5). Let M ⊆ E be the
resulting maximum matching in G. Define Q− ⊆ U−

as the set of unmatched vertices. A path in G is al-
ternating if the edges of the path alternate between
matched and unmatched edges. Let S ⊆ V − ∪ V +

be the set of vertices which are members of alternat-
ing paths starting from any vertex in Q−. Finally, set
D = {v ∈ V | v− ∈ S, v+ 6∈ S}. We claim D is an anti-
chain of maximum size.

Conceptually, suppose that G is a directed network
flow graph. Modify G by adding two new vertices s and
t and add the directed edges (s, v−) and (v+, t), each
with capacity one for all v ∈ V . Finally, direct all edges
from V − to V + with infinite capacity. By the max-flow

327

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

min-cut Theorem, the maximum matching M , induces
a minimum s-t cut, which is the cut (s+ S, t+ U \ S),
where S is defined above. Indeed, s+S is the reachable
set from s in the residual graph for G. To see why D is
an anti-chain, suppose that there exist two comparable
elements v, u ∈ D. This implies that v−, u− ∈ S and
v+, u+ /∈ S. Assume without loss of generality that
v ≺ u. This implies that (v−, u+) is an edge of the
network flow graph G with infinite capacity that is in
the cut (s+S, V \S+ t). This contradicts the finiteness
of the cut capacity.

We next prove that |D| is maximum. Note that an
element v ∈ V is not in D if v− /∈ S or v+ ∈ S. If
v− /∈ S then (s, v−) is in the cut. Similarly, if v+ ∈ S
then (v+, t) is in the cut. Since the minimum cut has
capacity |M |, there are at most |M | such vertices, which
implies that |D| ≥ n− |M |.

On the other hand, a chain cover C for (V,≺) can
be constructed from M . Given (V,≺), create a DAG H
with vertex set V . We add the directed edge (u, v) to H
when u ≺ v.1 Now an edge (u−, v+) in M corresponds
to the edge (u, v) of H. As such, a matching corresponds
to a collection of edges in H, where every vertex appears
at most twice. Since H is a DAG, it follows that M
corresponds to a collection of paths in H. The end
vertex x of such a path corresponds to a vertex x− ∈
V − that is unmatched (as otherwise, the path can be
extended), and this is the only unmatched vertex on this
path. There are at most n− |M | unmatched vertices in
V −, which implies that |C| ≤ n − |M |. Hence, D is
an anti-chain with |D| ≥ n − |M | ≥ |C|. Additionally,
recall that for any anti-chain D′, |D′| ≤ |C|. These
two inequalities imply that D is of maximum possible
size. �

Remark 2 As described above, the edges of the match-
ing M correspond to a collection of edges in the DAG
H. These edges together form a collection of vertex-
disjoint paths which cover the vertices of H, and this is
the minimum possible number of paths needed to cover
the vertices.

2.2 Computing anti-chains on implicit posets

Here, we focus on computing anti-chains in posets, in
which comparability of two elements are efficiently com-
putable. Our main observation is that one can use range
searching data structures to run the Hopcroft-Karp bi-
partite matching algorithm faster [6]. This observation
goes back to the work of Efrat et al. [4], where they
study the problem of computing a perfect matching M
in a weighted bipartite graph G such that the maximum
weight edge in M is minimized. They focus on solving
the decision version of the problem: given a parameter

1Equivalently, H is the transitive closure of the Hasse diagram
for (V,≺).

r, is there a perfect matching M with maximum edge
weight at most r?

Theorem 3 ([4, Theorem 3.2]) Let G be a bipartite
graph on n vertices with bipartition A ∪B, and r > 0 a
parameter. For any subset U ⊆ B ofm vertices, suppose
one can construct a data structure D(B) such that:
(i) Given a query vertex v ∈ A, D(B) returns a vertex

u ∈ B such that the wight of the edge (u, v) is at
most r (or reports that no such element in B exists)
in T (m) time.

(ii) An element of B can be deleted from D(B) in T (m)
time.

(iii) D(B) can be constructed in O
(
m · T (m)

)
time.

Then one can decide if there is a perfect matching M in
G, such that all edges in M have weight at most r, in
O
(
n1.5 · T (n)

)
time.

Recently, Cabello and Mulzer [1] also use a similar
framework as described above for computing minimum
cuts in disk graphs in Õ(n1.5) time. We show that the
above framework can also be extended to computing
anti-chains, with a small modification to the data struc-
ture requirements.

Theorem 4 Let (V,≺) be a poset, where n = |V |. For
any subset P ⊆ V of m elements, suppose one can con-
struct a data structure D(P) such that:
(i) Given a query v ∈ V , D(P) returns an element

u ∈ P with v ≺ u (or reports that no such element
in P exists) in T (m) time.

(ii) An element can be deleted from D(P) in T (m)
time.

(iii) D(P) can be constructed in O
(
m · T (m)

)
time.

Then one can compute the maximum size anti-chain for
(V,≺) in O

(
n1.5 · T (n)

)
time.

Proof. Create the vertex set U = V − ∪ V + of the bi-
partite graph G = (U,E) associated with (V,≺). The
neighborhood of a vertex in the bipartite graph can
be found by constructing and querying the data struc-
ture D. Recall that in each iteration of the maximum
matching algorithm of Hopcroft-Karp [6], a BFS tree is
computed in the residual network of G. Such a tree
can be computed in O(nT (n)), as can be easily veri-
fied (the BFS algorithm is essentially described below).
Furthermore, the algorithm terminates after O(

√
n) it-

erations, which implies that one can compute the max-
imum matching in G in O(n1.5 · T (n)) time. See Efrat
et al. [4] for details. Let M be the matching computed.

By Lemma 1, computing the maximum anti-chain
reduces to computing the set of vertices which can
be reached by alternating paths originating from un-
matched vertices in V −. Call this set of vertices S, as
in Lemma 1.

To compute S, we do a BFS in the residual network of
G. To this end, build the data structure D(V +). Start

328

32nd Canadian Conference on Computational Geometry, 2020

at an arbitrary unmatched vertex v ∈ V −, add it to
S, and query D(V +) to travel to a neighbor u ∈ V +

along an unmatched edge. Add u to S and delete u
from D(V +). Travel back to a vertex x in V − using
an edge of the matching M (if possible) and add x to
S. This process is iterated until the alternating path
has been exhausted. Then, restart the search from v (if
v has any remaining unmatched neighbors) or another
unmatched vertex of V −. Observe that each vertex in
V + is inserted and deleted at most once from the data
structure D. Furthermore, each query to D can be
charged to a vertex deletion. Hence, S can be computed
in O(n · T (n)) time.

Given S, in O(n) time we can compute a maximum
anti-chain D = {v ∈ V | v− ∈ S, v+ 6∈ S}. �

3 Applications

3.1 Largest Pareto-optimal subset of points

Definition 5 Let P be a set of points in Rd. A point
p ∈ Rd dominates a point q ∈ Rd if p ≥ q coordinate
wise. The point set P is Pareto-optimal if no point
in P dominates any other point in P .

Lemma 6 Let P ⊂ Rd be a set of n points. A Pareto-
optimal subset of P of maximum size can be computed
in O(n1.5(log n/ log log n)d−1) time.

Proof. Form the implicit poset (P,≺) where q ≺ p
⇐⇒ p dominates q. Hence, two elements are incompa-
rable when neither is dominated by the other. As such,
computing the largest Pareto-optimal subset is reduced
to finding the maximum anti-chain in (P,≺).

To apply Theorem 4, one needs to exhibit a data
structure D with the desired properties. For a given
query q, finding a point p ∈ P with q ≺ p corresponds
to finding a point p which dominates q. Equivalently,
such a point in P exists if and only if it lies in the
range [q1,∞) × . . . × [qd,∞). This is a d-sided orthog-
onal range query. Chan and Tsakalidis’s dynamic data
structure for orthogonal range searching [2] suffices—
their data structure can handle deletions and queries
in T (n) = O((log n/ log log n)d−1) amortized time, and
can be constructed in O(n · T (n)) time. �

3.1.1 Chain decomposition

Let P be a set of n points in Rd. We would like to
decompose P into disjoint chains of dominated points,
such that all the points are covered, and the num-
ber of chains is minimum. By Remark 2, this can be
done by running the algorithm Lemma 6, and convert-
ing the bipartite matching to chains. This would take
O(n1.5(log n/ log log n)d−1) time.

As a concrete example, suppose we want to solve
a more restricted problem in the planar case—
decomposing a given point set into chains of points (that
are monotone in both x and y), such that no pair of
chains intersect.

Suppose that we have computed a chain decomposi-
tion of the points P . Let C1 and C2 be two chains of
points, each with an edge piqi in Ci (and pi dominates
qi) for i = 1, 2 such that p1q1 and p2q2 intersect in the
plane. An exchange argument shows that by deleting
these two edges and adding the edges p1q2 to C1 and
p2q1 to C2, we decrease the total length of the chains.
Indeed, let s be the intersection point of the edges p1q1
and p2q2. By the triangle inequality and assuming the
points of P are in general position,

‖p1 − q2‖+ ‖p2 − q1‖
< ‖p1 − s‖+ ‖s− q2‖+ ‖p2 − s‖+ ‖s− q1‖
= ‖p1 − q1‖+ ‖p2 − q2‖.

p2

p1

q1

q2
s

C1
C2

As such, suppose we assign a weight to each edge in
the bipartite graph G equal to the distance between the
two corresponding points. If k is the size of the maxi-
mum (unweighted) matching in G, then we can compute
a matching of cardinality k with minimum weight by
solving a min-cost flow instance on G (using the weights
on the edges of G as the costs). This implies that the re-
sulting chain decomposition covers all points of P , and
no pair of chains intersect. We obtain the following.

Lemma 7 Let P be a set of n points in the plane in
general position. In polynomial time, one can com-
pute the minimum number of non-intersecting (x, y)-
monotone polygonal curves covering the points of P ,
where every point of P must be a vertex of one of
these polygonal curves, and the vertices of the polygo-
nal curves are points of P .

Remark 8 If we do not require the collection of polyg-
onal curves to be non-intersecting, there is a much sim-
pler algorithm. Create a directed acyclic graph H =
(P,E), where (p, q) ∈ E if p dominates q. Observe that
all of the points S ⊆ P in H with out-degree zero form
a polygonal curve. We add this curve to our collection
and recursively compute the set of curves on the residual
graph H \ S. While the number of polygonal curves is
minimum, the resulting curves may intersect.

329

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

3.2 Largest loose subset of regions

Definition 9 Let D be a collection of n regions in Rd.
Such a collection D is loose if no region of D is fully
contained inside another region of D.

Lemma 10 Let D be a collection of n regions in Rd.
For any subset R ⊆ D of m regions, suppose one can
construct a data structure D(R) such that:
(i) Given a query d ∈ D, D(R) returns a region d′ ∈ R

with d′ ⊆ d (or reports that no such region in R
exists) in Q(m) time.

(ii) A region can be deleted from D(R) in Q(m) time.
(iii) D(R) can be constructed in O

(
m ·Q(m)

)
time.

Then one can compute the largest loose subset of D in
O
(
n1.5 ·Q(n)

)
time.

Proof. Form the implicit poset (D,≺), where d′ ≺ d
⇐⇒ the region d is contained in the interior of d′. In
particular, a subset of regions are loose if and only if
they form an anti-chain in (D,≺).

The proof now follows by considering the poset (D,≺)
described above and applying Theorem 4 using the data
structure D. �

3.2.1 Largest loose subset of disks

We show how to compute the largest loose subset when
the regions are disks in the plane. To apply Lemma 10,
we need to exhibit the required dynamic data structure
D.

Lemma 11 Let D be a set of n disks in the plane.
There is a dynamic data structure D, which given a
query disk q, can return a disk d′ ∈ D such that d′ ⊆ q
(or report that so such disk exists) in O(log2 n) de-
terministic time. Insertion and deletion of disks cost
O(log10+ε n) amortized expected time, for all ε > 0.

Proof. Associate each disk d ∈ D, which has center cd
and radius rd, with a weighted distance function δd :
R2 → R, where δd(p) = ‖cd − p‖ + rd. Observe that a
disk d is contained inside the interior of a disk q if and
only if δd(cq) ≤ rq. For a query disk q, our goal will be
to compute arg mind∈D δd(cq). After finding such a disk
d′, return that d′ ⊆ q if and only if δd′(cq) ≤ rq.

Hence, the problem is reduced to dynamically main-
taining the function F (p) = mind∈D δd(p), for all p ∈ R2,
under insertions and deletions of disks. Equivalently, F
is also the lower envelope of the xy-monotone surfaces
defined by {δd | d ∈ D} in R3. This problem was studied
by Kaplan et al. [7]: They prove that if F is defined by
a collection of additively weighted Euclidean distance
functions, then F can be computed for a given query p
in O(log2 n) time. Furthermore, updates can be han-

dled in O
(
2O(α(logn)2) log10 n

)
time, where α(n) is the

inverse Ackermann function. �

Corollary 12 Let D be a set of n disks in the plane.
The largest loose subset of disks can be computed in
O(n1.5 log10+ε n) expected time, for all ε > 0.

Proof. Follows from Lemma 10 in conjunction with the
data structure described in Lemma 11. �

Remark 13 By Remark 2, one can decompose a given
set of n disks into the minimum number of disjoint tow-
ers, where each tower is a sequence of disks of the form
d1 ⊆ d2 ⊆ · · · ⊆ dt. The resulting running time is as
stated in Corollary 12.

3.3 Largest subset of non-crossing rectangles

Definition 14 A collection R of axis-aligned rectan-
gles are non-crossing if the boundaries of every pair of
rectangles in R intersect at most twice.

Lemma 15 Let R be a set of n axis-aligned rectangles
in the plane. A non-crossing subset of R of maximum
size can be computed in O(n1.5(log n/ log log n)3) time.

Proof. For each rectangle R ∈ R, let t(R) and b(R)
denote the y-coordinate of the top and bottom sides of
R, respectively. Similarly, l(R) and r(R) denotes the
x-coordinate for the left and right sides of R.

Form the poset (R,≺) where

R′ ≺ R ⇐⇒ [l(R), r(R)] ⊆ [l(R′), r(R′)]

and [b(R′), t(R′)] ⊆ [b(R), t(R)].

Observe two rectangles R and R′ are incomparable if
and only if the boundaries of R and R′ intersect at
most twice. In particular, the largest subset of non-
crossing rectangles corresponds to the largest anti-chain
in (R,≺).

To apply Theorem 4, we need a dynamic data
structure which, given a rectangle R ∈ R, returns
any rectangle in R′ ∈ R where R ≺ R′. Equiva-
lently, we want to return a rectangle R′ ∈ R such
that [l(R′), r(R′)] ⊆ [l(R), r(R)] and [b(R), t(R)] ⊆
[b(R′), t(R′)]. To do so, map each rectangle R ∈ R
to the point (l(R), r(R), t(R), b(R)) ∈ R4. The query
of interest reduces to a 4-sided orthogonal range query
in R4. Chan and Tsakalidis’s dynamic data structure
for orthogonal range searching [2] supports such queries
and updates in time O((log n/ log log n)3), implying the
result. �

3.4 Largest subset of isolated points

Let L be a set of n lines in the plane. We assume that
no line in L is vertical and L may not necessarily be in
general position. Let P be a set of n points lying on the
lines of L.

330

32nd Canadian Conference on Computational Geometry, 2020

Definition 16 Given a set of lines L and points P ly-
ing on L, a p ∈ P can reach a point q ∈ P if it possible
for p to reach q by traveling from left to right along lines
in L. The set P is isolated if no point in P can reach
another point in P .

The partial ordering. Fix the collection of lines L.
Given P , create the poset (P,≺), where p ≺ q ⇐⇒ p
can reach q using the lines of L. Observe that any subset
of isolated points directly corresponds to an anti-chain
in (P,≺).

Lemma 17 Let P be a collection of n points in the
plane lying on a set L of n lines. The largest subset
of isolated points can be computed in O(n3) time.

Proof. We can assume that every point of P lies on
at least two lines of L. If not, shift such a point p to
the right along the line it lies on, until p encounters an
intersection.

Start by computing the arrangement A(L) of the lines
L. Next, construct a directed graph G with vertex set
equal to the vertices of A(L). By assumption, P is a
subset of the vertices of G. The edges of G consist of
the edges of the arrangement A(L) (any edges of A(L)
which are half-lines are ignored). For each edge of A(L)
with endpoints u, v, we direct the edge in G from u to
v when u has a smaller x-coordinate than v. Next, for
each p ∈ P , determine the set of points of P reachable
from p by performing a BFS in G. Thus, given any
two points, we can determine if they are comparable
in O(1) time. Apply Lemma 1 to obtain the largest
isolated subset.

To analyze the running time, note that computing the
arrangement A(L) and constructing G can be done in
O(n2) time. A BFS from n points in G costs O(n3) time
total. Finally, the largest isolated subset can be found
in O(n2.5) time by Lemma 1. �

References

[1] S. Cabello and W. Mulzer. Minimum cuts in geometric
intersection graphs. CoRR, abs/2005.00858, 2020.

[2] T. M. Chan and K. Tsakalidis. Dynamic orthogonal
range searching on the ram, revisited. In 33rd Symp.
on Comput. Geom. (SoCG), pages 28:1–28:13, 2017.

[3] R. P. Dilworth. A decomposition theorem for partially
ordered sets. Annals of Mathematics, 51(1):161–166,
1950.

[4] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in
bottleneck matching and related problems. Algorith-
mica, 31(1):1–28, 2001.

[5] S. Felsner and L. Wernisch. Maximum k-chains in pla-
nar point sets: Combinatorial structure and algorithms.
SIAM J. Comput., 28(1):192–209, 1998.

[6] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM J.
Comput., 2(4):225–231, 1973.

[7] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and
M. Sharir. Dynamic planar voronoi diagrams for gen-
eral distance functions and their algorithmic applica-
tions. In P. N. Klein, editor, 28th Symp. on Discrete
Algorithms (SODA), pages 2495–2504. SIAM, 2017.

[8] J. Matoušek and E. Welzl. Good splitters for counting
points in triangles. J. Algorithms, 13(2):307–319, 1992.

[9] A. Schrijver. Combinatorial optimization: polyhedra
and efficiency, volume 24. Springer, 2003.

[10] M. Segal and K. Kedem. Geometric applications of
posets. Comput. Geom., 11(3-4):143–156, 1998.

331

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Discrete Helly type theorems

Frederik Brinck Jensen∗ Aadi Joshi† Saurabh Ray‡

Abstract

We show the following discrete Helly-type results in the
plane. Let P be a set of points and D a family of convex
pseudodisks in the plane s.t. every triple of pseudodisks
in D intersects at a point in P . Then, two of the points
in P hit all pseudodisks in D. Three similar results that
we prove with the roles of points and regions exchanged
are the following: let P be a set of points and H a set of
halfspaces in the plane s.t. every triple of points from
P is covered by some halfspace in H. Then, two of the
halfspaces in H cover all points in P . If, instead, every
pair of points in P is covered by some halfspace in H,
we show that three of halfspaces in H suffice to cover
all points in P . Finally, we show that if every pair of
points is covered by an axis-parallel rectangle, then five
rectangles are required to cover all points.

1 Introduction

Let C be a finite collection of convex sets in Rd. Helly’s
theorem states that if every d+ 1 of these sets intersect
at a common point in Rd then all the convex sets in C
intersect at a common point in Rd.

It is natural to ask if a discrete version of Helly’s
theorem is true. Instead of requiring that every d+ 1 of
convex sets intersect at some point in Rd, suppose that
we require that they intersect at some point in a discrete
set of points P . Then, can we conclude that all the
convex sets intersect at some point in P? Unfortunately,
this statement is not true even if we require that every
k of the convex sets intersect at a point in P for some
large constant k ≥ d+ 1 and we want to conclude that
all convex sets in C can be hit by some large constant
number of points. To see this, consider a set P of n
points in convex position in Rd and let C be the set of
the convex hulls of every subset of P of size greater than
n − n

k . Then the total size (in terms of the number of
points of P contained) of any subset of k sets in C is
more than (k−1)n and thus they must have a common
point in P . On the other hand, no subset of P of size
less than n/k can hit all the convex sets in C.

We show that such a statement is true for some simple
regions in the plane. We believe that the phenomenon

∗New York University Abu Dhabi, fj414@nyu.edu
†New York University Abu Dhabi, aj1566@nyu.edu
‡New York University Abu Dhabi, sr194@nyu.edu

is more general but we currently lack tools for proving
such results.

2 Discrete Helly type theorem for halfplanes

We start with a simple Helly-type result for halfspaces
in the plane.

Theorem 1 Let P be a finite set of n points and H a
set of halfspaces in the plane. If every subset of 3 points
in P belongs to some halfspace H ∈ H then there exists
two halfspaces H1, H2 ∈ H whose union covers P .

Proof. Let PCH ⊆ P denote the subset of points in
P that lie on the convex hull CH(P) of P . Consider
the halfspace H1 ∈ H containing the largest number of
points from PCH . Note that since there is a halfspace
in H covering any triple of points in PCH , H1 contains
at least three points of PCH .

If H1 contains all points in PCH , then H1 contains
all points in P and the theorem follows. Otherwise, the
boundary of H1 intersects two edges of the boundary of
CH(P). Let p and q be endpoints of these two edges
contained in H1. See figure 1. Note that p and q cannot
be the same point since this would mean that H1 con-
tains only one point of PCH and we argued earlier that
H1 contains at least three points of PCH .

The line through p and q splits CH(P) into two re-
gions, one of which is covered by H1. Let A be the
region covered by H1 and let B be the other region. Let
r ∈ PCH be a point not contained in H1. By assump-
tion, there exists a halfspace, H2, that contains p, q, and
r.

Since H2 contains p and q, H2 covers either A or B.
If H2 covered A, then it would contain all points of PCH

in H1 and the additional point r ∈ PCH . This would
contradict the maximality of H1. Thus H2 must cover
B. Thus H1∪H2 covers CH(P) and the theorem follows.

�

We now show that the ‘3’ in Theorem 1 is tight i.e.,
it cannot be replaced by ‘2’. To this end, we construct
a set of points P and a set of halfspaces H so that every
pair of points in P is covered by a halfspace in H and
yet no pair of halfspaces in H cover all points in P .

Figure 2 shows a disk D and three arcs with a very
large radius of curvature so that any tangent to any of
the arcs passes through the discD and does not intersect
any of the other arcs. We construct a point set P with

332

30th Canadian Conference on Computational Geometry, 2018

n points by distributing n/3 points uniformly on each
of the three arcs. We define the set of halfspaces H as
follows. For each point p on some arc li, i ∈ {0, 1, 2}, let
Hp be a halfspace not containing p and containing all
other points on li so that the boundary of Hp is parallel
and arbitrarily close to the tangent to li at p. Note that
Hp contains all points on lj where j = (i+1) mod 3 and
does not contain any of the points in lk where k = (i−1)
mod 3. H is the set {Hp : p ∈ P}.

For any two points p, q ∈ P , we argue that there is a
halfspace in H containing both p and q. There are two
cases depending on whether p and q lie on the same arc
or on different arcs. If p and q lie on the same arc li,
then Hr where r is any point on lk where k = (i − 1)
mod 3 contains both p and q. If p and q lie on different
arcs then without loss of generality, assume that p lies
on li and q lies on lj where j = (i + 1) mod 3. Then
Hr, where r is any point on li other than p, contains
both p and q.

Now, we argue that no two halfspaces in H cover all
points in P . To see this consider any pair of halfspaces
Hp and Hq. If both p and q lie on the same arc li then
none of the points in lk where k = (i − 1) mod 3 are
covered by Hp ∪Hq. If p and q lie on different arcs, we
assume without loss of generality that p lies on an arc li
and q lies on lj where j = (i+1) mod 3. Then Hp∪Hq

does not cover p.

Remark. The above example also improves a result
from [1]. Lemma 17 of [1] shows that given a set P
of n points in the plane, it is not always possible to
hit all halfspaces in the plane containing more than εn
points of P with just two points in P if ε < 3/5. Our
construction improves the bound 3/5 to 2/3 since all
the halfspaces in our example contain 2n/3 − 1 points
and it is easily seen that no two points hit all halfspaces.

In our example, two halfspaces barely fail to cover

p

q

r

H1

H2

A B

Figure 1: LetH1 be the halfspace that contains the most
points in PCH . As depicted, the only positioning of any
halfspace H2 containing p, and q, and a point r 6∈ H1

that avoids parts of P \H1 must contain more points on
the convex hull of P than H1, which is a contradiction.
The dashed line, H2, can therefore not exist and we are
left with a halfspace that covers the remaining points
not contained in H1.

all the points when every pair of points in P is covered
by a halfspace. It seems intuitive that three halfspaces
should suffice to cover all points under this constraint.
Indeed this is true and we show this later in Theorem 7.

3 Discrete Helly type theorem for convex pseu-
dodisks

A set of simply connected regions in the plane form a
family of pseudodisks if the boundaries of any pair of
regions either do not intersect or intersect at exactly
two points. Furthermore, there are no tangential inter-
sections, i.e., at each intersection the boundaries prop-
erly cross. Examples of families of pseudodisks include
disks, squares, unit height rectangles, and homothets of
a convex region.

Let P ⊂ R2 be a set of points and D a family of
convex pseudodisks in the plane. We will show that if
every three pseudodisks in D intersect at a point in P ,
then there exist two points in P that together hit all
the pseudodisks in D.

We first need a definition and some lemmas.

Definition 1 For any disk D ∈ D we define its core
core(D) with respect to P as the convex hull of D ∩ P .
See Figure 3.

Even though the core of a pseudodisk D is defined
with respect to the point set P , we will skip the reference
to P when it is clear from the context.

Note that any pseudodisk D ∈ D contains its core
since D is convex. Let C be the set of cores of the disks
D ∈ D.

Lemma 2 The intersection of all cores in C is non-
empty.

Proof. Since every triple of convex pseudodisks in D
intersects at some point p ∈ P that belongs to the cores

l0

D

n
3

n
3

n
3

l1

l2

Figure 2: Counterexample that shows the tightness of
Theorem 1.

333

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

D

core(D)

Figure 3: The dashed line outlines core(D).

of all three of them, all triples of cores in C have a non-
empty intersection. Thus, by Helly’s theorem all cores
in C intersect at a point in R2 (which may not be a point
in P). �

The next lemma follows from Lemma 5 in [2] by using
an empty set as the set of compulsory edges.

Lemma 3 There exists a straight-edge plane triangu-
lation on P denoted T such that the points and edges
inside any pseudodisk in D form a connected subgraph
of T .

Lemma 5 in [2] is for arbitrary non-convex k-admissible
regions (which includes pseudodisks) and therefore al-
lows the edges to be curved. However, for convex pseu-
dodisks, it does yield a straight-edge drawing. In fact,
it shows that any maximal subset of the

(
n
2

)
edges de-

fined by P which are pairwise non-crossing and which
do not cut across any of the cores of the regions form
such a triangulation. Note that if D is a set of circular
disks in the plane, then the Delaunay triangulation of P
provides the triangulation claimed in the lemma above.

Lemma 4 If the core of some D ∈ D intersects an edge
e ∈ T , then D must contain at least one of the endpoints
of e.

Proof. Since the edges of T are straight line segments,
the points and edges inside any core in C also form a
connected sub-graph of T . If the core of a disk D ∈ D
intersects an edge e ∈ T but does not contain either
endpoint of e, then we obtain a contradiction since the
edges lying in core(D) cannot form a connected sub-
graph of T . Thus core(D) must contain an endpoint of
e. �

Lemma 5 There exist two points p, q ∈ P that hit all
disks in D.

Proof. Let x ∈ R2 be a point in the common inter-
section ∩D∈D core(D) of all cores. By lemma 2, such a
point x exists. Let T be the triangle in the triangulation
T containing x. Since all the cores contain x, all cores
intersect the edges of T and thus, by Lemma 4 contain
at least one of the three corners of T . In other words,
the three corners of T hit all pseudodisks.

We now show that one of the corners is redundant
and can be dropped. Assume, for contradiction that all

three corners of T are necessary i.e. for each corner there
exists a pseudodisk that is hit only by that corner among
the three corners. These three pseudodisks intersect
inside T at x and, by definition, at some point in p ∈
P which must lie outside T . Since the intersection of
the three convex pseudodisks is convex, all three disk
contain the segment joining x and p. Therefore, they all
intersect some edge e ∈ T . However, by Lemma 4 this
means that all three disks are hit by the two endpoints
of e contradicting the assumption that all three corners
are necessary for hitting the three disks.

�

Thus we have proved the following theorem.

Theorem 6 Given a set of points P and set of con-
vex pseudodisks D in the plane s.t. every triple of pseu-
dodisks in D intersects at a point in P , there exists a set
of two points {p, q} ⊆ P which intersects each D ∈ D.

Remark. The above theorem implies that given a
set of n points and a set D of convex pseudodisks in the
plane, all pseudodisks in D containing more than 2n/3
points can be hit by two points. This is because any
three sets containing more than 2n/3 elements of a set
of size n must have a common element. This generalizes
Theorem 18 of [1] which proves this for disks.

Note that Theorem 6 is true for halfspaces in the
plane too since we can think of halfspaces as disks of
infinite radius. This can be used to prove the following
theorem.

Theorem 7 Let H be a set of halfspaces and let P be a
set of points in the plane such that for each pair of points
in P , there is a halfspace in H covering both points.
Then, three of the halfspaces in H cover all points in P .

Proof. Let H′ be a set of halfspaces consisting of the
complements of the halfspaces in H. Assume for con-
tradiction that no three halfspaces in H cover all points
in P . This means that every triple of halfspaces in H′
intersects at a point in P . Since the halfspaces in H′
can be thought of as disks of infinite radius, we can ap-
ply Theorem 6 to H′ and P to conclude that two points
p, q ∈ P hit all halfspaces in H′. This implies that each
halfspace in H avoids at least one of the points in {p, q}.
This contradicts the assumption that for every pair of
points in P , there is some halfspace in H that contains
both. �

4 Discrete Helly type theorem for disks

Theorem 8 Let D be a set of disks and let P be a set
of points in the plane such that every tripe of points in
P is covered by a disk in D. Then, two disks in D cover
all points in P .

334

30th Canadian Conference on Computational Geometry, 2018

Proof. Let Ds be the disk of smallest radius that covers
all points in P . Note that Ds may not be in D. Ds must
contain two or three points on its boundary. Let D1 be
the disk in D that covers all points on the boundary of
Ds and covers the greatest number of points in P out of
all such disks. Then, D1 either covers all points in P , in
which case we are done, or there is a region in Ds that
is not covered by D1. This region lies on one side of the
chord defined by two points p1, p ∈ P on the boundary
of Ds. �

5 Open Problems

It is natural to ask whether analogues of Theorems 1
and 6 are true when halfspaces and pseudodisks are
replaced by other regions. We mention two that we
find intriguing.

Open problem 1. Let D be a set disks and let P
be a set of points in R2 s.t. for every triple of points in
P , there is a disk in D covering the three points. How
many disks of D suffice to cover all points (in the worst
case)? We believe that two disks in D suffice.

Open Problem 2. Let R be a set of axis-parallel
rectangles and let P be a set of points in the plane s.t.
every triple of rectangles in R intersects at a point in
P . How many points from P suffice to hit all rectangles
in R.

References

[1] Pradeesha Ashok, Umair Azmi, and Sathish Govin-
darajan. Small strong epsilon nets. Comput. Geom.,
47(9):899–909, 2014.

[2] Evangelia Pyrga and Saurabh Ray. New existence proofs
epsilon-nets. In Monique Teillaud, editor, Proceedings of
the 24th ACM Symposium on Computational Geometry,
College Park, MD, USA, June 9-11, 2008, pages 199–
207. ACM, 2008.

335

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

If You Must Choose Among Your Children, Pick the Right One

Brittany Terese Fasy†∗ Benjamin Holmgren† Bradley McCoy† David L. Millman†

Abstract

Given a simplicial complex K and an injective func-
tion f from the vertices of K to R, we consider al-
gorithms that extend f to a discrete Morse function
on K. We show that an algorithm of King, Knudson
and Mramor can be described on the directed Hasse di-
agram of K. Our description has a faster runtime for
high dimensional data with no increase in space.

1 Introduction

Milnor’s classical Morse theory provides tools for inves-
tigating the topology of smooth manifolds [16]. In [9],
Forman showed that many of the tools for continuous
functions can be applied in the discrete setting. Infer-
ences about the topology of a CW complex can be made
from the number of critical cells in a Morse function on
the complex.

Given a Morse function one can interpret the func-
tion in many ways. Switching interpretations is often
revealing. In this paper, we think of a discrete Morse
function in three different ways. Algebraically, a Morse
function is a function from the faces of a complex to the
real numbers, subject to certain inequalities. Topologi-
cally, a Morse function is a pairing of the faces such that
the removal of any pair does not change the topology of
the complex. Combinatorially, a Morse function is an
acyclic matching in the Hasse diagram of the complex,
where unmatched faces correspond to critical cells.

Discrete Morse theory can be combined with persis-
tent homology to analyze data, see [1, 2, 4, 5, 7, 8, 13].
When dealing with data, we have the additional con-
straint that vertices have function values assigned. For
complexes without any preassigned function values,
Joswig and Pfetsch showed that finding a Morse func-
tion with a minimum number of critical cells is NP-Hard
[12]. Algorithms that find Morse functions with rela-
tively few critical cells have been explored in [11,15,17].

In this work, we consider the algorithm Extract, Al-
gorithm 1, given in [13]. Extract takes as input a sim-
plicial complex and an injective function from the ver-
tices to the reals, and returns a discrete Morse function,
giving topological information about the complex. We
∗Department of Mathematical Sciences, Montana State U.
†School of Computing, Montana State U.

{brittany.fasy, bradleymccoy, david.millman}@montana.edu

benjamin.holmgren@student.montana.edu

show that a subalgorithm of Extract, ExtractRaw
can be simplified by considering the directed Hasse dia-
gram. This simplification leads to an improved runtime
and no change in space. The paper is organized as fol-
lows, in Section 2, we provide the definitions that will
be used in the paper. In Section 3, we describe Ex-
tract and analyze the runtime, then, in Section 4, we
give our reformulation and show that the runtime is im-
proved from Ω(n2 log n) to O(dn) where n is the number
of cells and d is the dimension of K.

2 Background

In this section, we provide definitions, notation, and
primitive operations used throughout the paper. For a
general overview of discrete Morse theory see [14, 19],
note that both texts provide a description of Extract
originally given in [13]. Extract is the starting point
for this work.

In what follows, we adapt the notation of Edelsbrun-
ner and Harer [6] to the definitions of Forman [10]. Here,
we work with simplicial complexes, but the results hold
for CW complexes. Let K be a simplicial complex with
n simplices. For i ∈ N, denote the i-simplices of K
as Ki, the number of simplices in Ki as ni, and the
dimension of the highest dimensional simplex of K as
dim(K).

Let σ ∈ K, denote the dimension of σ as dim(σ).
Let p = dim(σ) and {v0, v1, · · · , vp} ⊆ K0 be the zero-
simplices of σ, then we say σ = [v0, v1, · · · , vp]. If τ ∈ K
is disjoint from σ, then we can define the join of σ and
τ to be the (dim(σ) + dim(τ) + 1)-simplex that consists
of the union of the vertices in σ and τ , denoted σ ∗ τ .
We write σ ≺ τ if σ is a proper face of τ .

Let p ∈ N and consider simplices σu, σv ∈ Kp, with
σu = [u0, u1, . . . , up] and σv = [v0, v1, . . . , vp]. Let f0 :
K0 → R be an injective function. Without loss of gen-
erality, assume that the zero-simplices of σu and σv are
sorted by function value, that is, we have f0(vi) < f0(vj)
when 0 ≤ i < j ≤ p, similarly for σu. We say that σu is
lexicographically smaller than σv, denoted σu <lex σv, if
the vector 〈f0(up), f0(up−1), . . . , f0(u0)〉 is lexicograph-
ically smaller than 〈f0(vp), f0(vp−1), . . . , f0(v0)〉.

The star of v in K, denoted starK(v), is the set of all
simplices of K containing v. The closed star of v in K,
denoted starK(v), is the closure of starK(v). The link of
v in K, is denoted as linkK(v) := starK(v) \ starK(v).
We define the lower link of v, denoted lowerlinkK(v),

336

32nd Canadian Conference on Computational Geometry, 2020

to be the maximal subcomplex of linkK(v) whose zero-
simplices have function value less than f0(v); the lower
link can be computed in O(n) time.

We provide the definition of a Morse function, modi-
fied from Forman [10].

Definition 1 (Morse Function) A function f : K →
R is a discrete Morse function, if for every σ ∈ K, the
following two conditions hold:

1. |{β � σ|f(β) ≤ f(σ)}| ≤ 1,

2. |{γ ≺ σ|f(γ) ≥ f(σ)}| ≤ 1.

An intuitive definition is given in [19], “the function
generally increases as you increase the dimension of the
simplices. But we allow at most one exception per sim-
plex." Let f : K → R be a discrete Morse function. A
simplex σ ∈ K is critical if the following two conditions
hold:

1. |{β � σ|f(β) ≤ f(σ)}| = 0,

2. |{γ ≺ σ|f(γ) ≥ f(σ)}| = 0.

Simplices that are not critical are called regular.
Given a discrete Morse function f on a simplicial com-

plex K, we define the induced gradient vector field, or
GVF, for short, as {(σ, τ) : σ ≺ τ, f(σ) ≥ f(τ)}. Note
that σ is a codimension one face of τ . We can gain
some intuition for this definition by drawing arrows on
the simplicial complex as follows. If σ is regular, a codi-
mension one face of τ , and f(τ) ≤ f(σ), then we draw
an arrow from σ to τ . Constructing a GVF for a simpli-
cial complex is as powerful as having a discrete Morse
function, and is the goal of both Extract and our pro-
posed Algorithm 2.

Next, we define two functions that are helpful when
constructing a GVF. The rightmost face of σ, de-
noted ρ(σ), is the face of σ with maximum lexicographic
value. The leftmost coface of σ, denoted `(σ), is the di-
mension one coface of σ with minimum lexicographic
value. We say σ is a left-right parent and we call ρ(σ)
a left-right child if ` ◦ ρ(σ) = σ.

In [10], Forman showed that each simplex in K is
exclusively a tail, head, or unmatched. Moreover, the
unmatched simplices are critical. Thus, we can partition
the simplices of K into heads H, tails T , and critical
simplices C, and encode the GVF as a bijection m :
T → H. That is, we can represent the GVF for f
as the unique tuple (H,T,C,m). We will use this
representation throughout our algorithms.

Note that a GVF is a particularly useful construc-
tion. It provides a way to reduce the size of a simplicial
complex without changing the topology (by cancelling
matched pairs), which is constructive for preprocessing
large simplicial complexes. See [4, 17] for examples.

We define a consistent GVF as follows:

Definition 2 (Consistent GVF) Let K be a simpli-
cial complex, and let f0 : K0 → R be injective. Then,
we say that a gradient vector field (H,T,C,m) is con-
sistent with f0 if, for all ε > 0, there exists a discrete
Morse function f : K → R such that

(a) (H,T,C,m) is the GVF corresponding to f .

(b) f |K0 = f0.

(c) |f(σ)−maxv∈σ f0(v)| ≤ ε.
Let (H,T,C,m) be a GVF. Then, for r, p ∈ N, a

gradient path1 is a sequence of simplices in K:

Γ = {σ−1, τ0, σ0, τ1, σ1, . . . , τr, σr, τr+1}
beginning and ending with critical simplices σ−1 ∈
Kp+1 and τr+1 ∈ Kp such that for 0 ≤ i < r, τi ∈ Kp,
σi ∈ Kp+1, m(τi) = σi, and τi � σi+1 6= σi. We call a
path nontrivial if r > 0.

3 A Discrete Morse Extension of f0 : K0 → R

In this section, we give a description of Algo-
rithm 1 (Extract), originally from [13]. This algo-
rithm takes a simplicial complex K, an injective func-
tion f0 : K0 → R, and a threshold that ignores pairings
with small persistence p ≥ 0; and returns a GVF on K
that is consistent with f0.

Algorithm 1 [13] Extract

Input: A simplicial complex K, injective function
f0 : K0 → R, and p ≥ 0

Output: a GVF consistent with f0

1: γ ← ExtractRaw(K, f0) . Algorithm 3
2: for j = 1, 2, . . . ,dim(K) do
3: γ ← ExtractCancel(K,h, p, j, γ) . Alg. 4
4: return γ

Extract uses two subroutines: First, in Line 1 of Al-
gorithm 1 ExtractRaw (given in Algorithm 3) is used
to generate an initial GVF on K consistent with f0. Let
(H0, T0, C0, r0) be this initial GVF. Then, for each di-
mension (j = 1 through dim(K)), the algorithm makes
a call to ExtractCancel (given in Algorithm 4) that
augments an existing gradient path to remove simplices
from C0 in pairs. For more details, see Appendix A.1.

In the next section, we provide a simpler and faster
algorithm to replace ExtractRaw, which dominates
the runtime of Extract when p = 0 (and in practice,
when p is very small). We conclude this section with
properties of the output from ExtractRaw:

1There is a slight discrepancy between the definition of For-
man [10] and KKM [13]. In particular, Forman’s definition states
the head and the tail of the path are simplices of the same dimen-
sion. On the other hand, KKM’s usage in the ExtractCancel
algorithm expects that the head and tail are different dimensions.
Here, we state the definition implied by the usage in KKM.

337

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Theorem 3 (Properies of ExtractRaw) Let K
be a simplicial complex, let f0 : K0 → R be an injec-
tive function, and suppose (H,T,C,m) is the output of
ExtractRaw(K, f0). Let ε > 0. Then, there exists a
discrete Morse function f : K → R such that the follow-
ing hold:

(i) (H,T,C,m) is a GVF consistent with f0.

(ii) Let σ ∈ K. Then, σ ∈ H if and only if σ is a
left-right parent.

(iii) For all σ ∈ H, m(ρ(σ)) = σ.

(iv) The runtime of ExtractRaw is Ω(n2 log n).

4 A Faster Algorithm for ExtractRaw

The main contribution of this paper is Extrac-
tRightChild, which we show is a simplified version
of ExtractRaw that has the same output with an im-
proved runtime. This section provides a description of
the algorithm, and a proof of the equivalence with Ex-
tractRaw.

4.1 Hasse Diagram Data Structure

We assume that KKM [13] represent K in a standard
Hasse diagram data structure H, which can be encoded
as an adjacency list representation for a graph. Each
simplex σ ∈ K is represented by a node in H. We abuse
notation and write σ ∈ H as the corresponding node.
Two simplices σ, τ ∈ H are connected by an edge from
σ to τ if σ is a codimension one face of τ . For a node
σ ∈ H, we partition its edges into two sets, up(σ) and
down(σ) as the edges in which σ is a face or coface,
respectively.

For p ∈ N, we denote the nodes of H corresponding to
the p-simplices of K as Hp and we store each Hp in its
own set that can be accessed in O(1) time. Note that
there is no requirement about the ordering of the edges
or the nodes in each Hp. See Figure 1 for an example
of the data structure.

3

4

2

6 5

1

7

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

Figure 1: Left: A simplicial complex with function val-
ues assigned to the vertices. Right: The Hasse diagram
of the simplicial complex.

For our algorithm, we decorate each node of H with
additional data. For clarity, we denote the decorated

data data structure as H∗. Next, we describe the ad-
ditional data stored in each node and how to initial-
ize the data. Consider σ ∈ H∗p and define f̃(σ) :=

maxv∈σ f0(v). Each node stores f̃(σ), the rightmost
child ρ(σ) and leftmost parent `(σ).

Next, we describe how to initialize the data and sum-
marize with the following lemma.

Lemma 4 (Hasse decoration) Given a simplicial
complex K with n simplices and dim(K) = d. The dec-
orated Hasse diagram uses O(n) additional space. We
can decorate the Hasse digram K in O(dn) time.

Proof. We begin by analyzing the space complexity.
For each node, we store a constant amount of additional
data. Thus, the decorated Hasse diagram uses O(n)
additional space.

Next, we analyze the time complexity. To decorate H
for each node σ ∈ H, we must compute f̃(σ), ρ(σ), and
`(σ). Let p = dim(σ). We proceed in three steps.

First we compute f̃ . In general, computing f̃(σ)
takes O(p) time, since there may be no more than p
vertices which compose any σ. Let τ1 and τ2 be dis-
tinct codimension one faces of σ. Observe that f̃(σ) =
max(f̃(τ1), f̃(τ2)). Thus, if we know the function values
for Hp−1, we can compute and store all function values
of all nodes in H in Θ(n) time.

Second we compute ρ(σ) by brute force. We iterate
over all edges in down(σ) to find its largest face under
lexicographic ordering. Since a p-simplex σ has p +
1 down edges, computing ρ(σ) for σ takes O(p) time.
As dim(K) = d, and there are n nodes, we can then
compute ρ for all nodes in O(dn) time.

Third, we compute `, also by brute force. We iterate
over all edges in up(σ) to find its smallest lexicograph-
ical coface. While we cannot bound up(σ) as easily as
down(σ), we do know that when computing ` we can
charge each edge in the Hasse diagram for one compar-
ison. Observe that when computing ρ, we can similarly
charge each comparison to an edge. Then, from com-
puting ρ, we know the total number of comparisons is
O(dn). Thus, the total number of comparisons for com-
puting ` is also O(dn).

As each step takes O(dn) time, decorating H takes
O(dn) time. �

4.2 Algorithm Description

Next, we describe the main algorithm. Given a
simplicial complex K (represented as a Hasse dia-
gram), and an injective function f0 : K0 → R,
ExtractRightChild computes a GVF consistent
with f0.

Algorithm 2 has three main steps. First, we create
a decorated Hasse diagram. Second, we process each
level of the Hasse diagram from top to bottom. For

338

32nd Canadian Conference on Computational Geometry, 2020

Algorithm 2 ExtractRightChild

Input: simp. complx. K, injective fcn. f0 : K0 → R
Output: a GVF consistent with f0

1: H∗ ← decorate the Hasse diagram of K . Lem. 4|
2: T ← ∅, H ← ∅, C ← ∅, m← ∅
3: for i = dim(K) to 1 do
4: for σ ∈ H∗i do
5: if σ is assigned then
6: continue
7: if σ is a left-right parent then
8: Add ρ(σ) to T ; Add σ to H
9: Add (ρ(σ), σ) to m

10: Mark σ and ρ(σ) as assigned
11: else
12: Add σ to C
13: Mark σ as assigned
14: Add any unassigned zero-simplices to C
15: return (T,H,C, r)

each unassigned simplex, we check for a left-right parent
node, and use the results to build up a GVF. Third, we
process unassigned zero-simplices. See Figure 2 for an
example.

4.3 Analysis of ExtractRightChild

For the remainder of this section, we prove that Al-
gorithm 2 (ExtractRightChild) is equivalent to
and faster than Algorithm 3 (ExtractRaw). For
the following lemmas, let K be a simplicial com-
plex, let f0 : K0 → R be an injective function,
and let (H,T,C,m) be the output of Extrac-
tRightChild(K,f0).

First, we show that (H,T,C,m) is a partition of K.

Lemma 5 (Partition) The sets H, T , and C parti-
tion K.

Proof. By Line 3 and Line 4 of Algorithm 2, Extrac-
tRightChild iterates over all σd ∈ K with d > 0 once.
Each σ is either assigned or unassigned. If σ is unas-
signed, there are two options; σ may be a left-right par-
ent, or it may not be. If σ is a left-right parent, Line 8
ensures that σ is put into H. Otherwise, Line 12 en-
sures that σ is put into C. If σ is assigned, then σ
was assigned to T in Line 8. Thus, every σd ∈ K with
d > 0 must be assigned to exactly one of H,T, or C.
Then, every σ0 is again either assigned or unassigned.
If assigned, σ0 ∈ T . If unassigned, σ0 is added to C in
Line 14. Thus, every σ ∈ K is assigned one of H,T, or
C, making H,T, and C partition K. �

We will show that (H,T,C,m) satisfies (i), (ii), and
(iii) of Theorem 3. Later in this section, we show that
any GVF with these properties is unique.

First, we show (iii) and one direction of (ii).

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(a) The simplex [3, 4, 6] is a left-right parent
because ` ◦ ρ([3, 4, 6]) = `(4, 6) = [3, 4, 6].
The algorithm adds [3, 4, 6] to H and [4, 6]
to T .

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(b) The simplex [2, 5, 7] is also a left-right
parent. The algorithm adds [2, 5, 7] to H
and [5, 7] to T.

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(c) Both [3, 4] and [1, 5] are left-right par-
ents. The simplex [2, 5] is not a left-right
parent because ` ◦ ρ([2, 5]) = [1, 5] 6= [2, 5].
The algorithm adds [2, 5] to C.

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(d) The loop in Line 3 is complete.

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(e) The algorithm adds unassigned vertices
to C.

Figure 2: Here we see a visualization of Algorithm 2,
ExtractRightChild on the complex shown in Fig-
ure 1. Algorithm 2 partitions the nodes of the Hasse
diagram into three sets, H,T and C. Elements of H are
represented by blue rectangles, elements of T by green
pentagons and elements of C by red hexagons.

339

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Lemma 6 (Child Heads are Parents) Let σ ∈ H.
Then, σ is a left-right parent and m(ρ(σ)) = σ.

Proof. Recall that H is the second output of Extrac-
tRightChild(K,f0), given in Algorithm 2. As Line 8
is the only step in which simplices are added to H and
is within an if statement that checks if σ is a left-right
parent, σ must be a left-right parent. Also within the
if statement, Line 9 adds (ρ(σ), σ) to m, which means
that m(ρ(σ)) = σ. �

Now we show the reverse direction of (ii).

Lemma 7 (Child Parents are Heads) Let σ ∈ K.
If σ is a left-right parent, then σ ∈ H.

Proof. Recall that in order for σ to be a left-right par-
ent, we must have `(ρ(σ)) = σ. Now, we consider two
cases. For the first case, suppose σ ∈ C. Then σ is
added to C in Line 12 of Algorithm 2 when ρ(σ) must
already be assigned to h <lex σ. So, `(ρ(σ)) = h 6= σ
and σ is not a left-right parent.

For the second case, suppose σ = [v0, v1, . . . , vd] ∈ T .
Then σ is added to T in Line 8 of Algorithm 2 where σ =
ρ(h) for some h = [v−1, v0, . . . , vd] ∈ H with f0(v−1) <
f0(v0). Notice that ξ = [v−1, v1, v2, . . . , vd] is a face of
h and ξ <lex σ. Then, `(ρ(σ)) = `([v1, . . . , vd]) ≤lex
[v−1, v1, v2, . . . , vd] <lex [v0, v1, . . . , vd] = σ and σ is not
a left-right parent.

Thus, if σ is a left-right parent, then σ ∈ H.
�

To see (H,T,C,m) satisfies (i) we have the following
lemma:

Lemma 8 (Consistency) The tuple (H,T,C,m) is a
gradient vector field consistent with f0.

Proof. Let ε > 0 and d = dim(K). Let (H,T,C,m) =
ExtractRightChild(K,f0). We define

δ := min{ε, min
v,w∈K0

|f(v)− f(w)|}.

We define f : K → R recursively as follows: for all
vertices v ∈ K0, define f(v) := f0(v). Now, assume
that f is defined on the i-simplices, for some i ≥ 0. For
each σ ∈ Ki+1, we initially assign f(σ) = maxτ≺σ f(τ),
then we update:

f(σ) = f(σ) +

{
−21−2iδ if σ is a left-right parent;
21−2iδ otherwise,

(1)
where j is the index of σ in the lexicographic ordering
of all simplices. We make one final update:

f(σ) = f(σ) +

{
2−2iδ if σ is a left-right child;
0 otherwise.

(2)

We need to show that (H,T,C,m) and f satisfy the
three properties in Definition 2.

First, we show Part (a) of Definition 2 holds for f as
defined above (that (H,T,C,m) is the GVF correspond-
ing to f). Let (H ′, T ′, C ′,m′) be the GVF correspond-
ing to f . Since H, T , C partitions K by Lemma 5, it
suffices to show that m is a bijection and m = m′. The
only time that simplices are added to H or T happens
directly alongside when pairs are added to m in lines 8
and 9, forcing that m must be a match.

Let (τ, σ) ∈ m. Let i = dim(σ). By Lemma 7, σ is a
left-right parent and τ = ρ(σ), which means that (τ, σ)
is a left-right pair. We follow the computation of f(σ).
Since (τ, σ) is a left-right pair, τ is the rightmost face
of σ, which means f(σ) is initialized to f(τ). Since σ
is a left-right parent, f(σ) is updated by (1) to f(σ) =
f(σ)− 21−2iδ. Since σ is not a left-right child, nothing
changes in (2). Thus, f(σ) < f(τ). Next, let τ ′ ≺ σ
such that τ ′ 6= τ and dim(τ ′) = i − 1. We follow the
computation of f(τ ′). Since τ is the only face of σ that
is a left-right child, for any other τ ′ ≺ σ, (2), adds
zero to the definition of f(τ ′). Recalling that (2) adds
2−2(i−1)δ to the definition of f(τ), we find that f(τ) ≥
f(τ ′) + 2−2(i−1)δ, and

f(σ) = f(τ)−21−2iδ ≥ f(τ ′)+2−2(i−1)δ−21−2iδ ≥ f(τ ′).

Because σ may be any arbitrary left-right parent, we
can guarantee that the above inequality is valid for any
(σ, τ) ∈ m when related to any other faces of σ. Thus,
f is discrete Morse, since it is impossible for f to violate
the inequality given in Definition 1.

Since f(τ) > f(σ) and f is a discrete Morse function,
we obtain (τ, σ) ∈ m′. Each of these statements are
biconditional, so we have shown that m = m′.

Part (b) of Definition 2 (f |K0
= f0) holds trivially.

Finally, we show Part (c) of Definition 2 holds (that
|f(σ)−maxv∈σ f0(v)| ≤ ε). By construction,

|f(σ −max
v∈σ

f0(v)| ≤
(

d∑

i=1

2−i
)
δ = (1− 2−d)δ < ε.

�

Properties (i), (ii), and (iii) are quite restrictive. In
fact, they uniquely determine a GVF, as we now show.

Theorem 9 (Unique GVF) Let K be a simplicial
complex and let f0 : K0 → R be an injective function.
There is exactly one gradient vector field, (H,T,C,m),
with the following two properties:

(i) (H,T,C,m) is consistent with f0.

(ii) For all σ ∈ K, σ ∈ H if and only if σ is a left-
right parent.

(iii) For all σ ∈ H, m(ρ(σ)) = σ.

340

32nd Canadian Conference on Computational Geometry, 2020

Proof. Let K and f0 be as defined in the theorem
statement. Let f̃ : K → R be defined for each sim-
plex σ ∈ K by f̃(σ) := maxv∈σ f0(v). Let (H,T,C,m)
and (H ′, T ′, C ′,m′) be two GVFs that satisfy (i), (ii),
and (iii).

Let σ ∈ H. By the forward direction of (ii), we know
that σ is a left-right parent. By the backward direction
of (ii), we know that σ ∈ H ′. Thus, we have shown
that H ⊆ H ′. Repeating this argument by swapping
the roles of H and H ′ gives us H ′ ⊆ H.

Since σ ∈ H = H ′ and because (iii) holds, we have
shown that σ is paired with ρ(σ) in both matchings, and
specifically m(ρ(σ)) = σ = m′(ρ(σ)). Since m and m′
are bijections by (i), we also know that:

T = {τ ∈ K | ∃σ ∈ H s.t. m(ρ(σ)) = σ} = T ′.

Thus, T = T ′ and m = m′.
Finally, we conclude:

C = K \ (T ∪H) = K \ (T ′ ∪H ′) = C ′,

which means that (H,T,C,m) and (H ′, T ′, C ′,m′) are
the same GVF. Thus, we conclude that the gradient
vector field satisfying (i), (ii), and (iii) is unique. �

Since ExtractRightChild and ExtractRaw
both satisfy the hypothesis of Theorem 9, the outputs
of the algorithms must be the same.

Theorem 10 (Algorithm Equivalence) Let K be a
simplicial complex and let f0 : K0 → R be an in-
jective function. Then ExtractRaw(K, f0) and
ExtractRightChild(K, f0) yield identical outputs.

Proof. By Theorem 3 and Lemma 12, the output of
ExtractRaw satisfies the properties in Theorem 9.
By Lemma 8, Lemma 6, and Lemma 7, the output of
ExtractRightChild satisfies the properties of The-
orem 9. Then, by Theorem 9, ExtractRaw and Ex-
tractRightChild are equivalent.

�

When we consider the runtime and space usage of
ExtractRightChild, we find the following:

Theorem 11 (New Runtime) Given a simplicial
complex K (represented as a Hasse diagram), and an
injective function f0 : K0 → R, ExtractRightChild
computes a GVF consistent with f0 in O(dn) time and
uses O(n) space.

Proof. First, line Line 1 decorates the Hasse diagram.
By Lemma 4, the decoration takes O(dn) time and O(n)
space. Lines 3-13, process each node of the decorated
Hasse diagram. Each iteration of the loop is O(1) in
time and space because all required data was computed
while decorating. As there are n− n0 nodes to process,

Lines 3-13 takes O(n) time and uses O(1) space. Finally,
we iterate over the zero-simplices in O(n0) time.

The bottleneck of space and time usage of the algo-
rithm is decorating the Hasse diagram, therefore, the
algorithm takes O(dn) time and O(n) space. �

5 Discussion

In this paper, we identified properties of the Extract
and ExtractRaw algorithms [13]. We used these
properties to simplify ExtractRaw to the equivalent
algorithm ExtractRightChild. Our simplification
improves the runtime from Ω(n2 log n) to O(dn).

There are several possible extensions of this work.
The problem of finding tight bounds on the runtime
of Extract is interesting and open. We plan to imple-
ment our approach on high dimensional data sets, and
to further improve to the runtime. We intend to explore
a cancellation algorithm that performs the same task
as ExtractCancel, eliminating critical pairs with
small persistence. Our conjectured cancellation algo-
rithm iterates over critical simplices and applies Ex-
tractRightChild.

Constructing Morse functions that do not require pre-
assigned function values on the vertices is a related area
of active research. The problem of finding a Morse func-
tion with a minimum number of critical simplices is NP-
hard [12]. In [3], Bauer and Rathod show that for a
simplicial complex of dimension d ≥ 3 with n simplices,
it is NP-hard to approximate a Morse matching with
a minimum number of critical simplices within a factor
of O(n1−ε), for any ε > 0. The question is open for
2-dimensional simplicial complexes.

Acknowledgements This material is based upon work
supported by the National Science Foundation under
the following grants: CCF 1618605 & DMS 1854336
(BTF) and DBI 1661530 (DLM). Additionally, BH
thanks the Montana State Undergraduate Scholars Pro-
gram. All authors thank Nick Scoville for introducing
us to KKM [13] and for his thoughtful discussions.

References

[1] U. Bauer. Persistence in Discrete Morse Theory. PhD
thesis, Niedersächsische Staats-und Universitätsbiblio-
thek Göttingen, 2011.

[2] U. Bauer, C. Lange, and M. Wardetzky. Optimal topo-
logical simplification of discrete functions on surfaces.
Discrete and Computational Geometry, 47(2):347–377,
2012.

[3] U. Bauer and A. Rathod. Hardness of approximation
for Morse matching. arXiv:1801.08380, 2018.

[4] L. Čomić and L. De Floriani. Dimension-independent
simplification and refinement of Morse complexes.
Graphical Models, 73(5):261–285, 2011.

341

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[5] T. Dey, J. Wang, and Y. Wang. Graph reconstruction
by discrete Morse theory. In 34th Symposium on Com-
putational Geometry (SoCG), pages 31:1–31–13, 2018.

[6] H. Edelsbrunner and J. Harer. Computational Topology:
An Introduction. American Mathematical Society, 2010.

[7] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hi-
erarchical Morse-Smale complexes for piecewise linear
2-manifolds. Discrete and Computational Geometry,
30(1):87–107, 2003.

[8] H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification. Discrete and
Computational Geometry, 28:511–533, 2002.

[9] R. Forman. Discrete Morse theory for cell complexes.
Advances in Mathematics, 134:90–145, 1998.

[10] R. Forman. A user’s guide to discrete Morse theory.
Séminaire Lotharingien de Combinatoire, 42:Art. B48c,
35pp, 2002.

[11] P. Hersh. On optimizing discrete Morse functions. Ad-
vances in Applied Math, 35:294–322, 2005.

[12] M. Joswig and M. Pfetsch. Computing optimal Morse
matchings. SIAM Journal on Discrete Mathematics
(SIDMA), 20(1):11–25, 2006.

[13] H. King, K. Knudson, and N. Mramor. Generating dis-
crete Morse functions from point data. Experimental
Mathematics, 14:435–444, 2005. MR2193806.

[14] K. Knudson. Morse Theory: Smooth and Discrete.
World Scientific Publishing Company, 2015.

[15] T. Lewiner, H. Lopes, and G. Tavares. Toward optimal-
ity in discrete Morse theory. Experimental Mathematics,
12:271–285, 2003.

[16] J. Milnor. Morse Theory. Princeton University Press,
Princeton, New Jersey, 1963.

[17] K. Mischaikow and V. Nanda. Morse theory for filtra-
tions and efficient computation of persistent homology.
Discrete and Computational Geometry, (50):330, 2013.

[18] R. Raz. On the complexity of matrix product. SIAM
Journal on Computing, 32:1356–1369, 2003.

[19] N. Scoville. Discrete Morse Theory. American Mathe-
matical Society, Providence, Rhode Island, 2019.

A Additional Details for Extract

To put our result in context, we now provide a glimpse
into the inner workings of Extract, and reveal the
underlying properties of ExtractRaw which give it
an identical output to ExtractRightChild. We also
provide a formal runtime analysis of ExtractRaw
to verify that ExtractRightChild provides an im-
proved time complexity.

A.1 Subroutines for Extract

In this section, we recall the algorithms proposed by
KKM [13]. Note that we made some slight modifica-
tions to the presentation of KKM’s initial description

to improve readability. The modifications do not affect
the asymptotic time or space used by the algorithm,
although it does remove some redundant computation.

In particular, we modified the inputs to explicitly pass
around a GVF so that the inputs of each algorithm are
clear. We simplified notation and inlined the subroutine
Cancel. From the previous modifications, we observed
that the algorithm recomputes a gradient path that is
currently in scope and so we simply unpack the path on
Line 11 of Algorithm 4.

ExtractRaw computes the lower link of each ver-
tex v in a simplicial complex, and assigns v ∈ C if
lowerlinkK(v) = ∅. If lowerlinkK(v) 6= ∅, its lower link
is recursively inputted into ExtractRaw and this re-
cursion continues until an empty lower link is reached.
When the lower link is not empty, ExtractRaw as-
signs v ∈ T and the smallest function valued vertex
ω0 in lowerlinkK(v) is combined with v and added to
H, carrying with this assignment a mapping m from
ω0 ∗ v ∈ H to v ∈ T . As the recursion continues, higher
dimensional simplices in the lower start of v are able
to be assigned to both H and T based on combinations
consistent with the assignments of the vertices and the
original mappings ofm. Higher dimensional critical cells
are assigned similarly by combining the current vertex
and each previously computed σ ∈ C from the last re-
cursion, until all simplices have been assigned.

Then, because ExtractRaw may have extraneous
critical cells, Cancel works to reduce the number of
critical cells by locating “redundant" gradient paths to
a critical simplex and reversing them after the first pass
by ExtractRaw, refining the output of Extract .

Algorithm 3 [13] ExtractRaw

Input: simp. complx. K, injective fcn. f0 : K0 → R
Output: a GVF consistent with f0

1: T ← ∅, H ← ∅, C ← ∅, m← ∅
2: for all v ∈ K do
3: Let K ′ := the lower link of v.
4: if K ′ = ∅ then
5: Add v to C
6: else
7: Add v to T
8: (T ′, H ′, C ′,m′)←Extract(K ′, f0,∞)
9: w0 ← arg minw∈C′0{f0(w)}

10: Add w0v to H
11: Define m(w0 ∗ v) := v
12: For each σ ∈ C ′ \ {w0}, add v ∗ σ to C
13: for all σ ∈ T ′ do
14: Add v ∗ σ to T
15: Add v ∗m′(σ) to H
16: Define m(v ∗ σ) = v ∗m′(σ)
17: return (H,T,C,m)

Let p ∈ N, σ ∈ Kp be a critical simplex. Let Gjσ

342

32nd Canadian Conference on Computational Geometry, 2020

Algorithm 4 [13] ExtractCancel

Input: simplicial complex K, injective function
f0 : K0 → R, p ≥ 0, j ∈ N, and GVF γ

Output: Gradient vector field on K
1: Let (H,T,C,m) be the four components of γ
2: for all σ ∈ Cj do
3: s← maxv∈σ f0(v)
4: S ← {Γ | Γ ∈ Gjσ, s−maxw∈ΓL

f0(w) < p}
5: for all Γ ∈ S do
6: mΓ ←∞
7: if ΓL 6= Γ′L for any other Γ′ ∈ S then
8: mΓ ← maxw∈ΓL

f0(w)
9: Γ∗ ← arg minΓ∈S{mΓ}

10: if mΓ∗ 6=∞ then
11: {σ1, τ1, · · · , σk, τk} ← Γ∗

12: Remove τk, σ1 from C
13: Add τk to T ; Add σ1 to H
14: Add (τk, σk) to m
15: for i = 1, ..., k − 1 do
16: Remove (τi, σi+1) from m
17: Add (τi, σi) to m
18: return (H,T,C,m)

denote the set of all nontrival gradient path starting at
σ ∈ Cj and ending in Cj−1.

A.2 Analysis of ExtractRaw

In this appendix, we provide the analysis Algorithm 1
from Section 3. In what follows, let K be a simplicial
complex and let f0 : K0 → R be an injective function.

Lemma 12 (Raw Heads are Parents) Let
(H,T,C,m) be the output of ExtractRaw(K, f0).
Every simplex in H is a left-right parent. Furthermore,
for all σ ∈ H, m(ρ(σ)) = σ.

Proof. Let σ ∈ H. We show that σ is a left-right parent
by induction on the dimension ofK. When dim(K) = 1,
σ is an edge, and σ = m(τ) for some vertex τ ∈ T . In
Line 10 of Algorithm 3 σ is defined as m(τ) = [w0, τ]
where w0 ∈ C ′0 so that f0(w0) is smallest. So, σ is a left-
right parent. Furthermore, m(ρ(σ)) = m(ρ([w0, τ])) =
m(τ) = σ.

Suppose every σ ∈ H is a left-right parent when
dim(K) ≤ d and consider dim(K) = d + 1. If σ is
a (d + 1)−simplex, σ = m(τ) is defined in Line 15 of
Algorithm 3, when a vertex v is selected in Line 2 of
Algorithm 3. We extend the GVF on the lowerlinkK(v)
to include the lower star of v. We havem(τ) = v∗m′(α)
where α = [v1, . . . , vd] ∈ T ′, m′(α) = [v0, v1 . . . vd] ∈ H ′.
Since α and m′(α) are in the lowerlinkK(v) we have
f(vi) < f(v) for 0 ≤ i ≤ d. Then τ = v ∗ α =
[v1, . . . , vd, v] and σ = m(τ) = [v0, v1, . . . , vd, v].

By the induction hypothesism′(α) ∈ H ′ is a left-right
parent. If σ is not a left-right parent, we can remove v
from σ and τ and contradict that m′(α) ∈ H ′.

Furthermore, m(ρ(σ)) = m(ρ(m(τ))) =
m(ρ([v0, v1, . . . , vd, v])) = m([v1, . . . , vd, v]) = m(τ) =
σ. This proves the claim. �

Lemma 13 (Raw Parents are Heads) Let
(H,T,C,m) be the output of ExtractRaw(K, f0).
Let σ ∈ K. If σ is a left-right parent, then σ ∈ H.

Proof. We show if σ ∈ T ∪C then σ is not a left-right
parent. First, suppose σ ∈ T . We use induction on
dim(K) to show σ is not a left-right parent. For the
base case, dim(K) = 1, σ is a vertex and can not be a
left-right parent.

Suppose σ ∈ T is not a left-right parent when
dim(K) ≤ d and consider dim(K) = d + 1. Then σ
is added to T in Line 14 of Algorithm 3 when a ver-
tex v is selected in Line 2. As in Lemma 12, write
σ = v ∗ α = [v1, . . . , vd, v] for some α ∈ T ′.

By the induction hypothesis α is not a left-right par-
ent, thus ` ◦ ρ(α) 6= α, and there exists a vertex v−1

such that `(ρ(α)) = [v−1, v2, v3 . . . , vd] where f(v−1) <
f(v1). We have ` ◦ ρ(σ) = ` ◦ ρ([v1, v2, . . . , vd, v]) =
`([v2, v3 . . . , vd, v]) = [v−1, v2, . . . , vd, v] 6= σ.

Now, suppose σ ∈ C. There are two places where
elements are added to C, Line 5 of Algorithm 3 and
Line 12. In Line 5 c is a vertex and can not be a left-
right parent.

In Line 12 c is defined as c = v ∗ α for some α =
[v0, v1, . . . , vd] ∈ C ′\w0 where w0 ∈ C ′0 so that f0(w0)
is smallest. Now ` ◦ g(c) = ` ◦ g([v0, v1, . . . , vd, v]) =
`([v1, . . . , vd, v]) = [w0, v1, . . . , vd, v] 6= c. We have
shown that if σ is a left-right parent, then σ ∈ H.

�

We summarize the properties of ExtractRaw in the
following theorem.

Theorem 3 (Properies of ExtractRaw) Let K
be a simplicial complex, let f0 : K0 → R be an injec-
tive function, and suppose (H,T,C,m) is the output of
ExtractRaw(K, f0). Let ε > 0. Then, there exists a
discrete Morse function f : K → R such that the follow-
ing hold:

(i) (H,T,C,m) is a GVF consistent with f0.

(ii) Let σ ∈ K. Then, σ ∈ H if and only if σ is a
left-right parent.

(iii) For all σ ∈ H, m(ρ(σ)) = σ.

(iv) The runtime of ExtractRaw is Ω(n2 log n).

Proof. (i) is proven in Theorem 3.1 of [13]. By
Lemma 12 and Lemma 13, we conclude (ii). Also by
Lemma 12 we can guarantee (iii).

343

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

To show (iv), we observe that the worst-case runtime
for a single execution of Line 8 of Algorithm 3 happens
when the lower link of v is of size Θ(n/2). Computing
the optimal pairings that Extract returns is at least
as hard as computing the homology of K ′, which is of
the time complexity of matrix multiplication. By [18],
we know that the runtime of ExtractRaw is lower-
bounded by Ω(n2 log n). �

344

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A Simple Algorithm for kNN Sampling in General Metrics∗

Kirk P. Gardner† and Donald R. Sheehy‡

Abstract

Finding the kth nearest neighbor to a query point is a
ubiquitous operation in many types of metric computa-
tions, especially those in unsupervised machine learning.
In many such cases, the distance to k sample points is
used as an estimate of the local density of the sample.
In this paper, we give an algorithm that takes a finite
metric (P,d) and an integer k and produces a subset
M ⊆ P with the property that for any q ∈ P , the
distance to the second nearest point of M to q is a con-
stant factor approximation to the distance to the kth
nearest point of P to q. Thus, the sample M may be
used in lieu of P . In addition to being much smaller
than P , the distance queries on M only require finding
the second nearest neighbor instead of the kth nearest
neighbor. This is a significant improvement, especially
because theoretical guarantees on kth nearest neighbor
methods often require k to grow as a function of the
input size n.

1 Introduction

Subsampling is a fundamental step in many large scale
data analysis problems. The goal is that the distribu-
tion of the subsample M ⊂ P resembles the distribution
on the whole data set, P . On the one hand, preserving
purely statistical properties is often achieved by random
sampling. This paper, on the other hand, considers pre-
serving metric properties of a subsample. Specifically,
we want a sample where the distance to the second near-
est neighbor in M is approximately the distance to the
kth nearest neighbor in P . We call this a kth nearest
neighbor sample and it balances between competing de-
mands of representing the underlying distribution and
the underlying metric.

Figure 3 shows a kth nearest neighbor sample of a
collection of points in the plane. The points are 5 times
denser on the right half and there are correspondingly
more points in the sample on that side. Figure 1 shows
a random sample of the same point set with the same
number of points sampled. The random sample also has

∗This work was partially supported by the NSF under grants
CCF-1464379, CCF-1525978, and CCF-1652218.
†Department of Computer Science, North Carolina State Uni-

versity, kpgardn2@ncsu.edu
‡Department of Computer Science, North Carolina State Uni-

versity, don.r.sheehy@gmail.com

Figure 1: A random sample.

Figure 2: A greedy sample.

Figure 3: A kth nearest neighbor sample.

more points on the denser half, but it has more variabil-
ity in the distance between samples; some are virtually
on top of each other. The greedy sample (Figure 2) is a
standard way to produce a uniform sample at a particu-
lar scale, but that scale does not vary with the density.
In this sense, the kNN sample achieves a balance be-
tween the random sample and the uniform (i.e. greedy)
sample.

In prior work [7], we showed how a variation of De-
launay refinement can be used in the plane to compute
such a sample. In this paper, we prove that a simple
algorithm can compute a kNN sample in any metric
space. Then, we show how data structures and ideas
from nearest neighbor search can be adapted to speed
up the computation.

The algorithm is presented in its simplest form in
Section 3. There, we prove upper and lower bounds
on the kth nearest neighbor distance in terms of the

345

32nd Canadian Conference on Computational Geometry, 2020

2nd nearest neighbor distance in the sample. Then, in
Section 4, we describe a neighborhood graph structure
adapted from Clarkson [3] that we use to speed up the
local search step of the algorithm. In Section 5, we put
all these pieces together to bound the overall running
time. We report on our open source implementation
and give some demonstrations of the code in action in
Section 7. Finally, in Section 8, we propose some open
problems that remain.

1.1 Related Work

The distance to the kth nearest neighbor has been used
for a long time as a density estimator (see Biau and
Devroye [1]). It has also been used in pointwise esti-
mates of the local density in metric measure spaces (see
Cutler and Dawson [5] and the survey by Clarkson [4]).
There are many data structures that compute kth near-
est neighbors efficiently, perhaps the fastest in practice
are the Faster Cover Trees of Izbicki and Shelton [11].
There has also been theoretical work by Har-Peled and
Raichel on a general framework for computing aggregate
statistics like the kth nearest neighbor distance with
the so-called Net and Prune paradigm [10]. The first
algorithms for computing kNN samples was the work
of Gardner and Sheehy using Delaunay refinement, but
was limited to Euclidean space [7]. The main algorith-
mic paradigm we use here is based on greedy orderings,
which have been used since the 1980’s for approximate
k-center clustering [6, 8]. The underlying data structure
is a variant of the sb structure of Clarkson [3, 2], which
was first analyzed for greedy orderings by Har-Peled and
Mendel [9].

2 Background

We will deal with finite subsets of metric spaces (X,d),
where the X is the set of points and d is the metric.
For x ∈ X and subsets S of X, we define

d(x, S) := min
s∈S

d(x, s).

The minimum distance to k points in S is denoted

dS,k(x) := min
U∈(S

k)
max
y∈U

d(x, y).

In particular, dS,1(x) = d(x, S). The Hausdorff dis-
tance, dH , is defined on subsets of X as

dH(A,B) := max{max
a∈A

d(a,B),max
b∈B

d(b, A)}.

A metric ball in S is the set of points of S within a
fixed radius of a point in S. A minimum r-cover of a set
S is the smallest set of centers of metric balls of radius r
whose union contains S. Equivalently, it is the smallest
subset C ⊂ S such that dH(S,C) ≤ r.

The doubling constant of a metric is the size of the
largest minimum r-cover of any ball of radius 2r. The
doubling dimension is the base-two logarithm of the
doubling constant. A bound on the doubling dimen-
sion allows one to apply the kind of packing arguments
as are often used in Euclidean space.

The spread ∆(P) of a finite metric P is the ratio of
the largest to smallest pairwise distances. The k-spread
is the ratio

∆k(P) :=
maxp,q∈P d(p, q)

minp∈P dP,k(p)
.

A set with spread ∆ in a metric with doubling dimension
d has at most O(∆d) points [9].

An r-packing is a set of points for which the minimum
pairwise distance is at least r. An r-packing that is also
an r-cover is called an r-net.

For a metric space X and a subset P , an (α, β)-kNN
sample of P is a subset M ⊆ P with the property that
for all x ∈ X,

αdP,k(x) ≤ dM,2(x) ≤ βdP,k(x).

We will refer to it simply as a kNN sample when the
values of α and β are not important. The algorithm in
this paper produces a (1/5, 2)-kNN sample.

Let P = (p1, . . . , pn) be an ordered subset of X. Let
Pi = {p1, . . . , pi} be the ith prefix. The ordering is
greedy if for all i ∈ 2, . . . , n, we have

d(pi+1, Pi) := dH(P, Pi).

In other words, every point pi+1 is the farthest point
from Pi. We will compute kNN-samples in a greedy
order. Both the data structure in Section 4 and the
algorithm in Section 5 will depend on this ordering for
their correctness and efficient running time.

3 A Simple Algorithm

We present a simple algorithm that generates an (α, β)-
kNN-sample as a subset of the input. It iteratively
builds M from P by adding a point p of P to M as long
as dP,k(p) ≤ 2dM,1(p). In this section, we prove that
any such algorithm produces a (1/5, 2)-kNN-sample.

Algorithm 1 kNNSample(P, k)

1: M ← ∅
2: while ∃p ∈ P such that dP,k(p) ≤ 2dM,1(p) do
3: Add p to M

return M

Theorem 1 Let P be a subset of a metric space X. Let
M = kNNSample(P, k) for some k ≥ 2. Then,

1

5
dP,k ≤ dM,2 ≤ 2dP,k.

346

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Proof. We first prove the lower bound on dM,2. Let
x ∈ P be any point. Let v1 and v2 be the two nearest
points to x in M , so,

dM,1(x) = d(x, v1) ≤ d(x, v2) = dM,2(x). (1)

Let v ∈ {v1, v2} be whichever point was added later by
the algorithm, which guarantees that

dP,k(v) ≤ 2d(v1, v2). (2)

We can now bound dP,k(x) as follows.

dP,k(x) ≤ dP,k(v) + d(v, x) [dP,k is 1-Lipschitz]

≤ 2d(v1, v2) + d(v, x) [by (2)]

≤ 2(d(v1, x) + d(x, v2)) + d(v, x) [triangle inequality]

≤ 5dM,2(x) [by (1)] .

Now, we prove the upper bound on dM,2. Suppose
for contradiction that there exists a point x ∈ X such
that dM,2(x) > 2dP,k(x). Let S be the k closest points
in P to x. Let r be the radius of the minimum enclos-
ing ball of S and note that r ≤ dP,k(x). If dM,1(s) < r
for some s ∈ S, then let m ∈ M be the nearest neigh-
bor of s in M . It follows from the triangle inequality
that d(x,m) ≤ d(x, s)+d(s,m) ≤ 2dP,k(x) < dM,2(x).
There can be only one point m ∈ M whose distance
to x is less than dM,2(x). However, if dM,1(s) < r
for all s ∈ S, then there would be a smaller minimum
enclosing ball for S centered at m, contradicting our
choice of r. So, for at least one point s∗ ∈ S, we have
dM,1(s∗) ≥ r. Therefore, by the triangle inequality,
dP,k(s∗) ≤ 2r ≤ 2dM,1(s∗). The existence of such a
point would cause the algorithm to add s∗ to M , contra-
dicting the assumption that M = kNNSample(P, k).
Thus, we conclude that no such x exists and indeed
dM,2 ≤ 2dP,k. �

In Sections 5 and 6, we explain how to efficiently test
this condition and bound the running time. Efficiency is
achieved by constructing the sample in a greedy order.
Note that the simplified algorithm does not rely on a
particular ordering.

4 A Cluster Graph

In this section we will define a graph on the a subset
of points that can be used to rapidly shrink the search
space when computing dP,k in the middle of our algo-
rithm. It is a variation on a data structure used in the
construction of the sb data structure of Clarkson [3].
Each vertex in the graph will be a point that we have
already added to our sample. Moreover, each vertex will
track the uninserted points that are closest to it. Every
time a new point is considered for addition, we use the

vertices adjacent to its nearest neighbor to search for
nearby points. The formal definition is given below.

Let P be a finite metric space, and let M ⊂ P be any
subset. The cluster of x ∈ M is the set of points Cx

in P that are closer to x than to any other point in M .
We break ties arbitrarily but consistently. The clusters
are discrete Voronoi cells.

The cluster graph GM on vertex set M has points a
and b adjacent if there exist a′ ∈ Ca and b′ ∈ Cb such
that

d(a′, b′) ≤ 2 max{d(a′, a),d(b′, b)}.
If a and b are adjacent, we denote this as a ∼ b. The
graph has self loops at every vertex. Because a′ ∈ Ca

and b′ ∈ Cb, the adjacency condition is equivalent to

d(a′, b′) ≤ max{2dM,1(a′), 2dM,1(b′)}.

So, if we wanted to try to add a′ to M , we could find
all the points within distance 2dM,1(a′) among the the
clusters of the vertices adjacent to a.

Moreover, we use the cluster graph to efficiently main-
tain itself under insertions. That is, we can use the
graph to quickly find the edges incident to a newly in-
serted point.

Lemma 2 Let M ⊂ P and let M ′ = M ∪ {a′} for
a′ ∈ Ca and a ∈M . If a′ ∼ c in GM ′ , then there exists
b ∈ M such that a ∼ b ∼ c in GM . In other words,
the neighbors of a′ will be found among the neighbors of
neighbors of a.

Proof. By the definition of adjacency in GM ′ there ex-
ist points b′ ∈ Ca′ and c′ ∈ Cc such that

d(b′, c′) ≤ 2 max{d(b′, a′),d(c′, c)}
≤ 2 max{d(b′, b),d(c′, c)},

where b is the nearest point to b′ in M as illustrated in
Figure 4. From this, it follows that b ∼ c in GM . Next,
observe that

d(a′, b′) ≤ d(b, b′) ≤ 2 max{d(b, b′),d(a, a′)}.

So, it immediately follows that a ∼ b in GM . �

Lastly, we would prefer to avoid the extensive check-
ing required to see if two points are adjacent. At first
sight, it seems to require searching for a pair that are
particularly close. Instead, we follow the example of
Clarkson [3] and prove a sufficient condition for bound-
ing the neighbors just by using the radii of the clusters
and the triangle inequality.

For a point x ∈M , define its radius to be

rad(x) = max
y∈Cx

d(y, x).

In other words, it is the distance from x to the farthest
point in its cluster.

347

32nd Canadian Conference on Computational Geometry, 2020

a

a’

b’

c

c’

b
Figure 4: Here, a′ ∈ Ca, b′ ∈ Cb, and c′ ∈ Cc. If
adding a′ would require creating an edge from a′ to
c, we will find c among the neighbors of neighbors of
a. The cluster of a′ is shown. The same pair (b′, c′)
that witnesses a cluster graph edge from a′ to c also
guarantees the existence of the edge from b to c.

Lemma 3 If a ∼ b in GM , then

d(a, b) ≤ rad(a) + rad(b) + 2 max{rad(a), rad(b)}.

Proof. If a ∼ b, then there exist points a′ ∈ Ca and
b′ ∈ Cb such that

d(a′, b′) ≤ 2 max{d(a, a′),d(b, b′)}.

We simply observe that d(a, a′) ≤ rad(a) and d(b, b′) ≤
rad(b), so the result follows from the triangle inequal-
ity. �

Using the lemma above, we can quickly check if an
edge ought to be removed from our cluster graph as
new points are added and radii decrease. This distance
condition is precisely what is needed to bound the space
usage as long as the points are added in a greedy order.

Lemma 4 If M is a prefix of a greedy ordering of S ⊆
P , then the cluster graph on M has maximum degree
γ3, where γ is the doubling constant of the metric.

Proof. Let r be the maximum radius among all the
clusters in the cluster graph. By Lemma 3, if a ∼ b
in GM , then d(a, b) ≤ ra + rb + 2 max{ra, rb} ≤ 4r.
So, the neighbors of any point a ∈ M are contained in
ball(a, 4r). Because the points are added in a greedy
order, no two points of M have distance less than r. By
the definition of γ, the doubling constant, ball(a, 4r)
can be covered by γ3 balls of radius r/2. Each such ball
contains at most one point of M . Therefore, there are
at most γ3 neighbors. �

Corollary 5 Updating the neighbors of the vertices in
a cluster graph takes constant time per insertion in dou-
bling metrics if one adds points in a greedy order.

This last lemma and its corollary show the impor-
tance of using the greedy order. It makes the search
for nearby neighbors efficient. The algorithm described
in the following section will construct M in a greedy
order. This greedy order is also important to the effi-
ciency of the algorithm in other ways as we will see in
the analysis.

5 Efficiently Computing the GreedykNN Algorithm

The biggest challenge in implementing the simple algo-
rithm of Section 3 is that it requires computing or at
least bounding dM,2 and dP,k for every point.

As explained in Section 4, the main data structure is
a kind of discrete Voronoi diagram. For each inserted
point p, it has two parts: first, it stores the cluster Cp;
second, it stores the neighbors of p, the other inserted
points within some distance. This data structure will
be used to guarantee that the points in the output are
discovered in a greedy ordering.

The efficiency improvements in the algorithm over a
linear search are achieved by only searching locally in
the cluster graph. Thus, to prove the algorithm is cor-
rect, we need to show that it is sufficient to only search
the neighborhood graph in order to bound dP,k in terms
of dM,1.

After i points have been added, the inserted points
are denoted Mi and the cluster graph is denoted Gi.
The neighbors of a point q ∈ Mi in Gi are denoted
Ni(q). We include q itself in Ni(q) for all q ∈Mi.

If we consider adding a point p, but do not add it
because dP,k(p) > 2dM,1(p), then this condition will
continue to hold as we add more points to M . That is,
if we decide not to add p at time i, there will not later
come a time when we do want to add it. So, we can
safely remove this point from the data structure. We say
such a point is marked. In addition to the cluster graph,
we store for each point, a list of potentially near points
that have been marked. For a point p, we call this list
the nearby marked list of p and denote it markedpts(p).
These lists are used to correctly bound dP,k for new
points considered later in the algorithm (as explained
below).

The algorithm works as follows. Start by adding any
point to M . All points start unmarked. At step i + 1,
consider adding the farthest unmarked point p to any
point in Mi. A heap in the cluster graph makes it easy
to find this point. Let q = NNMi

(p) so p ∈ Cq. Count
the number of points in the ball B = ball(p, 2dMi,1(p))
by iterating over the clusters of q and its neighbors.
We also check the nearby marked list of p to count the
marked points in B. If there are at least k points in B,
then we add p to our kNN sample and continue.

If there are fewer than k points in B, then we mark
p and remove it from its cluster. For each of the points

348

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

B
p

Figure 5: When considering the addition of point p, we
count points in B = ball(p, 2dM,1(p)). These are all
among the cluster adjacent to the cluster containing p
and the list markedpts(p). The clusters are shown as
Voronoi cells as a visual aid.

in B that have not yet been added, they may have p
nearby when they are considered for insertion later. We
add p to the nearby marked list of each point in B. As
the following lemma shows, this combination of cluster
graph plus nearby marked lists is sufficient to enumerate
B.

Lemma 6 When considering the addition of a point
p ∈ Ca into Mj, the set of points P in B =
ball(p, 2dMj ,1(p)) is contained in

(⋃

b∼a
Cb

)
∪ markedpts(p).

Proof. By the definition of the cluster graph, the clus-
ters adjacent to a contain all the points that can be
within 2dMj ,1(p) of p. However, some points q are re-
moved from the clusters if at some time i < j, they
were marked because dP,k(q) > 2dMi,1(q). Because the
points are considered for insertion in a greedy ordering,
we have that if q ∈ B, then

d(p, q) ≤ 2dMj ,1(p) ≤ 2dMi,1(q).

Therefore, q would have been added to markedpts(p) at
the time q was marked. �

6 Analysis

In this section we will show that the algorithm of Sec-
tion 5 computes a kNN sample in O(kn log ∆) time for
doubling metrics.

The key step of the analysis is to show that each point
is touched at most O(k) times before the insertion ra-
dius goes down by a constant factor. This is similar to

Har-Peled and Mendel’s analysis [9] of Clarkson’s algo-
rithm except that in our case a point may be considered
but not added. The volume packing argument is easily
adapted to this case with the loss of a factor of k in the
running time.

A point q is touched when considering insertion of a
point p if we compute d(p, q). The analysis depends on
counting these touches.

Lemma 7 A point b is touched at most O(k log ∆k(P))
times when computing the kNN sample of a doubling
metric P .

Proof. Partition the set of points that touch b into sets
Ai where the maximum radius in the cluster graph is in
the interval [2i, 2i+1) at the time of a touch from a ∈ Ai.
It will suffice to show that there are only O(k) points
in each Ai, because at most O(log(∆k(P))) sets Ai are
nonempty. Let Si be a 2i−1 covering of Ai. We have
|Ai| ≤ k|Si|, because if any point of Si had more than k
points of Ai in its ball of radius 2i−1, one of them would
have been inserted and therefore another of them would
have been considered for insertion at a time when the
radius is less than 2i, contradicting the assumption that
the point is in Ai.

Moreover, for all a ∈ Ai, d(a, b) ≤ 6 · 2i+1 by the
triangle inequality and the definition of edges in the
cluster graph. By the usual packing argument (see Har-
Peled and Mendel [9]), this implies that

|Ai| ≤ k|Si| ≤ kγdlog2 24e = O(k).

�

Theorem 8 Let P be a finite metric space with size n,
doubling dimension d, and spread ∆. The Greedy kNN
sampling algorithm runs time O(kn log ∆).

Proof. The algorithm has several different pieces that
must be analyzed separately. In the main loop, there are
some heap operations to find the next point to consider
for addition. This requires O(log n) time per point. The
local search requires touching all the points in a cluster
and its neighbors. This requires O(k log ∆k(P)) time
per point according to Lemma 7. It also requires touch-
ing all the points in the nearby marked list. As each
point is added to at most k − 1 such lists, there are
O(kn) touches of this type. By Corollary 5, updating
the cluster graph requires only constant time per ver-
tex. Because n = O(∆d), we have log n = O(log ∆).
Using the fact that ∆k ≤ ∆, the total running time is
O(kn log ∆). �

7 Software

We have implemented the GreedykNN algorithm and
integrated it into the greedypermutations python

349

32nd Canadian Conference on Computational Geometry, 2020

package. The code can be accessed at https://

github.com/donsheehy/greedypermutation and the
documentation at https://donsheehy.github.io/

greedypermutation/. The code can be installed with
pip by running the following from a command line.

pip install greedypermutation

Here are several examples of the code in use. We start
with an example of exponentially-spaced points.

from greedypermutation.knnsample import knnsample

P = [Point(1.2**i, 5) for i in range(10, 100)]

S_10 = list(knnsample(P,10))

Next, we show uniform points with k = 10.

P = [Point(i, 5) for i in range(10, 600, 10)]

S_10 = list(knnsample(P,10))

The next instance, with k = 20 is predictably twice as
sparse.

P = [Point(i, 5) for i in range(10, 600, 10)]

S_20 = list(knnsample(P,20))

8 Conclusion

This paper presented a simple greedy approach to com-
puting kNN samples that have distances between the
points bounded within a constant times the distance
to k points locally. This balances the desire to have a
geometrically nice sample, but also one whose density
varies with the underlying distribution.

There are several open problems that remain. First, it
is not known whether there are bounds on α and β that
are necessary for an (α, β)-kNN sample to exist. From
the results in this paper, we know that (1/5, 2)-kNN
samples exist for any finite metric space, but nothing is
known for larger α and smaller β. Also open is whether
one can efficiently compute a variation where one uses
dM,k′ for some k′ < k other than 2. It may be that one
can give a tighter approximation, but this question is
also open.

Another open question is whether or not there are
more efficient algorithms for implementing the simple
heuristic of Section 3. In particular, it may be possible
to cut out or reduce the factor of k. The reason this
seems possible is that it comes from enumerating rather
than just counting the points in the metric ball around
each point that are considered for addition.

References

[1] G. Biau and L. Devroye. Lectures on the Nearest
Neighbor Method. Springer Series in the Data Sciences.
Springer, 2015.

[2] K. L. Clarkson. Nearest neighbor queries in metric
spaces. Discrete & Computational Geometry, 22(1):63–
93, 1999.

[3] K. L. Clarkson. Nearest neighbor searching in metric
spaces: Experimental results for ‘sb(s)‘. Preliminary
version presented at ALENEX99, 2003.

[4] K. L. Clarkson. Nearest-neighbor searching and metric
space dimensions. In G. Shakhnarovich, T. Darrell, and
P. Indyk, editors, Nearest-Neighbor Methods for Learn-
ing and Vision: Theory and Practice, pages 15–59. MIT
Press, 2006.

[5] C. D. Cutler and D. A. Dawson. Estimation of dimen-
sion for spatially distributed data and related limit the-
orems. Journal of Multivariate Analysis, 28(1):115–148,
1989.

[6] M. Dyer and A. Frieze. A simple heuristic for the p-
centre problem. Operations Research Letters, 3(6):285–
288, 1985.

[7] K. Gardner and D. Sheehy. kth nearest neighbor sam-
pling in the plane. In Proceedings of the Canadian Con-
ference on Computational Geometry, 2016.

[8] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theor. Comput. Sci., 38:293–306,
1985.

[9] S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[10] S. Har-Peled and B. Raichel. Net and prune: A lin-
ear time algorithm for euclidean distance problems. In
Proceedings of the 45th Annual ACM Symposium on
Theory of Computing, 2013.

[11] M. Izbicki and C. R. Shelton. Faster cover trees. In Pro-
ceedings of the Thirty-Second International Conference
on Machine Learning, 2015.

350

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Appendix

9 How small is the sample?

Ideally, one hopes that the sample M is much smaller than
P . If P has n points, then 2n/k points is the goal, having
2 points in the sample for k points in the input. Allowing
some constant factors we want |M | to be O(n/k). There
are clearly cases where this is achieved. For example, points
spaced uniformly on a line will have a kNN sample that is
uniformly spaced and has size O(n/k).

Unfortunately, there are also simple examples where a
kNN sample will be large. One such example is exponen-
tially spaced points on a line, such as {10i | i = 1, . . . , n}.

The size decrease is best understood in terms of the
measure induced by a kth nearest neighbor density esti-
mate. Let’s continue with one dimensional examples. Let
q : [0, 1]→ R be a density function for a measure

µ(B) :=

∫

x∈B
q(x)dx.

with total mass n, i.e. µ([0, 1]) = n.

The k-th nearest neighbor density estimate constructed
from P induces the following approximation to this measure.

µP,k(B) :=

∫

x∈B

k

dP,k(x)
dx.

Similarly, we get an estimate from M .

µM,2(B) :=

∫

x∈B

2

dM,2(x)
dx.

If M satisfies the kNN sampling lower bound αdP,k ≤ dM,2,
then we can relate the total mass of these measures

µM,2([0, 1]) =

∫ 1

0

2

dM,2(x)
dx

≤ 2

k

∫ 1

0

k

αdP,k(x)
dx

=
2

kα
µp,k([0, 1])

So, the total mass of the measure µM,2 is O(1/k) times
the total mass of µP,k. There is nothing special about the
line in this example and the same argument holds for other
measures induced by densities.

The the total mass of µM,2 gives an upper bound on the
number of points, i.e., |M | = O(µM,2([0, 1])). So, the num-
ber of points in a kNN sample is O(1/k) times the total
mass of µP,k. This means that if the kNN sample is large,
then the kNN density estimate was a bad approximation to
the true density. If that is the case, then using kth nearest
neighbors may have been a poor choice in the first place.

The moral of this story is that the kNN sample will have
size O(n/k) whenever the k-th nearest neighbor density es-
timate was a good approximation to the underlying measure
from which P was sampled.

10 A Python Implementation

The main kNNSample algorithm is described in the prose
of the paper. However, the algorithm is sufficiently simple
that we can include here the code from the Python imple-
mentation.

The cluster graph implementation is straightforward and
not shown here. The clusters are iterable and provide pop

method that returns their farthest point. The cluster graph
stores the clusters in a heap, ordered by their radius. It pro-
vides a nbrs of nbrs method that allows one to iterate over
all clusters within two hops of a given cluster. Because the
graph has self loops, this set includes cluster and its im-
mediate neighbors. The knnsample function is a generator,
so it yields points as they are added to the sample rather
than returning the final set.

Several small optimizations appear in the official release of
the code that have been removed here to show the essentials
of the algorithm. That said, the code below is complete and
has been tested.

from collections import defaultdict

from greedypermutation.clustergraph import ClusterGraph

def knnsample(M, k, seed = None):

G = ClusterGraph(M, nbrconstant = 2, moveconstant = 1)

markedpts = defaultdict(set)

Yield the first point.

yield G.heap.findmax().center

for i in range(1, len(M)):

cluster = G.heap.findmax()

point = cluster.pop()

G.heap.changepriority(cluster)

radius = 2 * point.dist(cluster.center)

nearbypts = {q for nbr in G.nbrs(cluster)

for q in nbr

if q.dist(point) <= radius

}

nearbymarkedpts = {q for q in markedpts[point]

if q.dist(point) <= radius

}

if len(nearbypts) + len(nearbymarkedpts) < k:

for p in nearbypts:

markedpts[p].add(point)

else:

G.addcluster(point, cluster)

yield point

351

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Social Distancing is Good for Points too!

Alejandro Flores-Velazco*

Abstract

The nearest-neighbor rule is a well-known classification
technique that, given a training set P of labeled points,
classifies any unlabeled query point with the label of its
closest point in P . The nearest-neighbor condensation
problem aims to reduce the training set without harming
the accuracy of the nearest-neighbor rule.

FCNN is the most popular algorithm for condensa-
tion. It is heuristic in nature, and theoretical results for
it are scarce. In this paper, we settle the question of
whether reasonable upper-bounds can be proven for the
size of the subset selected by FCNN. First, we show that
the algorithm can behave poorly when points are too
close to each other, forcing it to select many more points
than necessary. We then successfully modify the algo-
rithm to avoid such cases, thus imposing that selected
points should “keep some distance”. This modification
is sufficient to prove useful upper-bounds, along with
approximation guarantees for the algorithm.

1 Introduction

In the context of non-parametric classification, a training
set P consists of n points in a metric space (X , d), with
domain X and distance function d : X 2 → R+. Addi-
tionally, P is partitioned into a finite set of classes by
associating each point p ∈ P with a label l(p), indicating
the class to which it belongs. Given an unlabeled query
point q ∈ X , the goal of a classifier is to predict q’s label
using the training set P .

The nearest-neighbor rule is among the best-known
classification techniques [5]. It assigns a query point the
label of its closest point in P , according to the metric d.
The nearest-neighbor rule exhibits good classification
accuracy both experimentally and theoretically [3, 4, 14],
but it is often criticized due to its high space and time
complexities. Clearly, the training set P must be stored
to answer nearest-neighbor queries, and the time required
for such queries depends to a large degree on the size and
dimensionality of the data. These drawbacks inspire the
question of whether it is possible replace P with a sig-
nificantly smaller subset, without significantly reducing
the classification accuracy under the nearest-neighbor
rule. This problem has been widely studied, and it is
often called nearest-neighbor condensation [8, 9, 13,15].

*University of Maryland, College Park, afloresv@cs.umd.edu

Related work. A subset R ⊆ P is said to be consistent
if and only if for every p ∈ P its nearest-neighbor in R
is of the same class as p. Intuitively, R is consistent [9]
if and only if all points of P are correctly classified using
the nearest-neighbor rule over R. Formally, the problem
of nearest-neighbor condensation consists of finding an
ideally small consistent subset of P .

It is known that the problem of computing consistent
subsets of minimum cardinality is NP-hard [12,17,18].
However, there exists an algorithm called NET [8] that
computes a tight approximation of the minimum cardi-
nality consistent subset. Yet, this algorithm is not prac-
tical, and it is often outperformed on real-world training
sets —with respect to both their runtime and size of the
selected subsets— by simple heuristics for condensation.

Most algorithmic research for this problem has focused
on heuristics; for comprehensive surveys, see [11, 15, 16].
Out of the many heuristics proposed for this problem,
FCNN [1] stands out due to its quadratic worst-case time
complexity, and most importantly, its observed efficiency
when applied to real-world training sets. Alternatives
include CNN [9], MSS [2], RSS [6], and VSS [6]. These
algorithms also run in quadratic time, except for CNN,
which has cubic runtime, and was the first algorithm pro-
posed for condensation. See Figure 1 for an illustrative
comparison between these heuristics.

While such heuristics have been extensively studied
experimentally [7], theoretical results are scarce. Only
recently in CCCG’19 [6], we have shown that the size
of the subset selected by MSS cannot be bounded. On
the other hand, we proved that the size of the subset
selected by both RSS and VSS can be upper-bounded.
However, until now, it remained open whether similar
results could be achieved for FCNN.

Contributions. In this paper, we settle the question of
whether the size of the subsets selected by FCNN can be
upper-bounded. Our results are summarized as follows:

� There exist training sets for which the subset selected
by FCNN is unbounded, particularly, when compared
to the selection of other algorithms (e.g., RSS).

� We propose a modification of FCNN, namely SFCNN,
for which we prove the following results:

– The size of the subset selected by SFCNN has an
upper-bound, similar to the one known for RSS.

– SFCNN computes a tight approximation of the mini-
mum cardinality consistent subset of P .

352

32nd Canadian Conference on Computational Geometry, 2020

(a) Training set (104 pts)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

(b) CNN (253 pts)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

(c) FCNN (185 pts)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

(d) SFCNN (190 pts)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(e) MSS (234 pts)

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

(f) RSS (192 pts)

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

(g) VSS (193 pts)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(h) NET (841 pts)

Figure 1: An illustrative example of the subsets selected by different condensation algorithms from an initial training
set P in R2 of 104 points. The list includes well-known algorithms like CNN, FCNN, MSS, RSS, VSS, and NET. We
propose SFCNN as a simple modification of FCNN that can be successfully upper-bounded.

Preliminaries. Given any point q ∈ X in the metric
space, its nearest-neighbor, denoted by nn(q), is the
closest point of P according the the distance function d.
Given a point p ∈ P , any other point of P whose label
differs from p’s is called an enemy of p. The closest such
point is called p’s nearest-enemy, denoted by ne(p).

Clearly, the size of a condensed subset should depend
on the spatial characteristics of the classes in the training
set. For example, a consistent subset for two spatially
well separated clusters should be smaller than the subset
for one with two classes that have a high degree of
overlap. To model this intrinsic complexity, define κ to
be the number of nearest-enemy points of P , i.e., the
cardinality of set {ne(p) | p ∈ P}.

This has been previously used [6] to prove useful
upper-bounds for RSS, and to show negative results for
MSS. In particular, it has been shown that RSS selects
O(κ (3/π)d−1) points in d-dimensional Euclidean space,
while MSS’s selection cannot be bounded in terms of κ.

2 Nearby Points are Problematic

Now consider the FCNN algorithm [1]. It follows an iter-
ative incremental approach to build a consistent subset of
P (see Algorithm 1 for a formal description). While not
immediately evident, FCNN it runs in O(nm) worst-case
time, where m is the final size of the selected subset.

Algorithm 1: FCNN

Input: Initial training set P
Output: Consistent subset R ⊆ P

1 R← φ
2 S ← centroids(P)
3 while S 6= φ do
4 R← R ∪ S
5 S ← φ
6 foreach p ∈ R do
7 S ← S ∪ {rep(p, voren(p,R, P))}

8 return R

The algorithm begins by selecting one point per class,
in particular, the centroid of each class1. Then, it be-
gins the iterative process, selecting other points until
the subset is consistent. During each iteration, the
algorithm identifies all points of P that are misclas-
sified with respect to the current subset, and adds
some of these points to the subset. Formally, for ev-
ery point p already in the subset, FCNN selects one
representative among non-selected points, whose nearest-
neighbor is p and that belong to a different class than

1For each class, its centroid is defined as the closest point of P
to the geometrical center of all points of this class.

353

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

p. That is, the representative is selected from the set
voren(p,R, P) = {q ∈ P | nn(q,R) = p ∧ l(q) 6= l(p)}.
Usually, the representative chosen is the one closest to
p, although different approaches can be applied.

However, there is an issue with this algorithm. During
any given iteration, nothing prevents the representatives
of two neighboring points in FCNN to be arbitrarily
close to each other. This observation can be exploited
to obtain the following result:

Theorem 1 There exists a training set P ⊂ Rd in Eu-
clidean space, with constant number of classes, for which
FCNN selects Ω(κ/ξ) points, for any 0 < ξ < 1.

The remaining of this section addresses the proof of
this theorem, by carefully constructing a training set
P in R3 that exhibits the undesirable behavior in the
selection process of the FCNN algorithm.

Without loss of generality, let ξ = 1/2t for some
value t > 3, we construct a training set P ⊂ R3 with a
constant number of classes and the number of nearest-
enemy points κ equal to O(1/ξ), for which FCNN is
forced to select O(1/ξ2) points. As mentioned above,
the key downside of the algorithm occurs when points
are added to the subset in the same iteration, as they
can be arbitrarily close to each other. We exploit this
behavior to force the algorithm to select O(1/ξ) such
points on each iteration.

Intuitively, the training set P consists of several layers
of points arranged parallel to the xy-plane, and stacked
on top of each other around the z-axis (see Figure 2).
Each layer is a disk-like arrangement, formed by a center
point and points at distance 1 from this center. Define
the backbone points of P to be the center points ci = 2i~vz
for i ≥ 0. We now describe the different arrangements
of points as follows (see Figure 2):

B = c0 ∪ {yj = c0 + ~vxRz(jπ/4)}8j=1

Mi = {c2i, c2i+1,mi = (c2i + c2i+1)/2}

∪
{
rij = c2i + ~vxRz

(
jπ/21+i

)}22+i

j=1

∪
{
bij = c2i+1 + ~vxRz

(
jπ/21+i

)}22+i

j=1

∪
{
wij=c2i+1+~vxRz

(
(j+1/2)π/21+i−ξ2

)}22+i

j=1

Ri = {c2i, c2i+1}
∪ {rij = c2i + ~vxRz (2jπξ)}1/ξj=1

∪ {bij = c2i+1 + ~vxRz (2jπξ)}1/ξj=1

These points belong to one of 11 classes, defined by
the set {1, . . . , 8, red,blue,white}. Then, we define the
labeling function l as follows: l(ci) is red when i is even
and blue when i is odd, l(mi) is white, l(yj) is the j-th
class, l(rij) is red, l(bij) is blue, and l(wij) is white.

Base arrangement (B). Consists of one single layer of
points, with one red center point c0 and 8 points yj in the
circumference of the unit disk (parallel to the xy-plane),
each labeled with a unique class j (see Figure 2d).

The goal of this arrangement is that each of these
points is the centroid of its corresponding class. The
centroids of the blue and white classes can be fixed to be
far enough, so we won’t consider them for now. Hence,
the first iteration of FCNN will add all the points of B.
In the next iteration, each of these points will select a
representative in the arrangement above. Clearly, the
size of B is 9, and it contributes with 8 nearest-enemy
points in total.

Multiplier arrangement (Mi). Our final goal is to
have O(1/ξ) arbitrarily close points selecting represen-
tatives on a single iteration;. Initially, we only have
9, the ones in the base arrangement. While this could
be simply achieved with O(1/ξ) points in B each with
a unique class, we want to use a constant number of
classes. Instead, we use each multiplier arrangement to
double the number of representatives selected.
Mi consists of (1) a layer with a blue center c2i and

22+i red points rij around the unit disk’s circumference,
(2) a layer with a red center c2i+1 and 23+i blue bij and
white wij points around the unit disk’s circumference,
and (3) a white center pointmi in the middle between the
red and blue center points (see Figure 2c). Suppose at
iteration 3i− 1 all the points rij and c2i of the first layer
are added as representatives of the previous arrangement,
which is given for M1 from the selection of B. Then,
during iteration 3i each rij adds the point bij right
above, while c2i adds point mi (see the red arrows in
Figure 2a). Finally, during iteration 3i + 1, mi adds
c2i+1, and each bij adds point wij as its the closest
point inside the voronoi cell of bij (see the blue arrows
in Figure 2a). Now, with all the points of this layer
added, each continues to select points in the following
arrangement (either Mi+1 or Ri+1).

The size of each Mi is 3(1 + 22+i) = O(23+i), and
contributes with 3 + 2(22+i) = O(23+i) to the total
number of nearest-enemy points. Thus, we stack Mi

arrangements for i ∈ [1, . . . , t− 3], such that the last of
these selects 1/ξ = 2t points.

Repetitive arrangement (Ri). Once the algorithm
reaches the last multiplier layer Mt−3, it will select
1/ξ points during the following iteration. The repeti-
tive arrangement allows us to continue selecting these
many points on every iteration, while only increasing
the number of nearest-enemy points by a constant. This
arrangement consists of (1) a first layer with a blue
center c2i surrounded by 1/ξ red points rij around the
unit disk circumference, and (2) a second layer with red
center c2i+1 and blue points bij in the circumference (see

354

32nd Canadian Conference on Computational Geometry, 2020

(a) Entire arrangement of points, by stacking the different
arrangements along the z-axis. The arrows illustrate the se-
lection process of FCNN on a multiplicative arrangement Mi.

(b) A repetitive arrangement Ri. This is used to maintain
the number of selected representatives to be O(1/ξ) during
each remaining iteration of the algorithm.

(c) A multiplier arrangement Mi. This forces FCNN to
double the number of selected representatives around the
circumference after two iterations.

(d) Base arrangement B. Each point in the circumference
belongs to one unique class {1, . . . , 8}, here colored in yellow
and numbered for clarity.

Figure 2: Example of a training set P ⊂ R3 for which FCNN selects Ω(κ/ξ) points.

Figure 2b). Once the first layer is added all in a single
iteration, during the following iteration c2i adds c2i+1,
and each rij adds bij .

The size of each Ri is 2(1 + 1/ξ) = O(1/ξ), and it
contributes with 4 points to the total number of nearest-
enemy points. Now, we stack O(1/ξ) such arrangements
Ri for i ∈ [t − 2, . . . , 1/ξ], such that we obtain the
desired ratio between selected points and number of
nearest-enemy points of the training set.

The training set. After defining all the necessary point
arrangements, and recalling that t = log 1/ξ, we put
these arrangements together to define the training set P

as follows:

P = B
t−3⋃

i=1

Mi

1/ξ⋃

i=t−2
Ri ∪ F

where F is an additional set of points to fix the centroids
of P . These extra points are located far enough from the
remaining points of P , and are carefully placed such that
the centroids of P are all the points of B, plus a blue
and white point from F . Additionally, all the points of
F should be closer to its corresponding class centroid
than to any enemy centroid, and they should increase
the number of nearest-enemy points by a constant. This
can be done with a bounded number of extra points.

All together, by adding up the corresponding terms,
the ratio between the size of FCNN and κ (the number

355

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

of nearest-enemy points of P) is O(1/ξ). Therefore, on
this training set, FCNN selects O(κ/ξ) points.

3 Keeping Distance: One by One

Evidently, adding points in batch on every iteration of
the algorithm prevents FCNN to have provable guar-
antees on the size of its selected subset, just as RSS
provides. However, this design choice is not key for any
of the features of the algorithm.

Therefore, we propose to modify FCNN such that
only one single representative is added to the subset on
each iteration. We call this new algorithm SFCNN or
Single FCNN. Basically, the only difference between the
original FCNN and SFCNN is on line 4 of Algorithm 1,
where R is updated by selecting one single point from
the set of representatives S, as follows:

R← R ∪ {Choose one point of S}

While extremely simple, this change in the selection
process of SFCNN allows us to successfully analyze the
size of its selected subset in terms of κ, and even prove
that it approximates the consistent subset of minimum
cardinality.

Size Upper-Bound. To this end, we first need to in-
troduce some terminology. Through a suitable uniform
scaling, we may assume that the diameter of P (that is,
the maximum distance between any two points in the
training set) is 1. The spread of P , denoted as ∆, is the
ratio between the largest and smallest distances in P .
Define the margin of P , denoted γ, to be the smallest
nearest-enemy distance in P . Clearly, 1/γ ≤ ∆.

The metric space (X , d) is said to be doubling [10] if
there exist some bounded value λ such that any metric
ball of radius r can be covered with at most λ metric balls
of radius r/2. Its doubling dimension is the base-2 log-
arithm of λ, denoted as ddim(X) = log λ. Throughout,
we assume that ddim(X) is a constant, which means that
multiplicative factors depending on ddim(X) may be hid-
den in our asymptotic notation. Many natural metric
spaces of interest are doubling, including d-dimensional
Euclidean space whose doubling dimension is Θ(d). It is
well know that for any subset R ⊆ X with some spread
∆R, the size of R is bounded by |R| ≤ d∆Reddim(X)+1.

Theorem 2 SFCNN selects a subset of size:

O
(
κ log

1

γ
4ddim(X)+1

)

Proof. This follows by a charging argument on each
nearest-enemy point in the training set. Consider one
such point p ∈ {ne(r) | r ∈ P} and a value σ ∈ [γ, 1].
We define Rp,σ to be the subset of points from SFCNN
whose nearest-enemy is p, and whose distance to p is

between σ and 2σ. That is, Rp,σ = {r ∈ R | ne(r) =
p∧d(r, p) ∈ [σ, 2σ)}. These subsets define a partitioning
of R when considering all nearest-enemy points of P ,
and values of σ = γ 2i for i = {0, 1, 2, . . . , dlog 1

γ e}.
Consider any two points a, b ∈ Rp,σ in these subsets.

Assume w.l.o.g. that point a was selected by the al-
gorithm before point b (i.e., in a prior iteration). We
show that d(a, b) ≥ σ. By contradiction, assume that
d(a, b) < σ, which immediately implies that a and b
belong to the same class. Moreover, recalling that b’s
nearest-enemy in P is p, at distance d(b, p) ≥ σ, this
implies that b is closer to a than to any enemy in R.
Therefore, by the definition of the voren function, b could
never be selected by SFCNN, which is a contradiction.

This proves that d(a, b) ≥ σ. Additionally, we know
that d(a, b) ≤ d(a, p)+d(p, b) ≤ 4σ. Thus, using a simple
packing argument with the known properties of doubling
spaces, we have that |R′p,σ| ≤ 4ddim(X)+1.

Altogether, by counting over all the Rp,σ sets for every
nearest-enemy in the training set and values of σ, the size
of R is upper-bounded by |R| ≤ κ dlog 1/γe 4ddim(X)+1.
This completes the proof. �

An Approximation Algorithm. Denote Min-CS as the
problem of computing a minimum cardinality consistent
subset of P . This problem is known to be NP-hard [12,
17,18], even to approximate [8] in polynomial time within

a factor of 2(ddim(X) log (1/γ))1−o(1)

.
As previously mentioned, the NET algorithm [8] com-

putes a tight approximation for the Min-CS problem.
The algorithm is rather simple: it just computes a γ-net
of P , where γ is the margin (the smallest nearest-enemy
distance in P). This clearly results in a consistent subset

of P , whose size is at most d1/γeddim(X)+1
. A similar

result can be proven for SFCNN.

Theorem 3 SFCNN computes a tight approximation
for the Min-CS problem.

Proof. This follows from a direct comparison to the
resulting subset of the NET algorithm. For any point
p ∈ NET, let Bp be the set of points of P “covered” by
p, that is, whose distance to p is at most γ. By the
covering property of nets, this defines a partition on P
when considering every point p selected by NET.

Let’s analyze the size of Bp ∩ R, that is, for any
given Bp how many points could have been selected
by the SFCNN algorithm. Let a, b ∈ Bp ∩ R be two
such points, where without loss of generality, point a
was selected in an iteration before b. Both a and b
must belong to the same class as p, as their distance
to p is at most γ, which is the smallest nearest-enemy
distance in P . Moreover, by the definition of the voren
function, it is easy to show that d(a, b) ≥ γ. By a
simple packing argument in doubling metrics, the size
of any Bp ∩ R is at most 2ddim(X)+1. All together, we

356

32nd Canadian Conference on Computational Geometry, 2020

have that the size of the subset selected by SFCNN is
2ddim(X)+1 |NET| = O

(
(1/γ)ddim(X)+1

)
. �

4 Experimental Results

The importance of FCNN relies on its performance in
practice, despite the lack of theoretical guarantees. A
natural question is whether the simple change we pro-
posed on the algorithm, negatively affects its perfor-
mance in real-world training sets.

Thus, to get a clearer impression of the relevance of
these results in practice, we performed experimental tri-
als on several training sets, both synthetically generated
and widely used benchmarks. First, we consider 21 train-
ing sets from the UCI Machine Learning Repository2

which are commonly used in the literature to evaluate
condensation algorithms [7]. These consist of a number
of points ranging from 150 to 58000, in d-dimensional
Euclidean space with d between 2 and 64, and 2 to 26
classes. We also generated some synthetic training sets,
containing 105 uniformly distributed points, in 2 to 3
dimensions, and 3 classes. All training sets used in these
experimental trials are summarized in Table 1. The im-
plementation of the algorithms, training sets used, and
raw results, are publicly available3.

We test 7 different condensation algorithms, namely
FCNN, SFCNN, RSS, VSS, MSS, CNN and NET. To
compare their results, we consider their runtime and the
size of the selected subset. Clearly, these values might
differ greatly on training sets whose size are too distinct.
Therefore, before comparing the raw results, these are
normalized. The runtime of an algorithm for a given
training set is normalized by dividing it by n, the size
of the training set. The size of the selected subset is
normalized by dividing it by κ, the number of nearest-
enemy points in the training set, which characterizes the
complexity of the boundaries between classes.

Figure 3: Running time.

2https://archive.ics.uci.edu/ml/index.php
3https://github.com/afloresv/nnc/

Training set n d c κ (%)
banana 5300 2 2 811 (15.30%)

cleveland 297 13 5 125 (42.09%)
glass 214 9 6 87 (40.65%)
iris 150 4 3 20 (13.33%)

iris2d 150 2 3 13 (8.67%)
letter 20000 16 26 6100 (30.50%)
magic 19020 10 2 5191 (27.29%)
monk 432 6 2 300 (69.44%)

optdigits 5620 64 10 1245 (22.15%)
pageblocks 5472 10 5 429 (7.84%)
penbased 10992 16 10 1352 (12.30%)

pima 768 8 2 293 (38.15%)
ring 7400 20 2 2369 (32.01%)

satimage 6435 36 6 1167 (18.14%)
segmentation 2100 19 7 398 (18.95%)

shuttle 58000 9 7 920 (1.59%)
thyroid 7200 21 3 779 (10.82%)

twonorm 7400 20 2 1298 (17.54%)
wdbc 569 30 2 123 (21.62%)
wine 178 13 3 37 (20.79%)

wisconsin 683 9 2 35 (5.12%)
v-100000-2-3-15 100000 2 3 1909 (1.90%)
v-100000-2-3-5 100000 2 3 788 (0.78%)
v-100000-3-3-15 100000 3 3 7043 (7.04%)
v-100000-3-3-5 100000 3 3 3738 (3.73%)
v-100000-4-3-15 100000 4 3 13027 (13.02%)
v-100000-4-3-5 100000 4 3 10826 (10.82%)
v-100000-5-3-15 100000 5 3 22255 (22.25%)
v-100000-5-3-5 100000 5 3 17705 (17.70%)

Table 1: Training sets used to evaluate the performance
of condensation algorithms. Indicates the number of
points n, dimensions d (Euclidean space), classes c,
nearest-enemy points κ (also in percentage w.r.t. n).

Figures 3 and 4 summarize the experimental results.
Evidently, the performance of SFCNN is equivalent to
the original FCNN algorithm, both in terms of runtime
and the size of their selected subsets, showing that the
proposed modification does not affect the behavior of
the algorithm in real-world training sets. Both FCNN
and SFCNN outperform other condensation algorithms
in terms of runtime, while their subset size is comparable
in all cases, with the exception of the NET algorithm.

References

[1] F. Angiulli. Fast nearest neighbor condensation for large
data sets classification. IEEE Transactions on Knowl-
edge and Data Engineering, 19(11):1450–1464, 2007.

[2] R. Barandela, F. J. Ferri, and J. S. Sánchez. Deci-
sion boundary preserving prototype selection for nearest
neighbor classification. International Journal of Pattern
Recognition and Artificial Intelligence, 19(06):787–806,
2005.

[3] T. Cover and P. Hart. Nearest neighbor pattern classifi-
cation. IEEE Trans. Inf. Theor., 1967.

[4] L. Devroye. On the inequality of cover and hart in
nearest neighbor discrimination. Pattern Analysis and

357

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 4: Size of the selected subsets.

Machine Intelligence, IEEE Transactions on, (1):75–78,
1981.

[5] E. Fix and J. L. Hodges. Discriminatory analysis, non-
parametric discrimination: Consistency properties. US
Air Force School of Aviation Medicine, Technical Report
4(3):477+, Jan. 1951.

[6] A. Flores-Velazco and D. M. Mount. Guarantees on
nearest-neighbor condensation heuristics. In Z. Frig-
gstad and J. D. Carufel, editors, Proceedings of the
31st Canadian Conference on Computational Geometry,
CCCG 2019, August 8-10, 2019, University of Alberta,
Edmonton, Alberta, Canada, pages 87–93, 2019.

[7] S. Garcia, J. Derrac, J. Cano, and F. Herrera. Prototype
selection for nearest neighbor classification: Taxonomy
and empirical study. IEEE TPAMI, 2012.

[8] L.-A. Gottlieb, A. Kontorovich, and P. Nisnevitch. Near-
optimal sample compression for nearest neighbors. In
Advances in Neural Information Processing Systems,
2014.

[9] P. Hart. The condensed nearest neighbor rule (corresp.).
IEEE Trans. Inf. Theor., 1968.

[10] J. Heinonen. Lectures on analysis on metric spaces.
Springer Science & Business Media, 2012.

[11] N. Jankowski and M. Grochowski. Comparison of in-
stances selection algorithms I. Algorithms survey. In Ar-
tificial Intelligence and Soft Computing-ICAISC. 2004.

[12] K. Khodamoradi, R. Krishnamurti, and B. Roy. Consis-
tent subset problem with two labels. In Conference on
Algorithms and Discrete Applied Mathematics, 2018.

[13] G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L.
Isenhour. An algorithm for a selective nearest neighbor
decision rule. IEEE Transactions on Information Theory,
1975.

[14] C. J. Stone. Consistent nonparametric regression. The
annals of statistics, pages 595–620, 1977.

[15] G. Toussaint. Open problems in geometric methods for
instance-based learning. In JCDCG, volume 2866 of
Lecture Notes in Computer Science. Springer, 2002.

[16] G. Toussaint. Proximity graphs for nearest neighbor
decision rules: Recent progress. In Progress”, Proceed-
ings of the 34th Symposium on the INTERFACE, pages
17–20, 2002.

[17] G. Wilfong. Nearest neighbor problems. In Proceedings
of the Seventh Annual Symposium on Computational
Geometry, SoCG, pages 224–233, New York, NY, USA,
1991. ACM.

[18] A. V. Zukhba. NP-completeness of the problem of proto-
type selection in the nearest neighbor method. Pattern
Recog. Image Anal., 20(4):484–494, 2010.

358

Author Index

Aghamolaei, Sepideh 165
Aldana-Galván, Israel 253
Alegŕıa-Galicia, Carlos 253
Allen, Addison 28
Amano, Kazuyuki 68
Amenta, Nina 209
Arluck, Chloe 223
Arseneva, Elena 54

Bahoo, Yeganeh 54
Belton, Robin Lynne 18
Bercea, Ioana 129
Biedl, Therese 230
Biniaz, Ahmad 49, 54, 230, 346
Bremner, David 272

Cano, Pilar 54
Cano, Rafael 265
Cavanna, Nicholas 78
Chambers, Erin 353
Chanchary, Farah 54

Daescu, Ovidiu 296
Damian, Mirela 189
de Rezende, Pedro 265
de Souza, Cid 265
Duggirala, Parasara 340

Eppstein, David 98

Fasy, Brittany Terese 18
Feder, Tomas 304
Flatland, Robin 189
Fox, Kyle 296

Gabor, Jonathan 42
Garcia, Luis 217
Garciia, Alfredo 49
Ghodsi, Mohammad 165
Gholami Rudi, Ali 334
Goodrich, Michael 98
Goodrich, Michael T. 2

359

Gutierrez, Andres 217

Hamedmohseni, Bardia 311
Hashemi, Seyed Naser 72
He, Xiaozhou 85
Hell, Pavol 304
Horiyama, Takashi 360
Hou, Kaiying 114
Hsiang, Tien-Ruey 247

Iacono, John 54
Imanparast, Mahdi 72
Irvine, Veronika 230

Jain, Kshitij 54
Janardan, Ravi 282
Johnson, Matthew P. 259
Johnson, Timothy 2
Jorgensen, Jordan 98
Ju, Tao 353

Katz, Matthew 1
Keikha, Vahideh 142
Kim, Woojin 180
Kindermann, Philipp 230
Kisielius, Oliver 78

Lai, Wei-Yu 247
Letscher, David 353
Li, Mao 353
Li, Yuan 282
Liaw, Christopher 172
Liu, Paul 172
Liu, Zhihui 85
Lubiw, Anna 54
Lynch, Jayson 114
Löffler, Maarten 142

Maheshwari, Anil 288, 346
Marin-Nevárez, Nestaly 253
Mastakas, Konstantinos 318
Masterjohn, Joseph 91
Memoli, Facundo 180
Mertz, Rostik 18
Micka, Samuel 18
Milenkovic, Victor 91, 223

360

Millman, David L. 18
Miyasaka, Masahiro 360
Mohades, Ali 72, 142
Mondal, Debajyoti 54, 311
Mutzel, Petra 11

Nakano, Shin-Ichi 68
Naredla, Anurag Murty 230
Nouri, Arash 288

O’Rourke, Joseph 149, 328
Oettershagen, Lutz 11

Packer, Daniel 35
Pedersen, Logan 158

Rahmati, Zahed 142, 311
Reiss, Robert 172
Rogers, Emmely 328
Rojas, Carlos 209
Ruiz, Isaac 217

Sack, Jörg-Rüdiger 288
Sacks, Elisha 91, 223
Salinas, Daniel 18
Sasaki, Riku 360
Schenfisch, Anna 18
Schupbach, Jordan 18
Shahsavarifar, Rasoul 272
Sheehy, Don 78, 340
Sheikhan, Khadijeh 54
Smid, Michiel 346
Soĺıs-Villarreal, Erick 253
Su, Bing 85
Subi, Carlos 304

Teo, Ka Yaw 296
Topp, Christopher 353
Torres, Manuel 98
Toth, Csaba D. 54
Turcotte, Alexi 230

Uno, Takeaki 61
Urrutia, Jorge 253

van Kreveld, Marc 326

361

Velarde, Carlos 253

Wang, Haitao 158
Wasa, Kunihiro 61
Wenk, Carola 155
White, Sophia 35
Wilhelm, Martin 367
Williams, Aaron 28, 35, 42
Williams, Lucia 18
Winslow, Andrew 217

Xu, Yinfeng 85
Xue, Jie 282

Yamanaka, Katsuhisa 61
Yan, Yajie 353

Zheng, Feifeng 85
Zhu, Binhai 85

Álvarez-Rebollar, José Luis 253

362

