ORDER MODELS FOR MOTION IN THREE-SPACE

Ivan Rival and Jorge Urrutia

Department of Computer Science, University of Ottawa, 34 George Glinski Private, Ottawa, Ontario, Canada, K1N 6N5

Abstract

To each member C_i of a family C_1 , C_2 , ... of sets in R^n assign a direction d_i of motion. Each of these sets may represent a robot supplied with a direction of motion d_i along which it may be moved with some velocity to separate it from the others without collision. Say that C_j obstructs C_i if there is a point p_i in C_i and a line from p_i parallel to d_i which intersects C_j . More generally, C_j blocks C_i , write $C_i < C_j$, if there is a sequence $C_i = C_i$,

 C_i , ..., $C_i = C_j$ such that C_i obstructs C_i , for each k=2,3,...,m. This relation <, called a blocking k

relation, induces a(strict) order on the family of sets in Rⁿ, as long as < contains no directed cycles (that is, < is antisymmetric). In contrast to its two-dimensional analoque [Guibas and Yao (1980), cf. Rival and Urrutia (1988)], there are families of closed convex sets in R³ for which any assignment of directions, one to each set, induces a directed cycle, whence cannot be ordered at all [cf. Dawson (1984)].

On the other hand, an ordered set P is *representable* in Rⁿ if there is such a collection of sets in Rⁿ whose blocking relation is the same as P. We have shown elsewhere that there are ordered sets that are not representable in R² using only closed convex sets [Rival and Urrutia (1988)].

THEOREM 1. Every ordered set is representable in R³.

An ordered set P has a d-directional representation in Rⁿ if it is representable in R³ using at most d directions. We have shown that there is a correspondence between one-directional representations in R² and planar embeddings of planar lattices [Rival and Urrutia (1988)].

THEOREM 2. Not every ordered set has a one-directional representation in R³using closed, convex sets.

In R², every one-directional representation (equivalently, any planar lattice) can be modelled using just line segments as the closed convex sets and, moreover, all may be taken parallel.

THEOREM 3. Any one-directional representation in \mathbb{R}^3 of a family of subtrees of a tree in is a dismantlable lattices. On the other hand, there are dismantlable lattices with no one-directional representation at all in \mathbb{R}^3 using a family of subtrees of a tree.

What is apparently too constrained in three-space becomes comfortably manageable in R4.

THEOREM 4. Every ordered set has a one-directional representation in R⁴ using closed convex subsets.

REFERENCES

- R. Dawson (1984) On removing a ball without disturbing the others, Math. Mag. 57, 27-30.
- L. Guibas and F.F. Yao (1980) On translating a set of rectangles *Proc. 12th Annual ACM Symposium* "Theory of Computing", 154-216.
- I. Rival and J. Urrutia (1988) Representing order s on the plane by translating convex figures, Order 4, 319-339.