Computing External-Farthest Neighbors for a Simple Polygon

Pankaj K. Agarwal¹, Alok Aggarwal², Boris Aronov¹, S. Rao Kosaraju³, Baruch Schieber² and Subhash Suri⁴

- ¹ Courant Institute of Mathematical Sciences, New York, NY 10012
- ² IBM Research Division, Yorktown Heights, NY 10598
- ³ Johns Hopkins University, Baltimore, MD 21218
- ⁴ Bell Communications Research, Morristown, NJ 07960

Abstract

Let \mathcal{P} be (the boundary of) a simple n-gon. For a pair of points $p,q\in\mathcal{P}$ consider (external) paths connecting them, which are the paths that avoid the interior of \mathcal{P} . The (external) distance d(p,q) between two points p and q is the length of a shortest external path connecting p to q. For a given point $p\in\mathcal{P}$, an external farthest neighbor of p is a point $q\in\mathcal{P}$ such that $d(p,q)=\sup\{d(p,p')\,|\,p'\in\mathcal{P}\}$, and the external diameter $\mathcal{D}(\mathcal{P})$ of \mathcal{P} is $\sup\{d(p,q)\,|\,p,q\in\mathcal{P}\}$. Samuel and Toussaint gave an $O(n^2)$ algorithm for computing $\mathcal{D}(\mathcal{P})$. We present an $O(n\log n)$ algorithm for computing an external farthest neighbor for every vertex of \mathcal{P} . The external diameter of \mathcal{P} can also be computed in the same time bound.

For distinct points $p, q \in \mathcal{P}$, let $\mathcal{P}[p, q]$ be the section of \mathcal{P} clockwise from p to q inclusive. We define a *pocket* of \mathcal{P} to be a closed polygonal region bounded by an edge of the convex hull of \mathcal{P} and the portion of \mathcal{P} between the endpoints of this edge.

A farthest neighbor of p within the same pocket can be computed by an algorithm of Suri. Therefore, we only consider the farthest neighbors $\phi'(p)$ of a vertex $p \in \mathcal{P}$ among the points of \mathcal{P} not lying in the same pocket as p. For distinct points $p, q \in \mathcal{P}$ lying in different pockets, let us define the *left* (resp. right) shortest path as the shortest path from p to q going around \mathcal{P} in clockwise (counterclockwise) direction. Let $d_L(p,q)$ (resp. $d_R(p,q)$) denote the length of the left (resp. right) shortest path. The shorter of the above two paths is an external shortest path from p to q.

We show that for any point $p \in \mathcal{P}$ there exists a bifurcation point $\beta(p) \in \mathcal{P}$ such that $d_L(p,y) \leq d_R(p,y)$, for $y \in \mathcal{P}[p,\beta(p)]$ and $d_L(p,y) > d_R(p,y)$ otherwise. Therefore, if p and r are two adjacent vertices of \mathcal{P} , then p, r, $\beta(p)$, $\beta(r)$ occur in this cyclic order on \mathcal{P} (possibly $\beta(p) = \beta(r)$). Hence $\beta(p)$, for all vertices of \mathcal{P} , can be determined in O(n) time by first locating the bifurcation point of one vertex and then scanning \mathcal{P} once more in clockwise direction to compute bifurcation points of the remaining vertices of \mathcal{P} .

Let $\delta_L(p)$ (resp. $\delta_R(p)$) represent a vertex of \mathcal{P} farthest from p among the vertices lying in $\mathcal{P}[p,\beta(p)]$ (resp. $\mathcal{P}[\beta(p),p]$) but not in the same pocket as p, then for any point $p \in \mathcal{P}$, at least one of $\delta_L(p)$, $\beta(p)$, $\delta_R(p)$ is in $\phi'(p)$. If p and r are two adjacent vertices of \mathcal{P} , then p, r, $\delta_L(p)$, $\delta_R(r)$ occur in this cyclic order on \mathcal{P} (possibly $\delta_L(p) = \delta_L(r)$). Once we have computed bifurcation points for all vertices of \mathcal{P} , we can make use of this ordering to compute δ_L and δ_R in O(n) time.

As for computing the external diameter of \mathcal{P} , the observation that there exists a vertex p of \mathcal{P} whose distance to its external farthest neighbor(s) is $\mathcal{D}(\mathcal{P})$, combined with the above discussion immediately yields an $O(n \log n)$ algorithm.