Accurate and efficient algorithms for proximity problems
Peter Schorn, Institut fiir Theoretische Informatik, ETH Ziirich, CH-8092 Ziirich, Switzerland
Extended Abstract

1. Introduction

Geometric computation with imprecise primitives has become an important research topic, since
floating point arithmetic is the predominant arithmetic supported by hardware in todays computers.
Implementations which naively assume that floating point arithmetic is the same as real arithmetic will
in the best case lead to a program with unknown error bounds or in the worst case to unexpected
failure. Although there has been progress in this area {GY 86, H 89, M 88, M 89, SSG 89] there are
still not many geometric algorithms known which are practical, efficient and above all accurate if
implemented on the basis of ubiquitous floating point arithmetic.

This paper presents and analyzes an O(n log n) algorithm for the closest pair problem. Implemented in
a floating point arithmetic fulfilling some set of reasonable axioms, it computes the distance of the
closest pair with the same relative error bound with which we can compute the distance function, e.g.
any L, distance function. Later we modify this algorithm to get an equally accurate method for the all

nearest neighbors problem which is no longer optimal in the theoretical sense but still faster in practice
than optimal algorithms for point sets with a size of up to 4*103 points.

In the following we briefly review a closest pair algorithm and elaborate on its numerical analysis.
Then we present an algorithm for the all nearest neighbors problem for which essentially the same
numerical analysis holds before we finish stating some open problems.

2. The closest pair problem

We solve the following problem: given a set S of n points in the plane find two points with smallest
distance. Since we are going to use floating point arithmetic we cannot hope for identifying a correct
closest pair, but we will strive for computing the distance of a correct closest pair with the same error
as if we had taken the minimum of all n*(n-1) / 2 pairwise distances.

2.1 Review: a plane sweep approach to the closest pair problem

Basically we use the algorithm presented in [HNS 88] which we review only briefly since the main
point is proving accuracy. The configuration of points is swept from left to right stopping at each data
point. As an invariant we keep the distance 8 of the closest pair of points to the left of the sweep line.
In a structure called y-table we keep points sorted by their y-coordinates which are possible candidates
for forming a closest pair with a new data point. Processing a data point p consists of removing all
points from the y-structure which differ in their x-coordinate by more then & from p, inserting the new
data point p into the y-table and checking all its neighbors in the y-table that differ by at most § in their
y-coordinate from p.

y-table

<O

A 8
‘ the query rectangle

5 5 is sparsely

populated

. X p
o)
x-queue Y
discarded 4 active 4 future

t C

Since the number of points to be examined for each data point is limited by eight we obtain an
algorithm which is optimal in the algebraic decision tree model of computation.

25

The prbof of its accuracy proceeds in two steps: first we show that an implementation using floating
point arithmetic is consistent with the invariants and second we bound the error using a simple lemma
from numerical analysis.

2.2 Consistent interpretation
Careful analysis of the underlying geometric primitives and invariants produces the following algorithm
scheme CP:

S := sortByX(S); c:'=3; t:=1; & := d(S([1], S{2]):; Y := {S[1], s[2]}:
while ¢ £ n do

(* Invariant:§ = 8(c) A Y =Y(c) A t=1t(c) where *)
(* 8(c) =min(d(S[i], S[{]): 1Si<j<c) *)
(* Y()={S[i]:1si<caAdx(S{c-1], S[]) <d(c-1) } *)
(* t(c) =min(i: S{i] € Y(c)) *)
transition; ¢ := ¢ + 1;

end;

(* postcondition: & = min(d(S[i], S(]): 1Si<j<n)*)

transition =
p := Slcl;
while dx(p, S[t]) 2 & do (* normally: p, - S{t], 2 6 *)
deleteY(S([t]); t := t + 1; (*remove points leftof the 3-slice *)
end;
insertY(p):
q := Pp;
repeat (* examine upper neighbors *)
q := succY(q); if d(p, @) < & then & := d(p, q) end;
until dy (p, q) > &: (*normally:qy-py>8*)
1= p;
zepe at (* examine lower neighbors *)
q := predY(q); if d(p, q) < & then & := d(p, q) end;
until dy|(p, Q) > 9: (*nonnally:py-qy>8*)

The invariant responsible for the post condition is preserved if the following axioms hold for the
primitives d, dx, dy, and dy,; assuming the relational operators are exact:

d:RZxRZ->R (normally: (Ip, - q,¥ + Ipy - ¢,%) 1k
d(p, q) =d(q, p) (symmetry)
dx:RZxR2 >R (normally: p, - q,)

p, 2P’y = dx(p, q) 2dx(p’,q) (monotonicity in the first argument)
a, <q’x = dx(p, qQ) 2dx(p,q’) (inverse monotonicity in the second argument)
Px 2 qx = d(p, @) 2 dx(p, @) (lower bound with respect to the distance)

dy;: RZxRZ2-5R (normally: Py - qy)
qy < qQy= dy,(p, @) 2 dy(p, q°) (inverse monotonicity in the second argument)
Py2qy = d(p, q) 2 dy;(p, q) (lower bound with respect to the distance)

dy.: R2xR2-5R (normally: q - py)
qy 2 q’y = dy/p, @) 2dy(p, q’) (monotonicity in the second argument)
PySqy = d(p, q) 2 dy,(p, q) (lower bound with respect to the distance)

Note that d requires only symmetry to achieve a correct result, although the sparsity inducing property

26

of d makes the algorithm efficient. We call any interpretation of these primitives consistent if the
aforementioned axioms hold. In the following we denote floating point subtraction by -* and the
floating point implementation of the distance function d by d*.

Lemma 1: The interpretation of CP with d(p, q) = d*(p, q), dx(p, q) = Py -* Q. dyy(p, Q) = Py - qy
anddy(p, q) = qy - Py is consistent.

Proof: The monotonicity laws for floating point subtraction hold for any reasonable implementation,
since we only require that a -* b does not increase if b is increased. The lower bound property of dx,
dy, and dy; can be obtained by using d**(p, q)=max(dx(p, q), dy,(p, q), dy,(p, q), d*(p, q)) instead of

d*(p,).

Trivial interpretations, e.g. setting all functions identical to zero, show that consistency is not enough
to guarantee an accurate result. We must analyze the resulting post condition numerically.

2.3 Numerical analysis

Lemma 2: The minimum of n imprecise quantities with a common relative error bound eps can be
viewed as an e-perturbation of the minimum of the precise quantities:
N IO . . * .
mm(ai :11<i< n) =min(a;:1<i < n)(1+€) where a; =a;(1+¢;) with g; < eps, € < eps.
Proof: Follows easily by induction over n.

Lemma 3: CP given the interpretation of lemma 1 computes the distance of the closest pair with the
same relative error bound as the distance function d*.

Proof: Lemma 1 shows that the floating point interpretation is consistent which in turn gives us the
validity of the post condition. Lemma 2 proves that the minimum over the computed distances can be
viewed as a minimum over the correct distances with a perturbation of the same order of magnitude
with which we compute distances.

Note that we can easily implement d*(p, q) such that d*(p, q) = d(p, q) (1 + k €), € < eps, k < 8 where
eps is the machine precision (eps = 1/2 b1*P, b = base of floating point arithmetic, p = number of digits
in the mantissa). Note also that implementing the line ‘while p, - s[tly 2 8 do’ as ‘while p, - 3 2
s[t]y do’ leads to a highly increased error bound if the distances and coordinates differ greatly in
magnitude. ‘

3. Cooperative sweep for the all nearest neighbors problem

The all nearest neighbors problem asks for a nearest neighbor for each given point. Experiments have
shown that the following very simple algorithm is surprisingly efficient:

Input: a set S of n points in the plane
Output: for each point the distance to a nearest neighbor

X := sortByX(S); Y := sortByY(S); (* X, Y: array [l..n] of point *)
FOR EACH p IN S DO
left := find(p, X); down := find(p, Y); (* by binary search *)
right := left; up := down; & := oo;
REPEAT
left := left-1; right := right+l; down := down-1; up := up+l;

UNTIL (halfSliceDone(X, left) A halfSliceDone(X, right)) v
(halfSliceDone (Y, down) A halfSliceDone(Y, up));
d(p) :=&;
END;

27

FUNCTION halfSliceDone(Z, dir): boolean;
halfSliceDone := {(dir <€0) v (dir > n) v (l2(dir]; - Pzl > 9d);

IF —halfSliceDone A (d(Z[dir],p) < 8) THEN & := d(Z(dir],p); END;
END; .

Its main idea is to sweep in two orthogonal directions at the same time, stopping either sweep as soon
as the answer is known, thus avoiding the disastrous case where all points are on a vertical line. We
have found the nearest neighbor for a point p when we have examined all the points in either the
horizontal or vertical 25-slice centered around p where & denotes p’s distance to its nearest neighbor.
This method can also be employed to solve the post-office problem or the online version of the all
nearest neighbors problem. Furthermore it enjoys the same error analysis as the closest pair algorithm
and is therefore the most accurate algorithm known based on floating point arithmetic. It is also faster
than an exact implementation of an optimal plane sweep algorithm given in [HNS 90] for
configurations consisting of up to a few thousand points. Probabilistic analysis and the following

figure have led us to the conjecture that its running time is ©(n!-5) where the constant is favorably low.

Tilted regular grid: for each point ©g/ n)points
must be examined.

4. Conclusion and open problems

We have presented an optimal algorithm for the closest pair problem using floating point arithmetic
which achieves the same relative error bound for computing the distance of the closest pair as the
exhaustive method that takes the minimum over all n*(n-1)/2 distances. The same analysis can be
extended to a very simple, practical but not optimal algorithm. It would be interesting to determine the
actual complexity of this useful algorithm, i.e. the worst case configuration. In the case of the closest
pair algorithm we ask whether there are any other interesting interpretations besides the Ly, metrics that

have a O(n log n) running time.

References

{GY 86] D. Greene, F. Yao: Finite Resolution Computational Geometry, Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, 1986, pp. 143 - 152.

{H 89] C. Hoffmann: The Problems of Accuracy and Robustness in Geometric Computation, Computer, Vol.

22, No. 3, March 1989, pp. 31-42.

[HNS 88] K. Hinrichs, J. Nievergelt, P. Schorn: Plane-Sweep Solves the Closest Pair Problem Elegantly,
Information Processing Letters 26 (11 Jan. 1988), pp. 255 - 261.

HNS 90] K. Hinrichs, J. Nievergelt, P. Schom: An all-round sweep algorithm for 2-dimensional nearest-neighbor
problems, submitted.)

{M 88] V. Milenkovic: Verifiable Implementations of Geometric Algorithms using Finite Precision Arithmetic,
CMU report CMU-CS-88-168, Carnegic Mellon, 1988.
[M 89] V. Milenkovic: Double Precision Geometry: a General Technique for Calculating Linc and Segment

Intersections using Rounded Arithmetic, 30th Annual Symp. on Found. of Computer Science, 1989.
{SSG 89] D. Salesin, J. Stolfi, L. Guibas: Epsilon Geometry: Building Robust Algorithms from Imprecise
Calculations, Proc. of the Fifth Annual Symposium on Computational Geometry, 1989, pp. 208 - 217.

