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Abstract. A k-clustering of a given set of points in the plane is a partition of the
points into k subsets (“clusters”). For any fixed k, we can find a k-clustering which
minimizes any monotone function of the diameters or the radii of the clusters in
polynomial time. The algorithm is based on the fact that any two clusters in an
optimal solution can be separated by a line.

1 Introduction

Problem statement. Let S be a set of n points in the plane. A partitioning of S into
k disjoint (possibly empty) sets C;,Cs,...,Ck, is called a k-clustering, and the individual
sets C; are called its clusters. In cluster analysis, the points represent properties (data) of
real-world objects, and the aim is to collect “similar” objects (points which are close to each
other) in the same cluster, and to put objects which are very “different” into different clusters.

Let W be some weight function that assigns a real weight to any finite set C of points in
the plane, like the diameter of C, the radius of C, or the perimeter or the area of its convex
hull. Further, let F be a k-ary symmetric function, assigning a real value to every k-tuple of
reals. Examples for F are the sum or the maximum.

The geometric k-clustering problem for W with respect to F is defined as follows:

INSTANCE: A set S of n points in the plane; a rational number d.
QUESTION: Is there a k-clustering for S into k sets Cy,Cs,...,Ck
such that F(W(C,), W(Cy),...,W(Ci)) < d?

Previous work and our result. If k is part of the input, this problem is in general NP-
complete. Supowit [16] has shown this result for W being the diameter and for F being the
maximum function; in other words, for k part of the input, minimizing the maximum diameter
in a k-clustering is NP-complete. The related problem of minimizing the maximum radius,
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which is also known as the k-center problem in the area of location problems, is also NP-
complete (Megiddo and Supowit [14]). For fixed k, minimizing the maximum radius has been
shown to be polynomial by Drezner [6]. NP-completeness can also be shown for minimizing
the maximum cluster area and for minimizing the sum of all cluster areas, as follows from a
result of van Emde Boas [9] that it is NP-complete to decide whether a set of points can be
covered by a given number of lines. For more information, the interested reader is referred to
Johnson’s NP-Completeness Column [13].

In this note we show that for every fixed k, the geometric k-clustering problem becomes
solvable in polynomial time, if W and F are as follows:

e W is the diameter or the radius;
e F is an arbitrary monotone increasing function.

Standard examples for monotone increasing functions F are the mazimum, the sum, or the
sum of the squares of k non-negative arguments. The 2-clustering problem for the maximum
diameter has been treated by Asano, Bhattacharya, Keil, and Yao [1]. They gavean O(nlog n)
algorithm for this problem. Monma and Suri [15] gave an O(n?) algorithm for finding a 2-
clustering with smallest sum of diameters.

Overview of the paper and related results. The key result that we will use is that for
any given 2-clustering, there is always a 2-clustering which is at least as good as the given
one (as regards the diameters or the radii of both clusters in each clustering) and in which
the two clusters can be separated by a line. For the case of radii, this is easy to see, whereas
the proof for the case of diameters is more elaborate. It is the subject of section 2. This
theorem allows us to limit the number of possible candidates for optimal solutions. From this,
a polynomial-time algorithm, which essentially tests all these candidates, follows in a quite
straightforward way. This algorithm is derived in section 3.

The problem of testing whether a 2-clustering with specified bounds on the two diame-
ters exists has been treated by Hershberger and Suri [10,11]. They gave an O(nlogn)-time
algorithm which does not use the separability of the two clusters.

A separability result related to ours was known for the problem of minimizing the sum
of the variances of the clusters. (The variance of a cluster is the sum of the squares of the
distances of all pairs of points in the cluster, divided by the number of points, cf. Bock 4,
section 15, pp. 162-176].) With this objective function, two clusters of an optimal clustering
are always separated by a line. Similarly, for the problem where the sum of the squares of
all distances between points in the same cluster is to be minimized (without division by the
cluster sizes), Boros and Hammer [3] showed that two clusters in an optimal solution can
always be separated by circle. In both of these cases the separability result is due to the
special form of the objective function.

Definitions and Notations. The convex hull of a point set A is denoted by conv(A), the
diameter (the maximum distance of two points in A) by diam(A). By the perimeter of a point
set A we mean the perimeter of it convex hull, i. e., the length of the boundary of conv(A).
The radius r(A) of a finite point set A is the radius of the smallest enclosing circle. We can
define the radius, the perimeter, and the diameter of the empty set as 0 or —oo, as we like.
Two sets are said to be linearly separable, if they can be strictly separated by a straight line.
It is well known that two finite sets are linearly separable if and only if their convex hulls are
disjoint.
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2 Separability of Two Clusters in the Diameter Case

Our results about the case where the function W is the diameter are based on the following
theorem which shows how we can separate two intersecting clusters by a line without increasing
the diameters.

Theorem 1 Let A and B be two sets of points in the plane with diameters d4 and dg. Then
there are two linearly separable sets A’ and B’ with diameters d4» and dg: such that d4 < dg,,
dp» <dp and A’UB' = AU B.

The proof consists of taking A U B and finding a line which separates this set into two
new clusters A’ and B’ which fulfill the claimed property. The details, which are hairier than
one might expect, are contained in the full paper [5].

A weaker version of Theorem 1 with an erroneous proof was stated in [1].

Lemma 2 In the construction in Theorem 1,
perimeter(A) + perimeter(B) > perimeter(A’) + perimeter(B’)
holds. If conv(A) N conv(B) # 0, then the inequality is strict.

3 The Polynomial Time Result

In this section, we extend Theorem 1 of the preceding section to more than two clusters,
and we also show the corresponding result for the case of radii. Finally, we will apply these
separability theorems to obtain a polynomial algorithm.

Theorem 3 Consider the optimal k-clustering problem for the diameter with a monotone
increasing function F. For every point set P in the plane, there is an optimal k-clustering
such that each pair of clusters is linearly separable.

Proof. This is an easy consequence of Theorem 1 and Lemma 2. O

So far, we have only dealt with the diameter as the quality measure of a cluster. For the
radius, an analog of Theorem 3 can be shown directly.

Theorem 4 Consider the optimal k-clustering problem for the radius with a monotone in-
creasing function F. For every point set P in the plane, there is an optimal k-clustering such
that each pair of clusters is linearly separable.

Proof. The power diagram of the cluster circles (cf. Aurenhammer [2]; Imai, Iri, and
Murota [12]; or Edelsbrunner [7), section 13.6) is a polygonal dissection of the plane, which
can easily be used to show the theorem. O

For the diameter, such a decomposition into convex regions like the power diagram need
not necessarily exist. However, by a result of Edelsbrunner, Robison, and Shen [8, Lemmas 1
and 2], we can enlarge the non-intersecting convex hulls of the clusters until they touch while
still keeping them convex. This will yield a set of convex polygonal regions which does not
necessarily cover the whole plane but which is otherwise completely sufficient for our purposes.

Theorem 5 For any fized k, the geometric k-clustering problem for the diameter or for the
radius with respect to some monotone increasing function F is solvable in O(n*) time.

Proof. The dual of the dissection mentioned above is a plane graph with at most 3k — 6 edges.
For each of these edges, we have to specify one of O(n?) possible dividing lines. We have to
do this for all planar graphs on k vertices, and in this way, we generate O(n®~12) possible
candidates for the optimal solution. We simple have to compare them and take the best. O
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