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Abstract

Given a set S of n points, a subset X of size k is called a k-set if there is a
hyperplane II that separates X from § — X. We study E4(k;n), the expected
number of k-sets when S is a sample of n points from a distribution F on R4,
For all the distributions considered, when k is bounded E is asymptotically the
expected number of vertices on the convex hull of n random points from F; when
k is proportional to n, E is O(n9™1).
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1 Introduction and Summary

Let S = {z,,...,2,} denote n points in R?. A subset X of size k is called a k-set if there
is a hyperplane II that separates X from S — X. Most of the previous work has focused
on eq4(k;n), the maximal number of k-sets over all configurations of n points in R?.

Clearly Q(n?-!') and O(n?) provide upper and lower bounds, respectively, for e;(k; ).
Nontrivial were obtained obtained by Lovdsz [12] for halving sets (n even, k = n/2),
and later, for general k < n/2, by Erd6s, Lovdsz, Simmons and Strauss [10]. A simple
construction gives a set S with nlog(k + 1) k-sets, while a counting argument shows
that e;(k;n) = O(nvk). These bounds were rediscovered several times, for example by
Edelsbrunner and Welzl [9] but had not been improved until Pach, Steiger, and Szemerédi
[13] reduced the bound to nv/k/log*k. The papers [1],[11],[15] contain results related to
the study of e,(k;n).

Raimund Seidel (see [8]) extended the Lovisz lower bound construction to d = 3 and
showed that e3(k;n) = Q(nklog(k + 1)). The argument may be applied inductively to
show eq(k;n) = Q(nk?-2log(k))

A non-trivial upper bound for d = 3 was recently obtained by Bardny, Firedi, and
Lovész [3]. They show that e4(n/2;n) = n®¢, where € > 0 is some small constant. This,

in turn, was improved by Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, and Wenger
[2] to O(n®/310g®/*n). For d > 3, only the trivial bound is known.

It appears likely that the truth is near the lower bound. Support comes from the fact
that in “typical” cases there are relatively few k-sets. We study E4(k;n), the expected
number of k-sets when S is a sample of n random points from a distribution F on
R?. We deal with the cases where F is a spherically symmetric distribution or the
uniform distribution in a convex polhedron. In each case, for bounded k, E grows like
the expected number of vertices on the convex hull of n points with distribution F, and
when k is proportional to n, E grows like n~'. We mention one related paper by Sharir
[14]. Let N points in the plane be given. Using a random sampling argument, he shows
that suitable random subsets of size n are expected to have at most O(n®/3+%) halving
sets, a statement free of any assumptions concerning distributions.

Despite the simplicity of the methods we use to derive these results, the statements
seem to be the first known facts about E4(k;n). Combined with the fact that k-sets have
applications in computational geometry and machine learning, we feel that this work
might be useful and interesting.

2 Results

If F is a distribution function on R?, F(S) denotes the probability F assigns to the Borel
set S C R%. We have a sample of size n + d from F. Given d specific points z,,...,z4,



they determine a hyperplane II. Write Z(z1,...,2d4) = Probg(h), for the random variable
measuring the F-probability of k, the smaller of the two open halfspaces determined by
II, and let G(t) denote its distribution, ¢ < 1/2.

The key relation describes the probability P, that z,,...,z4 determine a k-set. We
have

P= ( Z ) fo m[t"(l —t)"* 4+ (1 - t)* " 1dG(2), (1)

dG denoting Stieltjes integration. The integrand describes the probability that k& points
are in k and n — k in its complement, or vice-versa, times the probability that k has has
probability content ¢. It then follows that '

Ed(k;n+d)=(n;d)P.

All statements depend on the analysis of G and the integrand in (1). For example if
G(t) = 2t, the integral in (1) is Beta(k+ 1,n — k+ 1) and P is (n +1)~". Suppose first
that d = 2.

Lemma 1 If F is circularly symmetric then

E(k;n+2) <n+2.

The proof is a calculation using the fact that G(t + ) — G(t) < 2u and the identity

/01 t5(1 — t)"*dt = [(n+ 1) ( ’L‘ )]-1.

Here is a sketch. Suppose F is circularly symmetric about the origin. For each t € (0,1/2)
there is a disk C, centered at the origin with radius u(t) determined by the property that
each tangent defines a halfspace which has probability content £.

Let A(t) denote the complement of C;. For each point z € A(t), there are two tangents
to Ci, 11(z) and 75(z), each defining a halfspace of probability t. Let W;(z) denote the
symmetric difference of these halfspaces; these are the points y such that the segment zy
defines a halfspace of probability < t. Then

G(t) = L cry Prbr(Wil2)dF (2). 2)

To estimate G(t + u) — G(t), u > 0, use (2) to see that

Gt +u)—G(t) = L e DT (Wasa(2) = Wila))dF (2)

+ 4/=€A(t+u)_A(t) ProbF(Wt'*‘u)dF(z).
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The statement of the lemma easily follows by bounding each integral in (3) by u. In the
first case the integrand is at most u. In the second, the range of integration has probability
less than u. If F is absolutely continuous w.r.t. Lebesgue measure then E,(k;n) is
bounded below by cn for some constant ¢ € (0,1). In addition this kind of calculation
can be made in R? to reveal that when F is spherically symmetric, E4(k;n) = O(nd-?).

The integrand in (1) is strongly concentrated around ¢ = k/n. This enables us
to make more exact statements when there is more detailed information about G, for
example when F is the uniform distribution in some bounded set. In one such case we
can prove

Lemma 2 If F is the uniform distribution in the unit circle, then

Ey(k;n) = O(K**n'/?)

There is an analogous statement for the ball in R?. Note that for fixed k, this expression
is asymptotic to n'/3, the expected number of hull vertices for n random points sampled
from F'; for k proportional to n it agrees with Lemma 1.

In a similar way,

Lemma 3 If F is the uniform distribution on the unit square

E;(k;n) = ©(klogn/logk)

There is an analogous statement for uniform distributions in other convex polygons and
we can generalize to higher dimensions. All the results are established by exploiting the
uniformity of F' and the concentration of the integrand of (1).

Finally we note that it is an interesting question as to whether there are distributions
F for which E4(k;n) is of a strictly higher order than n?-!. We have not been able to
find one.
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