60

An Optimal Parallel L; Metric Voronoi Diagram Algorithm

Young C. Wee *
Samsung Institute for Advanced Technology
Seoul, Korea

Seth Chatken
Department of Computer Science
State University of New York at Albany
Albany, New York 12222

May 14, 1990

Abstract

An O(log n) time O(n) processor parallel algorithm on a CREW-PRAM for constructing
the planar Delaunay diagram (thus the Voronoi diagram) for a set of points under the L,
metric is described. The algorithm uses the geographic nearest neighbor approach and effi-
cient parallel range query techniques. This algorithm is both practical and asymptotically
optimal.

The Voronoi diagram (VD) and its generalizations and varieties are among the most inten-
sively studied objects in computational geometry. Although optimal sequential algorithms to
compute wide classes of these diagrams are known (see for example [SH75, Le80, CD85, Fo86,
ES86, Ed87, K189] and references therein), the goal of a provably optimal parallel algorithm
' to compute even a single class of VD, as far as-we know, remained elusive. For the Euclidean
distance VD, on the CREW-PRAM, the best O(n) processor algorithms take O(log? n) time .
[ACGDY88, CG88) and the best ! O(logn) time algorithm requires O(n*) processors [PM88].
We present here an O(logn) time O(n) processor algorithm for the CREW-PRAM that com-
putes the planar L, (i. e. rectilinear or Manhattan distance) nearest site VD for a set S of

n points (which are called sites). It is optimal in any model for which sorting has the above

complexity [SH75].

*Supported in part by NSF Grants IRI 8703430 and CCR 8805782.
1We recently heard that Chew and/or Fortune improved the number of processors to O(n log n).

The first main idea is to begin by computing an O(n) size subset of site pairs (which we call
NNsg; a pair of sites is called an edge) determined from nearest neighbors under a fixed number
of different “angle restrictions” [WCRS9] of the relevant distance function which in this case
is L. This so-called geographic nearest neighbor approach was introduced by Yao [Ya82]. The
space around each site is pa;titioned into k angular regions (k depends on the problem, the
metric and the dimension) and for cach site the nearest neighbor, if any, within each region is
found. The O(n) size subset is input for further computation that solves the problem at hand.
This approach is useful for several problems such as minimum spanning tree [Ya82, GS83],

relative neighborhood graph [Su83, Ka88] and shortest path motion planning [C187].

The second main idea is to compute NNg and to identify each edge in the dual of VD (the
Delaunay diagram DD) either in NNg or from an NNg edge by using efficient parallel range
query techniques in O(logn) time. The range tree techniques for the dominance counting prob-
lem and dominance counting queries given in [GBT84] and their O(logn) time parallelization
given in [CG88] (which uses O(n) processors for preprocessing and a single processor for one
query) use a scheme that is easily adapted to our purpose as in [WW88, WCR89]. This scheme
can be adapted with no loss of efficiency whenever the query answer for a given range can be
computed in constant time from the one or two precomputed subranges and their answers.
See [BS79) for further details. The range query techniques work because the distance function
d(p, .) restricted to each of these angular regions is affine. Thus, the main result of this paper
is an O(logn) time O(n) processor algorithm for constructing DD from NNg under the L;
metric. For simplicity, we restrict our description to the L; VD; however the design of the
algorithm can be adapted to any metric whose unit circle is a convex quadrilateral. Further,
we make the assumptions that no more than 2 of the sites lie on a single line of slope +1 and
that no 4 sites are co-circular. Without these assumptions, the DD or the VD may be larger
than O(n); a version of our algorithm may still be built to solve a variation of the problem

whose output size is O(n).

For our purpose, the boundaries of each angular region will be vertical, horizontal or oblique
with slope £1. Let a(p) denote the convex cone between the two rays in directions ry,72 from
p that form an angle @ = [r;,r2] where points on each vertical or horizontal boundary and
point p are included and other points on each oblique boundary are excluded. Asiteg€e Sis

said to be the a-nearest neighbor of p among S if and only if ¢ is one of the sites nearest to p

61

62

from a(p) N (S — {p}), chosen arbitrarilly in the case of ties. We denote the a-nearest neighbor
of pin S by N,(p). The geographic nearest neighbor problem is for given a to find N,(p) for
all p € S. Let aifi] = [2ix/k,2(i +)7 /k] for k > 1 and A = {ax[i] |0 < i < k-1}. We
define NN to be the graph (V, E) where

V=Sand E= |J {(p.q)| P € S,9= Na(s)}
a€lAy

Thus NN is the union of the solutions to k geographic nearest neighbor problems. In the

following, k = 8 and NNg is used as an undirected graph.

Let I,(p) denote the line through point p with slope ¢. Given an edge e = (a,b), the two
points I;(a) N i_;(b) and I;(b) N 1_;(a) will be called the corner points of e. For our algorithm,
we need to compute N Ng, to find for certain points p the site nearest to p on closed vertical,
horizontal or oblique rays from p, and to answer N,(r) queries for each corner point r of
e = (a,b) € N Ng for the right angle @ whose (oblique) sides contain a and b. The latter query
angle is denoted by a(r,e). These o(r,e)-nearest neighbor queries are implemented by two
No«(r) queries where the width of each o' is v/4. For all this computation, we use 8 ra.nge.
trees. Each search answer has 3 fields: site nearest to p in the interior of &(p) and the sites |

nearest to p in each of the two closed rays that bound a(p).

Let us call any square whose sides have slope +1 a diamond. Note that the shape of the -
L, unit circle is a diamond: A diamond is called empty when its interior contains no sites. An
empty diamond touches a site means that the site is on the boundary of the diamond. Two
sites @ and b are adjacent on a diamond if and only if a and b lie respectively on a pair of
adjacent sides. Here, one site might coincide with the coxﬁmon corner of the adjacent sides or
each site is contained in exactly one of the two adjacent sides. In the latter case, (a,b) does
not have slope +1 and we say that this edge is generally positioned. Two VD regions have a
common boundary point if and only if there is an empty diamond that touches the two sites

corresponding to the regions.

The following theorem holds under the assumption that n > 2 and no 3 sites lie on a

common line of slope +1 or —1. The correctness of the algorithm DD under the already given

assumptions follows from this theorem and the preceeding discussion.

We remark that if the sites have integer coordinates then half-integer precision suffices to

eliminate any round-off error during the computation.

Theorem 0.1 (a,b) € DD if and only if i

(1) (a,b) € NNg and a,b are adjacent on an empty diamond

" or (2) there is a site c, there is an empty diamond D that touches a, b and ¢, and for at least

one edge e = {z,y} C {a,b,c}, e € NNg and z,y are adjacent on D.

Proof sketch. “If” is immediate. “Only if” follows from a case analysis of how a and b lie

on the boundary of an empty diamond D’.

Case 1. If a and b are adjacent on D’ and (a,b) is in general position, then either a € a(b)
or b € o'(a) for appropriate a # a'. Say a € a(b). Either No(b) = a so (b,a) € NNg or
N,(b) = c is another gite on the same side of D = D' as a because ¢ won a tie settlement

against a.

Case 2. If a and b are not adjacent on D', then either there is a third site that is adjacent to

at least one of a and b on D’ or there exists a different empty di@mond D obtained by “sliding”

D' while maintaining contact with a and b until a corner of D touches a or b, or a (closed)

side of D adjacent to a and b touches a third site. Thus, for some empty diamond, either the
other cases apply or there is a third site ¢’ such that (a,c’) or (b,c') has ends adjacent on D

and is in general position. In the latter case, the argument of case 1. is applied.

Case 3. If a and b are adjacent on D’ and (a,b) has slope +1 or —1, then at least one of
a or b is a corner of D'. There is no other site on (a,b) and n > 2, 80 there exists an empty
diamond that touches a, b and some third site. The third site paired with a or with b is an

edge in general position. A reduction to case 1. or to case 2. now applies. O

63

64

DD
DD = empty.
for each edge e = (a,b) € NNg (Note that all NNg edges are generally posxtloned)
Determine the two corner points r; and r3 of e.
forr=r;,79
t = a(r, e)-nearest neighbor of r among S.
if t is defined then
if max(d(r,a),d(r,b)) < d(r,t) then
DD = DD U {e,(a,t),(b,t)}.
else (i.e., a(r, €) contains no sites)
if a site z € S — {a, b} lies in a boundary ray of a(r,e) then
DD = DD U {e,(a,z),(d,z)}.
else DD = DD U {e}.
Sort [Co86] DD to remove duplications.
endDD

References

[BS79] J.L. Bentley, Decomposable searching problems, Information Processing Letters,

1979, 244-251.

[ACGDY88] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dinlaing and C. Yap, Parallel Com-

putational Geometry, Algorithmica, 1988, 293-327.

[CD85] L. P. Chew and R. L. Drysdale, Voronoi diagrams Based on Convex Distance Func-
tions, Proc. of the 1st Annual Symp. on Computational Geometry, 1985, 235-244.

[CG88] R. Cole, M. T. Goodrich, Optimal Parallel Algorithms for Polygon and Point-Set .
Problems, Proc. of the Fourth Ann. Symp. on Computational Geometry, 1988, 201-

210.

[C187] K. Clarkson, Approximation Problems for Shortest Path Motion Planning, Pmc

19th Ann. ACM Symp. Theory of Computing, 1987, 56-65.

[Co86) R. Cole, Parallel Merge Sort, 27th Foundations of Computer Science, 1986, 511-516.
[Ed87] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag Berlin

Heidelberg, 1987.

[ES86] H. Edelsbrunner and R. Seidel, Voronoi diagrams and Arrangements, Discrete Com-

putational Geometry 1, 1986, 25-44.

[Fo86) S. J. Fortune, A Sweepline Algorithm for Voronoi Diagrams, Proc. of £nd Annual

Symp. on Computational Geometry, 1986, 313-322.

[GBT84] H.N. Gabow, J.L. Bentley and R.E. Tarjan, Scaling and Related Techniques for
Geometry Problems, Proc. 16th Ann. ACM Symp. Theory of Computing, 1984,

135-143.

[GS83]

[Ka88)

[K189)

[Le80)

[PM88)

[SHT75]

[Su83)

[WCRS9)

(WW8S]

[Ya82]

L. J. Guibas and J. Stolfi, On Computing all North-east Nearest Neighbors in the
L, Metric, Info. Process. Lett. 17, 1983, 219-223.

J. Katajainen, The Region Approach for Computing Relative Neighborhood Graphs
in the L, Metric, Computing 40, 1988, 147-161.

R. Klein, Concrete and Abstract Voronoi Diagrams, Lecture Notes in Computer
Science 400, Springer-Verlag, 1989.

D. T. Lee, Two-Dimensional Voronoi Diagrams in the L,-Metric, J. ACM 27(4),
1980, 604-618.

W. Preilowski and W. Mumbeck, A Time-Optimal Parallel Algorithm for the Com-

puting of Voronoi-Diagrams, Lect. Notes in Computer Science, Springer Verlag,

1988, 424-433.

M. I. Shamos and D. Hoey, Closest point problems, Proc. 16th Ann. Symp. on the
Foundations of Computer Science, IEEE, 1975, 151-162.

K. J. Supowit, The Relative Neighborhood Graph, with an Application to Minimum
Spanning Trees, J. ACM 30(3), 1983, 428-448.

Y. C. Wee, S. Chaiken and S. S. Ravi, Some Applications of Geographic Nearest
Ncighbor Approach, Proceedings of the 27th Annual Allerton Conference, 1989.

D. E. Willard and Y. C. Wee, Quasi-valid Range Querying and its Implications for
Nearest Neighbor Problems, Proceedings of the Fourth Annual Symp. on Compula-
tional Geometry, 1988, 34-43.

A. C. Yao, On Constructing Minimum Spanning Trees in k-dimensional Spaces and
Related Problems, SIAM J. Comput. 11(4), 1982, 721-736.

65

