66

Efficient Parallel Algorithms on Circular Arcs

Lin Chen
Department of Computer and Information Science

Ohio State University
Columbus, OH 43210
USA

A circular arc graph is an intersection graph on a set of circular arcs on a circle. A ©
circular arc graph (a.k.a. Helly circular arc graph) is an intersection graph on a set of circular
arcs with Helly property: for any subset of circular arcs, if any two circular arcs intersect,
then the intersection of all the circular arcs in the subset is non-empty. In this paper, we
give the first efficient parallel algorithm for deciding whether n circular arcs represent a ©
circular arc graph, and if so, constructing a set of circular arcs with Helly property. The
algorithm runs in O(log? n) time with O(n®) processors on CRCW PRAM. At the same time,
we also obtain an efficient parallel algorithm for computing all the maximal cliques including
all the maximum cliques of a circular arc graph. We further give a new characterization of
O circular arc graphs.

Let u(V4,...,V;) be the vertex versus vertex set incidence matrix, where each V; is a
vertex set. Let Cj,...,C; be all the maximal cliques of G. For every vertex v;, let G;
denote the subgraph induced by v; and all its neighbors. Let Cj,...,Cj. be all the maximal
cliques of G;. Denote the maximal elements of UL, {C},...,C}.} by Ds,..., Di. Gavril [6]
characterized O circular arc graphs as follows.

Theorem 1 G is a © circular arc graph if and only if u(Ch,...,Ci) has the circular 1’s
property.

Based upon the characterization, Gavril gave an O(n3) sequential algorithm for recog-
nizing O circular arc graphs using dynamic programming approach. That algorithm does
not seem to be parallelizable. Using a different method in this paper, we obtain a parallel
algorithm which runs in O(log? n) time with O(n3) processors. We first give the following
equation.

Lemmal {D; |0<:<k}={C;|0<j<1}.

Proof. Suppose C; contains vertex p. Then C; is C? for a q. Since C; is a maximal clique
of G, C? must be D; for an i. Hence {D; |0<i <k} 2{C;|0<j <1}

Assume there exists a D; such that D; & {C; | 0 < j < l}. Then there must be a C; such
that D; C C;. As we have shown above, C; = D, for an r. This contradicts the fact that

67

{D; | 0 < i < k} is the maximal elements of ur,{Cj,...,C}.}. Hence {D; | 0 <i <k} C
{Cj|0<j< I} o
The following result follows immediately from Theorem 1 and Lemma 1.

Theorem 2 G is a © circular arc graph if and only if u(Dy,...,Di) has the circular 1’s
property.

However, Gavril [6] characterized A circular arc graphs in the following way: Gisa
A circular arc graph if and only if u(Ds,...,Di) has the circular 1’s property [sic]. A A
circular arc graph is an intersection graph on a set of circular arcs such that for any three
circular arcs, if any two of them intersect, then the intersection of the three circular arcs is
not empty. Gavril also gave an example showing correctly that the class of A circular arc
graphs is not equivalent to the class of © circular arc graphs. So there must be some errors
somewhere. We have noticed that the error was caused by Gavril’s incorrect claim that each
G; is an interval graph.

Belore we give an NC algorithm for recognizing © circular arc graphs, we first describe
how to compute the maximal cliques of a circular arc graph.

Given a circular arc graph G and a circular arc representation S, we denote the endpoints
of the arcs consecutively in the clockwise direction by hy, ha,. .., h2n, hons1 = ha. Let M; be
the set of arcs in S that contain endpoint h;. Let M/ be the set of arcs in S but not in M;
that intersect all arcs in M;. Since h; is not contained in any arcs in M/, the arcs in M| do
not cover the entire circle. So M! is an intersection representation for an interval graph. It
is not difficult to see that a maximal clique of M/ together with M; forms a maximal clique
containing h; for the circular arc graph G.

The endpoints of the arcs can be sorted in O(log n) time with O(n) processors on EREW
PRAM, or in O(logn/loglog2p/n) time with 2n < p < n? processors on CRCW PRAM
using an algorithm by Cole [4]. If the range of endpoints is linear in n—in fact, a circular
arc graph can always be represented by n circular arcs whose endpoints are in a range lin-
ear in n—Chen [2] has shown that sorting can be done in O(logn) time with O(n/logn)
processors on EREW PRAM, or in O(log n/ log log n) time with O(n log logn/log n) proces-
sors on CRCW PRAM. If the integers are not distinct but at most f; number of integers
have multiplicity greater than f,, then sorting can be done in O((f2 + g) 5‘;"{;—") time with

O(&“ﬂl‘iﬁ‘l—:ﬂ) processors for any g satisfying 0 < g < fi. When both bounds f, and f; are
constants, the algorithm is optimal.

All the maximal cliques of an interval graph can be obtained by applying prefix compu-
tation. Suppose ej,..., ez, are the endpoints of n intervals representing an interval graph.
Define a new array f[1 : 2n] in the following way:

fli] = 1 if e; is the left endpoint of an interval
U=Y =1 otherwise

Apply prefix sum computation on the array f[1 : 2n] and store the result in the array s[1 : 2n).
Note that it is always true that s[1] = 1 and s[2n] = 0. Then the vertices corresponding to
intervals containing endpoint i form a maximal clique if s{i| > s{i — 1] and s{i} > sli + 11,
for 0 < i < 2n, assuming s[0] = 0. The largest s[:] corresponds to a maximum clique of

68

the interval graph. The maximum of s[i]’s can be obtained via prefix computation choosing
max as the binary operator. Prefix sum can be computed in O(logn) time with O(n/ log n)
processors on EREW PRAM [9] [8], or in O(logn/loglogn) time with O(n loglogn/ logn)
processors on Common CRCW PRAM [5]. It is easy to see that the number of maximal
cliques containing endpoint k; is bounded by O(n).

Incidentally, we can compute a maximum clique from the maximal cliques of the circular
arc graphs. Total work is bounded by O(n®). The time complexity is dominated by the
prefix computation and sorting. We present the result in the following theorem.

Theorem 3 A mazimum ‘clique of a circular arc graph can be computed in O(log n) time with

O(n3/ logn) processors on CREW PRAM, or in O(rglgi’ﬁ,%) time with O(ﬁ}%%fﬂ) processors
on CRCW PRAM.

Though the computation of a maximum clique is not required for the recognition of ©
circular arc graphs, the problem is interesting in its own right. Previously, one algorithm for
computing a maximum clique was announced in Chen [1]. The algorithm runs in O(logn)
time with O(n?) processors on CRCW PRAM. Kim [7] independently obtained an algorithm
which runs in O(log?n) time using O(n3/logn) CREW PRAM processors. So our new
algorithm is not only faster, but also more efficient in terms of processor-time product.

We now return to the problem of recognizing © circular arc graphs. After we have com-
puted the maximal cliques containing k;, for all 0 < ¢ < 2n, we have at most O(n?) maximal
cliques. Each maximal clique can be represented by an n-tuple consisting only of 0’s and
I’s. Now we want to delete the duplications. First sort these n-tuples according to the
lexicographic order. The comparison of two n-tuples a and b can be parallelized as follows.
Let ¢ be a new tuple such that ¢[i] = a[i] — b[z], for 0 < i < n. If all the elements of ¢ are
0, then a = b. Otherwise, obtain the location, say k, of the first non-zero element in c. If
c[k] < 0, then a < b. The location of the first non-zero element in ¢ can be computed by
applying prefix sum computation on an n-tuple d, where d[z] is the absolute value of the cor-
responding element of c[i], for 0 < ¢ < n. Then k is the integer ! satisfying "\, d[i] = 1. So
the comparison of two n-tuples can be done in O(log n) time with O(n/ log n) processors on
EREW PRAM, or in O(logn/ loglogn) time with O(n log logn/logn) processors on CRCW
PRAM. As is known, sorting n elements by comparison can be done in O(logn) time with
O(n) processors on EREW PRAM assuming each comparison can be done in unit sequential

~ time. So sorting all those maximal cliques can be done in O(log?n) time with O(n3/logn)

processors on EREW PRAM, or in O(log? n/ loglogn) time with O(n3loglogn/logn) pro-
cessors. Suppose the maximal cliques after sorting is C},...,C,. Compare C; with C;;; and
delete the duplication. Then we get ! distinct maximal cliques, say, Ci,...,C;. Gavril has
correctly shown that the number of distinct maximal cliques in a © circular arc graph is at
most n. Consequently, if [> n, the input graph is not a © circular arc graph. Otherwise,
we decide if the graph is a © circular arc graph by testing the circular 1’s property for
#(Ch,...,C1). Chen and Yesha [3] have shown that, deciding if a matrix has the circular 1’s
property for rows, and if so, transforming the matrix into one with circular 1’s in each of its
rows, can be done in O(log?n) time with O(n?) processors. If the graph is a © circular arc
graph, then an intersection representation with the Helly property can be constructed within
the same resource bounds. Assume the 1’s in each row of u(Ci,...,C)) occur in a circularly

69

consecutive fashion. For row i, construct an arc [m, p] if the 1’s start from column m and end
at column p. We claim that the arcs constructed have the Helly property. Suppose several
arcs mutually intersect. Then the corresponding vertices must be in a maximal clique, say,
C,. According to the construction of the arcs, those arcs all contain [s, s]. So the intersection
of those arcs is not empty. Therefore, the constructed arcs have the Helly property. It is
easy to see that the complexity bounds are dominated by the recognition of the circular 1’s
property. We summarize the result as the following theorem.

Theorem 4 Deciding if a graph is a © circular arc graph, and if so, constructing an in-
tersection representation with the Helly property, can be done in O(log? n) time with O(n®)
PToCessors.

References

[1] L. Chen. NC algorithms for circular-arc graphs. In F. Dehne, J.-R. Sack, and N. Santoro,
editors, Proc. Workshop on Algorithms and Data Structures, Lecture Notes in Computer
Science, Vol. 882, pages 291-302. Springer-Verlag, 1989.

[2] L. Chen. Efficient deterministic parallel algorithms for integer sorting. In S. G. Ak,
F. Fiala, and W. W. Koczkodaj, editors, Advances in Computing and Information, Proc.
International Conference on Computing and Information, pages 367-371, 1990.

[3] L. Chen and Y. Yesha. Parallel testing for the consecutive ones property and trans-
formable convex bipartite graphs and finding a maximum matching. In Proc. 27th Ann.
Allerton Conf. on Communication, Control, and Computing, pages 756-765. University
of Illinois at Urbana-Champaign, 1989.

[4] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770-785, August 1988.

[5] R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Information
and Computation, 81(3):334-352, June 1989.

[6] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357-369, 1974.

[7] S. K. Kim. A Parallel Algorithm for Finding a Mazimum Clique of a Set of Circular-arcs
of a Circle. University of Washington, 1989.

[8] C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix. I[EFEF Transactions
on Computers, C-34:965-968, 1985.

[9] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM,
27-831-838, 1980.

