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Abstract
We present an O(n log n) algorithm for finding angle-constrained convex separating polygons
for two sets of points. In particular, this algorithm allows us to find separating rectangles and
equilateral triangles. We also show how our method can be supplemented to find separating
squares in O(n log? n) time. These problems find application in pattern analysis, in the problems
of recognizing digital polygons. The previous algorithms for digital polygon recognition employ
a brute-force approach and have high-order polynomial (at least n®) running times.

1 Introduction

A problem that has recieved considerable attention in the pattern recognition literature recently
is the problem of recognizing digital shapes. Given a plane figure, the digital image of that figure
is the set of all points on the unit lattice that are inside the figure (in the sense of the Jordan
Curve Theorem). A digital image of a particular type of shape (e.g., a rectangle) is called a digital
shape (e.g., a digital rectangle). A digital rectangle, and an associated plane rectangle, are shown
in figure 1.

In a digital shape recognition problem, one is given a set of (connected) lattice points, and
then must determine a plane figure such that the digital image of that figure is the given set of
lattice points. Algorithms have been developed for recognizing digital circles [K84] [NA84], digital
triangles and rectangles [NA8S5], digital squares [NA90], and digital convex polygons [K82al.

The computational geometry problem of separation corresponds to the digital shape recognition

problem. We define the separation problem for a given class of objects C:

C-Separation

Given: Two sets of points, R (“red points”) and B (“blue points”). ‘

Find: An element S (“the separator”) of C such that all red points are contained in 5,
and no blue points are contained in S.

Typical object classes C are the class of all halfplanes [DR80), all disks [B88], or all triangles.
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Figure 1: A digital rectangle and a corresponding plane rectangle

A digital shape recognition problem can easily be converted to a separation problem by letting
R be the given set of lattice points, and B be all other lattice points. Depending on the shape
being recognized, B can be restricted to a certain neighborhood of R (for instance, B may be
the lattice points which are not in S but adjacent to members of S). For recognizing digital
polygons, the measure of the smallest angle of the polygon to be recognized determines the size of
the neighborhood needed. Also, often only the boundary points of R are given.

Let A be a sequence of angles (a1, az, ..., ak) such that A is a valid sequence of interior angles for
a k-vertex convex polygon. Let C4 be the class of all polygons P such that P has angle sequence A.
Degenerate polygons (ones with zero-length edges) are allowed. The particular separator problems
that we consider in this paper are those that can be expressed as a C 4-separation problem, for some
sequence .A. We call these problems polygonal separation problems. For instance, the rectangle-
separation problem is the C4-separation problem for A = (90°,90°,90°,90°). We also extend our
method to solve the square-separation problem.

2 Angle-constrained polygon algorithm

Our approach to polygonal separation problems is to consider only separators such that each edge
of the separator is in contact with the convex hull of the red points. We show that if any separator
exists, then a separator so constrained exists. Each such constrained separator can be uniquely
identified by the angle that the first edge of the separator makes with the x-axis. We note that if
any blue point is in the red convex hull, then no separator exists.

We then consider all potential (constrained) separators by considering all angles in the range
[0°,360°). Such a potential separator is a true separator if no blue points lie inside it. Therefore, for
each blue point, we simply mark those angles for which the separator would contain the point. In
this manner, each blue point can invalidate up to k intervals of angle. The union of these intervals,
for all blue points, gives us the set of invalid separator angles. The complement of this union is the

set of valid separator angles.
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CLOUD,,.(R)

Figure 2: Computing invalid angles

Each blue point can invalidate one subinterval of [0°,360°) for each angle in .A. For some angle
a;, and some blue point b, we compute the invalid subintervdl for a; and b as follows. First, let
CLOUD,,;(R) be the trajectory of the vertex of angle a; in the potential separators as the reference
angle is swept through the interval [0°,360°) (see figure 2). CLOUD,,(R) is a circular-arc polygon,
and can be computed in linear time [T88]. If b is outside of CLOUD,,(R), then b does not invalidate
any angle for a;. If b is inside (or on the boundary) of CLOUD,;(R), then b invalidates the interval
of angle determined by its two tangents, with one reflected off of CLOUD,;(R). In figure 2, b
invalidates the section of angle shown as 6.

The entire algorithm runs in O(knlog kn) time, and returns a list of valid intervals for separators.

3 Square algorithm

We need consider only those squares that have two opposite sides supporting the red convex hull.
We begin by using the angle-constrained polygon separator algorithm to find all valid angles for
rectangle separators. We consider these valid angles, in order.

We can determine if a valid angle a admits a square separator in the following manner. For any
angle f3, let d(8) be the distance between the two support lines (in direction §) of the red convex
hull. First compute d(a) by finding the supporting lines of the red convex hull in direction a. Next,
let B; and B; be those subsets of B which are between these supporting lines, and on opposite
sides of R (see figure 3). Compute d(a + 90°). Let e(a + 90°) be the distance between the closest
support lines, in direction a + 90°, of the convex hulls of B; and B,. The ratios d(a + 90°)/d(«a)
and e(a + 90°)/d(a) are the extremes of the set of aspect ratios possible for constrained rectangle
separators in direction ¢; if the number 1 lies between these two ratios, then angle a admits a
square separator.

We extend this method in a straighforward manner to check for the existence of separating
squares in any interval of angle where B;, B;, and the vertices of support for the six support lines

remain the same; there are at most O(n) such intervals. Each such interval can be checked in
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Figure 3: Checking for a square separator

O(logn) time, given the convex hulls of R, By, and Bs.

The remaining details of the algorithm are therefore determining when intervals end (O(nlogn)

time, using a heap), and maintaining the convex hulls of B; and B, (O(nlog? n) time, using the

algorithm of [OV81]). Thus, our square-separator algorithm runs in O(n log? n) time.
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