A NOTE ON SEPARATION OF PLANE CONVEX SETS

(Extended Absrtract)

by

Eduardo Rivera-Campo

1. - Introduction.

A line l separates a set A from a collection S of plane sets if A is contained in one of the closed halfplanes defined by l, while each set in S is contained in the complementary closed halfplane.

H. Tverberg [1], proved that for every positive integer k, there is an integer N(k) with the following property: If F is a collection of N(k) or more convex sets in the plane with pairwise disjoint relative interiors, then there is a line that separates a set in F from a subcollection of F with at least k sets.

In this note, we show that in any family F of $n \ge 2$ plane convex sets with pairwise disjoint relative interiors, there is a pair of sets. A, B such that every line that separates A from B, separates either A or B from at least $\lceil n+58 \rceil$ sets in F.

2. - Main Results.

We start with a lemma which we state here without proof. Lemma 1.- Let A_1 , A_2 , A_3 , A_4 and A_5 be convex sets in the plane with pairwise disjoint relative interiors. If for each pair of integers i, j, with $1 \le i < j \le 5$, l_{ij} is a line that separates A_i from A_j , then for some pair s,r, there is a set A_i with $s \ne t \ne r$ such that l_{sr} does not meet the interior of A_i .

Theorem 2.- Let $F = \{A_1, A_2, \dots, A_n\}$ be a collection of convex sets in the plane with pairwise disjoint relative interiors. For each pair i, j, with $1 \le i < j \le n$, let l_{ij} be a line separating A_i from A_j . There is a pair i, i, such that the line i separates either i or i from at least i i sets in i.

Proof. - Define a bipartite graph G as follows: There is a vertex u_k in G for each set A_k , and a vertex v_{ij} for each line l_{ij} . A vertex u_k is adjacent, in G, to a vertex v_{ij} if and only if l_{ij} does not meet the interior of A_k .

Using lemma 1 and the fact that for each pair i, j, with $1 \le i < j \le n$, the line l_{ij} does not meet the interiors of A_i and A_j , one can see that the number of edges in G is at least $\binom{n}{5} / \binom{n-9}{2} + \binom{n}{2} = n(n-1)(n+58)/60$. This implies that the average degree of the vertices v_{ij} is at least $\lceil n+58/30 \rceil$. Choose any vertex v_{sk} in G with degree at least $\lceil n+58/30 \rceil$; the corresponding line l_{sk}

does not meet the interior of at least $\lceil n+58/30 \rceil$ sets in F. It is clear that $l_{\rm sk}$ separates either $A_{\rm s}$ or $A_{\rm k}$ from at least $\lceil n+58/30 \rceil/2 = \lceil n+58/60 \rceil$ sets in F.

As a corollary, we obtain the following result:

Corollary 3.- In any collection F of n plane convex sets with pairwise disjoint relative interiors, there is a pair of sets A, B, such that any line separating A from B, separates either A or B from at least $\lceil n+58/60 \rceil$ sets in F.

3. - Acknowledgements.

I thank A. Bravo and J. Czyzowicz for the discussions we had on the proof of lemma 1. Corollary 3 is due to J. Czyzowicz.

4. - References.

[1] H. Tverberg, "A separation property of plane convex sets", Math. Scand. 45 (1979), 255-260.

Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa Av. Michoacán y Purísima, Col. Vicentina Apdo. Postal 55-534, C.P. 09340 México D.F., México