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1 Introduction

Given a set of n (connected) objects in d dimensions,
an object which intersects each of them is said to be
a stabber or transversal of the set.

The general problem of finding a transversal ad-
mits an enormous number of specializations depend-
ing on the types of the participating objects, as well
as on the form of answer desired: we may vari-
ously be asked to decide whether a transversal exists,
construct a single example, or construct all possible
transversals.

The problem’s origin within the mathematical
community [10, 12] was combinatorial in nature, de-
riving Helly-type theorems stating that a transversal
exists for the whole set if one exists for every sub-
set of size k. Early work on the problem by com-
putational geometers considered cases where the set
consisted of line segments and the stabber was an
unbounded straight line. One of the first algorithms,
by O’Rourke [15], constructs a stabbing line through
(sorted) vertical segments in linear time. Edelsbrun-
ner et al. [6] present an algorithm which computes
a stabbing line for general segments in O(nlogn)
time; in fact, it computes a description of all stabbing
lines, and for this latter task is optimal. Algorithms
to compute line transversals for other planar objects
have been obtained by Giiting [11], Edelsbrunner [4],
Atallah and Bajaj [1], and Egyed and Wenger [8];
transversals in higher dimensions have been consid-
ered by Avis and Doskas [2], Avis and Wenger [3],
Edelsbrunner, Pach, Schwartz, and Sharir [7], and
Jaromeczyk and Kowaluk [13].

Less attention has been paid to generalizations of
the stabber, or to variant types of stabbing where a
complete transversal does not exist. We are aware
only of Goodrich and Snoeyink’s work [9] which
uses a convex polygon to stab parallel segments in

O(nlog n) time, and of the result of Edelsbrunner and
Guibas [5] where a line cutting the maximal number
of planar segments can be found in O(n?) time. In
this paper we consider the problem of finding a maxi-
mal stabbing of planar line segments by a fized-length
segment, and present three algorithms for successively
more general variations. For reasons of brevity, de-
scriptions are necessarily at a high level.

2 Algorithms

Let S = {s1,..-,5n} be a set of line segments in the
plane, and let the desired transversal ¢ be a segment
of fixed length ||t||. Without loss of generality, in the
sections which follow we assume that no two of the
segments’ endpoints have the same z-coordinate or
y-coordinate.

2.1 Horizontal Stabber, Vertical Seg-
ments

In this section we consider a constrained version of
the stabbing problem, where the stabber ¢ is a hor-
izontal line segment, and the segments in S are re-
quired to be vertically oriented.

Each segment s; has y-extent from its bottom s
to its top s! and thus defines a y-interval [s}, s{].
Similarly, its z-coordinate s¥, when coupled with its
translate at s? + ||t||, defines an z-interval. The
Cartesian product of these defines an isorectangle
[s2, st] x [s%, s¥ +||t|]]: t stabs a segment s; if and only
if its right endpoint falls within this isorectangle. Our
problem is thus equivalent to having n isorectangles,
each of width |[|t||, and asking what is the region of
maximum overlap. As with other problems related
to isorectangles, plane sweep is a natural technique
for solution. First sort the segments by their lower
y-coordinate, and consider a horizontal line [ which
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sweeps the plane from bottom to top. As | sweeps up
the plane, it will pass through 2n + 1 slabs, each of
which is associated with the bottom or top endpoint
of a segment s;. Each slab is associated with a se-
quence B = by, ..., b; of stabbing numbers defined by
the z-coordinates of segments (and their translates)
active within the slab. Elements by and b, are always
zero, and the others in the sequence differ from their
predecessor by +1 or —1 depending on whether the
segment traversed represented the left or right edge
of its isorectangle.

A maximal-stabbing region for placing ¢ then cor-
responds to the maximal element of B over all
slabs (which need not be unique). A straightfor-
ward implementation would calculate the stabbing
sequence in O(n) time for each of the O(n) slabs,
and consume O(nlogn) + O(n?) = O(n?) time.
However, it is possible to do better by examining
how that sequence varies between slabs. Adding a
new segment when it is encountered transforms a
sequence bo,...,b;,...,b;,...,b; into the sequence
bo,...,b,‘,b,'-{-l,...,bj-l-l,bj,...,bk where all the el-
ements from b; to b; are temporarily incremented by
1 for the span of influence of that segment, and the
original b; and b; are replicated alongside; deletion is
just the reverse.

In general, the number of elements affected is O(n),
so we cannot afford to update each one individu-
ally. Instead, we store the evolving sequence in a
balanced tree such as a 2-3 tree which supports up-
dates in O(logn) time. Elements are indexed by
the z-coordinate that defines their segment, and each
node has associated with it two supplementary val-
ues: m, which records the maximal stabbing value
of the subtree below the node; and §, which pro-
vides the incrementing mechanism. As updates are
performed on the tree, we maintain the invariant
Mparent = MaX;¢children{i + 6;} so that the m-value
for the root represents the maximal stabbing number
achieved in the entire tree. To add a new segment s;,
we first insert the pair s7 and its translate s7 + ||t||
in the normal fashion, and christen each with the b-,
m-, and 6é-values of its sibling towards the inside of
the tree. Then by finding the common parent of these
new nodes we isolate the subsequence which needs to
be incremented; for each of the O(log n) nodes along
the paths from the two new nodes to that common
parent, we increment the é-values of its siblings to-
wards the inside by 1. (See Figure 1 for an illustra-

tion.) Finally, we can recompute the m-values for the
tree by evaluating the invariant in bottom-up fashion
from the new nodes up to the root. For deletions, the
procedure is analogous but performed in reverse order
to decrement the é-values for siblings before removing
the segment pair. Both types of update affect only
O(log n) nodes, and can therefore be accomplished in
O(log n) time, leading to an overall running time of
O(nlogn) + 2n x O(logn) = O(nlog n).

Theorem 1 Given a set S of vertical segments in
the plane and a horizontal stabbing segment t of fired
length, a mazimally-stabbing position for t can be
computed in time O(nlogn).

That this time is optimal can be seen by the fol-
lowing linear-time transformation from the element
uniqueness problem, which requires Q(nlogn) time.
Given n real numbers z,...,z, we create a (zero-
length) y-interval for each z; of [z;,z;], and apply
the horizontal-stabbing algorithm using a stabber of
any length. All elements are distinct if and only if
the reported maximal-stabbing number is 1.

2.2 Horizontal Stabber, Arbitary Seg-
ments

In this section we retain a horizontal stabber but re-
lax the orientation constraint on the segments in S,
allowing them to be in general position and perhaps
intersecting.

Plane sweep remains a viable algorithmic method
here; however, if segments are allowed to intersect
with other segments or their translates, as shown in
Figure 2, then the number of event points, or slabs,
to consider grows to O(n?) along with the number of
intersections.

We refine the algorithm of the previous section
to work correctly for this problem as well. Within
each slab, segments are nonintersecting as is desired,
and the stabbing region is a trapezoid or triangle.
We must be careful about handling a slab transition
which arises from segment intersection: in this case
the segment crossing from left to right, bottom to top
(as seen when sweeping upward) must be temporar-
ily removed and then reinserted on the right side of
the segment it is crossing. Apart from similar modi-
fications to deal with nonvertical segments, all other
parts of the algorithm work as before, and the over-



all running time is O(n?logn) + O(n?) x O(logn) =
O(n?logn).

Theorem 2 Given a set S of arbitrarily oriented
segments in the plane and a horizontal stabbing seg-
ment t of fized length, @ mazimally-stabbing position
fort can be computed in time O(n?log n).

2.3 Arbitrary Stabber, Arbitary Seg-
ments

In this section we completely relax our constraint to
allow an arbitrarily oriented stabber in addition to
the arbitrarily oriented segments in S.

Here the arbitrary orientation of the stabber
forces us to abandon plane sweep and adopt in-
stead a configuration-space approach, as pioneered by
Schwartz and Sharir [16] and later refined by Levin
and Sharir [14]. We start by momentarily fixing an
orientation 6 for our stabber, and running a variant
of the preceding algorithm, the result of which is a
set of sequences of segments 8 = {f1,...,Bn}, each
of size O(n) and defining a companion sequence of
stabbing numbers. Then, unless our original choice
was unlucky, we can likely perturb the orientation 6
slightly without causing a change in any sequence §;;
in fact, such changes will occur at only a finite num-
ber of critical orientations which partition the 180° of
orientation space into an equally finite number of re-
gions. If the sequence updates necessary when cross-
ing a critical orientation can be computed efficiently,
we have reason to hope that the resulting algorithm
will be efficient overall. But first we must answer the
questions of what defines a critical orientation, how
many there are, and how we can update the segment
sequences when crossing them.

The possible critical orientations for our problem
are similar to those encountered by Levin and Sharir,
and are illustrated in Figure 3; as for them, ours arise
from combinatorial properties of the segments and
their endpoints. A critical orientation of type (1) is
created by pairs of segment endpoints, of which there
are O(n?); type (2) comes from triples of segments,
of which there are O(n®); and type (3) is essentially
a degeneracy of type (2) where segments s; and 53
have fused into one, something which can occur O(n?)
times. The total number for us is thus O(n3), with
type (2) predominating. (In contrast with the O(n?)
bound of Levin and Sharir, our stabber may pene-
trate lines and rotates freely about the endpoint of
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89, whereas their ladder must avoid them and slides
while retaining contact with s, and s3.)

Ruthlessly omitting details of the precise sequence
changes caused by types (1) through (3), we ob-
serve that in each case the change, in terms of the
number of segments added or deleted, is always of
constant size and affects only the two adjoining se-
quences, hence can be readily managed using the
techniques developed earlier in this paper. Each tran-
sition update can thus be accomplished in O(logn)
time. As hinted above, we first compute orientations
and sort them into the orientation space, then treat
each one in sequence by the incremental method just
described, giving an overall running time for our algo-
rithm of O(n3 log n)+0(n®) x O(log n) = O(n®log n).

Theorem 3 Given a set S of segments in the plane
and a stabbing segmentt of fized length, a mazimally-
stabbing position for t, in arbitrary orientation, can
be computed in time O(n3logn).

3 Discussion

The time bound derived for the first algorithm is op-
timal; those for the second and third are tight insofar
as they are derived from combinatorial bounds on the
number of event positions. However, it is by no means
true that all of them need be considered, and further
time reductions are possible from properties of where
the maximal stabber can appear. For instance, in the
case of the second problem, it will be seen that when
segments do not intersect the maximal stabber is al-
ways associated with, in critical orientation parlance,
a type (1) position. This gives the promise of a better
combinatorial bound on the number of positions to
consider, leaving the challenge of how to exploit this
property computationally: between successive type
(1) positions there may lie O(n) positions of type (2),
and it is necessary to find a manner of determining
their global effect on the stabbing sequences, rather
than processing each one individually.
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Figure 1: O(log n) nodes to increment
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Figure 3: critical orientations for stabber



