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1 Introduction

We study motion planning problems for several sys-
tems with three degrees of freedom. These problems
can be rephrased as the problem of analyzing the com-
binatorial complexity of a single cell in arrangements
of certain types of surfaces (actually, surface patches)
in 3-dimensional space. The combinatorial complex-
ity of the entire arrangement (or even only its portions
that represent free placements of the robot) in each
case that we study can be ©(n3) in the worst case.
Nevertheless, for each such arrangement we obtain a
subcubic bound on the total combinatorial complex-
ity of all the 3D cells in the arrangement that contain
a portion of the 1D boundary of a surface patch in
their closure (these are called the interesting cells);
the bound is O(n7/3) in the case of arrangements re-
lated to the motion planning problem of a so-called
telescopic arm moving in the plane among polygo-
nal obstacles with n corners, and O(n%/?) in the case
of arrangements resulting from the motion planning
problem for an L-shaped object in the plane amidst n
point obstacles. Each non-interesting cell is shown to
have much smaller complexity (O(n)). We also devise
an algorithm to compute the interesting cells in the
second type of arrangements, whose time complex-
ity is O(n%/2log? n), and an algorithm with running
time O(n"/3) for the case of a telescopic arm moving
among point obstacles, in both cases improving over
the best previously known algorithms for these prob-
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lems, whose time complexity is O(n3logn). Thus our
results lead to subcubic solutions of the motion plan-
ning problems that induce these arrangements, since
it suffices to calculate only the cell of the arrangement
that contains the initial placement of the robot.

Our approach reduces each three-dimensional prob-
lem into a collection of problems involving two-
dimensional arrangements. To solve these two-
dimensional problems we obtain two combinatorial re-
sults of independent interest for arrangements in the
plane: (i) a tight bound ©(nm'/2) on the maximum
joint combinatorial complexity of m “concave chains”
in an arrangement of n pseudo lines, and (ii) an upper
bound O(m?/3n?/3 4 na(n)) on the maximum num-
ber of edges of m distinct faces in certain types of
arrangements of n pseudo segments, which is within
an af-) factor off the lower bound for this quantity.

We regard our results as significant, because: (i)
They have “widened the crack at the door” opened
in [ArS] concerning the complexity of a single cell in
an arrangement of surfaces in 3-space, obtaining sub-
cubic bounds for cases resulting from motion plan-
ning problems involving rotation, where the surfaces
have a much more complex shape. Until the major
(and extremely difficult) conjecture in this area is set-
tled, namely that a single cell in such an arrangement
has only near-quadratic complexity, we would need to
continue to extend this type of analysis to progres-
sively more complex kinds of surfaces (and motion
planning instances). We regard the current work as
a significant step in this direction. (ii) They have led
to independent and interesting results concerning ar-
rangements of pseudo lines and pseudo segments in
the plane, exemplifying yet another time the strong
interaction between 2D and 3D arrangements.

Many details as well as all the proofs were omitted
in this short summary. They all appear in the full
version of the paper ([HS]).
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Figure 1: A concave chain

2 Combinatorial results
for two-dimensional arrange-
ments

Since the motion planning problems that we study in-
volve a rotational degree of freedom, the resulting sur-
faces and hence the three-dimensional arrangements
are rather convolute and hard to visualize and to an-
alyze directly. We overcome this difficulty by reduc-
ing each three-dimensional problem into a collection
of problems involving two-dimensional arrangements.
In this section we summarize our combinatorial re-
sults for arrangements in the plane that are needed to
solve these two-dimensional problems.

2.1 Concave chains in arrangements of
pseudo lines

Let A = {A1,...,An} be a collection of n pseudo lines
in the plane, that is z-monotone unbounded curves,
each pair of which intersect at most once. We order
A by “slope”, namely by the reverse vertical order of
the pseudo lines at £ = —oco (so A < X’ if A lies higher
than ) at £ = —oo). This is a linear order. Let us
denote by B = B(A) the arrangement of the pseudo
lines in A.

A concave chain ¢ in B is an z-monotone (con-
nected) path that is contained in the union of the
pseudo lines of A, intersects every vertical line (once),
and the sequence of pseudo lines traversed by ¢ from
left to right is a strictly decreasing sequence. (See
Figure 1 for an illustration.)

Informally, as we traverse ¢ from left to right, when-
ever we reach a vertex of B, we can either continue
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Figure 2: Vertically partitioned arrangement of
pseudo segments

along the pseudo line we are currently on, or make a
right (i.e. downward) turn onto the other pseudo line
(having a smaller slope), but we cannot make a left
(upward) turn; in case the pseudo lines are real lines,
¢ is indeed a concave polygonal chain. It is clear that
the number of turns along a concave chain is at most
n-—1.

We study the following problem: Given m concave
chains in B, what is the maximum joint combinatorial
complezity of these chains, defined as the number of
vertices of B at which at least one chain makes a turn.
Note that such a vertex can be shared by many chains,
which overlap near that turn, but we count it only
once. Note also that we do not count a vertex in
which two chains cross each other (without turning),
unless a third chain does make a turn there. Our
result is: '

Lemma 2.1 The mazimum joint combinatorial com-
plezity of m concave chains in an arrangement of n
pseudo lines is ©(n/m).

We also need a variant of this result which states:

Lemma 2.2 The mazimum joini combinatorial com-
plezity of m concave chains in an arrangement of n
pseudo lines where each turn is counted as many times
as there are chains making il and where at most r
chains make the same turn, is ©(n/mr).

2.2 Many faces in certain arrange-
ments of pseudo segments

We wish to analyze the maximum combinatorial
complexity, K (m, n), of m faces in an arrangement B’
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Figure 3: An L-shaped object

of n pseudo segments in the plane, where the pseudo
segments are z-monotone, they are contained in a col-
lection of n pseudo lines, and the faces of the arrange-
ment are also partitioned by vertical straight line seg-
ments through the endpoints of all the pseudo seg-
ments that stretch until they hit another pseudo seg-
ment (Figure 2).

We have the following result, using the technique
of [CEGSW] (A similar result has been independently
obtained by Boris Aronov.)

Lemma 2.3 K(m,n) = O(m?/3n2/3 4 na(n)).

3 The arrangement of an L-
shaped object

We consider the motion planning problem for an L-
shaped object moving in the plane amidst n point
obstacles, whose study has been initiated in [HOS];
see Figure 3. Each placement of the object can be
parametrized by (z,y,0) where (z,y) is the position
of the internal corner of the object, and 6 is its orienta-
tion. The problem can be transformed to the analysis
of an arrangement A of n “contact surfaces” in R2xS?,
which decomposes the 3-dimensional space into pair-
wise disjoint connected cells, each of 0,1,2 or 3 dimen-
sions. We shall use the unquantified term cell for a 3-
dimensional cell of A. A cell ¢ of A is interesting if its
closure € contains a portion of the boundary of some
surface (patch). All other cells of the arrangement are
called dull (this terminology is borrowed from [ArS]).
We analyze the total combinatorial complexity of all
the interesting cells in the arrangement A, i.e., the
number of faces, edges, and vertices of all these cells.
It is shown in [HOS] that the worst-case total com-
binatorial complexity of the entire A is ©(n3). One
of our goals is to bound the combinatorial complexity
of a single cell in A. Our analysis provides a subcu-
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Figure 4: A telescopic arm

bic upper bound on this complexity, but the actual
maximum complexity of a single cell might be much
smaller than that, and this problem still needs to be
studied. We also remark that a single interesting cell
can easily be shown to have Q(n?) combinatorial com-
plexity in the worst case.

Using, among other things, Lemma 2.2 for concave
chains, we obtain

Theorem 3.1 The total combinatorial complezity of
the interesting cells in the arrangement A induced by
an L-shaped object moving in the plane amidst n point
obstacles, is O(n5/2).

4 The arrangement of a tele-
scopic arm

Aronov and O’Dinlaing ([AO]) consider the following
planar robot arm. It consists of two links, 6p and pg.
o is an anchor point. The first link @p is a telescopic
link which can rotate around o, and extend or shrink
along its length. The second link pq has a fixed length
d, and can rotate around p; see Figure 4. In [AO] this
robot arm is called a telescopic arm. It is shown in
[AO] that the configuration space of this arm moving
among polygonal obstacles has ©(n3) connected com-
ponents in the worst case, and an O(n3logn)-time
and O(n3)-space algorithm is presented to compute
it.

We analyze the combinatorial structure of the ar-
rangement induced by the motion of such an arm
among polygonal obstacles having a total of n cor-
ners. The terms cell and interesting cell are defined
as in the previous section for the L-arrangement.

Using Lemma 2.3 and additional tools we obtain

Theorem 4.1 The total combinatorial complezily of
all the interesting cells in the arrangement induced



by the motion planning for a telescopic arm among
polygonal obstacles is O(n"/3).

5 Computing the interesting
cells and find-path algo-
rithms

We distinguish between the reachability problem
which is to decide whether a collision-avoiding path
between the initial placement of the moving object
and the desired final placement exists, and the find-
path problem which is to actually compute the path
if it exists.

We combine the combinatorial result of Section 3
with the decision algorithm of [HOS] to obtain an ef-
ficient algorithm for solving the find-path problem for
an L-shaped object which by a slight modification can
be made into an algorithm for computing the inter-
esting cells of an L-arrangement. The algorithm runs
in O(n%/2log? n) time and requires O(n®/?) space.

Similarly we obtain an algorithm for solving the
find-path problem for a telescopic arm moving among
point obstacles. The algorithm requires O(n"/3) time
and space.
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