A Robust Parallel Triangulation and Shelling Algorithm
Isabel Beichl and Francis Sullivan
Center for Computing and Applied Mathematics
National Institute of Standards and Technology

Abstract

This paper describes an efficient parallel algorithm for finding the Delaunay
triangulation in shelling order [BM], [DK] for the convex hull of n vertices
in m dimensional Euclidean space. A related purely sequential triangulation
and shelling algorithm is described by Seidel in [S]. However, in [S] it is
assumed that the initial set of vertices is non-degenerate, that is, every subset
of m + 1 vertices spans R™, and the algorithm relies on solving a linear
program with n — 1 constraints and m —1 variables to determine the next
simplex in the shelling sequence. A probabilistic method for overcoming
the non-degeneracy assumption is described in the paper. Instead of linear
programming, we use Householder’s QR decomposition ofan (m+1) xm
matrix for determining new simplices in the course of the triangulation. The
QR decomposition [St] is known for its numerical stability.

The sequential version of our algorithm actually makes use of the shelling
to reduce the amount of calculation. We describe how to parallelize our
algorithm for the SIMD architecture of the Connection Machine. As always,
the major issues in designing an efficient parallel algorithm are those of data
motion. The datastructure that is used to check legality of the shelling
turns out to be exactly the right basis for an efficient parallel algorithm. In
all dimensions, the parallel complexity is O(M(n)I'(n)), where M (n) is the
complexity for determining the min or max of n numbers and I'(n) is the
number of simplices generated.

We are interested in applications of computational geometry to large-
scale physical problems. This is what motivated our search for a method
that is efficient, and robust in both its theoretical foundation and its nu-
merical implementation. Before launching into an outline of the algorithm,
we sketch one such application. In using molecular dynamics simulations of
nucleation for detecting development of crystal-like cluster structure in R3
we need to calculate the distances among particles in the local neighborhood
of a given particle (see Yang, Gould, Klein, and Mountain [YGKM] for a
more detailed discussion). Our triangulation and shelling algorithm offers

107



108

an efficient tool for attacking this problem. The idea is this: We use the
coordinates of the positions of the particles as input vertices in the triangu-
lation and shelling algorithm. Because of the shelling, we can easily identify
the Delaunay tetrahedra containing a given vertex. The vertices of these
tetrahedra are the nearest neighbors to the given vertex. The number of
tetrahedra containing a given vertex is the same as the number of vertices in
the Voronoi cell associated with that vertex because of the duality between
Voronoi diagrams and the Delaunay triangulation. In Figure 1 we give a
histogram of distances among nearest neighbor for points in a face-centered
cubic lattice. This corresponds to some of the results described in [YGKM].
Figure 2 is a histogram of average number of tetrahedra surrounding a point
for (a) the case of 1000 random points chosen uniformly in the unit cube
and (b) a partial BCC lattice. Notice that the random curve is somewhat
Gaussian with peak at the number of vertices for Voronoi cells in an infinite
body-centered cubic lattice. Only even numbers occur because of Euler’s
formula.

Figure 1
Histogram of distances among nearest neighbors for FCC data.

Figure 2
Average count of surrounding Delaunay tetrahedra for (a) random data and

(b) BCC data.

Here is an outline of our algorithm: To keep the basic geometric ideas
clear, we describe the algorithm for the case in which the set of initial vertices
lies in R?. However, the extension to higher dimensions is sketched. Place the
origin at the centroid of the set of input points and then map the points to
the surface of the paraboloid in R3. Assume that the all facets of the convex
hull of the mapped points visible from below the paraboloid are triangles
(i.e. the initial points are non degenerate). When projected back to R2,
these facets are the Delaunay triangulation of the convex hull of the original
data. Hence, we wish to identify the visible facets, which we will call the base
triangles of a cap. A starting base triangle is found using gift-wrapping. The
QR decomposition gives us a numerically reliable way to move from triangle
to triangle, and the shelling concept defines an order for our moves so that
all facets are found and enumerated in a consistent way.



109

Acknowledgements

We thank Chris Witzgall for reminding us that the triangulation of new
vertices on the paraboloid gives the Delaunay triangulation of the initial
vertices, and we thank Pete Stewart for proposing the use of the QR de-
composition for computing rotations and Dianne O’Leary for proposing an
implemetation of QR appropriate to the Connection Machine. We are grate-
ful to Richard Cushman for first suggesting that our idea for a triangulation
algorithm could, in fact, give a shelling, and we thank Jim Lawrence for
helping us to understand this concept.

References

BM Bruggesser, H. and Mani P. 1971, “Shellable Decompositions of Cells
and Spheres”, Math. Scand. 29.

DK Danaraj, J. and Klee, V. 1978. “A representation of two-dimensional
pseudo-manifolds and its use in the design of a linear time shelling
algorithm.” Annals of Discrete Mathematics. 2.

S Seidel, R. 1986 “Constructiong Higher Dimensional Convex Hulls at
Logarithmic Cost per Face”, Proc. ACM Symp. on Theory of
Computing.

St Stewart, G. W., 1973 Introduction to Matrix Computations Aca-
demic Press, New York.

YGKM Yang, J., Gould, H., Klein, W., and Mountain, R. “Molecular Dynamics
Investigation of Deeply Quenched Liquids”, to appear.



110

L Y3abus|

o

T b4

— 000¢

— 0000T

— 00061

N000gS
L y3bua| jo sabpa j0 4aqunu



111

200

150 —

(a)

100 —

number of cells with n points

60 —

0 L] l I l ] l { l 1 l L] l 1 I L ] 1
O .10 =20 30 40 S0 60 YO 80 90 100
number of points n in Voronoi cell

300

250 —

ints

e

200 —

th n po

(b)

S wi

, 160 —

[

o

o
]

number of cell
(¢,]
o
]

o ¥ l L l l 1 I L] | L] l 4 I 1 I ] I 1
o] 10 =20 30 40 60 60 %70 80 980 100
number of points n in Voronoi cell

Fig 2



