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STRUCTURES DETECTION FOR POLYGON DECOMPOSITIONS

Martine Roussille, Véronique Bruyére, Pierre Dufour

1. Introduction.

As Keil points out in [6], the problem of decomposing a polygon into sim-
pler components is of interest to such fields as computational geometry, syntactic
pattern recognition and graphics.

We approach it in the particular framework of area calculation. We study the
geometric reasoning of a human being who tries to estimate the area of a polygon
with a minimal amount of calculations. Then a “right ” decomposition is one that
corresponds to this human criterion. Under this criterion, we realize that the use
of the geometrical properties of a polygon (right angles, parallels, substructures in
the shape ) can produce a more suitable decomposition than algorithmic methods
like [2], [4].

Our purpose is thus to develop a system that will simulate the human rea-
soning. For this, it will “see” the polygon and detect the geometric properties for
finding the best decomposition according to our criterion.

In this paper, we study an interesting feature of the geometric reasoning
namely repeated sequences in the outline of a polygon. We present our algorithms
to detect them and we briefly indicate how we use their results in our decompo-
sition system. Our algorithms generalize somewhat [1][5] to discover the partial
symmetries in the shape but in opposition to [9] they also directly consider com-

plete syminetries.

2. Notations and definitions.

For representing a polygon P, we use edges lengths and vertex external rota-
tional angles. We describe P by a sequence of lengths and angles starting at an
arbitraty vertex and travelling clockwise. It will be noted that this representation
is translation-invariant and rotation-invariant. Then we encode the polygon as a
circular word. For this, as in (9], we assign a unique letter to each different length

and to each different angle. Then we translate the initial sequence of lengths and



angles and produce the circular word. This word completely characterizes the
polygon it is associated with. The initial problem can now be translated to search

all the non overlapping repeated factors of the circular word. We use notations and

definitions of [7].

3. Algorithms.

In a first step, we detect all the couples of non overlapping identical factors of
a circular word [wp ...wz_;] where L is the length of the word [w]. We introduce
the predicate REP(i,n,len), (i, 0 < n < L, len > 1) which is true iff the two
factors of [wo ...wz—1] of length len which start at position ¢ and ¢+ n are equal.
For our problem, it is sufficient to detect the factors which are of maximal length.

We thus introduce the following predicate to describe them :

MAXREP(i,n,len) = REP(i,n,len)
ANlen<n
ANlen<L-n
A((wict # Wign-1) V (n=len) V (n=L—len))
/\((w,-_Hen # Wigntlen) V (n=1len) V (n=L— len))

where the indexes are always reduced mod L. The condition (len < n) A (len <
L — n) expresses that the factors do not overlap

Using techniques of combinatorics on words [7], we observe properties of circu-
lar words especially for the periodicity and the overlapping factors(3]. This allows
us to.deduce a first algorithm for detecting all the couples of non overlapping
repeated factors (cf algorithm 1).

Then we generalize to the problem of detecting all the m-uples of non over-
" lapping identical factors of a circular word. |

To generalize the precedent predicates, we define REPM (pos,m,len) m >
2, len > 1 where pos is an array of size m which indicates the positions of each

repeated factor

REPM (pos,m,len) = (Vj,k:1< j<m,0< k <len: wyouo+k = Wpos|5]+k)

= (Vj:1<j<m: REP(pos[0],pos|j] — pos[0],len))
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and MAXREPM (pos,m,len) which expresses that the m non overlapping iden-
tical factors are of maximal length len but also that m is maximal (the size of the
array pos may not be increased).

We have now a second algorithm from which we can deduce the useful infor-
mations concerning the periodicity and the overlapping factors.
We can also adapt the first problem to detect the couples given by a factor and

its reverse i.e. the complete or partial palindromes.

var n,i,len, L : integer;
w word;
begin
forn=1to |£] do
1+ 0;
while i< L—1 A w;y = wi4p—y1 dOo 7 «— 2+ 1;
if : = L — 1 then < w 1s periodic, output the MAXREP’s >;
else 19 « 1;
repeat
len < O;
while W;tien = Witntien do len « len +1;
if len > 1 then < output the MAXREP(’s) >;
1—1+len+1;
until 1 = 1y mod L;
endif
endfor
end.

ALGORITHM 1.

4. Decomposing with structures.

We consider the repeated factors in the word as partial symmetries in the
shape of the associated polygon. Still we have a complete rotational symmetry
for the polygon if the circular word is periodic. From these substructures of the
polygon shape, we can deduce heuristic rules for finding a suitable decomposition
according to the defined criterion.

Consider the M AXREPM (pos,m,len) with len maximal. For instance, if
we have a complete rotational symmetry then we have m * len = L and we set up

rules such as :
e join the pos|i] positions i = 1...m if len > 2. We then create identical

components and a regular polygon.



e let ky,...k,, the divisors of m, create * identical components which will

have consecutively k; times the repeated factor. Still we will have identical

components and a regular polygon.

Concerning the partial rotational symmetries, we can provide the following rules :

e join the vertices corresponding to pos[i] and pos|i]+len positions Vi : 0 <2 <

m if len > 2 of course. These constructions do not use the possible external
angles of the factor.

e proceed in the same way with pos’ such that MAXREPM (pos',m',len')
where m' > m, 2 < len' < len. This decomposition will produce more
identical components of smaller size than the first above.

e for each occurrence, try to increase len if the last object in the repetition
corresponds to an angle. An interesting solution should be to draw m perpen-
diculars from the other terminal vertex to the edge adjacent to the terminal
angle.

When we have palindromes, we say that the polygon has azial symmetries

and we also define decomposition rules for these substructures.
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