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Optimal polygon placement by translation

Sudebkumar Prasant Pal * Bhaskar Dasguptal C. E. Veni Madhavan *

Abstract
Let M be an m-sided simple polygon and N be an n-sided polygon with holes. In this paper we consider
the problem of computing the feasible region i.e., the set of all placements by translation of M so that M
lies within N without intersecting any hole. First we propose an O(mn?) time algorithm for computing the
feasible region for the case where M is a monotone polygon. Then we consider the general case where Mis a
simple polygon and propose an O(m?n?) time algorithm for computing the feasible region. Both algorithms
are optimal up to a constant factor.

1 Introduction

Let M be a simple polygon and N be a polygon with holes. In this paper we consider the problem of
computing the feasible region i.e., the set of all placements by translation of M so that M lies within N
without intersecting any hole. Computing the feasible region has applications in planning translational
motion of M inside N [8]. By checking whether the feasible region is empty, it is possible to decide whether
M can be translated to fit within N (i.e. M can be contained in N). This has applications in stockcutting
and inspection problems [2,5], and in VLSI.

Computing the feasible region of an m-sided polygon M inside an n-sided polygon N with holes, is a well
studied problem. Baker et al. [2], proposed an O((mn+n2)logmn) time algorithm for computing the feasible
region for the case where M is a convex polygon. Fortune [5] improved the time bound to O(mnlogmn).
Avnaim and Boissonnat [1] considered the case where M is a simple polygon and showed how to compute
the feasible region in O(m2?n%logmn) time.

In this paper we first propose an O(mn?) time algorithm for computing the feasible region for the case
where M is a monotone polygon. Then we consider the general case where M is a simple polygon and propose
an O(m?2n?) time algorithm for computing the feasible region. Both algorithms are shown to be optimal up
to a constant factor.

Earlier approaches [1,2] to computing the feasible region involve solving several subproblems on convex
polygons by partitioning the holes in N, and the concavities of N (i.e. polygons outside N and inside the
convex hull of N) into convex pieces. Avnaim and Boissonnat [1] follow the same approach in computing
the feasible region for the general case where M is a simple polygon. They partition even M into convex
pieces. In our algorithms only the holes and concavities of N are partitioned into triangles and M is left as
it is. In both our algorithms we first solve subproblems involving M and triangles using the algorithm in
[5]. Finally we combine the solutions to these subproblems to compute the feasible region using the optimal
algorithm for computing intersections of segments in the plane [4]. The optimality of our algorithm for the
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case where M is a monotone polygon depends crucially on an interesting intersection property of monotone
polygons and the fact that M is not decomposed into convex polygons.

Now we introduce a few definitions and notations. A simple polygon P is a sequence of distinct points
in the plane vj,vs, ..., Un, called vertices such that the edges of P, viz. v1va, V23, ..., Un—1Vn, Un¥1, do not
intersect internally. The edges of P define the boundary bd(P), which divides the plane into two parts, the
bounded interior Int(P), and the unbounded exterior Ezt(P). If we traverse bd(P) such that Int(P) is to
the right (respectively, left), then we say that bd(P) is traversed in clockwise (respectively, counterclockwise)
order. We assume that the vertices are numbered in counterclockwise order along the boundary of P. A
multiply connected polygon is a simple polygon with possibly a number of disjoint simple polygonal holes
in its interior. The boundary of such a polygon is given as a set of cycles of edges: one cycle giving the
counterclockwise sequence of edges of the outer boundary of the polygon and one cycle for each hole, giving
the clockwise sequence of edges bounding the hole. From now onwards we refer to a multiply connected
polygon as a polygon. A polygonal region is the union of a finite number of polygons, segments and points.
The boundary of the polygonal region P is denoted by bd(P). We consider the placements of a polygon P
obtained by only translations. Note that a placement of P is uniquely determined by a placement of an
arbitrary fixed point in P called the reference point. Given polygons P and Q, the set of all placements of P
such that P does not intersect Ezt(Q) is called the feasible region and is denoted I(P, Q). Note that I(P,Q)
is a closed set. The set of all placements of P such that P intersects Int(Q) is denoted by E(P, Q). Note that
E(P,Q) is an open set. E(P,Q) is the same as the configuration space of P and Q [7,8]. Let E'(P,Q) denote
the complement of E(P, Q). Given a polygon P, we call the exterior Ezt(P) as the complement polygon P’
of P. It can be seen that E'(P,Q’') = I(P,Q). If M and N are polygons then it is easy to see that I(M,N)
is a polygonal region. A polygon P is said to be monotone with respect to a line [if the intersection of any
line perpendicular to ! with Pis a connected segment, possibly empty.

This paper is organized as follows. In Section 2 we propose an optimal algorithm for computing the set
of all placements by translation of a monotone polygon inside an arbitrary polygon with holes. In Section 3
we propose an optimal algorithm for computing the set of all placements by translation of a simple polygon.
In Section 4 we conclude with some remarks.

2 Placement of a Monotone Polygon

In this section we present an optimal O(mn?) time algorithm for computing the feasible region I(M, N),
where M is a monotone polygon having m edges and N is a multiply connected polygon having a total of n
edges. Let NH and M H denote the convex hulls of N and M respectively. Consider NH — N. The polygons
in NH — N are the concavities and holes of N. Let T' denote the set of triangles obtained by triangulating the
polygons in NH — N (Figure 1). So N = NH — (Uper D). In order to place M so that it does not intersect
Ezt(N) it is enough to place M inside NH and outside each D, DET. Thus I(M,N) = I(M,NH) — (Uper
E(M, D)). Since NH is convex it is easy to see that I(M,NH) = I(MH,NH) [3]. Thus we have the
following proposition. ‘
Proposition 2.1. I(M,N)=I(MH,NH) - (Uper E(M, D)).

Now we present an outline of the algorithm for computing I(M, N).
Algorithm 2.2.

Input: A monotone polygon M (we assume without loss of generality that M is monotone with respect to
the X-axis), and a multiply connected polygon N.

Output: The boundary bd(I(M, N)), of the set of all placements by translation of M inside N.
Step 1: Compute the convex hulls M H and NH of M and N respectively.

Step 2: Determine I(M H, NH), the set of all placements by translation of MH so that M H lies inside
NH.



166

Step 3: Compute the set T of triangles by triangulating the polygons in NH — N.

Step 4: Determine E(M, D), the set of all placements by translation of M so that M intersects Int(D), for
each D € T (See Figure 2).

Step 5: Compute I(M,N)=I(MH,NH) - (Uper E(M, D)).

Details of Algorithm 2.2. In Step 1, M H and N H can be computed in O(m) and O(n) time respectively,
using the linear time algorithm to compute the convex hull of a simple polygon [10]. In Step 2, (M H,NH)
can be computed in O(m + n) time [3]. In Step 3, the triangulations of the polygons in NH — N can be
computed in O(nlogn) time using the algorithm in [6].

Now we show that Step 4 can be executed in O(mnlogm) time. This is based on the following lemma
which we state without proof.

Lemma 2.3. If M is an m-sided polygon, monotone with respect to the X-axis and D is a convex polygon
with the number of edges bounded by a constant k, then bd(E(M, D)) defines a simple polygon with O(m)
edges, monotone with respect to the X-axis. Further, bd(E(M, D)) can be computed in O(mlogm) time.

Since there are O(n) elements in 7, by Lemma 2.3, Step 4 requires O(mnlogm) time.

Now we show that Step 5 can be executed in O(mn?2) time. I(M, N) is the region inside I(M H, N H) and
outside each E(M, D), D € T. I(M, N) is a polygonal region: it is the union of a finite number of polygons,
isolated segments and isolated points. We compute bd(I(M, N)) by determining the boundaries of each of
these polygons, and each of these isolated segments and points. Note that I(M, N) contains bd(I(M, N)).
We intend to compute bd(I(M, N)) from bd(I(M H,NH)), and bd(E(M, D)), for all D € T. Let X denote
the set of polygons {I(MH,NH)}uU{E(M, D),D € T} and S denote the set of segments that are the edges
of the polygons in X. A vertex of I(M, N) may be an endpoint of a segment in S or the intersection point of
two segments in S. An edge of I(M, N) may be a segment in S or an intersection free portion of a segment
in S. So, in order to compute bd(I(M, N)) we compute all intersections between segments in S and the
intersection free portions of segments in S. Before we state how to do these computations, we show in the -
following two lemmas that the number of segments R, in S is O(mn) and the number of intersections ¢,
between segments is O(mn?).

Lemma 2.4. Let P and Q be two polygons, monotone with respect to the same line. Let p and q be the
number of edges of P and Q, respectively. There are at most O(p + q) intersections between the edges of P
and Q. )

Lemma 2.5. The number R of segments in S is O(mn) and the number t of intersections between the
segments in S is O(mn?). Therefore t=0(mn?). Q.E.D.

We compute intersections as well as intersection free portions of segments in S using the algorithm of
Chazelle and Edelsbrunner [4]. Their algorithm computes the planar subdivision induced by the segments
in S and runs in O(RlogX + t) time i.e. O(mn?) time (See Lemma 2.5). The subdivision is represented as
a planar graph G(V, E) where (1) V is the set of endpoints of all the segments in S and the intersection
points of segments in S and (2) E is the set of edges {v;,v;} where v;,v; € V and v;v; is an intersection free
portion of a segment in S.

Once we have computed the planar subdivision G, we traverse G to mark edges of G that comprise
bd(I(M,N)). If an edge is marked in the traversal, then the direction of traversal is assigned to the
edge. These directions are so assigned that if we traverse the marked edges in the assigned directions,
then Int(I(M, N)) lies to the left and Ezt(I(M, N)) lies to the right (Figure 3). Note that bd(I(M, N)) can
have several cycles of edges. Since I(M, N) lies inside I(M H, N H) (see Proposition 2.1), in the marking pro-
cess we traverse bd(I(M H, N H)) keeping Int(I(M H, N H)) to the left and assign the direction of traversal
to the edges being marked. The marking process also traverses bd(E(M, D)), for all D € T. Since I(M, N)
lies outside E(M, D), for all D € T (see Proposition 2.1), we traverse bd(E(M, D)), for each D € T, keeping
Int(E(M, D)) to the right and Ezt(E(M, D)) to the left and assign the direction of traversal to the edges
being marked. We omit the details of the procedure that traverses the subdivision G to mark the edges
of bd(I(M, N)). For details see [9]. The edges that get marked in both directions are isolated segments of
bd(I(M, N)). The remaining edges form cycles, each enclosing a connected region of I(M, N ). In Figure 3
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there are seven such regions and two isolated segments in I(M, N). All computations required in determining

I(M, N) from the subdivision G require a total of O(mn?) time. This completes the computation of I(M, N )

in Step 5. We summarize our result in the following theorem.

Theorem 2.6. Let M be a monotone polygon with m edges and N be a multiply connected polygon with

n edges. I(M, N), the set of all placements of M by translation inside N, can be computed in O(mn?) time.
In Figure 4, M is a monotone polygon and I(M, N) has Q(mn?) vertices. So our algorithm is asymptot-

ically optimal.

3 Placement of a Simple Polygon

In this section we present an O(m2n?) time algorithm for computing I (M, N) where M is a simple polygon
and N is a multiply connected polygon with n edges. The main steps of the algorithm are the same as those
of Algorithm 2.2 of the previous section. It is sufficient to consider Steps 4 and 5. Using arguments similar
to those in Section 2, it can be shown that Step 4 can be computed in O(mnlogmn) time and Step 5 can be
computed in O(m?2n?) time. We omit the details of these steps in this extended abstract. For details see [9].
We summarize our result in the following theorem.
Theorem 3.1. Let M be a simple polygon with m edges and N be a multiply connected polygon of n edges.
I(M, N), the set of all placements of M by translation inside N can be computed in O(m?n?) time.
In Figure 5 it is evident that I(M, N) has Q(m?2n?) vertices. So our algorithm is optimal up to a constant
factor.

4 Conclusion

Let M be an m-sided polygon, monotone with respect to two mutually perpendicular lines. We call such
polygons rectilinearly convez. Let N be an n-sided polygon with holes. Since M is a monotone polygon we
can compute the feasible region using the algorithm in Section 2 in O(mn?) time. However, the best known
lower bound on the size of the feasible region is Q(mn + n?) (Figure 6). So, designing an optimal algorithm
for computing the feasible region for a rectilinearly convex polygon remains an open question. Another future
direction is to consider the placement of other classes of polygons viz., star, spiral and unimodal polygons.

REFERENCES

1. F. Avnaim, J.-D. Boissonnat, Simultaneous containment of several polygons, Proc. of the Third ACM
Symposium on Computational Geometry, pp. 242-250, 1987.

2. B.S. Baker, S.J. Fortune, S.R. Mahaney, Polygon containment under translation, J. of Algorithms, Vol.
7, pp-532-548, 1986.

3. B. Chazelle, The polygon containment problem, Advances in Computing Research, Vol. 1, JAI Press,
1983, pp. 1-33.

4. B. Chazelle, H. Edelsbrunner, An optimal algorithm for intersecting line segments in the plane, Proc.
of the 29th Annual Symposium on Foundations of Computer Science, 1988.

5. S. J. Fortune, A fast algorithm for polygon containment by translation, Proc. of the 12th International
' Colloguium on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 194,
Springer Verlag, 1985, pp. 189-198.

6. M. R. Garey, D. S. Johnson, F. P. Preparata, R. E. Tarjan, Triangulating a simple polygon, Information
Processing Letters, Vol. 7, 1978, pp. 175-179.



168

10.

T. Lozano-Perez, Spatial planning: A configuration space approach, IEEE Transactions on Compulers,
Vol. C-82, Feb. 1983, pp. 108-120.

T. Lozano-Perez, M. Wesley, An algorithm for planning collision-free paths among polyhedral obstacles,
Comm. of the ACM, Vol.22, pp.560-570, 1979.

. S.P. Pal, B. Dasgupta, C.E. Veni Madhavan, Optimal polygon placement by translation, Technical

Report No. IISc-CSA-90-7, Department of Computer Science and Automation, Indian Institute of
Science, Bangalore, 560012, INDIA.

F.P. Preparata, M.I. Shamos, Computational Geometry-An Introduction, Springer-Verlag, 1985.



169

Figure 1 . Triangulation of polygons in NH-=N
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Figure 2
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bd (I (MH, NH))
______ bd (E( M,D))
—--— bd (E (M,D"))

Y (M, N)

Figure 3. Planar subdwision G and
computation of bd(1(M,N))
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