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Abstract

A polygon is said to be C-oriented if the set of orientations of its edges is a subset
of a set C. We study visibility in C-oriented polygons under C-oriented rays and
explore the combinatorial structure of their edge visibility graphs. We present efficient
algorithms to compute the portions of the polygon visible to a point or an edge of the
polygon. We also present an interesting art gallery theorem concerning the number of
edges needed to cover an orthogonal polygon.

1 Introduction

The concept of visibility in computational geometry has proven useful for answering 2 variety
of questions[8, 2]. Application areas like VLSI design, computer aided design, digital pic-
ture processing have traditionally placed heavy emphasis on orthogonally oriented objects.
However, recent advances allow objects to have more than the usual two orientations and as
a result interest has grown for studying objects formed with lines oriented in a fixed set of
directions [5, 10, 13, 14].

The orientation of a line is the smaller of the two positive angles it makes with the positive
z-axis. Let C be a finite set of orientations in a plane. A collection of lines, segments and
rays is C-oriented if the set of orientations of the elements in the collection is a subset of
C. Thus, we speak of C-lines, C-segments and C-rays to mean C-oriented lines, segments
and rays respectively. Then, C -oriented polygons [4] (C-polygons) are polygons in which the
orientation of each edge is in C. If |C| is ¢, then the polygon is said to be c-oriented. For
example, orthogonal polygons are 2.oriented where the two orientations in C are orthogonal.

Let P be a C-oriented polygon. We now define C-oriented visibility. We say that two
points = and y of P are visible to each other if the segment joining them is C-oriented and
does not intersect the exterior of P. This definition of visibility is the natural extension
to orthogonal visibility explored by Booth and O'Rourke[9, Section 7.3]. Two edges e and
e, of P are visible to each other if there exist points z € e; and y € €2 (z and y are not
endpoints of e; and e;) that are visible to each other in P. This definition of edge visibility
corresponds to the well studied notion of (weak) edge visibility[1].
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Other definitions of visibility in C-oriented polygons have been proposed before in the
context of C-convex sets, but none of them generalize orthogonal visibility. According to
the visibility definition of Rawlins and Wood [11}, 2 (non-end) point in a horizontal edge in
an orthogonal polygon can see a (non-end) point of a vertical edge through a “stair line”.
Schuierer, Rawlins and Wood [12] use the convex hull operator (denoted by C-hull) in an
abstract convexity space and redefine visibility: given points z and y in P, they see each
other if C-hull({z,y}) C P. In an orthogonal polygon, this definition allows C-hull({z,y}) to
be just {z,y}, thus allowing a (non-end) point in 2 horizontal edge to see a (non-end) point of
a vertical edge. If we insist that C-hull should be connected, then their visibility definition
coincides with ours and thus naturally generalizes orthogonal visibility. Throughout the
following sections visibility refers to C-oriented visibility.

In the next section, we define and study some properties of the edge visibility graph of
C-oriented polygons.! Section 3 outlines algorithms to construct portions of the polygon
visible from a point or an edge of the polygon. Finally Section 4 presents an art gallery
theorem for orthogonal polygons.

2 On the Edge Visibility Graph

The edge visibility graph of a polygon consists of a node for every edge in the polygon. There
is an edge joining two nodes, if the two corresponding edges are visible to each other in the
polygon. We say that a C-oriented polygon P is in general position if no two vertices can be
connected by a C-segment interior to P. Equivalently, a C-oriented polygon with n vertices
is in general position if the vertex visibility graph of the polygon (where visibility rays are
C-segments between the vertices of the polygon never in the exterior of the polygon) is the
cycle graph C,. Booth and O’Rourke[9, Section 7.3] show that the edge visibility graph of
an orthogonal polygon of n edges in general position consists of two disconnected trees with
n/2 nodes each. We extend their result to the following theorem.

Theorem 2.1 The edge visibility graph of a C-polygon with n edges in general position
o consists of two disconnected trees with n/2 nodes each, if |C| = 2.

o If|C|>2,it1s connected with at least one cycle, need not be biconnected, and any cut
vertez (if ezists) of the edge visibility graph divides the graph into two components, one
of which is a single node.

Furthermore, since any collection of lines, segments and rays in (one, two or) three ori-
entations in the plane can be mapped onto another collection having the same incidence
structure as the first but with (one, two or) three completely different orientations [10],
we can generalize immediately all the results for orthogonal polygons [9, Section 7.3] to
2-oriented polygons.

15 this extended abstract we omit all proofs. They are available in the full version [3].



In general, the recognition problem for visibility graphs of simple polygons is open. A
characterization of a class of graphs may be used to design efficient recognition algorithms.
Recall that a graph is realizable if there is a polygon P such that G is the edge visibility
graph of P. For finitely oriented geometry we say that a graph is c-realizable if there exists
a set C of c orientations and a C-oriented polygon P such that G is the edge visibility graph
of P. Clearly, any c-realizable graph is (¢ + 1)-realizable, and any realizable graph with n
nodes is c-realizable where c is O(n?). Considering finitely oriented polygons results in a
hierarchy of graph classes as the following theorem shows.

Theorem 2.2 For each ¢ > 2, there is a graph G that is (c+1)-realizable but not c-realizable.

This result follows directly from the following lemma. Observe that C-oriented visibility
makes certain graphs, which are otherwise realizable, non-realizable.

Lemma 2.3 The complete graph on n + 1 nodes, is (n + 1)-realizable, but not n-realizable.

3 Visibility Algorithms

The notion of C-oriented visibility leads to two central algorithmic questions.

e Given a point z in a C-oriented polygon P, compute Ve(z), the portion of P visible
from z through C-rays. Vo(z) consists of at most 2|C| line segments.

e Given an edge e (or a C-segment) in a C-oriented polygon P, compute V¢(e) the
portion of P visible from some point of P trough C-rays. The topological closure of
Ve (e) is a C-oriented polygon.

We can solve the first problem by preprocessing the polygon(9, Section 8.7) in O(nloglogn)
time and building a O(n) data structure which can answer queries of the following form
in O(logn) time: given a point pin P and a direction 6, find the first edge of P hit by a
f-ray through p. Thus, performing a query for each direction gives a O(nloglogn + clogn)
algorithm. We obtain a linear algorithm by modifying Lee’s linear algorithm [7, 6] for
constructing the visibility region from a point inside a polygon. Notice that we do not
require P to be C-oriented.

Theorem 3.1 Let C be a given set of c orientations and P a simple polygon with n vertices.
If the orientations are sorted, Vo(z) for a point z € P can be computed in O(n + c) time
and O(n + c) space in the worst case.

To solve the second problem, one could use an algorithm to find the edge visibility region
for general visibility and modify the result accordingly. Since the best known algorithm
for this task (even for orthogonal polygons) is based on trapezoidization, it would require
O(nloglogn) time. However, for 2-oriented polygons we can improve this to linear time.

Theorem 3.2 Let C be a set of 2 orientations and P a simple C-polygon with n vertices.
Vc(e) for an edge e € P can be computed in O(n) time and O(n) space in the worst case.
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4 Art Gallery Theorems

Art Gallery Theorems have practical applications and answer natural combinatorial questions
on visibility. One variant that corresponds to visibility from a line is when mobile guards
are allowed to patrol an interior line segment of the polygon[9, Chapter 3]. We insist that
such mobile guards can patrol only an edge of the polygon. By examining the structure
of a partition of an orthogonal polygon into L-shaped pieces[9, Section 2.5], we obtain the
following result for 2-oriented polygons.

Theorem 4.1 Let C = {6;,8,} be a set of two orientations. Then,

o |n/4] edges are always sufficient and. sometimes necessary to cover the interior of a
C-oriented polygon of n edges with C-rays. Moreover, these edges can be chosen to be
all 6,-oriented or all 6;-oriented.

o |n/2] edges are always sufficient and sometimes necessary to cover the interior and -
the boundary of a C-oriented polygon of n edges with C-rays.

Moreover, the corresponding partitioning algorithm based on trapezoidization[9, section 2.6
can be applied here to find the set of covering edges.

Theorem 4.2 Given C = {61,0,} a set of 2 orientations, a set of [n/4] edges to cover the
interior of a C-polygon using C-rays, can be found in O(nloglog n) time.
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