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Finding Constrained And Weighted Voronoi Diagrams In The Plane

Cao An Wang !  Peter Y. Tsin 2

Abstract: In this paper, we define the Voronoi diagram of a set of points (called sites) in the
presence of obstacle line segments in R?, which is called a constrained Voronoi diagram . When each
site of the constrained Voronoi diagram is assigned a different weight, the diagram is called constrained
and weighted Voronoi diagram. We show that the complexity of the constrained and weighted Voronoi
diagram of n sites and m obstacles for m =cn and constant ¢ in R? is at least Q(n*) in the worst
case. We also present an O(n*) algorithm to construct the diagram and the algorithm is worst case
optimal in both time and space.

1 Introduction

The Voronoi diagram is an important geometric structure in computational geometry which has at-
tracted a lot of attention [Aur84, Chew85, Fort86, Kirk79, Lee79, Sh78, Yap85]. Given a set of points
(called sites) S in the plane, the standard Voronoi diagram of the set consists of a set of Voronoi
cells, {V(s;) | s; € S}, such that for any point z € V(s;), d(z,s;) < d(z,s;) for all s; € S, where d(z,y
) denotes the Euclidean distance between z and y .

Many variations of the standard Voronoi diagrams have been investigated. One of them is to
consider the diagram in the presence of obstacles in the plane. When the distances of such a Voronoi
diagram are measured by geodesic [Aro87, Tsin89], the diagram is called geodesic Voronoi diagram,
when the distances of such a diagram are measured by straight-line, the diagram is called constrained
Voronoi diagram [Chew87, Wang87, Wang89]. Another variation is to assign a different weight to
each site of the standard Voronoi diagram. This diagram is called weighted V oronoi diagram [Aur84].
In this paper, we consider the Voronoi diagram of a set of weighted sites restricted by a set of obstacle
line segments in the plane (called constrained and weighted Voronoi diagram). In this diagram, all
points in a Voronoi cell must be ‘visible’ from the site associated with that cell. Consequently, the
points of some subspaces may not be visible from any site due to the blockage of obstacles, and these
subspaces do not belong to any Voronoi cell by definition. Hence, the diagram may not cover the
entire space. Moreover, since each site is assigned a different weight, the boundary of a Voronoi cell
may contain circular segment, and the cell itself may not be connected. These characteristics of a
constrained and weighted Voronoi diagram complicate its structure. In particular, a Voronoi cell may
contain several disjoint sub-Voronoi cells, which greatly increase the complexity of the diagram in
terms of the number of edges and vertices.

The practical applications of the weighted Voronoi diagram were reported in several papers [Aur84,
Bro78, Rhy73, Blu73,Bow81], and the disciplines of the applications include economics, geographics,
communications, and biology. In the previous works, the plane is assumed without restrictions. How-
ever, the plane may contain obstacles in the real world. For instance, modeling a set of short-wave
(microwave or laser) transmitters with verying strength, it is desirable to determine the regions in
which a certain transmitter received best among the others. If the area contains buildings and moun-
tains as obstacle, then the obstacles may block the waves of a transmitter and form several ‘blank
area’. For determining the active territory of an animal in a certain species (for example, lions) in
biology, lakes, rivers, and higher mountains can be regarded as obstacles. Thus, our diagram is a
better geometric model than the one in the previous papers.

The existence of obstacles makes a simple divide-and-conquer method and a sweep-line method in-
efficiency. We observe that there exists a close relationship between the diagram and the arrangement
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of a set of lines, where the lines are completely determined by the sites and the obstacles. By construct-
ing a closest-site ordering list and a visible-site list for each edge in the corresponding arrangement,
we are able to construct the diagram within the worst-case optimal time and space bounds.

This paper is organized as follows. For ease to describe our method, we first consider the diagram
with the equi-weighted sites in Section 4. We then consider the sites of the diagram with different
weights in Section 5. The proofs of all the lemmas are omitted in this version.

2 Preliminaries

We shall give several definitions and show some properties of constrained and weighted Voronoi dia-
grams in the plane. Let the obstacles be a set of line segments.

Definition: Let O be a set of obstacles. Let 0° be the open line segment of 0€O, and let
0° = {0° | 0e0}. Two arbitrary points z and y in the plane are visible from each other in the
presence of O iff (ZF - {z, y })No® = 0 for all 0°c0°, where Ty denotes the straight line segment
spanning z and y, which is also regarded as a point set.

Definition: Let s be a site in the plane and w(s) be the weight of s. The distance of s to an
arbitrary point z, denoted by d,(z, s), is determined by %’(C—‘:)l, where d(z,s) is the Euclidean distance
between s and z. Let s be a site with weight w(s) in the presence of obstacle O in the plane. The
distance between s and an arbitrary point z is determined by

{ dy(z,s) if z and s are visible from each other
dwo(z,8) = .
00 otherwise

Definition: Let S be a set of weighted sites and O be a set of obstacles in the plane. The
constrained and weighted Voronoi diagram, denoted by CWVor(S,0), is a set of Voronoi cells {V(si) |
s;€S} such that V(s;) = {z€R? | duwo(2,8:) < duwo(2,;) and duo(2,3:) # 00 V 5 €S, 8i7$; }

Clearly, if the weights of the sites in S are all the same, then CWVor(S,0) becomes constrained
Voronoi diagram CVor(S,0), and if the set of obstacles is empty, CWCor(S,0) becomes weighted
Voronoi diagram W Vor(S). The boundary of a Voronoi cell V(s;) is the closure of the point set V(si).
A Voronoi edge is a maximal straight line segment or a circular arc of the boundary of a Voronoi cell.
The endpoints of the Voronoi edges of V(s;) are Vorono: vertices.

Property 1: A Voronoi edge must be one of the following three types: (1) a segment of the bisector
of two sites, (2) a section of an obstacle, and (3) a segment of the line determined by a site and an
endpoint of an obstacle.

Property 2: [Aur84] Let S = {s1,52} be a set of two weighted sites, and let weights w(sy) < w(s2).

Then, the Voronoi cell V(s;) is a closed disk with center wio)o1=wis2)s2 514 radius wisyJw(sz)d(s1.7)
(

w2(s;)—w?(sz) w2 (s )-w?(s2) °
The Voronoi cell V(sz) is the complement of the above disc.

Property 3: Let V(s;) for s;€S be a Voronoi cell of WV or(S), then the boundary of the cell consists
of circular arcs and/or line segments.

3 The lower bound of a CWVor(S,0)

We have the following lower and upper bounds of the diagram in terms of vertices and edges.
Lemma 3.1: The number of edges and vertices of CWVor(S,0) may be up to O((mn + n?)?) in
the worst case, where n is the number of sites and m is the number of obstacles.
Lemma 3.2: The maximum number of edges and vertices of CW Vor(S,0) is bounded by O((mn+
n?)?), where n is the number of sites and m is the number of obstacles.
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4 Finding the constrained Voronoi diagram CVor(S,0)

It is easy to prove that the arrangement of A(O' U BUT) contains CVor(S,0), where O’ is the set of
lines, each of which extends an obstacle (called a type-1 line), B is the set of perpendicular bisectors
of n sites (type-2 lines), and T is the set of lines, each of which is determined by a site and an endpoint
of an obstacle (type-3 line). The following algorithm is first given in a high-level description. Then,
some important steps of it are described in detail. -

Algorithm Find-CVor(S,0)

Step 1. (Generating the three types of lines to be arranged.)

Extend each line segment in O, and let O’ denote these lines; Find the perpendicular bisectors of
every pair of the sites in S, let B denote these bisectors; Draw a straight line passing through a site s
and an endpoint p of obstacle o for all s € S and all 0 € O. Let T denote these lines.

Step 2. Construct the arrangement A(O'UBUT).

Step 3. (Mask or delete some edges in the arrangement not appearing in CV,.(S,0).)

(a) Let o' be the line extending an obstacle 0€O. Mask o” = o' — o from A(O' U BUT) for all
0€0. (b) Let line teT be determined by a site s and an endpoint p of an obstacle. If line segment 3p
is crossed by an obstacle, then delete t from A(O’U B UT). Otherwise, mask t — pp/, where p’ is the
crossover point of ray sp and its first encountered obstacle (which might not exist). Do this for all
teT. (c) Let be B be the perpendicular bisector of sites s and s’; b’ be the portions of b not visible from
at least one of s and s’. Mask b’ for all beB from A(O'UBUT).

Step 4. For each unmasked edge of A(O’U BUT), find the sites visible to this edge.

Step 5. For each unmasked edge of A(O’UBUT), determine the site(s) closest and visible to this
edge. Determine if this edge appears on the boundary of the Voronoi cell of that closest site. Mask
the unmasked edges if it does not.

Step 6. Delete all the masked edges of A(O' U BUT) to obtain CVor(S,0).

Details of the steps

Step 1 is straight-forward. Step 2 can be done by the algorithm proposed by Edelsbrunner et al.
[Edel86]. Step 3 can be done by traversing the lines in A(O’ U BUT). The following two steps are
crucial for the time complexity of the algorithm.

Step 4 finds a list of sites visible to an edge for every edge in A(O' U BUT). If a brute-force
method is applied, then Step 4 may take O(n®) in worst case. Let vis(e) denote the set of all sites
visible from edge e. Let e and €” be two edges in A(O’U BUT) such that e and e” share a common
endpoint v and e” is successor of e rotating at v clockwise. Let t (respectively t') be the base line
of e (respectively €”), [ and s (I’ and s') be the determiners of t (t'). [ is up if I is in the halfplane
(determined by t) not containing e, [ is down, otherwise.

Lemma 4.1: (1) Suppose that none of ¢ and t’ is of type-3, then vis(e) = vis(e”). (2) Suppose
that exactly one of t and t’ is of type-3. Then, (i) if ¢ is of type-3 and the determiner [ is up, then
vis(e”) = vis(e) — {s} if e is unmasked; vis(e”) = vis(e) if e is masked. (ii) if ¢’ is of type-3 and the
determiner I’ is down, then vis(e”) = vis(e)U {s} if e is unmasked; vis(e”) = vis(e) if e is masked. (iii)
in the remaining cases, vis(e”)=vis(e). (3) Suppose that both ¢ and t’ are of type-3. Then, (i) if both
l and I’ are down, then vis(e”)=vis(e)U{s'} if ” is unmasked; vis(e")=vis(e) if € is masked. (ii)if [
is up and !’ is down, then vis(e”)=vis(e) — {s} if ¢” is masked and e is unmasked; vis(e")=vis(e)U{s'}
if " is unmasked and e is masked; vis(e”)=vis(e) — {s,s'} if ¢” and e are unmasked; vis(e")=vis(e)
if both e and e” are masked. (iii) if / is down and !’ is up, then vis(e”)=vis(e). (iiii) if both [ and /'
are up, then vis(e”)=vis(e) — {s} if e is unmasked; vis(e”)=vis(e) if e is masked.

The above lemma immediately implies that given vis(e) for an edge e, the list of all visible sites
of the successor of e can be determined in O(1) time. It is obvious that the visible-site list of each
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edge on an obstacle can be determined by the type-3 edges incident at the obstacle. Therefore, the
visible-site list for each edge in A(O’ U B U T) can be determined by first finding the visible-site list
for the edges on the obstacles, then finding the visible-site list for the rest edges. The time and space
complexities of the above process are O((mn)?).

Step 5 is to mask all the edges in A(O’U BUT) which lie inside the Voronoi cells (thus they do not
appear in CVor(S,0)) and to determine the Voronoi cell(s) each unmasked edge belongs to. To do so,
we shall determine the visible site(s) closest to each unmasked edge. This could be easily accomplished
by a brute-force method in O((mn)?n) time. The following observation indicates a faster method.

Definition: Let S; be a list of n sites associated with the i-th edge e; of I. S; is said to be in
closest — site ordering, if the first site in the list is the one closest to e; (disregard the obstacles), and
the second site in the list will be the one closest to e; if the first site is not taken into account (for
example, it is not visible from e;). In general, the k-th site for 1 < k£ < n will be the one closest to
e; if the first k — 1 sites is not taken into account. A set of lists associated with line [ is said to be in
closest — site ordering if each list in the set is in closest — site ordering.

Lemma 4.2: Let B be the set of bisectors determined by n sites. Let | be an arbitrary line
crossing B. The set of closest-site ordering lists of [ can be determined in O(n?) time.

Lemma 4.3: The closest site(s) for every edge of A(O’U BUT) can be found in O(n*) time.

Let  be a region of A(O’UBUT). Then, r belongs to V(s;) of CVor(S,0) iff r is visible from s;
and the points on r are closer to s; than to any other visible site in S. This implies that the visible-site
list and the closest-site ordering list of each edge of r must contain s; and s; must be the closest and
visible site to these edges. It can then be easily determined if an edge of r belongs V'(s;).

Step 6 deletes all the masked edges in A(O’ U B U T), which takes at most O((mn)?) time by
examining all the edges.

Theorem 4.1: Algorithm Find-CVor(S,0) produces CVor(S,0) in O((mn+n?)?) time, which
is worst case optimal in both time and space.

5 Finding the constrained and weighted Voronoi diagram

The difference between CVor(S,0) and CWVor(s,0) is that the perpendicular bisectors in CVor(S5,0)
are replaced by the circular arcs in CWVor(S,0). If we can deal with this difference, then the same
algorithm for constructing CVor(S,0) can be directly applied to finding CWVor(S,0).

After inspecting Find-CVor(S,0) , we find the following three key points must be dealt with:
(1) how to insert a set of circles into arrangement A(O’' U T) to form A(O' U C UT), (2) how to find
the visible-site list for each edge in A(O’UCUT), (3) how to find the closest-site ordering list for each
edge in A(O’UC UT). Points (1) and (2) can be easily solved. For point (3), we need the following
lemma.

Lemma 5.1: Let A(C) be the arrangement of 1("2;12 circles determined by n weighted sites in
S. Let | be an arbitrary line crossing A(C). Then, the closest-site ordering lists of / can be found in
O(n?) time.

It is not difficult to find CWVor(S,0) by an algorithm similar to Find-CVor(S,0).

Theorem 5.1: Let S be a set of n weighted sites and O be a set of obstacles in the plane.
CWVor(S,0) can be found in O((mn + n?)?) time and space, and this is worst-case optimal.
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