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Voronoi Diagrams over Dynamic Scenes
(Extended Abstract)

Thomas Roos*

Abstract

Given a finite set S of n points in the Euclidean plane IE?, we investigate the change of the
Voronoi diagram V D(S) and its dual, the Delaunay triangulation DT(S), under continuous motions
of the underlying points.

It is the idea to use the topological dual of the Voronoi diagram that is shown to be locally stable
under sufficiently small continuous motions, in opposite to the accompanying Voronoi diagram which
is reconstructed from its dual only when it is needed. We present an efficient, numerically stable

~ update algorithm for the topological structure of the Voronoi diagram in a dynamic scene, using
optimal O(log n) time for each change. Furthermore, we develop fast algorithms for inserting and
deleting points at the edge of the dynamic scene.

There are a lot of related problems in computational geometry, as for example the dynamic
convex hull and the dynamic nearest neighbor problem, but also applications in motion planning
and pattern recognition in dynamic scenes.

1 Introduction

One of the most fundamental data structures in computational geometry is the Voronoi diagram. In its
most general form, the Voronoi diagram V. D(S) of a set S of n objects in a space E is a subdivision of this
space into maximal regions, so that all points within a given region have the same nearest neighbor in S
with regard to a general distance measure d. In fact the Voronoi diagram contains all of the proximity
information defined by the given set in a powerful and computationally useful manner.

When Shamos and Hoey [ShHo 75)] introduced the Voronoi diagram for a finite set of points in the
Euclidean plane IE? into computational geometry, they improved a whole lot of worst-case bounds of
related problems. Since then Voronoi diagrams in all variations appear as an increasingly interesting
object of research (compare for example [Le 82], [Ed 86], [ChEd 87], [DrLe 78], [Fo 86], [Ya 87] and
[Ro 89)).

Until now, only static Voronoi diagrams were studied. A first approach for the dynamization of
Voronoi diagrams was presented by Gowda et al. [Go 83], who investigated an algorithm for inserting
and deleting single points, each in linear time with the help of so-called Voronoi trees.

But when modeling real dynamic scenes, the parallel continuous motion of the points — together
with a fast update of the Voronoi diagram — is desirable. And it turns out, that already under small
continuous motions of the sites — in which case the above approach requires a total recalculation of the
entire Voronoi diagram — an update of the Voronoi diagram needs much less time. The main result of
the present work consists in the dynamization of the underlying objects.
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2 The Topological Structure of Voronoi Diagrams

This section summarizes the elementary definitions concerning classical Euclidean Voronoi diagrams,
where closeness is defined by the Euclidean distance function d. Given a finite set S := {P1,...,Pa}
of n > 3 points in the Euclidean plane IE2. First of all let B(P;, P;) denote the perpendicular bisector
of P, and P; and v(P) := {z € [E?|V;% d(z,P) < d(z,P;)} the Voronoi polygon of Fi. The
vertices of the Voronoi polygons are called Voronoi points and the bisector parts on the boundary are
called Voronoi edges. Finally let VD(S) := {v(P:)|P; € S} denote the Voronoi diagram of S. The
embedding of the Voronoi diagram provides a planar straight line graph that we call the geometrical
structure of the underlying Voronoi diagram.

Now we turn our attention to the dual graph of the Voronoi diagram, the so-called Delaunay trian-
gulation DT(S). If S is in general position — i.e. no four points of S are cocircular and no three points
of S are collinear — every bisector part in V D(S) corresponds to an edge and every Voronoi point in
VD(S) to a triple in DT(S). The use of the dual graph not only has numerically advantages, but also
allows a clearer separation between geometrical and topological aspects.

We now introduce a one - point - compactification to simplify the following examinations and algo-
rithms. Therefore we consider the modified basic set S’ := S U {oo} and obtain the extended Delaunay

triangulation
DT(S') = DT(S) U {(R;,)|P; € S N 8CH(S)}

i.e. in addition to the Delaunay triangulation DT(S), every point on the boundary of the convex hull
OCH(S) is connected to co. We call the underlying graph of ‘the extended Delaunay triangulation
DT(S") the topological structure of the Voronoi diagram. We obtain the following characterization for
triples in DT'(S’) :

{P;,P;,P:} € DT(S") <= v(PR,P;,P)is a Voronoi point in VD(S).
{P,,P;,0} € DT(S') <= P and P; are neighboring points of S on
the boundary of the convex hull 9CH(S).

As DT(S') is a complete triangulation of the extended plane IE? - i.e. every triple is bounded by exactly
three edges and every edge belongs to exactly two triples = Euler’s polyhedron formula implies that
the number of of edges and triples of the topological structure DT(S’) of the Voronoi diagram V D(S)
remains linear. Furthermore it is easy to see, that the hardest part of constructing a Voronoi diagram
is to determine its topological structure, because the geometrical structure of a Voronoi diagram can be
derived from it by a simple flow of the existent Delaunay triples in DT'(S’) in linear time. In addition, the
geometrical structure is determined only locally by its topological structure, namely in the neighborhood
of the corresponding Voronoi point. This implies the possibility of a local update of the Votonoi diagram
after a local change of one or more points in S.

3 Topological Events

In this section we consider the case of continuously moving points and investigate those situations where
the topological structure of the Voronoi diagram changes. Therefore, given a finite set S := {Py,..., Pa}
of n > 3 continuous curves in the Euclidean plane IEZ, with P; : IR — IE?, t +— P;(t), under the following
assumptions:

A The points move without collisions, i.e. Vigj Vietr Pi(t) # P;(t)
B There ezists a moment to € IR where S(to) is in general position.

Our first basic theorem describes the local stability of the topological structure DT'(S’(%o)).
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" Theorem 1 For a finite set S of points in general position, the topological structure of the Voro-
noi diagram is locally stable under sufficiently small continuous motions of the sites.
However, the geometrical structure changes only in the neighborhood of the moving
points.

Therefore we have seen, that the loss of general position of the points S is necessary for changing
the topological structure DT(S’). Now the question for sufficient conditions arises. With this intention,
we proceed with an investigation of the elementary changes of the topological structure of a Voronoi
diagram. We show that they can be characterized as so-called SWAPs of adjacent triples in DT'(S’),
except of degenerated cases.

- Py
Py

- P;
P; Py

'

As well, the transition is equivalent to a fusion and disappearance of the two original Voronoi points in
the moment of cocircularity, while the two dual Voronoi points are generated. To summarize our results,
we present our second theorem.

Theorem 2 Elementary changes in the topological structure of the Voronoi diagram V D(S) are
characterized by SWAPs of adjacent triples in DT(S’), except of degenerated cases.

In this connection the original advantage of the one - point - compactification becomes apparent.
Both cases can be treated likewise in the extended dual graph DT(S’) by simple SWAPs of diagonal
edges of adjacent triples. In the following we call a pair of adjacent triples in DT(S’) a quadrilateral.

Up to now we left one difficulty out of consideration, namely the cases, where more than four points
in S(t) are cocircular or more than three points in S(t) are collinear at the same time, or in other words
where at least two adjacent quadrilaterals swap at the same time.! In this case we can use the linear
time algorithm presented in [Ag 87] to retriangulate the interior of the convex polygon described by
the cocircular points at a moment ¢ + €. However, it is necessary to select € > 0 in such a way, that
the moment of retriangulation precedes the next topological event. In the case of neighboring collinear
points on the boundary of the convex hull the same effect appears.

4 Dynamic Scenes

In this section we present an algorithm for the update of the topological structure of a Voronoi diagram
under continuous motions of the pointsin S. In the previous section topological events are characterized
by moments of cocircularity or collinearity of neighboring points. Therefore we demand, that the zeros of
the functions INCIRCLE(...) and CCW(...) introduced by [GuSt 85] are calculable.? We can restrict
ourselves to the following additional assumption, that is achieved, for example, in the case of piecewise
straight curves :

C The zeros of the function INCIRCLE(P;, Pj, Py, P;) are
calculable in constant time.

1Quadrilaterals that are not adjacent may swap in no particular order, because they do not affect each other.

2The functions are defined as follows
.'D;'i y’i z%,‘ + v?"'
zr; vp; Th +Vp,
zp, YR, T, t+Vh,
cn yn  Thtih

INCIRCLE(P;,P;,P,P) = and CCW(P,P;,Py) = | zp, wp; 1

Zp), VP,

b

zp; Yp; 1 ‘
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Assumption (C) implies that each quadrilateral generates at most a constant number of topological
events. Now we already proceed with a coarse sketch of the algorithm :

Preprocessing :

1. Compute the topological structure DT(S’(to)) of the starting position.
2. For every existing quadrilateral in DT(S’(to)) calculate the potential topological events.

3. For the set of the potential topological events build up a balanced SWAP - tree.
Iteration :

1. Determine the next topological event and decide whether it’s a SWAP or a RETRIANGULATION.

2. Process the topological event and do an update of the SWAP - tree.

Next we look closer to the individual steps of the algorithm and their runtime- and storage requirements.
Using the divide & conquer algorithm for the Delaunay triangulation presented in [GuSt 85]° and a
balanced SWAP - tree, where the topological events are stored according to their temporal appearance,
the entire preprocessing step requires optimal O(nlogn) time and O(n) space.

To determine the next topological event in the first iteration step, we use a simple minimum query
in the tree which requires O(logn) time. Furthermore if we assume, that the number of cocircular and
collinear points in the degenerated cases remains constant (anything else is completely unlikely), then the
decision can be done in constant time. Before we analyze the second iteration step, we firstly notice that
each SWAP destroys only four quadrilaterals while other four quadrilaterals are generated. Therefore all
we have to do is to delete the four destroyed quadrilaterals and their corresponding topological events in
the SWAP - tree and to insert the four new ones. In the case of a degenerated situation there is also only
a constant number of destroyed and newly generated quadrilaterals. Altogether the total amount of time
used by the second iteration step is O(logn). We can prove, that this result is already optimal under
linear motions of the points, by presenting a worst case example where the topological events requires
©(logn) time each. Additionally we have seen, that only the really necessary topological events are
performed. On the other hand there are at most ("':1) € O(n*) quadrilaterals, each of which generates
at most a constant number of topological events.

Theorem 3 Given a finite set S(¢) of n continuous curves under the assumptions (A), (B) and (C).
The motion of the points requires optimal O(n logn) preprocessing time and O(n)
storage. Every topological event that appears can be treated in optimal O(logn)
time. Furthermore there are at most O(n*) topological events during the entire flow
of the points. During the linear motion of one point P; € S there are at most O(n)
topological events.

We extend this algorithm with a simple reversible algorithm for inserting and deleting points at the
edge of the dynamic scene - or in other words — outside a relevant window. It is the idea to insert
the point sufficiently distant from the convex hull CH(S), so that the Delaunay triangulation DT'(S)
remains stable and only some extended dual edges must be changed. With that, inserting and deleting
points at the edge of the dynamic scene requires optimal O(k) time where k := |S N OCH(S)| is the
number of points on the boundary of the convex hull of S.

Naturally we can use other existing algorithms for inserting points at arbitrary places (compare
[GuSt 85]) which uses O(n) time. However, only complicated linear-time algorithms for deleting points
are known so far (see [Ag 87]). Therefore it might be better to remove a point at an arbitrary place in
two steps by using the previous algorithms. At first, we move this point at the edge of the scene where
afterwards it can be removed easily.

3This algorithm is exceptionally suitable for this task, because the used quad-edge data structure makes possible a fast
derivation of the geometrical structure of the Voronoi diagram and the accompanying convex hull.
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