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1 Introduction

Let O = {Xy,...,X,} be a set of objects in R¢. We say that a subdivision S of R¢ shatters O if the following
conditions hold:

1. Each object X; is contained within the closure of some d-dimensional cell of S; and

2. The closure of any d-dimensional cell of S contains no more than one object of O.
The conditions assure that S separates each X; from all the other objects. The problem of finding a
subdivision that shatters the set @ is called the shattering problem. We say that a set of hyperplanes
shatters © if the subdivision induced by their arrangement shatters O.

In this paper, we concentrate on the two-dimensional version of the shattering problem. In particular,
we are interested in the problem of shattering a set of disjoint polygonal objects with an arrangement of
lines in the plane.

Shattering problems are closely related to stabbing problems (e.g., [HM88,MT82]) and other questions of
separability (see [Meg88]). A potential application for shattering problems arises in the field of Constructive
Solid Geometry (CSG), where one is interested in converting a boundary representation (straight edges and
circular arcs) for a planar solid into a minimum CSG (Boolean formula) representation (see [SVv89]). This
application requires the minimum-cardinality shattering of a set of pairs by lines chosen from the set of lines
defined by endpoints of circular arcs.

We show that the problem of finding a minimum-cardinality set of shattering lines of a set of n objects
is NP-complete, even if the objects are all points. We then give an O(Elog N + n?logn) time algorithm
to determine if a set of polygonal objects with N vertices can be shattered by lines, and, if so, to output a
“small” witness set of shattering lines. Here, E is the size of the visibility graph of the scene. We give a second
algorithm with running time O(E log N + nE-69%), which is superior for small values of E, and generalizes
to yield a slightly super-cubic algorithm for shatterability of polyhedra by planes in three dimensions.

2 Point Shattering

A special case of our problem is that of shattering a set of n points in the plane. First, we have the following
fact:

Lemma 1: Any set of n points in the plane can be shattered by n—1 parallel lines. For rational points, the
lines can be determined in linear time. In general, O(nlogn) time suffices. Any set of n points requires
at least [3(+v/8n — 7 — 1)] shattering lines, and this bound is tight.

For n collinear points, n—1 lines is an optimal size shattering. Even if the points are in general position,
O(n) shattering lines may be needed, since n convex points require [$] shattering lines. However, other sets
of points can be shattered by as few as O(1/n) lines. Given this variety, it would be desirable to have an
efficient algorithm to find a minimum size shattering for a set of points. Unfortunately, this turns out to be
NP-Complete.
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We show that finding a minimum-cardinality shattering of a set of points is NP-Complete by a reduction
from the Point Covering problem, which is NP-Complete by Megiddo and Tamir [MT82]. Formally, the
problems we are considering are: :

Problem Point Covering (PC): Given a set of rational points (z1,31), - -+, (Zn, yn) and an integer kp., does
there exist a set of kp. straight lines such that each point (z;,y;) lies on at least one line?

Problem Point Shattering (PS): Given a set of rational points (z1,¥1),- .-, (Zn,¥n) and an integer kp,,
does there exist a set of kp, straight lines that shatter the n points (i.e., that form an arrangement such
that no cell contains more than one point (z;,%:))?

Theorem 2: The Point Shattering problem is NP-Complete.

Proof (sketch): Given an instance of PC with n (even) points, we construct an instance of PS with 10n+40
points. The points are carefully constructed so that a shattering by kps = kpc + n + 11 lines exists if and
only if a covering by ky. lines exists. We build the instance of PS by replacing each of the points of PC by
a pair of points. The pairs are chosen so that for any set of pairs, there is a shattering line for the set if and
only if there is a covering line for the corresponding set of points. If the pairs did not have to be separated
from each other in a shattering, then the reduction would be finished. To control how the center pairs are
separated from each other, we construct 8n + 40 points to the left and the right of the center pairs that
induce a grid consisting of n + 11 horizontal and vertical lines (Figure 1 illustrates a typical grid). The grid
separates the center pairs from each other, without shattering individual pairs or leaving any new points
that must be shattered. This completes the description of the instance of PS. If a shattering of size kp, exists
for the instance of PS, then we show that the k,. non-grid lines in the shattering correspond to the covering
lines for the instance of PC. =

Even if we restrict the shattering lines to be horizontal or vertical, the problem remains NP-Complete,
by a reduction from 3-SAT (similar to Hassin and Megiddo’s NP-Completeness proof for the problem of
stabbing unit horizontal segments with horizontal and vertical lines [HM88]).

3 Shattering Polygonal Objects

In this section, we give two algorithms that determine if a set of polygonal objects is shatterable by an
arrangement of lines. If the objects are shatterable, then we require that our algorithms produce a “small”
witness: a collection of a “small” number of lines whose arrangement shatters the given objects. The notion
of “small” is made precise in the following lemma.

Lemma 3: Let O be a set of n objects in ®9. If O is shatterable by an arrangement of hyperplanes, then
it is shatterable by an arrangement of n — 1 or fewer hyperplanes.

As shown in Figure 2a, the question of shatterability is nontrivial even for a collection of three line
segment objects. Figure 2b shows that the naive approach of attempting to find lines that cut off one object
at a time can fail to find a shattering when one exists.

Assume that we are given a set O of n simple polygons, with a total of N vertices. By a simple plane-
sweep algorithm, we can detect in time O(N log N) if there are any overlapping polygons. Since overlapping
objects cannot be shattered, we assume from now on that the polygons are disjoint.

We describe two algorithms which decide if a set of polygonal objects in the plane can be shattered by
an arrangement of lines. The first algorithm runs in time O(Elog N + n?logn), where E is the number of
edges in the visibility graph of O. The second algorithm runs in time O(E'log N + nE-59%), which is slower
than the first algorithm when E is large (e.g., E may be quadratic in N ). The second algorithm has the
advantage that it generalizes to three dimensions.

Both algorithms begin by computing the visibility graph (VG) of O in time O(E + N log N), using the
algorithm of [GM87]. As a by-product of building VG, we can, within the same time bounds, identify the set
C of all candidate shattering lines. The candidate lines are those that contain VG edges (not on the convex
hull of ©) such that no object is intersected by the line. We can further restrict attention to those lines that
are “pinned” such that no counterclockwise rotation is possible without intersecting an object. If the set O
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is shatterable, then it is shattered by the arrangement of O(FE) candidate lines C. Our goal is to determine
if O is indeed shatterable, and, if so, find a subset of no more than n — 1 candidate lines that shatter O.

Our algorithms incrementally build a set of “productive” candidate lines that will be used in our attempt
to shatter ©. At any given stage, the objects have been partially shattered by the productive lines. Let a
cluster be the set of objects that belong to a cell that currently has two or more objects. Initially, there is
only one cluster (all of O).

For the first algorithm, we begin by sorting the slopes of the VG edges (in time O(Elog N)). Let 8 be
the current “vertical” direction. Initially, # = /2. Our goal is to maintain the visibility profile (VP(8))
of the convex hulls of the clusters with respect to the vertical direction 6, as we vary @ through a range of
2m. We also store the extreme left and right points of each cluster, with respect to the current direction 6.
Initially, the VP is trivial, since there is only one cluster O.

As we rotate the vertical direction 8, critical changes occur only at directions corresponding to the VG
edges (which are encountered in slope order). At each such critical direction, we may have a combinatorial
change in the current VP or we may discover a new productive candidate line.

If we encounter a VG edge e that corresponds to a candidate line, we consult the current VP to detect if
the candidate line stabs at least one cluster (in query time O(logn)). If it does, then we add this candidate
line to our set of productive lines, and we update the VP, breaking all clusters stabbed by this line. This
requires that we identify all VG edges within each stabbed cluster that cross the line; this can be done in
time proportional to the number of VG edges crossed, using the methods of [MW90] to update a VG when
adding a new obstacle (we think of the candidate line as the new “obstacle” in our case). We can determine,
in linear time, the set of stabbed clusters by checking if the candidate line stabs the segment joining the
extreme left and right point of each cluster. We then use a plane sweep to update the VP in O(nlogn)
time. (Since there can be at most n — 1 productive candidate lines, the overall cost of these sweeps will be
O(n?logn).) If the candidate line stabs no cluster, then it is not productive in refining the current partial
shattering.

Also, for each VG edge e encountered, we must check to see if the VP changes (combinatorially) as we
sweep through this direction. A change occurs when e corresponds to an edge incident to an extreme left or
extreme right point of a cluster (in which case the extreme point changes accordingly), or when e corresponds
to an edge between two vertices that are currently extreme (left or right) on the clusters (in which case a
simple constant-size update is done on the VP). Since only constant-size changes occur at each such critical
direction, the total cost of all updates is only O(E log N).

If the set of clusters becomes empty during our sweep in 6, then we stop and conclude that O is
shatterable by the current set of productive lines (which is no greater than n — 1). Otherwise, we finish the
sweep in # and have one or more clusters of unshattered objects, and we conclude that O is not shatterable.
The total complexity of this algorithm is O(E log N + n?logn).

Theorem 4: Given a set of n polygonal objects O in the plane with a total of N vertices, one can detect
if O can be shattered by a set of lines and, if so, output such a set of size at most n — 1 in time
O(Elog N + n?logn), where E is the size of the visibility graph induced by O. The space required by
the algorithm is O(E).

Our second algorithm differs in the method by which it selects the subset of candidate lines. We compute
the visibility graph and the candidate lines as before. Consider the set C* of points that are dual to the
candidate lines C. Preprocess C* to be able to handle triangle range queries of the following type: Given
a query triangle (in dual space), either return a point within the triangle or answer that the triangle is
empty. By [Ede87 EW86], this preprocessing can be done in time O(Elog E) = O(E log N), yielding a data
structure of size O(E) that answers each query in time O(E"5%%).

Let e be a VG edge on the convex hull of O (thus, e does not generate a candidate line). We now call
procedure SPLIT(V G,e), which returns a set of candidate lines that shatter O.

SPLIT(G,e):
1. Find a candidate line £ that stabs e: The dual of e is a double wedge. By performing up to two triangle
queries, we find a point of C* within the double wedge. This step takes time O(E-5%).
2. Remove all edges of G stabbed by ¢: This can be done in time proportional to the number of edges
stabbed, using the results of [MW90] on maintaining visibility graphs under insertions of new obstacles.
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G is now split into two pieces G1 and Ga.
3. For each G; with at least two of the original objects, determine an edge e; on its convex hull (this can
be done in constant time), and let L; = SPLIT(G;,e;). Otherwise, let L; = 0. Return {€} UL U Ls.

If we ever fail to stab an edge e (in Step 1), then we know that the set O cannot be shattered, so we return
with failure. Otherwise, the algorithm produces a shattering, since the set of lines output is constructed
in such a way that every visibility graph edge is cut. Each step of SPLIT requires O(E-%%%) time for the
triangle queries. The effort of removing edges is charged off to the edges of the visibility graph, so it requires
only O(E) time overall. There can be at most n — 1 calls to SPLIT since each call yields at least one new
productive candidate shattering line. Thus, the algorithm requires total time O(Elog N + nE-%%).

Although the running time of our second algorithm is sometimes inferior to our first, it has the advantage
of generalizing to higher dimensions. In three dimensions, it allows us to obtain a slightly super-cubic time
algorithm to detect shatterability of polyhedra by planes.

4 Conclusion

Several directions for extensions and future research are possible for our problem. We list here a few problems
on which we are working:
1. Higher dimensions - How quickly can one determine if a given set of polyhedra in three dimensions
can be shattered by a set of planes? We have a slightly super-cubic bound at the moment.
2. Approximation algorithms — Given that the problem of finding a minimum cardinality shattering is
hard, what can be said about provably good approximation schemes to find a small size shattering?
3. Shattering with other subdivisions — Instead of using line arrangements to shatter a set of objects in
the plane, we may ask if there exists a convex subdivision that shatters the objects. This question is
answered by the methods of [ERS87] or [Wen90]. However, the complexity of the following problem
remains open: Determine if there exists a convex subdivision that shatters a set O of objects in such a
way that each bounded face of the subdivision contains exactly one object. Figure 2 gives an example
of three line segments for which such a shattering does not exist.
4. CSG Application — What is the complexity of the shattering problem of [SV89]?
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Figure 1: A typical instance of PS, along with the associated grid.
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Figure 2: (a) Three line segments that cannot be shattered. (b) Four shatterable line segments that cannot
be cut off one by one.



