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Abstract

We introduce a new class of simple polygon, weakly-
monotone, and give an optimal triangulation algo-
rithm for the class. We also present a simple linear-
time detection algorithm, which for input polygon P
returns the set of directions in which P is weakly-
monotone.

1 Introduction

Much work in computational geometry has focused
on special classes o? simple polygons. In this paper,
we introduce to the hierarchy a new class of poly-
gon, weakly-monotone, which contains the monotone
class. For many classes of polygons, such as mono-
tone and star-shaped, there exist linear-time algo-
rithms for determining if a polygon belongs to the
class ([P1S),[LP]). ‘These detection algorithms are of
interest for the insight they provide into the structure
of polygons. In this paper we present a linear-time
detection algorithm for weakly-monotone polygons,
which for input polygon P returns the set of direc-
tions in which P is weakly-monotone.

A detection algorithm for a special class of poly-
gon takes on added importance with efficient al-
gorithms that operate on the class. For example,
there exist simple, linear-time algorithms for trian-
gulating a monotone [GIPT] or a star-shaped [ET)]
polygon. In the full version of this paper, we
present a simple, linear-time triangulation algorithm
for weakly-monotone polygons, which together with
the detection algorithm allows us to triangulate a
weakly-monotone polygon in linear time, without
prior knowledge of the polygon’s weak-monotonicity.

Of course, a weakly-monotone polygon, or a star-
shaped or monotone polygon, can be triangulated
directly by any of the many general polygon trian-
gulation algorithms. However, each of the general
methods has a shortcoming. The only optimal algo-
rithm [Ch] is conceptually difficult, and too complex
to be considered practical. Many of the general algo-
rithms are simpler ((GIPT],[KKT),[To]), but each is
super-linear in the worst case. In this paper we show
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how to triangulate a weakly-monotone polygon P,
without prior knowledge of P’s weak-monotonicity,
with algorithms that are optimal, practical, and con-
ceptually simple.

2 Weakly-Monotone Polygons

Suppose we have a polygon P with vertices s and ¢,
and let 8 be a direction. Imagine two cars, one which
drives clockwise along P from s to ¢, and the other
which drives counterclockwise on P from s to ¢t. If
neither car faces direction @ during its drive, we say
that P is weakly-monotone in direction 8 for splitting
points s and t (see Figure 1).

We now give some auxiliary definitions, and a more
formal definition of weakly-monotone. Given a polyg- -
onal chain ¢ and a direction 8, write ¢ as the con-
catenation of (maximal) (6 + x)-monotone subchains
¢ = cj,...,Ck; we say that the chain c is weakly-
monotone in direction 8 if the following holds: any
line in direction 6 that intersects ¢ must do so in
such a way that if p € ¢; and ¢ € ¢; are two points
of intersection with p preceding ¢, then i1 < j. If a
and b are two points of a polygon P, then Pcw(a,b)
and Pccw(a,b) are the subchains of P obtained by
traversing P from a to b clockwise and counterclock-
wise, respectively (clockwise is the direction of traver-
sal such that the interior of P lies to the right of
each oriented edge of P). We say that a polygon
P is weakly-monotone in direction 8 with splitting
points s and t if Pcw (s,t) and Pccw (s,t) are weakly-
monotone in direction 6. A polygon monotone in 0 is
clearly weakly-monotone in 6.

If we are given that polygon P is weakly-monotone
in direction @ for vertices s and t, we can triangulate
P in linear time. The basic idea is as follows. Assume
without loss of generality that 0 is the horizontal di-
rection to the right (8 = 0). If Sp is the ray with
root s in direction 8 = x, and Tgr the ray with root
t and 6 = 0, append S; and Tg to Pcw(s,t) and
Pccow(s,t), so that Pcw (s, t) and Pccwés,t) are in-
finite, simple chains. The intersection of the region
below Pcw(s,t) with the region above Pccow (s,t) is
P. Furthermore, a partial horizontal visibility map of
each region can be computed in linear time, by taking
advantage of the weak-monotonicity of the boundary
chain. It is not difficult to merge the maps of the



regions to obtain a partitioning of P into polygons
monotone in the vertical direction. These monotone
polygons are in turn triangulated by the algorithm
of [GIPT). Each step is simple and runs in linear
time. The algorithm can also triangulate the exterior
of P. Details are given in [HM] and the full version
of this paper.

There exist specific linear-time triangulation algo-
rithms for many classes of polygons. A hierarchy of
polygons is presented in [ET], where any polygon in
the hierarchy can be triangulated by some specific al-
gorithm more simple than that of [Ch]. All classes in
the hierarchy are contained in the class of crab-shaped
polygons, for which there exists no specific triangu-
lation algorithm. Figure 2 shows that neither the
crab-shaped nor the weakly-monotone class contains
the other class. The class of anthropomorphic poly-
gons has a simple triangulation algorithm [To]; this
class neither contains nor is contained in either the
crab-shaped or weakly-monotone classes. Figure 3
demonstrates the lack of inclusion.

8 Weak-Monotonicity Testing

In this section we present our main result, a linear-
time detection algorithm for weak-monotonicity. We
require some additional definitions.

We represent directions as polar angles measured
in radians on the unit circle in the usual way. Thus,
6 € [0, 2x) for any direction 6. We consider a polygon
P with vertices po, . . ., Pn—1 ordered counterclockwise
on P, and edges eo,...,€n—1, Where €; = Pipi—1 i8
directed from p;_; to p; (arithmetic is mod n). Let
¢; denote the direction of edge e;. For a vertex p; with
incident edges e; and €it1, the directions ¢; and ¢4
partition the unit circle into two arcs, one of less than
« radians and one of more than x radians. Define the
sweep closure of p;, 3W(p;), to be the smaller (closed)
arc. For a subchain Pcew (e, b), 31(a, b2 = U's_tﬁ(p.-z,
where the union is over all vertices p; of Pccw(a,
except a and b. The sweep of a subchain Pccw (a, b),
denoted sw(Pccw (a,b)) or, simply, sw(a,b), is the
interior of 3w(a, b); that is, all directions of 3w(a, b)
but the two boundary directions.

With our definition of sweep, we can give
an alternate definition of weakly-monotone: a
simple polygon P is weakly-monotone in direc-
tion 6 if there exist vertices s and t such that
0 ¢ sw(Pcwl(s, t); 6 g awéPccw(a, t). If
é sw(Pcw (s, S,Jw( ccw(s,t)), then 6 +
x sw(Pcw (¢, 8)), sw(Pccw}t, s)), so a polygon
is weakly-monotone for pairs of opposite directions.
Similarly, a polygon is monotone in the traditional
sense for pairs of opposite directions. In fact, we can
demonstrate the similarity between weakly-monotone
and monotone polygons by rephrasing the usual def-
inition of monotone polygons: a polygon P is mono-
tone in directions 6,0 + x if there exist vertices s
and t such that sw(Pcw(s,t)), sw(Pccw(s,t)) C
(0—=/2,0+x/2).

A simple polygon has two types of vertices: convex
and reflex. For points @ and b on P (not necessarily
vertices), the interior vertices of Pccw (a,b) are all
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vertices of P on Pccw(a,b) except a and b. Given a
polygon P and points a and bon P, we define Af(a, b)
as the sum of the measure of the angle turned (in ra-
dians) for all convex interior vertices of Pccw(a,b)
minus the sum for all reflex interior vertices. Basi-
cally, Af(a, b) measures the number of radians swept
counterclockwise in traversing Pccw (a,b) from a to

We will now discuss an approach that partitions
the boundary of P by choosing midpoints of edges
of P as the partition points. In this manner every
vertex of P is an interior vertex of some subchain of
the partition. We call a subchain Pccw(a,b) a reflez
chain if A8(a,b) < 0. A subchain Pccw(a,b) is a
mazimal reflez chain (mrc) if it is a reflex chain and:

e every subchain Pccw(c,d) of Pccw(a,b) has
Ab(c,d) > Ab(a,d)

o every superchain Pccw/(c,d) of Pccw(a,b) has
Ab(c,d) > Ab(a,b).

For a reflex-chain Pccw(a, b), with a and b interior
points of edges e, and ey of P, we call the vertices of
Pccw(a, b) incident to eq and ep the interior bound-
ing vertices of Pccw (a, b), and the vertices of P inci-
dent to e, and e but not on Pccw(a, b) the ezterior
bounding vertices. In Figure 4, a maximal reflex chain
Pccw/(a,b) is shown with interior bounding vertices
p1 and p4, and exterior bounding vertices po and ps.

Lemma 1 The interior bounding vertices of a maz-
imal reflez chain are reflez vertices, and the ezterior
bounding vertices are convez vertices.

Lemma 2 Mazimal reflez chains do not intersect.

Lemma 3 Every reflez vertez belongs to a unique
mazimal reflez chain.

The above lemmas establish that the entire bound-
ary of P can be divided into alternating pieces of
maximal reflex chains and convex chains, where the
partitioning points are midpoints of edges of P. A
maximal reflex chain may contain convex vertices,
but a convex chain contains no reflex vertices. Note
that for a maximal reflex chain Pccw/(a,b), sw(a,b)
is an arc of —A6(a, b) radians if Af(a,db) > —2x, and
sw(a, b) is the entire unit circle if A8(a,b) < —27.

In trying to show that a polygon P is weakly-
monotone in a certain direction, we face the task of
choosing the splitting vertices, s and t. The follow-
ing lemma is the basis for our strategy of choosing
splitting vertices.

Lemma 4 Given a simple polygon P, if P is weakly-
monotone in direction 8, it is weakly-monotone in 0
for splitting vertices s and t that do not lie in mazimal
reflez chains.

We will say that a maximal reflex chain Pccw(a, )
double-sweeps a pair of opposite directions 8, 6 + x
if 0,0 + * € sw(a,b). Note that if the orientation
of a mrc is reversed, the double-swept pairs are un-
changed. The directions double-swept by the mrc
Pccw(a,b) in Figure 4 are shaded on the pictured



238

unit circle. We can characterize the set of directions
in which a polygon is weakly-monotone by the pairs
that are double-swept.

Theorem 5 A simple polygon P is weakly-monotone
in the pair of directions 8, 8+ if and only if 6 and 6+
x are not double-swept by any mazimal reflez chain.

Proof. Suppose 8 and 6 + x are double-swept by
a maximal reflex chain. Since we choose the split-
ting points outside of the mrc, one of the subchains
contains the mrc, and therefore sweeps 6 and 6 + «,
regardless of orientation. Thus, P is not weakly-
monotone in these directions.

Suppose no maximal reflex chain double-sweeps 6
and 6 + x. Consider all vertices of P that admit
tangencies in direction  or § + x. Assign to each
tangency either 6 or @ + x by traversing P counter-
cloc%(wise and assigning the direction encountered at
that vertex. (If an edge e; = P;_1P; faces in direction
6 or 6+ x, consider p;_; and p; tangencies if p;_; and
pi are both reflex or both convex.) P can be split into
two subchains such that one subchain contains all 8
tangencies and the other all § + x tangencies.

I? this were not true, we would have vertices p;,
Pj, Pk, and p@, i < j < k < I, where p; and
px are 6 tangencigs and p; and p; are 6 + x tan-
gencies. Define A8(pi,pj) = A8(pi,p;) +m(6, dis1)
+m(¢;,0 + x), where m(6,,6;) € (—x,x) such that
6; — 6, = m(6,,0;) (mod 2x). If we define A8 simi-
larly for the other three pairs, then Af(:,-) = x (mod
2x) for each pair, and Y A6(:, ) = 2. At least one
pair, say Pccw (pi, p;), has A8(p;, p;) < 0. By mak-
ing each of p; and p; either an interior or exterior
bounding vertex (depending on whether the vertex is
reflex or convex), we obtain a reflex chain that double-
sweeps 8 and 8 + x, a contradiction.

If the splitting points are chosen so that the 6 and
6 + = tangencies are in separate subchains, P is seen
to be weakly-monotone in 8, 6 + «.

Corollary 6 If a polygon P has a reflez chain with
sweep < —2x radians, P is not weakly-monotone.

Corollary 7 A polygon monotone in any direction is
weakly-monotone in every direction.

Corollary 8
A star-shaped polygon is weakly-monotone in every
direction. :

Theorem 5 provides us with a strategy for deter-
mining the set of weakly-monotone directions: find
all maximal reflex chains, and for each mrc eliminate
the appropriate pair of opposite arcs of directions. It
is interesting to note that while the set of directions in
which a polygon is monotone is a single pair of oppo-
site arcs, there can be O(n) pairs of weakly-monotone
directions (see Figure 5).

The Algorithm.

We define a turning function, ©p, whose domain
is the sequence of vertices encountered while twice

traversing P counterclockwise, from the starting ver-
tex po. (We distinguish between a vertex p; encoun-
tered on the first traversal of P and the copy of that
vertex, Pit+n, encountered on the second traversal.)
We define ©p(po) = ¢o and Op(p;) = Ab(a,p;) +
Op(po), for ¢ > 1, where a € eg. We call the turn-
ing function the current direction. We also define the
front direction, fp(pi) = max;j=o _..i Opr(p;).

The algorithm proceeds as follows. Beginning at
po, traverse P twice, updating ©p and fp at the
vertices. Whenever Op(p;) ;E fep(pi) for the cur-
rent vertex p;, we are in a reflex chain, and if
Op(pi) + * < fp(pi), then the reflex chain double-
sweeps some directions. If we encounter a vertex p;

such that ©p(pj_1) = fr(pj-1) but Op(p;) < fr(p;)
( = ©p(pj-1)), we store ¢;_; (refer to Figure 6).
Upon encountering vertex pj such that Op(pi)+7 <
fp(px) ( = ©p(pj-1)), we eliminate the open inter-
vals (¢x + 7, ¢;_1) and (¢, ¢j—1 — 7) (taken modulo
2x) as possible directions of weak monotonicity. Un-
til ©p(pi) > Op(pj-1) for the current vertex p;, we
retain the direction ¢;j_i, enlarging the eliminated
intervals until reaching a mrc. When once again
O©p(pi) = fr(pi), we discard ¢;_1, and thereby begin
looking for the next mrc. We must traverse P twice
because the initial vertex po could be in a mre.

End of Algorithm.

If (6,,6:) is a weakly-monotone interval of direc-
tions, it is possible in O(n) time to find vertices s
and t such that for any 8 € (6,,6;), P is weakly-
monotone in @ with respect to splitting points s and ¢.
Furthermore, for every (maximal) weakly-monotone
interval we can compute such points s and ¢ in O(n
total time. In this way, we can preprocess P in O(n
time such that, if we are given a pair of directions 6,
6 + x, we can query in O(logn) time whether this is
a weakly-monotone pair, and if it is we also return a
valid pair of splitting points. These query times are
optimal in the sense that a polygon can have O(n)
pairs of opposite weakly-monotone cones, and each
pair can require a distinct pair of splitting points.
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