252

An Algorit’hm to Find the Facets of the Convex Hull in Higher
Dimensions

Wm. Mott Stewart
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick

Abstract

Given a set S of n points in £¢ we describe the con-
vex hull of S by a linked set of its facets. Starting
with an initial simplex, the points of S are added one
by one with a simple update step. The algorithm is
O(d® x n x ®(n,d — 1)), where ®(n,d) is the worst
case number of facets of a convex hull of n points in
4. This is asymptotically optimal for even d.

1 Introduction

The convex hull problem is a central one in compu-
tational geometry, with application to pattern recog-
nition, image processing, stock cutting and allocation,
generation of voronoi diagrams, and a number of other
problems, where the generation of the convex hull is
often a preprocessing step for a main algorithm.

Definition 1 The convez hull conv(S) of a finite set
S ={p1,...,pn} in R? is the set of all conver combi-
nations of the points of S, 1.e.

conv(S) =
{alp1+"'+anpﬂ1 | 01+"'+O’n=1, 0520}

The convex hull is a convex polytope, or bounded
convex polyhedron, that can be represented by its set
of faces.

In R®' the convex hull is the closed segment
[min(S), max(S)], and the practical solution is the set
of faces {min(S), max(S)}. The problem is Q(n) and
an optimal solution is straightfoward.

In $2 the convex hull is the smallest convex polygon
containing S, and the practical solution is the set of
faces or edges of the polygon. The problem is trans-
formable from sorting, and therefore Q(nlogn). The
Graham Scan [3] was the first optimal algorithm for
R2, using a sorting preprocessing step and amortized
constant time update step. A number of subsequent
algorithms have been developed.

In R3 the convex hull of S is the smallest 3-
dimensional polytope containing S, with vertices that

coincide with the extreme points of S. The num-
ber of faces is O(n), but the lower bound complexity
Q(nlogn) is inherited from R2. Preparata and Hong’s
‘divide and conquer’ algorithm [4] is the only published
optimal solution for R3.

In R4, d > 4, the number of faces of a convex hull
can rise rapidly, and be as much as ®(n,d) , where
®(n,d) = O(nl¥2l). There are four known algo-
rithms for higher dimensions.

Chand and Kapur’s ‘giftwrapping’ algorithm [2] was
the first solution with a complexity of O(n x ®(n,d)).
This algorithm only maintains the facets or highest
dimensional faces of the hull.

Kallay’s ‘beneath-beyond’ algorithm [5] has the
same complexity as [2], O(n x ®(n,d)). This algor-
ithm maintains the complete facial graph, or faces of
all dimensions, and is on-line.

Seidel’s algorithm [6] operates in the dual space, up-
dating the (dual) facial graph with the addition of each
new point by a similar method to Kallay. Seidel’s al-
gorithm, however, has complexity ©(®(n,d)) for even
d and O(n x ®(n,d)) for odd d, which is the same as
the algorithm presented here. However, the algorithm
presented here has a much simpler update step, and
does not need to maintain the entire facial graph.

Seidel also discovered another algorithm [7] which
constructs the convex hull at logarithmic cost per
facet, and is therefore O(F logn), where F is the ac-
tual number of facets of the convex hull.

2 Convex Polytopes

We consider a set S of n points in ®¢, for any d > 2
and n > d + 1. For simplicity we assume that S is in
general postion.

Definition 2 An ezrtreme point p € S is a point that
ts not the conver combination of any other two points
of S. The set of all extreme points is denoted ext(S).

Theorem 1 (Brondsted, theorem 7.2) The con-
vez hull of S is equivalent to the polytope P of the
ertreme points of S, i.e., P = conv(ext(S)).

Definition 3 A face F of a polytope P is a convez
subset such that, for any two distinct points y,z € P
with |y, z[NF # 0, then [y,2] C F.

We call a face F a k-face if dim(F) = k. The proper
faces of P are of dimension 0 through d—1. All proper
faces lie on the boundary of P.

Theorem 2 (Brondsted, theorem 7.3)
Every proper k-face F of a polytope P is itself a k-
polytope, and ext(F) C ext(S).

We represent a k-face F by its k + 1 extreme points
ext(F)C S.

The algorithm presented here maintains only (d—1)-
faces or facets, and the (d — 2)-faces or subfacets. We
shall also consider (but not store) the (d — 3)-faces or
subsubfacets.

The well-known fundamental theorem concerning
- the facial structure of polytopes follows.

Theorem 3 A subfacet of a polylope P is contained
in exactly two distinct facets of P.

Each simplicial facet F then contains (4_,) = d
distinct subfacets, and each subfacet is shared with
one neighboring facet G.

3 Data Structure

We represent a d-dimensional convex hull by its set
of facets P, where each facet is linked by pointers to
its d neighbors. In particular, each facet 7 € P has
associated with it the following information.

1. Vert” ; the d extreme points of S that define F,
ie. Vert” = ext(F).

2. Subff, i=1,...,d ;each subfacet defined by a
distinct combination of d — 1 points of Vert”.
3. Neig7, i =1,...,d
. F
facets, such that Vert” A VertNeig: = Subfl .

4. Half : the equation of the halfspace bounded
by the hyperplane containing ¥, and oriented so
that S C Half”.

; pointers to neighboring

Given Vert” we assume that Half” costs O(d®) to
create using any of the standard methods. Given a
facet F and a point p, the test (p € Half")? then
takes O(d) time.

4 Algorithm

The set S is first sorted lexicographically. An initial
d-simplex P is created from {p,...,pd+1} using the
data structure given above.

253

The algorithm then consists of a simple update
step, where each point p;,i = d+2,...,n Is succes-
sively added to P. Note that each p; is external
to conv({p1,--.,Pi-1}) due to the lexicographic sort.
The terminology for the update is motivated by imag-
ining a camera at p;.

Algorithm UPDATE:
1. Identify the set of visible facets,

V={F|FeP, p ¢&Half"}
which must be later deleted from P.

2. The set of subfacets shared by V and the set of
non-visible facets is called the visible boundary B.
Create and add to P the cap C of new facets con-
taining p;,

C = {F|Vert" = fu{p}, f € B}
Link C to the set of non-visible facets of P on B.

3. Interlink neighboring facets in C across their com-
mon subfacets.

4. Delete V from P.

First, note that at least one visible facet F can al-
ways be provided by the previous update.

Lemma 1 After the update of P with p;_; at least one
facet F € C is visible with respect to p;.

Proof: S is lexicographically sorted. Therefore
[pi-1,pi) Nconv({p1, ..., pi-1}) = pi—1, which implies
that p;_, is visible from p;. Therefore at least one facet
F € C containing p;—; must also be visible from p;. O

Let us now examine the four steps of the update in
more detail.

4.1 Steps 1 and 2

Steps 1 and 2 are performed together. We identify
the visible set V by a simple recursive search of the
neighboring facets of the first visible facet F provided
by the previous update. At the same time it will be
convenient to create the cap of new facets C and link
C to the set of non-visible facets of P on the visible
boundary B.
We start with V = F and C = 0.

Algorithm TRAVERSE (F) recursive:

1. Examine each neighboring facet Gof 7. IfG g V
(that is, G has not already been visited) then:

(a) If p; ¢ Half®, then G is visible. Put G in V,
and then recursively TRAVERSE (G).

254

(b) Otherwise, G is non-visible. The subfacet f
shared by F and G is in the visible boundary
B. Create a new facet Vert” = fU{p;}. Link
T and G across f. Put 7 in C.

At termination of TRAVERSE, V will be identified,
C will be created, and C will be linked to P across B.

4.2 Step 3

The major step remains—interlinking the facets of C
with each other. Interestingly, most neighboring facets
of the facets of C' are themselves in C.

Lemma 2 Each facet of C has one neighboring facet
in P and d — 1 neighboring facets in C.

Proof: Consider any facet 7 of C. Only one subfacet
of T does not contain p;, i.e. subfacet f = Vert” \ {p;}.
Now, f cannot be shared with some other facet W € C,
because then W = fU {p;} = T, so f must be shared
with a neighboring facet in P.

The other d — 1 subfacets of 7 contain p;. But only
facets of C contain p;, so the remaining d — 1 neigh-
boring facets of 7 must be in C. D

We interlink the facets of C by walking around a one-
dimensional, closed, and unique path of neighboring
facets in P that contain a very particular subsubfacet.
First, note that such a path exists.

Theorem 4 The path through neighboring facets of a
d-polytope, all of which contain the same subsubfacet,
is one-dimensional, closed, and unique.

Proof: Consider any facet ¥ and subsubfacet z C
Vert” . Consider F as a (d — 1)-polytope. Then z is a
subfacet of F, and therefore contained in exactly two
distinct facets f and g of F.

But f and g are really subfacets in the d-polytope
P, so z is contained in exactly two subfacets of F.
Therefore exactly two neighboring facets of contain
z, and the path is one-dimensional. The path is closed
because the number of facets of P is finite. The path
is unique because it is unique from ¥. O

For each 7 € C and null Neigf we find the neigh-
boring facet W € C sharing Subij as follows.

Algorithm WALK:

1. First, note that Vert” = f U {p;}, where f is a
subfacet of B. Call the visible and non-visible
facets sharing f as F and G respectively.
Second, consider the subsubfacet z = Subf;-r\{p,-}.
Note that p; € z,s0 2 C f, z C Vert”, and
2z C Vert’. Therefore, F and G are on a one-
dimensional closed path around subsubfacet :z.

Figure 1: Walking Around a Subsubfacet

pi Pi

T w
4 F H
B f h

! !
P\V g I

Furthermore, since this path crosses the visible
boundary at f it must therefore must cross it
again.

2. Walk around 2z through the visible set V, from
visible F away from non-visible G, and stop when
the first non-visible facet 7 is encountered. Call
the previous (visible) facet on the walk H. Call
the subfacet shared by H and Z as h.

3. Note that h is in B. There is therefore a facet
W € C, such that Vert” = hU {p:}, linked to
T across h. By lemma 3 below, Subij C Vert™.

Interlink 7 and W across Subff.

We now show that W does indeed contain SubeT.
Lemma 3 Subff C Vert™.

Proof: z C Vert”™ and z C Vert?, so z C h. Since
W = hU {p;}, therefore z C Vert”, and since p; €
Vert”, therefore z U {p;} C Vert™.

But recall that 2 = Subij\{p,-}, so by re-arrangment

Subf;-r = zU{p;}. Therefore Subff C Vert”. O

An example of this walk in %3 is shown in Figure 1
around subsubfacet (vertex) z, from facets G and F to
facets H and Z, to find facet W € C sharing subfacet
2U {p;} with facet T € C.

After completing the interlinking of C, we delete V
from P (step 4), thus completing the update.

5 Complexity

The following analysis shows that the complexity of
each update is strictly a function of the size of C.

Each update consists of a traversal step to identify
V and create C (steps 1 and 2), and an interlink step
to interlink the facets of C (step 3).

There are at most d visits to each facet 7 € V during
the traversal step—once from each neighbor. The first
visit costs O(d) time to determine p; € Half* , and each
subsequent visit is O(1). This one-time O(d) cost per
facet of V may be absorbed in the original O(d3) cost
to create each facet of V, because V is deleted at the
end of the update.

The traversal step also creates a facet of C during
each encounter with the visible boundary B. We re-
quire a bound on |C|.

Lemma 4 |C|=0(®(i—-1,d-1)).

Proof: Consider a verter figure V of p;, defined by
V = HNP, where H is a hyperplane that separates p;
from all other vertices of P. V is a (d — 1)-polytope,
and there is a 1-1 correspondence between:

1. the edges of P containing p;, and the vertices of
V;

2. the facets of P containing p;, and the facets of V.

There are at most i — 1 edges containing p;, and there-
fore at most ¢ — 1 vertices of V. There are therefore
at most (i — 1,d — 1) facets of the (d — 1)-polytope
V, and similarly at most ®(i — 1,d — 1) facets of P
containing p;. O

In other words, the worst-case size of C is the same
as the worst-case complexity of the problem in one
lower dimension. The traversal step for each update
of point p; then costs O(d3 x ®(i — 1,d — 1)) to create
C.

During the interlink step, facets of V are processed
during each walk around a subsubfacet. Using an ap-
propriate data structure, each visit can be done in O(d)
time to find the next facet in the path. Each facetin V
may be visited at most once for each contained subsub-
facet, and a facet of a simplicial d polytope contains
(4_,) = O(d?) subsubfacets. The interlink step then
costs O(d® x |V |). This one-time O(d®) cost per facet
of V may be absorbed in the original O(d3) cost to
create each facet of V, because V is deleted at the end
of the update.

The complexity of each update of point p; is
therefore strictly a function of the size of C,
O(d® x ®(i — 1,d — 1)). Wecan now present the over-
all complexity.

Theorem 5 The algorithm is
O(d® x n x ®(n,d — 1)), which is optimal for even d.

Proof: Each update

of point p; costs O(d® x ®(i —1,d—1)). The total
cost is then

O(Cizasz € x &(i-1,d-1))

255

or, recalling that ®(n,d) = O(nl.d/2J),
O(d® xn x ®(n,d—1))

This is d® xn times the complexity of the problem in
one lower dimension. But when d is even,

n X nl(d-l)/z.l = nl.dlzj

Therefore, the algorithm is optimal when d is even,
and exceeds optimality by a factor of n when d is odd.
O

6 Conclusions

-The algorithm has been implemented and performs
well for sets from various distributions. It is expected
that the assumption of general position may not be
necessary. Similarly, an on-line version may be possi-
ble.

It is not yet known how much space is saved by
storing only the facets as opposed to the entire facial
graph, expressed as a function of d. However, the com-
pact data structure seems to provide an advantage that
becomes more pronounced in higher dimensions.

Lemma 4 indicates that any on-line algorithm which
updates the convex hull point by point will exceed
optimality by a factor of n in odd dimensions in the
worst case, since the number of new facets that must
be added during each update can be as much as the
number of facets in the final hull. For example, this
worst case is manifested by points arriving one by one
in lexicographic order from a cyclic polytope.

References

[1] Brondsted, A. (1983) An Introduction to Convez
Polytopes, Springer-Verlag, New York

[2] Chand, D. R.; Kapur, S. S. (1970) An Algorithm
for Convez Polytopes, Journal of the Association
for Computing Machinery, Vol. 17, No. 1, Jan-
uary, pp. 78-86

[3] Graham, R. L. (1972) An Efficient Algorithm for
Determining the Conver Hull of a Finite Planar
Set, Information Processing Letters 1, pp. 132-133

[4] Preparata, F. P.; Hong, S. J. (1977) Convez Hulls
of Finite Sets in Two and Three Dimensions,
Communications of the ACM, Vol. 20, No. 2,
February, pp. 87-93

[5) Shamos, M. I.; Preparata, F. P. (1985) Computa-
tional Geometry, Springer-Verlag, New York, Sec-
tion 3.4.2, pp. 131-134

256

[6] Seidel, R. (1981) A Convezr Hull Algorithm Op-
tazmal for Point Sets in Even Dimensions, Tech.
Rep. 81-14, Dept. of C.S., Univ. of B.C., British
Columbia, Canada

[7] Seidel, R. ~ (1986) Constructing
Higher-Dimensional Conver Hulls at Logarithmic
Cost per Face, Proc. 18th ACM Symp. on Theory
of Computing, pp. 404-413, ACM, May

