261

Las Vegas Gift-Wrapping is Twice as Fast
(Extended Abstract for 2nd CCCG)

Rex A. Dwyer!
North Carolina State University

Abstract

A randomized version of the gift-wrapping algorithm for convex hulls performs only
about half as many floating-point operations as the standard version for large problems.
Furthermore, the floating-point working set of its inner loop is half as large, which
magnifies the potential speed-up for certain dimensions on machines with a limited
number of floating-point registers. Ongoing work is aimed at analytically proving the
conjecture that the randomized algorithm is faster with very high probability. This
has been verified numerically for moderately large point sets.

The convex hull of a set of n points in R? is the intersection of all closed halfspaces
that contain all n points. The gift-wrapping algorithm [1, 2] for constructing a description
of the structure of the convex hull of a point set is based on the observation that every
subfacet ((d — 2)-dimensional face) of the convex hull is contained by exactly two facets
((d — 1)-dimensional faces). The algorithm maintains a list of subfacets for which exactly
one containing facet is known. At each step of the algorithm, a subfacet is removed from this
list, and the unknown point (or points) completing its unknown facet are determined. The
new facet is output. Next, all of its subfacets are searched for in the list. Those found are
deleted, since both of their facets are now known. Those not found are inserted; for these
the most recently found facet is the only one known. The first facet is found by invoking the
procedure recursively in (d — 1) dimensions.

The gift-wrapping algorithm is not an optimal algorithm, but it is reasonably fast, con-
ceptually simple, and not difficult to implement. Since it appears to be a good choice in
many applications, constant-factor improvements to its running time are desirable so long
as they do not make the algorithm more complicated. In this paper we present such an
improvement based on randomization techniques. We show that the improved algorithm is
twice as fast on average, and faster with high probability. While the analysis of the “faster-
with-high-probability” claim is apparently quite difficult, the mean is quite easy, and, at this
level, the conceptual simplicity of the algorithm is maintained.

In the sequel, we assume that the n points are in general position. This implies that the
convex hull is simplicial, that is, that each k-face is a k-simplex defined by exactly &£ + 1
points. Now consider a d-tuple of non-coplanar points F' = (Fy, F;,...,Fy) and a further
point P. The points of F' define a hyperplane and two disjoint open halfspaces; we say that
one is below F and the other is above F. The order of the points in the d-tuple determines
which side is below and which above; an eve.. permutation of the points preserves this; an
odd permutation reverses it. Also, if P is above F', then Fj is below (Fy, F5,..., Fy_1, P). If
a d-tuple of points defines a facet of the convex hull, clearly every other point lies below it,

1Supported by National Science Foundation Grant CCR-8908782. Address: Dept. of Computer Science,
N.C. State University, Raleigh, NC 27695-8206. E-mail: dwyer@cscadm.ncsu. edu. (©1990 Dwyer

262

Iind an initial facet (Fy, Fy, ..., Fy);
InsertQ(Fy, Fa, Fs, ..., Fy_1; F1); InsertQ(Fy, Fy, Fs, ..., Fa_1; F5);
oo InsertQ(Fy, Fo, Fs,. .., Fy; Fy_y);

While ~Empty@() do

begin ‘

(Fl, FQ, ey Fd-1§ Pinit) = DeleteQ();

Pcand = Pinit;

fori:=1tondo
if Above((Fy, Fy,...,Fy_1,Peana), P;) then Puypng := P

Pmaz ‘= Lcand;

InsertQ(Prmaz, F2, Fs, ..., Fy_1; F1); InsertQ(Fy, Praz, F3, ..., Fa_1; Fy);
oo InsertQ(Fy, Fo, Fs, . .., Praz; Fa1);

end;

Figure 1: Naive Gift-Wrapping

and none lies above it. An acceptable solution to the convex-hull problem is an enumeration
of the d-tuples that define facets.

If we define the procedure Above(F,P) to return “true” when P is above F', we can
express a simple version of the gift-wrapping algorithm by the pseudo-code of Figure 1. We
assume that the procedure Insert() inserts a subfacet record into the list only after searching
to see if it is already there, deleting both records if it is found. A subfacet’s record in the
list is actually an odd permutation of its known facet; thus every other point lies above this
d-tuple. The inner loop attempts to replace the last point in the d-tuple, P.sng by another
so that every point lies below the d-tuple. It does this by examining every point P; and
replacing P..nq by P; if P; is above the current d-tuple. Every update of P.,,4 as the search
progresses increases the angle between the hyperplanes defined by (Fy, Fs, ..., Fa_1, Pinit)
and (Fy, Fy,. .., Fi_1, Peand). Finally, when the inner loop terminates, P, is the point that

maximizes this angle.
As is well known, the test Above((Fi,Fa,...,Fy_1, Pend), P;) may be implemented by
evaluating

LA D)
1 2 d
EE
1 F F F
d-1 d—1 d-1 >o0.)
O r%")
I R O

Evaluating this determinant requires ©(d®) arithmetic operations by a straightforward
method such as Gaussian elimination. Thus, if a given input set has n points and its convex
hull has f facets, the while-loop requires ©(d®fn) arithmetic operations. In fact, this term
dominates the running time.

Chand and Kapur [1] present a more efficient method to find P... Their method directly
computes the tangent of the angle formed by each point P;, then simply chooses the point
with the largest angle. First, two vectors N and E are computed from (Fy, Fy, ..., Fa_1, Pinit)

263

in ©(d®) time. Then, the n tangents are computed from the formula
tan 0; = ((P;, N) = (Pinit, N))/((Pi, E) = (Pinit, E}).

In the inner loop, 1 division, 2d multiplications, 2 subtractions, and 2d — 2 additions are
performed, for a total of 4d + 1 operations. (The inner products (Pinit, N) and (Pinit, E) can
be computed just once for all 7.)

The total number of operations for the while-loop is (4d + 1) fn + O(d3f), a significant
improvement in the dominant term. It is advantageous to keep (2d + 2) quantities in fast
registers for the inner loop: The coordinates of N and E, and the two inner products
<Pim't, N) and (-Pinit, E)

Our work, however, takes a different tack to speeding up this algorithm, a method using
random numbers to give a running time that, for any fized input, does about half as many
arithmetic operations as the Chand-Kapur algorithm on the average. The average here is
taken over the behavior of the algorithm, i.e., over possible sequences of random numbers,

and not over any assumed input distribution.
The determinant in (1) can be expanded by minors along the first row to give

(2 d 2 d 1 2 d-1
Pc(a})w P‘(:&Z)‘d P((:(‘:})ld 1 B 2334 Pg&z)‘d 1 P((};d Pﬁ(})‘d P(ana{;
Faor FaZy - Faly R M T e L
: U E +o 4 (=2 | >o0.
F%l) F%” . F9 1 B Fd 1 BV g pld=1)
R S O 1 F‘?Q) F?d) v B pldmD)

Given the values of the d+1 minor determinants, the value of Above((Fy, F3,. .., Fa_1, Pand). P:)

can be determined in an additional d multiplications and d additions. These determinants
can obviously be computed in O(d*) time — in fact, O(d®) is possible. Unfortunately, they
cannot be computed once per facet, outside the for-loop, since they change whenever the
assignment P,,q := P; is performed. However, if u; denotes the number of executions of
this statement to find the ith facet, the while-loop requires 2dn f + O(d® L, u;) operations,
with f < ¥ u < nf. This is still ©(d3nf) in the worst case, a factor of ©(d?) worse than
the Chand-Kapur algorithm. But in the best case, it is ©(2dn f + d3f), better by a factor of
about 2. Also, only half as many registers — for the (d + 1) minor determinants — could
be used to advantage.

Since the for-loop essentially searches for the maximum of a sequence of angles, we are
reminded that the expected number of intermediate maxima in such a search is about Inn
when every permutation of the ranks of the inputs is equally likely. No such condition holds
a priori for our input, but we can make it hold by randomly shuffling the points in the
array in O(n) time at the beginning of the algorithm. This gives a while-loop requiring
2dnf + O(nf + d®f log n) operations on average. This is a significant improvement.

However, we can make only rather weak statements about the probability that the new
algorithm is faster than the Chand-Kapur version. Since the number of updates required
for the various maximum searches cannot be assumed to be independent, we are restricted
to applying inequalities like Markov’s, which implies that the new version is slower with
probability less than 2d/(4d + 1) = 1/2. _

A theoretical — but not practical — solution would be to shuffle the array before each
maximum search. This would guarantee independence and admit a good bound on the

264

probability of slow-down that decreases exponentially in the product nf. But depending
on the random number generator used, it would also increase the operation count 2dnf to
perhaps (2d + 3)nf, and add many (2(nf)) new memory references as the data is moved
during shuffling.

Instead, we explore a less costly method of randomization. We shuffle completely only
before the first search. On subsequent searches, we choose a random integer 5 (1 < j < n),
then, in two successive inner for-loops, consider first the jth through nth, and then the
first through (j — 1)st points as candidates. This does not guarantee independence of the
number of updates for the maximum searches, but it appears to reduce the maximum possible
covariance of updates of successive searches so that non-trivial upper bounds on the variance
and higher moments of the total number of updates can be derived. These bounds should
be sufficient to prove that the probability of the randomized algorithm being slower that the
Chand-Kapur algorithm decreases exponentially in nf, a very strong result.

To analyze the covariance, we are considering the following combinatorial problem: For
any permutation Il on {1,...,n}, let F(II) be the number of running maxima in a left-to-
right scan of II. On the average, we know EF(II) ~ H, ~ Inn. Call permutations II; and
I1; rotationally equivalent if for some v < n, we have II;(j) = II2((j + v) mod n) for all ;.
Let p,n be the probability that a randomly chosen permutation lies in an equivalence class
S for which maxypes F(II) < h. The pn, can be shown to satisfy

e = L
Pl = 0 (TL>1);
1 n-1
Pah = =7 2 Pih-1Pnih:

=1

If we define the generating functions Py(z) = 3, pra2z™ !, then
P(z) = 1
Prii(z) = exp (/ Py (2) dz)

At present we are investigating this functional equation. Direct numerical calculations based
on the recurrence indicate that E(maxnes F(II)) ~ 2H, for a randomly chosen equivalence
class S. An analytical proof should follow soon.

References

[1] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. Journal of the AC}M,
- 17(1):78-86, January 1970.

[2] G. Swart. Finding the convex hull facet by facet. J. Algorithms, 6:17-48, 1985.

