278

An On-line Construction of Higher Order Voronoi Diagrams and its

Randomized Analysis
(Abstract)

Jean-Daniel Boissonnat! Olivier Devillers' Monique Teillaud!

Key words : Computational geometry, On-line algorithms, Random sampling, d dimensional
order k Voronoi diagram.

Previous work

The order k Voronoi diagram has been introduced in [SH75] in order to deal with k-closest points
and related distance relationships. Lee [Lee82] gave the first algorithm for constructing the order
k Voronoi diagram of a set of n points (or sites) in the plane. This algorithm constructs the
order k Voronoi diagram from the order (k — 1) Voronoi diagram in time O(knlogn). Thus the
order k Voronoi diagram (in fact, the family of all order j Voronol diagrams for 1 < j < k — the
order < k Voronoi diagrams for short) can be constructed in time O(k*nlogn). This bound can
be tightened to O(nlogn + k?n) using the result of [AGSS89). ‘

Chazelle and Edelsbrunner [CE85] developed two versions of an algorithm that is better for
large values of k. The first one takes O(n?logn + k(n — k)log?n) time and O(k(n — k)) storage
while the other takes O(n? + k(n — k)log? n) time and O(n?) storage.

A radically different approach, pioneered by Clarkson [Cla87), uses random sampling. Clark-
son’s algorithm determines the order k Voronoi diagram of n sites in the plane in time O(kn'**)
with a constant factor that depends on e.

More recently, in order to gain simplicity, several authors have designed algorithms which are
incremental and randomized. Such an approach has been applied successfully for constructing
Voronoi diagrams in the plane [C589,GKS90,MMO90] and in d-space [BT89,Mul89]. A common
point to all these randomized algorithms is that no distribution assumptions are made as it is
the case, for example, in [Dwy89]. Hence the results remain valid for any set of points, provided
that the points are inserted at random.

The algorithms in [CS89,MMO90,Mul89] are incremental in the sense that the points are
introduced one at a time. But all the points need to be known in advance and maintained in an
auxiliary data structure, the so called conflict graph.

The well known relationship between higher order Voronoi diagrams in d dimensions and
arrangements of hyperplanes in d + 1 dimensions can be used for the design of an algorithm
that constructs the order < n — 1 Voronoi diagrams in time and storage O(n%t1), as shown by
Edelsbrunner, O’Rourke and Seidel [EOS86].

In d > 2 dimensions, Clarkson [CS89] has shown that the size of the order < k Voronoi

diagrams is O(k[%u-l nl %)). Very recently, Mulmuley [Mul89,Mul] has obtained a randomized
algorithm whose expected complexity meets this bound for d > 2 and whose complexity is
O(nk? 4+ nlogn) for d = 2. This algorithm also uses a conflict graph.

tINRIA, 2004 Route des Lucioles, B.P.109, 06561 Valbonne cedex, France, E-mail : boissonn@alcor.inria.fr
* This work has been supported in part by the ESPRIT Basic Research Action Nr. 3075 (ALCOM).

279

Main result

None of the previous algorithms, except [BT89,GKS90] are on-line. If one new site is to be added,
the Voronoi diagram has to be entirely reconstructed.

In this abstract, we present an algorithm that is on-line. After each insertion of a new
site, the algorithm updates a data structure, called the k-Delaunay tree [BDT90]. This structure
generalizes the Delaunay tree, introduced in [BT86,BT89] to compute the Delaunay triangulation
(and, by duality, the Voronoi diagram) of a set of points. The k-Delaunay tree contains all the
successive versions of the order < k Voronoi diagrams and allows fast point location.

As any dynamic algorithm constructing the Voronoi diagram, ours cannot be very good in
the worst-case. However, a randomized analysis shows that it is very efficient on the average.
The analysis of our algorithm has some similarity with the ones in [BT89,CS89,GKS90]. Our
main result is stated in the following theorem :

Theorem : The k-Delaunay tree (and thus the order < k Voronoi diagrams) of n sites in the

plane (resp. in d-space) can be on-line constructed using O(k3n) (resp. O (k‘“‘ln 1])) expected

storage and with O(k*logn) (resp. O (kd+2n L] -110g k)) ezpected update time.

The analysis of the algorithm is randomized. Our results hold when averaging over all possible
permutations of the set of inserted points. An important point about our analysis is that it is
not amortized. These results are asymptotically optimal for fixed d and k. These bounds are not
as good as those of Mulmuley : the increase in the exponent of k is the price to be paid to have
an on-line algorithm.

An important point is that these results hold whatever the point distribution may be. The
algorithm is simple and, moreover, the numerical computations involved are also quite simple :
they consist mostly of comparisons of (squared) distances in order to check if a point lies inside
or outside a ball.

Experimental results, for uniform as well as degenerate distributions of points, have provided
strong evidence that this algorithm is very effective in practice, for small values of k.

For large values of k, a similar structure, based on the order k furthest neighbours Voronoi
diagrams could be derived. It provides results similar to the ones above to construct all order
> n — k Voronoi diagrams and to find ! furthest neighbours for I < k.

The k-Delaunay tree can also be generalized to construct order < k Voronoi diagrams of line
segments. Results will be reported in a forthcoming paper [BDS*90].

Overview of the algorithm

We denote by Vori(S) the order k Voronoi diagram of a set S of n sites in the plane. Let T be a
triangle whose vertices are sites of S and let B(T') denote the open disk circumscribing triangle
T.

A fundamental property of order k Voronoi diagrams is that T corresponds (is dual) to a
vertex of both Vorgy1(S) and Vorgyo(S) if B(T) contains k sites.

Reciprocally, a vertex of Vory(S) is dual to a triangle whose circumscribing disk contains
k — 1 or k — 2 sites in its interior.

280

Including and excluding neighbours

For a triangle T, we will define 2 neighbours through each of its 3 edges : one will be called the
including neighbour and the other one the ezcluding neighbour. This notion of neighbourhood
corresponds to the actual notion of adjacency in the higher order Voronoi diagrams.

Let E be an edge of T and p be the third vertex of T. Let us consider a moving disk B whose
boundary passes through the end points of £, and whose center moves along the bisecting line
of E. Starting from B = B(T'), we can move B in two opposite directions : the one such that
p € B is called the including direction and the other such that p € B is called the excluding
direction. We stop moving B as soon as its boundary encounters a site different from the end
points of E. Let ¢; (resp. ge) be the first site encountered in the including (resp. excluding)
direction. The triangle T; (resp. T.) having E as an edge and g; (resp. ¢.) as a vertex will be
called the including neighbour (resp. ezxcluding neighbour) of T through edge E (see Figure 1).
Notice that ¢; and g may be on either side of E.

Figure 1: Including and excluding neighbours

Remark : The following property will be useful in the sequel : B(T) C B(T;)U B(T.). Hence,
if a site m lies into B(T'), we can deduce that m lies into either B(T;) or B(T.).

Construction of the k-Delaunay tree

Our algorithm is based on the well known incremental algorithm of [GS78] for constructing the
Delaunay triangulation. Each site is introduced one after another in each of the order < k
Voronoi diagrams and each diagram is subsequently updated. We will describe this algorithm at
the same time as the k-Delaunay tree, but it is actually independent of that data structure.

The k-Delaunay tree is not really a tree but a rooted direct acyclic graph. The nodes are
associated to triangles. We will use the same word triangle for both a triangle and its associated
node. -

Following our algorithm, each site is introduced one after another and we keep all triangles
in a hierarchical manner in the k-Delaunay tree, creating appropriate links between “old” (i.e.
created before the introduction of the site) and “new” triangles (i.e. created after the introduction
of the site). This will allow to efficiently locate a new site in the current structure.

For the initialization step we choose 3 sites. They generate one finite triangle and six half
planes (considered as infinite triangles) limited by the supporting lines of the finite triangle.
These 7 triangles will be the sons of the root of the tree.

We define the current width of a triangle T dual to a vertex of some higher order Voronoi
diagram to be the number of already inserted sites lying inside B(T).

The k-Delaunay tree will be constructed so that it satisfies the following property :

281

(P) all the triangles of current width strictly less than k are present in the k-Delaunay
tree.

Hence, the triangles dual to the vertices of the order < k Voronoi diagrams are all present
in the structure. Moreover, we keep their including and excluding neighbours (or equivalently
their adjacency relationships in the corresponding Voronoi diagrams). The k-Delaunay tree thus
contains the whole information necessary to construct all the order < k Voronoi diagrams.

When a new site m is to be inserted, we traverse the k-Delaunay tree to find all the triangles
whose balls contain m and we update the k-Delaunay tree in such a way that property (P) is
preserved.

References

[AGSS89] A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor. A linear time algorithm for computing the Voronoi

[BDS*90]

[BDT90]

(BT86]
[BT89)
[CE83]
[Cla87)
[CS89]
[Dwy89)
[EOS86)
[GKS90]
[GS78)
[Lees2]
[MMO90]
(Mul]
[Mul8g)

[SH75)

diagram of a convex polygon. Discrete and Computational Geometry, 4:591-604, 1989.

1.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of Random Sampling
to On-line Algorithms in Computational Geometry. Technical Report, Institut National de Recherche
en Informatique et Automatique, (France), 1990. To be published.

1.D. Boissonnat, O. Devillers, and M. Teillaud. A randomized incremental algorithm for constructing

higher order Voronoi diagrams. In Second Canadian Conference on Computational Geometry in Ottawa,
August 1990. Full paper available as Technical Report INRIA 1207.

1.D. Boissonnat and M. Teillaud. A hierarchical representation of objects: the Delaunay Tree. In Second
ACM Symposium on Computational Geometry in Yorktown Heights, June 1986.

1.D. Boissonnat and M. Teillaud. On the Randomized Construction of the Delaunay Tree. Technical
Report 1140, Institut National de Recherche en Informatique et Automatique, (France), December 1989.
B. Chazelle and H. Edelsbrunner. An improved algorithm for constructing kt"_order Voronoi diagrams.
In First ACM Symposium on Computational Geometry in Baltimore, pages 228-234, June 1985.

K.L. Clarkson. New applications of random sampling in computational geometry. Discrete and Com-
putational Geometry, 2:195-222, 1987.

K.L. Clarkson and P.W. Shor. Applications of random sampling in computational geometry, II. Discrete
and Computational Geometry, 4(5), 1989.

R.A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time. In 5th ACM Symposium
on Computational Geometry in Saarbruchen, June 1989.

H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with
applications. SIAM Journal on Computing, 15:341-363, 1986.

L.J. Guibas, D.E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi
diagrams. In ICALP, July 1990.

P.J. Green and R. Sibson. Computing Dirichlet tesselations in the plane. The Computer Journal, 21,
1978.

D.T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Transactions on Computers,
C-31:478-487, 1982.

K. Mehlhorn, S. Meiser, and C. O’Diinlaing. On the construction of abstract Voronoi diagrams. In C.
Choffrut and T. Lengauer, editors, STACS 90, pages 227-239, Springer-Verlag, 1990.

K. Mulmuley. On levels in arrangements and Voronoi diagrams. Discrete and Computational Geometry.
To be published.

K. Mulmuley. On obstruction in relation to a fixed viewpoint. In JEEE Symposium on Foundations of
Computer Science, pages 592-597, 1989.

M.I. Shamos and D. Hoey. Closest-point problems. In IEEE Symposium on Foundations of Computer
Science, pages 151-162, October 1975.

