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The Convergence Rate of the Sandwich Algorithm
for Approximating Convex Figures in the Plane

(eztended abstract)

Ginter Rote
University of Waterloo

The Sandwich algorithm is an iterative procedure for approximating a convex figure P in the plane
by convex polygons.

For a set of n points (“knots”) on the boundary of P, the convex polygon formed by these
points is an inner approximation of P; a set of supporting lines at these points forms also a convex
n-gon, which is an outer approximation of P (see figure 1). Since the body P that we are interested
in lies between the inner and outer approximation, we call such an approximating pair of polygons
a Sandwich approzimation (cf. Burkard, Hamacher, and Rote [1990], Martelli [1962]).
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Figure 1: A Sandwich Figure 2: The Sandwich algorithm after two partitioning steps
approximation with 6 knots

The Sandwich algorithm starts with an initial Sandwich approximation and refines it by suc-
cessively taking additional knots on the boundary of P to define the approximation. Different
versions of the Sandwich algorithm differ in the way how the next point is chosen.

In a Sandwich approximation, the boundary of the convex figure P is naturally divided into
pieces by the knots. Since the effect of inserting a new knot is to divide one of these pieces
into two, we refer to the strategy for selecting the next knot as the partition rule. We consider
four different partition rules, that would naturally come to one’s mind (interval bisection, slope
bisection, maximum error rule, and chord rule), and show that they all lead to Sandwich algorithms
where the global approximation error decreases by the order of O(1/ n?).

Motivation of the problem. A very closely related and equally important problem is that of
approximating a convex function of one variable by a piecewise linear function. This problem is
essentially equivalent to the approximation of a convex figure.

The applications for approximation of convex bodies (or convex functions) can be classified into
two categories:

1. It is computationally expensive to determine a point on the boundary of P, and we want to
get an approximate idea of the overall shape of P. This occurs for example if one wants to
determine the efficient point curve of bicriteria linear programs or the solution of parametric
problems.

2. The body P is completely known, but it is nevertheless expedient to replace it by a polygon
with few vertices, as such a polygon might be easier to handle. In fact, the complexity of
any problem in computational geometry that involves polygons depends on the size of the
polygons involved, and in many cases (for example in motion planning) the dependence on
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the number of verticesis quadratic or of even higher degree. In such cases, replacing the input
of a problem by a simpler approximation is a way to get approximate results while speeding
up the calculations. (A different approximation problem from ours, which was motivated in
this way, has been considered in Fleischer et al. [1990] [1991].)

In the first case, the problem is to get an acceptable approximation with as few points (“function
evaluations”) as possible. Here the Sandwich algorithm is the ideal candidate, because the Sand-
wich approximation is just the best approximation that can be obtained by using the information
that is known. In the second case, the approximation problem can often be solved by more direct
methods (cf. Imai and Iri [1986], McClure and Vitale [1975], or Cantoni [1971]). However, these
methods are sometimes complicated, and it is often not even clear what the optimization criterion
of the approximation should really be. Thus, the Sandwich algorithm might still be the method of
choice if a simple and fast algorithm with a good performance guarantee is asked for.

The error measure and the partition rules. The error measure that we consider in this
paper is the maximum distance between the inner and the outer approximation (the Hausdorff
distance)
max min dist(z,y),
Z€ Pouter YEPinner

where dist(z, y) denotes the Euclidean distance. We shall actually first derive our results for convex
functions. In this case, we consider the maximum verticaldistance between the lower and the upper
approximation. Other error measures can also be handled.

Now we describe the Sandwich algorithm in more detail, for the case of approximating a convex
function (see figure 2): An initial approximation is obtained by evaluating the function and its
derivatives at the endpoints of the definition interval. At any stage during the algorithm, we have
selected some knots and thus subdivided the original interval into a number of subintervals. We
compute the maximum error in each subinterval and select the interval with the largest error. This
interval is the further subdivided by inserting an additional knot as specified by the partition rule.
This process is continued for a given number of iterations or until a specified error bound is met.

The partition rules that we consider are as follows (cf. figure 3):

(i) The interval bisection rule: the interval is partitioned into two equal parts.

(ii) The slope bisection rule: We find the supporting line whose slope is the mean value of the
slopes of the tangents at the endpoints. We partition the interval at the point (at some point)
where this line touches the function.

(iii) The maximum error rule: The interval is partitioned at the breakpoint of the lower approx-
imation, i. e., at the point where the error between the two approximations is largest.

(iv) The chord rule is similar to the slope bisection rule. However, we take the slope of the line
connecting the two endpoints as the slope of the supporting line.

The rules fall into two classes: Rules (i) and (iii) specify the abscissa of the new point, whereas
rules (ii) and (iv) find the point by specifying the slope of a supporting line. Which way of specifying
the new breakpoint is more convenient depends on the application. The chord rule is actually also
a kind of maximum error rule, since it selects the point on the function whose distance from the
upper approximation is maximum.

Previous results. The problem of approximating a convex body by a polygon (or polytope) has
attracted a great deal of attention in the theoretical literature (cf. the survey of Gruber [1983)).
It is well known that the distance between a convex body and its best approximating n-gon is
O(1/n?). 1t is easy to see (by considering the case of a circle) that this convergence rate is best
possible. Most of these results are existential in nature. A proof of the quadratic convergence
rate of the Sandwich algorithm for the interval bisection rule was given in Sonnevend [1984] (in a
more general setting), and for the case of the interval bisection rule and the slope bisection rule
in Burkard, Hamacher, and Rote [1990] (with a different proof). Our results are a quantitative
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Figure 3: Four partition rules for the Sandwich algorithm

counterpart to the results on probing of polygons (cf. Cole and Yap [1987]), where a polygon is to
be reconstructed by asking, for example, for the intersection of the polygon with a specified line
or for the supporting line with a specified direction.

Geometric duality of convex functions. We can describe a convex function h: [a,b] — R as
the set of pairs ((p, q), (k,d)), where (p,q) is a point on the graph of the function, i. e., ¢ = h(p),
and y = kz + d is a supporting line in this point, i. e., it contains the point (p,q) and no point of
the function lies below it. The dual transformation D maps the pairs ((p,q), (k,d)) to the pairs
((k,—d),(p,—q)). This transformation is a special projective duality (cf. Edelsbrunner [1987],
section 1.4 or 15.2). It transforms the given function h into another convex function D(h).

Applying the interval bisection rule to a function corresponds to applying the slope bisection
rule to its dual, and it is easy to check that the vertical errors are the same in both cases. Similarly,
the maximum error rule and the chord rule are dual to each other.

Results — the interval and slope bisection rules

Theorem 1 (Theorem 2.3 of Burkard, Hamacher, and Rote [1990].) Suppose we are given a
function h defined on an interval [a,b] of length L = b — a, where the function values and the
one-sided derivatives ht(a) and h~(b) have been evaluated at the endpoints a and b. Let the slope
difference be A = h—(b) — h*(a). Then, in order to make the greatest vertical error between the
upper and the lower approzimation smaller than or equal to €, the interval bisection rule or the
slope bisection rule needs at most z,(LA) additional evaluations of h(z), h~(z), and h*(z), where

0, for LAJe < 4,

z(LA) = [,/%% - 2] , for LAJe > 4.

Corollary 1 If we always subdivide the interval with largest error according to the interval bisec-
tion rule or according to the slope bisection rule, then the mazimum vertical error after M > 2

evaluations of h, h=, and h* is at most
9LA

s M?’

Results — the maximum error rule and the chord rule
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Theorem 2 Suppose we are given a function h defined on an interval [a, b] of length L = b — a,
where the function values and the one-sided derivatives h*(a) and h~(b) have been evaluated at
the endpoints a and b. Let the slope difference be A = h=(b) — h*(a). Then, in order to make the
greatest vertical error between the upper and the lower approzimation smaller than or equal to €,
the mazimum error rule or the chord rule needs at most m,(LA) additional evaluations of h(z),

h=(z), and h*(z), where
0, for LA /e < 4,

m,(LA) = |V‘/.L€A_2‘| , for LA[e > 4.

Corollary 2 If we always subdivide the interval with largest error according to the mazimum error
rule or to the chord rule, then the greatest vertical error after n > 2 evaluations of h, h~, and h*

is at most
LA/n?.

Approximation of convex plane figures

Theorem 3 With n > 4 knots, the Sandwich algorithm approzimates a conver plane figure P of
circumference D with an error at most 9D/(n — 2)? in case of the interval or slope bisection rule,
or at most 8D/(n — 2)? in case of the mazimum error rule or the chord rule.
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