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Circumscribing Polygon of Disjoint Line Segments
(extended abstract)

1. Introduction

Throughout this paper the domain of discussion is with respect to the Euclidean plane. Itis
well known that any finite set of points admits a simple polygon with the given points as its ver-
tices [3]. What is a suitable generalization of this fact from points to (disjoint) line segments? Let
£={S;, - ,S, } beasetof n pairwise disjoint line segments. Rappaport [5] defined a sim-
ple circuit of T to be a simple polygon Q whose vertices are the endpoints of the segments in Z,
and every segment in X is an edge of Q. He showed that not every such X has a simple circuit,
and to decide whether it does is NP-complete. The set X is said to be extremally situated if each
segment in T has at least one of its endpoints on the boundary of the convex hull of Z. Rappaport
et al. [6] showed that if T is extremally situated, whether it admits a simple circuit can be
decided in O (nlogn) time, and a simple circuit of Z, if one exists, can be constructed within the
same time bound. We define a circumscribing polygon of T (not necessarily extremally situated)
to be a simple polygon P such that vertices of P are the endpoints of the segments in X and every
segment in X is either an edge or an internal diagonal of P. Note that any simple circuit of Z is a
circumscribing polygon of X (but not conversely). We first propose the following (see Fig. 1):

Conjecture. Any finite set of pairwise disjoint line segments admits a circumscribing polygon.

This conjecture, if true, answers the following question of Marcotte and Suri [4]. Let M, be
the weight of an optimum (Euclidean) matching of a set of (an even number of) points, P be a
simple polygon that spans the set of points, and Mp be the weight of the optimum matching in
which all matching edges are constrained to remain in the polygon. The question is: what
polygon P achieves the minimum ratio Mp/M,? The above conjecture implies P is a cir-
cumscribing polygon of an optimum matching of the point set, and Mp/M, = 1 is the minimum
ratio. '

In the rest of the paper assume £={S;, - ,S, }isasetof n extremally situated pair-
wise disjoint line segments S;. The main results of this paper are the following two theorems:

Theorem 1. Any extremally situated T admits a circumscribing polygon.

Theorem 2. There is an algorithm that constructs a circumscribing polygon of extremally si-
tuated ¥ in linear space and O (nlogn) time, and this is optimal.

In a first attempt we may try to construct simple polygons, in O (n) time, that encapsulate
the given segments by going around the convex hull in an Euler tour fashion (see Fig. 2), then use
a triangulation of these polygons to proceed further. The apparent difficulty in this approach is in
maintaining convexity as we descend down to subproblems.

Our proofs are based on a divide-and-conquer technique and employ a novel structure
called the rournament pseudoforest of . (The term pseudoforest has been used in [2] in a dif-
ferent context.) The convex planar subdivision induced by the tournament pseudoforest of T is a
linear space data structure and can be constructed in optimal O (nlogn) time using the sweep
method. Given this data structure, a circumscribing polygon of Z can be constructed in O(n) time
using divide-and-conquer. '

Let 3% denote the boundary of the convex hull of . A segment S; in Z is called an edge
segment, a diagonal segment, ot an internal segment, if it is, resp., an edge of dZ, a diagonal of



9%, or has only one endpoint on dZ. In the latter case the endpoint of S; on dZ is called its head
(denoted k;) and the other endpoint is called its foor (denoted f;). Each endpoint of an edge seg-
ment or a diagonal segment is considered as both its head and foot! To simplify the discussion,
we assume (a) no segment S; is vertical, (b) no three endpoints of segments in X are collinear, and
(c) no three segments are concurrent if extended.

2. Proof Sketch of Theorem 1

The proof is by induction on the size plus the number of internal segments of . We need
to prove a slightly stronger version in which we allow a pair of edge segments in Z to have a
common head. If all segments of T are edge segments, then dZ is a circumscribing polygon of Z.
If there is a diagonal segment S;, then S; divides the problem into two smaller subproblems one
on each of its sides. Otherwise proceed as follows: Consider a sequence 6 =( 61,02, *** , ;)
of segments in T constructed as follows. The initial segment o, is any internal segment in . Let
G, denote the extension of G; obtamed by the following process: extend o; Oj along the direction of
its supporting line from the s1de of its foot until it hits either 9%, one of G; (k <j), or a new seg-
ment in —0X. In the latter case the new segment becomes Gj,;. Furthermore, let
t; = closure(G; — ;). See Fig. 3. We construct the sequence o until G; hits either (i) 0Z, or (ii)
some Gy, k <i. (In case (ii) we have completed a cycle and w.L.o.g. we may assume k=1.)

Case (i.1). G; hits an edge of 0Z — Z: In this case divide T in two parts one on each side of G;
with ©; belonging to both sides (as in Fig. 4) and proceed inductively on each side, then paste
together the two resulting polygons along o;.

Case (i.2). G; hits an edge segment S; at a point p : Split S; in two segments S’; and S”; at point
p. Divide the problem in two, as in Fig. 5. One contains #;, S’;, and every other segment of Z on
the same side. The second contains &;, S”';, and every remaining segment of Z. Note that p is a
“‘new”’ endpoint in both subproblems, the head of o; is not an end point in the first subproblem,
and the foot of o; is not an endpoint in the second subproblem. Paste together the two resulting
polygons along ¢;.

Case (ii). We use a similar argument as in case (i.2). See Fig. 6. The induced cycle produces a
convex ‘‘hole’’ in the middle, which will become part of the eventual circumscribing polygon,
plus subproblems (that are similar to the first subproblem of case (i.2)) one for each of the seg-
ments that induce the cycle.

3. The Tournament Pseudoforest

The idea is motivated from the proof of Theorem 1. Imagine the segments in Z play a tour-
nament as follows: Extend each segment in I along its line of support from the side of its foot
until it hits either 0X, or the extension of another segment. If two segment extensions intersect,
they play a match. The extension of the looser ends at the intersection point, while the winner
continues to be extended. If the intersection point is in the relative interior of one of the segments,
then that segment is declared the winner of that match, otherwise the winner is chosen arbitrarily
(so the structure is not unique). If a segment extension intersects dZ, it looses to dZ and its exten-
sion terminates at the intersection point. Now let G; denote the extension of o;, and
t; = closure (G; — ©;) be called the trail of o;. The tournament pseudoforest of Z, denoted TP @),
is the plane graph that is the union of the segments and their trails. TP (Z) forms a convex parti-
tioning of the convex hull of . We refer to this convex planar subdivision as the tournament
pseudoforest subdivision, denoted TP —subdivision. Each connected component of TP(X) is a
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tree plus possibly an extra edge which creates a unique cycle. Thus the name pseudoforest. See
Fig. 7.

We can construct the TP —subdivision in O (nlogn) time by sweeping X with a vertical
sweep line along the direction of the x-axis, where the event points are the left ends of the seg-
ments and some *‘tournament intersection points’’. There are a total of O (n) event points and
each contributes O (logn) to the time complexity. Some important details are omitted here. We
also maintain each connected component of TP (Z) as a rooted pseudotree (with appropriate
bidirectional pointers with the TP —subdivision ), where the root corresponds to the cyclic list of
segments forming its unique cycle, if it has one; otherwise, the root of the tree is its only segment
that is either an edge segment, a diagonal segment, or a segment whose trail hits an edge of
dX —X. We refer to this entire data structure collectively as the tournament pseudoforest data
structure, denoted ‘W (Z).

4. Proof Sketch of Theorem 2

We use the data structure W(Z) and a careful refinement of the proof of Theorem 1. The
entire process takes O (n) time, given ¥(Z). We work on the pseudotrees of TP (Z) one by one.
We omit most details here and sketch only the case corresponding to case (ii) in the proof of
Theorem 1 (the most involved case): The root of the pseudotree provides the cycle, the convex
“‘hole’’, and the segments that form the cycle (cycle-segments). Then, for each cycle-segment,
we use depth-first-search to go down the pseudotree (akin to the idea of topological ordering of
vertices around a plane tree as described in [1]) and clip off maximally connected trails starting
from those that intersect the cycle-segment (but not its trail) or intersect the appropriate edge of
dZ adjacent to the cycle-segment. In this way, we cut the problem into many subproblems, all
extremally situated. See Fig. 8. Each step of the clipping process is charged to one of the trails
that is clipped off, O (1) time to each. But the number of such trails is in the order of (almost
equal to) the number of leaves of the trees that are cut off, and that is the number of feet of seg-
ments in T that were internal but have become edge segments in the smaller subproblems. This is
crucial in proving the linear time complexity, given ‘¥(Z). The optimality of the algorithm is
implied by an easy reduction from sorting.
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