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We present a simple, efficient, robust plane-sweep algorithm that solves 2-dimensional nearest-
neighbor problems in asymptotically optimal time O(n log n). A "foolproof” implementation guarantees
an exact result at the cost of using triple-precision integer arithmetic at some key steps.

1 Algorithms for nearest-neighbor problem

A number of common geometric problems involve finding a nearest neighbor for all or some points in
a set of given points, for example: closest-pair, bichromatic closest-pair (or equivalently, distance
between two point sets), and all-nearest-neighbors. We consider the 2-dimensional versions of these
related problems, and study in detail the all-nearest-neighbors problem: Given a set S of n points in the
plane, find a nearest neighbor of each with respect to the Euclidean metric. Other problems are solved
by simple modifications of the all-nearest-neighbors algorithm.

Known algorithms with optimal worst case time complexity O(n log n) are of two types: :

1) Extract the solution (in linear time) from the answer to the more general problem of constructing
the Voronoi diagram of the given points, computed in time O(n log n) [Fo 87].

2) Compute the desired result directly, without the additional information present in the Voronoi
diagram. [Va 89] describes an algorithm which works for any number of dimensions in any L

metric. It maintains a growing set of shrinking boxes; when a box has shrunk to a single point, its

associated information determines a nearest neighbor.
We show how the 2-dimensional all-nearest-neighbors problem is solved by an asymptotically optimal
sweep algorithm hat is efficient and robust in practice.

Sweep algorithms impose a left-to-right order on the data. This makes it easier to solve the two
problems all-nearest-neighbors-to-the-left and all-nearest-neighbors-to-the-right, and to combine their
solutions in time O(n). In [HNS 89] we presented the first sweep algorithm for this problem, based on
the following invariant: 'The cross-section is the intersection of the sweep-line with the Voronoi-
diagram of the points to the left of the sweep-line'. This implies that the y-table stores formulas of
bisectors to be evaluated for different values of x. Continuing attempts to simplify and improve the
algorithm's robustness in the presence of round-off errors have led to what we believe is the simplest
and most robust sweep algorithm for nearest-neighbors problem: Instead of bisectors, the y-table
maintains a set of 'active points', ordered by their original y-coordinates, thus guaranteeing that the
points are maintained in correct vertical order. Events in the x-queue are of two types: Data points
correctly ordered by their x-coordinates, and deactivation events; the latter are computed as
intersections of bisectors and may thus be afflicted by round-off errors. The use of triple-precision
arithmetic at some crucial steps removes any error from the entire computation.

2 Geometric preliminaries

2.1 Analytic geometry of points, lines, and circles

E2 : the Euclidean plane; u=(u,, uy) and v = (v,, vy) e E%, d(u, v): Euclidian distance
For 3 points u, v and w define the determinant

u, u, 1
D(u,v,w)=|v, v, 1 =(ul-vl)(vy-w,)-(uy-v,)(v, -w,)
x wy

collincar(n, v,w) & D(u, v, w) =0; rightturn(u, v, w) & D(u, v, w) <0

Lemma 1(bounded determinant):
If 3 points u, v, w are contained in the rectangle given by its opposite corners (Xpin» Ymin) and

(Xmax» Ymax) » then I D(u, v, W) I S (Xpax - Xpin) max = Ymin)-
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2.2 Data points and their classification

S: afinite set of points in E2, called data points. s, g, u, v, W, .. € S.
L: the sweep line, a vertical line at x-coordinate x| .

p: apointonL; p may be adatapointe S, orp & S.
Sief; : the set of those points of S that lie to the left of L oron L.

s€ Seqisactive <> dpe L Vqe S d(s,p,) £d(q, p)
In words, a point in S, is active iff itis a nearest neighbor to the left of some point p on L.

S ciive (L): the set of all active points. Notice: S, ;ve S Sieft © S.

y-order <y on Sycjive : foru, v € S50, defineu <y v 12 uy <vy

Lemma 2 ( <y is a total order): No two points in S,_;,. have equal y-coordinates.

predecessor and successor function w.r.t S pred(), succQ: S,cgive - Sactive Y {nil} (A sentinel)
u, v € Syive fOrmaconsecutive pair < u = pred(v); bs, , is the bisector of u and v.

u,v,w € S, formaconsecutive triple <> u = pred(v), succ(v) =w

Lemma 3 (monotonically increasing distances):
Letpe L,letu,ve S, 4, With Vy <uy <Py OF py<u, <Vy. Then d(u, p) < d(v, p).

For a consecutive triple (u, v, w) with center(u, v, w) to the right of L, i.e. center(u, v, W), > X[,
center(u, v, w) is called the 'deactivation event of v'.

Lemma 4 (local activity test):

For a consecutive triple (u,v, w)e S : rightturn(u, v, w) = center(u, v, W), > X

active
Lemma 6 (bisectors partition the sweep line):
The bisectors bs, ,, for all consecutive pairs u, v € S, partition the sweep line L into pairwise
disjoint open intervals. For each s € S, there is exactly one interval I(s) such that

Vpel(s) Vqe Sig,q#s: d(p,s) <d(p, q

Lemma 7 (updating S,.,;,, atadeactivation event):

Let L and L' be consecutive stops of the sweep line: between L and L' there are no data points and no
deactivations, but L' contains the deactivation eventof v. Then S, ;e(L) = Sy ive(L) - {v}

Lemma 8 (updating S, atadatapoint):

Let L and L' be consecutive positions of the sweep line, but L' contains the data point p. Then
Sacive) = Sacive@ VY (P) - Dyp - Dgown where:

Dup ={q € Sy ve/ qy 2 Py» succ(q) € S ive = (P> G, succ(q)) fails the local activity test } , and
Dyown = {2 € Saniive/ Qy < Py» pred(q) € S,.ive = (Pred(q), q, p) fails the local activity test }.

3. The sweep invariant: S, (L) stored in the y-table, to be updated in the following cases:

3.1 Deactivation event: The sweep line L reaches the center of the circle of the consecutive triple
(u, v, w) with rightturn(u, v, w). This is called an deactivation event for v (lemma 7).

A deactivation event for v created by the consecutive triple (u, v, w) is processed by removing v from
the y-table, then testing whether the consecutive triples (pred(u), u, w) and (u, w, succ(w)) generate
new deactivation events to be inserted into the x-queue.



3.2 Data point: A new data point p € S is inserted into the y-table. We have to test whether the
consecutive triples (p, succ(p), succ(succ(p))) and (pred(pred(p)), pred(p), p), if they exist, pass the
local activity test.

3.3 Finding the nearest neighbor to the left

After updating the invariant the nearest neighbor to the left of a data point p is found among pred(p),
succ(p) and the points which were removed by p from the y-table. Lemma 3 guarantees that the
remaining points in the y-table have a larger distance from p than succ(p) or pred(p). While updating
the invariant we maintain the nearest neighbor to the left of p found so far.

4. Program structure

procedure transition(p); { Incorporates all the work to be done in processing an event.}

begin :
if dataPoint(p) then
insertY(p):
nn := nil;

updateY(p, nn, succY);
updateY(p, nn, predY)
elsif deactivate(p) then

u := succY(p):
v := predY(p):
deleteY (p) ;

testForDeactivate (predY(v), v, u);
testForDeactivate(v, u, succY(u)):
end { testForDeactivate (u,v,w) schedules the leftmost deactivation for v, if necessary }
end transition;

procedure updateY(p, nn, nextY);
begin ’
u := nextY(p):
v := nextY(u);
while (v # nil) cand rightturn(p, u, V)
cand (centerx(p, u, v) < py) do

if d(p, u) < d(p, nn) then nn := u; end;
deleteY (u);
u = v;
v := next¥Y(u);
end;
if d(p, u) < d(p, nn) then nn := u; end;
testForDeactivate(p, u, v);
end updateY;

5. Analysis: Time O(n log n) by conventional techniques.

6. An exact implementation: We have implemented this algorithm in such a way that it handles all
degenerate configurations and achieves an exact result. The degeneracies to be dealt with are events of
equal x-coordinate, including intersection events that coincide (equal x- and y-coordinates). If input
coordinates are integers, triple precision integer arithmetic guarantees exact results.

6.1 Disambiguating degenerate configurations: by extending the order on events in the x-
queue and points in the y-table to the case of equal x- and/or y-coordinates. Deactivation events with
(near-)equal x-coordinates can be processed in any order - we need not break the tie in this case.

6.2 Bounding the computed quantities

Assuming all data points (x, y) lie on a finite integer grid, Ix| <M and lyl < M, the evaluation of:
ui+u; u, 1
—_—|Vi+vi v, 1
2 ,V, L y y
D(u,v,w) w2 + w§ w, 1

center(u,v,w), =
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requires no numbers larger than 4 M3 (Lemma 1). Evaluating this quantity using truncated division
"div" instead of real division "/" may cause a round-off error that has provably no effect on the
algorithm, due to the following facts: 1) Data points lie on grid points only, 2) The absolute error
is < 1, and 3) Two consecutive deactivation events that are not separated by any data point can be
processed in any order.

Conclusion: Let m be the number of bits used to represent the input data. Integer arithmetic with 3m +2
bits yields exact results. Note also that this is a considerable improvement over the straightforward
rational arithmetic approach which requires five-fold precision.

7. Performance and optimization

We have implemented this sweep algorithm in an object oriented extension of Pascal on the Apple

Macintosh I computer. The running times for 102, 103 and 104 random points uniformly distributed
in a square are 0.6, 8.7 and 130.4 seconds. To show that this direct solution compares favorably with
'detours' via the Voronoi diagram, we implemented the most efficient algorithm for the Voronoi
diagram, Fortune's sweep [Fo 87], on the same system. The Voronoi computation on the same point
sets took at least three times longer, namely 2.3, 28 and 453.3 seconds.

Assuming a formula of the form c; * n * log, n for the running time of both algorithms our

experimental data suggests a constant ¢; = 0.95 ms for our algorithm versus ¢, = 3.3 ms for

computing the Voronoi diagram. In addition, the sweep uses memory more efficiently, since the
objects stored in the the x-queue and y-table are less complex than the ones needed for the Voronoi

diagram. In a 4MB partition we can compute all-nearest-neighbors for up to 3.15* 104 points, whereas
the largest possible configuration for a Voronoi diagram has about 1.3*10* points.

We use the following optimizations to further improve efficiency.

« We implement the x-queue as a combination of a sorted array of all data points, and a list of current
deactivation events. Implementing this list as a balanced treen guarantees O( n log n) time, but our
experience shows that the number of current deactivation events is usually small, and that a linear list

implementation is feasible. In test runs on configurations of 103 and 10% uniformly distributed
random points the x-queue never held more than 20 and 60 deactivation events, respectively
« Deactivation events to the right of S are discarded.

+ A simple geometric observation shows that a triple (p, u, v) where p on L, uy 2 py, (u, v) a
consecutive pair, fails the local activity test if d(p, v) < d(p, u). Since these comparisons have to be

made anyway in the course of finding the nearest neighbor, we can sometimes save the more
expensive computation of the center of a circle. A similar criterion holds if (u, v) lies below p.

8. Conclusions

The all-nearest-neighbors algorithm presented is easily adapted to solving the bichromatic-closest-pair

(distance between two point sets) problem: Given two sets P, Q of points, identify a pair pe P, ge Q
that minimizes the distance d(p, q). The points of P (only) are entered in the y-table, the points of Q
serve as query events.

The two major issues that decide whether a geometric program is practical are: 1) Can it handle
degenerate configurations? and 2) is it numerically robust? Few geometric algorithms have been
studied thoroughly from this point of view. Our implementation addresses both problems.
1) Degenerate cases are classified into two categories: Those whose order is irrelevant, as in the case of
consecutive deactivation events, and those that must be ordered consistently. 2) Assuming that the
points lie on an integer grid, we guarantee numerical robustness by using triple precision integer
arithmetic for computing deactivation events - a small price to pay for exact results.
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