Algorithms for Semi-Online Updates on Decomposable Problems
Michiel Smid?

1 Introduction

Let T be a set of objects, and let f : T x T — R be a symmetric function, i.e. f(z,y) = f(y,z).
The problem to be studied is the following: given V' C T, maintain the maximal value of f w.r.t. V,
when objects are inserted and deleted in V. (Of course, also the minimal value can be considered.)
We introduce some notations. If p € T, and if V, 4, B C T, then

f(p,V) := max f(p,g), and f(4, B) := max f(p, B) = maxmax f(p,q).

Such symmetric functions often appear in computational geometry. For example, let T = R2. For
P and g planar points, let f(p,g) be the distance between p and g. Then the maximum of f is equal
to the diameter of V.. Also, f(p, V) denotes the maximal distance between p and any point in V', and
f(A, B) is equal to the maximal distance between points in A and B. Other examples of extrema of
symmetric functions are the closest pair in a point set, the minimal separation between rectangles,
the largest or smallest rectangle determined by points, etc.

In general, it is difficult to maintain the maximum of f under arbitrary updates. For example,
no algorithm is known that maintains the diameter of a point set in less than linear time per update.
Therefore, we consider a restricted class of updates, introduced by Dobkin and Suri (see FOCS 89):

A sequence of updates is called semi-online, if the insertions are on-line, but with each inserted
object, we are told how many updates from the moment of insertion, the object will be deleted.

Dobkin and Suri give a general technique to design data structures that can handle such updates.
They conjecture that the amortized complexity of their algorithm can be made worst-case, in case all
insertions and deletions are known before the algorithm starts. In the present paper, this conjecture
is proved, even for semi-online updates.

In the full paper, the algorithms are adapted to decomposable searching problems and decom-
‘posable set problems. This leads to efficient algorithms for performing semi-online updates on such
problems as the post-office problem, maintaining convex hulls, Voronoi diagrams, etc.

Lemma 1 Let f : T x T — R be a symmetric function, and let p be an object sn T. If V1,...,Vin
are pasrwise disjoint subsets of T, the union of which is equal to V, then

fle,1U...UVy) = max(f(p, V1),..., f(P, Vin)), and

max f(p.q) = 1xsn‘,zgtmf(Vi.V.- U...UVn).

2 The amortized algorithm

347

We give an alterna.five description of Dobkin and Suri’s algorithm. This description, and the a.nalysi.sl

of the algorithm, are easier to understand. Also, the algorithm as presented is a good basis for the
worst-case algorithm. Let f : T x T — R be a symmetric function, and let V C T. Assume we have
a data structure DS(V) that stores V, such that queries of the form “compute f(p,V) for p € T
can be solved efficiently. Let S(n), P(n) and Q(n) denote the sise of the data structure DS(V), the
time needed to build it, and the time needed to answer a query of the above form, respectively, where
n=|V|].

Theorem 1 There ezists a data structure of size O(S(n)), such that the mazimal value of the sym-
metric function f can be maintained under semi-online updates, in amortized time

(0] (Eg logn + Q(n)logn + (logn)’) .

1Fachbereich Informatik, Universitit des Saarlandes, D-6600 Saarbriicken, West-Germany. This research was sup-
ported by the ESPRIT II Basic Research Actions Program, under contract No. 3075 (project ALCOM).

348

Let m be a positive integer, and assume that we perform a sequence of 2™ updates. We number
these updates from 1 up to 2™. ’

Definition 1 Let 0 < i < m. A sequence of 2¢ consecutive updates is called a block at level i, if the
first of these updates has number j2' + 1, for some 0 < j < om—i,

So for each i, the sequence of 2™ updates is partitioned into blocks at level i, where the first block
consists of update 1 up to 2*, the second block consists of update 2¢ + 1 up to 2°*!, etc.

Definition 2 Suppose we are processing update k. Let 0 < i < m. Then the current block at level i
is the block at level i, that starts at update j2° + 1, where j = |(k — 1)/2°]. (So the current block at
level i is the unique block at level i to which k belongs.) The next block at level i s the block at level
i, that follows smmediately after the current block at level i.

The data structure : Let V C T, |V| = n. Let m = |log(n/2)]. We maintain the maximum of
f under a sequence of 2™ updates. These updates are numbered 1,2,...,2™.

1. At each moment, the set V is partitioned into subsets Vo, V4,...,Vin. For 1 < i < m, the set
V; consists of (not necessarily all) objects in V' that are still present after the current block at
level i is completed. Furthermore, Vo = V \ Ui~, Vi. (Some of the V;’s may be empty.)

2. Each set V; is stored in a data structure DS(V;) and in a list, that we call for simplicity V;.

3. Each object p in V contains a pointer to a list containing the values f;(p) := f(p, V;), for
j =14,...,m, in this order. Here i is such that p € V;. Also, with the list of p, we store the
maximal value max(p) of the f;(p)’s. By Lemma 1, we have max(p) = f(p,V; U...U V).

4. There is an array A(0 : m) that contains the values A(i) := max,ev,(max(p)), fori =0,1,...,m.
Hence, A(i) is equal to f(Vi,V; U...UV;y). Finally, we store the maximal value max(f) of this
array. By Lemma 1, we have max(f) = max, 4ev f(p, 9)-

Initialization: Walk along the set V, and select all objects that are still present after the sequence
of 2™ updates. These objects are put in the set V. During this walk, select the object (if it exists)
that will be deleted in the first update, and put it in V. Walk along the remaining list. If p is in this
list, and if it will be deleted in the d-th update, then p is put in set V;, where i = [logd] — 1.

Store each set V; in a list—that we call V;—and build a data structure DS(V;) for it. Next, do the
following for i =0, ...,m: For each object pin V;, compute f;(p) := f(p, V;) using the data structure
DS(V;), for j =i,...,m, and store these values in a list. Also, compute the maximum max(p) of the
fi(p)’s, and store it with the list of p. Then, compute the maximum of the values max(p), where p
ranges over all objects in V;, and set its value to A(i). Finally, compute the maximum of the array
A, and set its value to max(f).

The update algorithm: Consider the k-th update, where 1 < k < 2™. Write k = 2¥1 + 2% +
...+ 2% where 0 < i; < i3 < ... < i; < m. Then after update k has been carried out, the current
blocks at levels 0,1,...,4; are all completed, and these are the only completed blocks.

If the k-th update is an insertion of object g, insert g in the list V, compute the values f;(g) :=
f(g,V;) for j =41 +1,...,m, and store these values in a list. If the update is a deletion, then the
object to be deleted is stored Vo. Then, delete it from this list.

Now let W be the union of all lists V5, ..., V;,. Use the above initialisation algorithm to partition
the set W into new subsets V;,...,V;,, and build new lists—which we call again Vj,. ooy V;,—and
new structures DS(Vo), ..., DS(V;,) for them. (The set V;, consists of all objects in W that are still
present after the next block at level i; is completed.)

For each object p € W, compute the values of f;(p) := f(p,V;), for j =14,...,4, . Here, i is such
that p is in (the new) V;. These values replace the old values of f;(p), j < 41, that are stored at the
beginning of p's list. The values of f;(p), i1 < j < m are not changed. Next, compute the maximum
of the values f;(p), i < j < m, and set its value to max(p).

For i =0,...,1;, compute the maximum of all values max(p), where p ranges over all objects in
V;, and store the result in the array-entry A(s).

349

Finally, compute the maximum of the array A(0 : m), and set its value to max(f). This value is
the new maximum of f over all pairs of objects that are present at this moment.
Proof of Theorem 1: It takes O(P(n) + nQ(n)) time to build the data structure. An update,
performed as described above, takes an amount of time that is bounded by (we write i = 1)
O(Q(n)logn + P(2°) + 2°Q(n) + 2'logn). Let k; be the number of times that during the upda-
tes 1,2,...,2™, the least significant bit of k is equal to . Then, k; = 2™~%~1 for 0 < i < m, and
km = 1. Hence, the total amount of time needed to perform 2™ updates is bounded above by

P(n) +nQ(n) + i k; (Q(n)logn + P(2°) + 2 Q(n) + 2°logn)

=0

= O(P(n)logn +nQ(n)logn + n(logn)?).

Dividing by 2™ = ©(n) gives the amortised complexity. After this sequence of 2™ updates, we choose
a new value of m, and we proceed in the same way. O

3 The worst-case algorithm

The data structure: Let m be an integer, such that 2™ < n/2 < 2™+2, We maintain the maximum
of f under a sequence of 2™ updates. Again, we number these updates 1,2,...,2™.

The data structure is almost the same as before. The differences are as follows: Now, the set V
is partitioned into subsets V3,V5,...,V;n—1. For each 3 < i < m — 1, V; consists of objects that are
still present after the current block at level i is completed. Furthermore, V; = V\UZ;" Vi. For each
3 < i< m-—1, there is a data structure DS; := DS(V;), and there are lists V2, V?,..., V¥, where V;
stores the set V. For i = 2, there is a list V;? that contains the set V5. The array A is only defined
for 2 < i < m — 1. The rest of the data structure is the same as before.

The update algorithm: With each update, we perform an update at all current blocks at levels
2,3,...,m—1. Afterwards, we compute the maximum of the array A, which is the maximum of the
function f. We only describe how a block at level i, for 3 < i < m — 2, is processed. We split this
block in 8 parts, each of length 2¢—3:

Part 1 of level i: This first part consists of updates 1,2,...,2'~3. Make two lists F;*! and
F{~1, where F}*! are all objects in V; that are still present after the current and next blocks at level
i+ 1 are completed, and F;~! = V \ F{*!. This partitioning takes O(2') time. With each update,
do an amount of O(2¢)/2°~3 = O(1) work.

Comments: Since F'.‘."l C V#, all objects in 1".-""1 are still present after the current and next
blocks at level i — 1 are completed.

During Part 1 of the processing of the current block at level i — 1, we have computed a list Fi |
of objects that are still present after the current and next blocks at level i are completed. This list

F}_, is available after update 2°~4, hence surely at the start of Part 2 of level i.

Part 2 of level i: The second part consists of the next 2°~2 updates. During this part, copy
F;_, into a list H;, merge F;*' and F}_, in a list N}, and build a structure DS(N). Make for each
j=i+1,...,m—1,acopy Nj of the list Nj.

It takes O(P(2%)) time to build DS(N}), and O(2'(m — i)) = O(2'logn) time to make the Lists
H;,N{,N{,y,...,N§,_;. With each update, we do an amount of O(logn + P(2°)/2¢) work.

Comments: After Part 4 of level i, the new DS(N}) takes over the role of DS;. Therefore,
after Part 4, each object p that is at one of the levels 2,...,i at that moment, must have the value
f(p, N}) in its list. At the beginning of Part 3 of level i, the lists V3,..., V¥ contain all objects at
levels 2,...,i. After Part 4 of level i, these lists have been changed, but together they contain more
or less the same objects.

Part 3 of level i: The third part consists of the next 2°~ updates. Compute for each object
pin the lists V2, V3..., V7, the value of f!(p) := f(p, Nf), using the structure DS(N?). With each
update, do O(Q(2%)) work. If the actual update is an insertion of object g, compute fi(q) = f(q, N}).

Part 4 of level i: This part consists of the next 2°~3 updates. Give each object p in the list N},
a new list f;(p) := f{(p), fis1(p), fisa(p), .-, fm-1(p). Compute the maximal value of this new list,

350

which we call max(p). Compute the maximum max; of the values max(p) over all p € N}. With each
update, do an amount of O(logn) work. If the actual update is an insertion of object ¢, compute
fi(q) = f(g, N;)- . ,

After Part 4 of level i: After Part 4, set V; := Nj; V} := N}, for j = 4,...,m — 1; DS; :=
DS(NY¥); A(3) := max;; replace Fi~! by an empty list F;~*. All of this can be done in O(m — i) =
O(log n) time. Note that indeed A(i) = f(V;, V;U...UVry).

Comments: Each object p that is at one of the levels 2, ... i, after Part 4 of level i is completed,
contains the value of f(p, N{) in its list. All structures and variables corresponding to this value of i
are correct after Part 4.

Part 5 of level i: These are the next 2°~3 updates. Nothing happens at level i.

Comments: At the start of Part 6, there are lists F},; and F}_, available.

Part 6 of level i: During this part—which conauts of the next 2°~3 updates—merge the lists
H;, Fj,, and F}_, in a list N}, and build a etructure DS(N}) for it. For each j =i+1,...,m -1,
make a copy Nj ! of the list N‘ With each update, do an amount of O(logn + P(2%)/2%) work

Comments' After Part 8 of level , the new structure DS(N;) takes over the role of the structure
DS;. Therefore, after Part 8, each object p that is at one of the levels 2,...,1 at that moment, must
have the value f(p, N{) in its list.

Part 7 of level i: This part consists of the next 2°~3 updates. Compute for each p in the lists
N§,V3,...,Vi"1, the value of f!(p) := f(p, Nf), using the structure DS(N}). With each update, do an
amount of O(Q (2')) work. If the actual update is an insertion of object g, compute f!(q) := f(g, N, ')

Part 8 of level i: This part consists of the final 2¢~3 updates of the current block at level i.
After this block is completed, there are blocks at other levels that are also completed. Suppose that
after Part 8, all blocks at levels 2,3,...,1; are completed. Let j = min(i; +1,m—1). Dunng Part 8,
give each object p in N}, a new list f;(p) := f{(p), fi+1(p) = fi1a(P), --., £i(p) = £i(p) fi41(0),
fi+a(®)s - ooy Fm-1(p). Compute the maximal value of this new list, wlnch we call max(p) Compute
the maximum max; of the values max(p) over all p € Nj. With each update, do O(logn) work. If
the current update is an insertion of object g, compute f' (9) := £(q, N‘)

After Part 8 of level iz After Part 8 is completed, set V; := N}; V' = N‘ forj=14,...,m—1;
DS; := DS(N}); A(i) := max;. Hence, A(3) is equal to f(V;,V;U...U V,,.._l) All of this takes
O(m — i) = O(logn) time.

Comments: Each p that is at one of the levels 2,...,1, after Part 8 of level i is completed,
contains the value of f(p, N}) in its list. All information corresponding to this value of i is correct.

This concludes the update algorithm for a block at a level 3 < i < m — 2. The update algorithms
for blocks at level 2 and m — 1 are similar.

After the entire sequence of 2™ updates, the value of m—and hence the number of levels—might
have to be changed. After the first block at level m — 1, we choose a new value for m: Let ng be the
number of objects, after the first 2™~ updates have been processed. Let m' := |log(no/3)]. After
the entire sequence of 2™ updates, there will be levels 2,3,...,m' — 1. Sincem—-1<m' <m+1,
the number of levels decreases by one, does not change, or increases by one.

The blocks at levels 2,3,...,m—1 during the final 2™~ updates are processed similarly as before.
If m' = m + 1, we build a new level m' — 1. If m' = m — 1, we collapse the levels m — 1 = m' and
m — 2 = m' — 1 into one new level m’' — 1. Let n' be the number of objects, after 2™ updates have
been processed. Since om'’ <n'f2< 2"'""3, we are in the same situation as the one we started with.
Therefore, we can proceed performing updates in this way.

Theorem 2 There exists a data structure of size O(S(n)), such that the mazimal value of the sym-
metric function f can be maintained in O((P(n)/n)logn+Q(n)log n+ (log n)?) time per semi-online
update, in the worst case.

Proof: The update time is bounded by

m=-—1

Q(n)logn + E (P(2)/2° + Q(2°) + logn) = O ((P(n)/n) logn + Q(n) logn + (logn)’) .0
=3

