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‘Towards a General Theory of Visibility*

Sven Schuierer! Gregory J.E. Rawlins ? Derick Wood*

Abstract

Many notions of convexity have been introduced in computational geometry in recent years,
but the associated geometrical results have been proved in an ad hoc manner. In this extended
abstract we examine a unifying framework for visibility concerns. In particular, we use the
concepts of convexity and aligned spaces to capture a generalized notion of visibility. We then
investigate the relationship between kernels and skulls, in this general setting, and prove the
Kernel Kernel Theorem, which implies that, under reasonable conditions, kernels are convex.

1 Introduction

An astonishing variety of “non-standard” notions of convexity in the plane have been considered in
computational geometry in the past few years: restricted orientation convezity (9], NESW-convezity
[8, 11], rectangular convezity [6, 2, 11], and geodesic convezity [3, 13], to name the most prominent
ones. Little attention has been paid, however, to providing a general setting for geometrical results
stemming from these notions. We consider convexity spaces as a candidate concept for this purpose.
To this end, we define a generalized notion of visibility in convexity spaces and, based on this, we
prove a general theorem relating skulls and kernels. Visibility is a well studied concept in the
context of real vector spaces [1, 14, 12]. But, as the above mentioned examples illustrate, this is
often too restrictive a setting.

2 The Kernel Theorem

We base the following investigation on the concept of a convexity space whose formal definition
was first introduced by Levi [7]. A convexity space is intended to abstract some of the essential
properties of convex sets in n dimensional Euclidian space.

Definition 2.1 Let X be a set and C be a collection of subsets of X. Then, (X,C) is a convexity
space if:
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1. 0 and X are inC; and

2. for allC' C C, we have \C' € C, where by NC' we mean Ngec C.?

X is called the groundset of the convexity space and C contains the “convex sets” of A. Each
set in C is called C-convez (or convex for short if the convexity space is understood). So, the
only characteristic required of convex sets is their closure under intersection. It is obvious that
additional properties are needed to generalize the more intricate properties of IE™ since a wide
variety of structures satisfy the above definition.

Immediately associated with a convexity space is the convex hull operator.

Definition 2.2 Let (X,C) be a convezity space; then, for all X C X, the C-hull of X, which is
denoted by C-hull(X), is defined by

C-hull(X)=[){CeC|XCC}

Definition 2.3 Let (X,C) be a convezity space. We call (X,C) an aligned space if, for every nested
chain N C C, the union of N is also convez; that is, JN € C.

Aligned spaces are well studied objects in the literature [4, 5, 10] but usually for quite different
reasons than those stated here.

Given two distinct points p and ¢ in the plane, their convex hull is the line segment joining them.
Since this is the basis of visibility in polygons, our abstract definition of visibility is analogous.

Definition 2.4 Let (X,C) be a convezity space and X C X. We say that two points z and y in X
see each other if C-hull({z,y}) C X. We write z seesx y in this case.

Once having established a consistent definition of visibility it is easy to generalize the notions
of starshaped sets and kernels for convexity spaces.

Definition 2.5 Let (X,C) be a convezity space and X C X.
1. For z € X, we define C-star(z,X) = {y € X | z seesx v}.
2. X is star-shaped if X = C-star(z,X) for some z el X.
3. C-kernel(X) = {z € X | C-star(z,X) = X}.
4. SC X isaC-skull of X if S € C and there is no S’ € C such that S C S’ C X.
5. C-skulls(X) = {S| S is a C-skull of X}.

Although skulls may not exist in convexity spaces, they always exist in aligned spaces. As a last
visibility-related concept we need the notion of a C-join.

'In this paper we will use [} F to denote the intersection of all sets in a family F and | J F to denote the union of
all sets in F.
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Definition 2.6 Let (X,C) be a convezity space, C C X, and z € X, we define

C-join(z,C) = |J C-hull({z,c}).
ceC

The C-join of a convex set C and a point z consists, intuitively speaking, of all the line segments
between z and points ¢ in C. It is easy to show that the C-join in the plane is always convex if we
consider normal convexity. This is, however, not true for arbitrary convexity spaces.

Definition 2.7 Let (X,C) be a convezity space. (X,C) is said to satisfy the C-join condition if,
for allz € X and C € C\ {0}, C-join(z, C) is convez.

After this preparation we can now state and prove the Kernel Theorem. It gives a complete

characterization of those convexity spaces for which the kernel of a set X is given by the intersection
of all skulls in X.

Theorem 2.1 (The Kernel Theorem) Let (X ,C) be a convezity space. Then, we have, for all
XCca,
C-kernel(X) = | C-skulls(X)

if and only if the following three conditions hold:
i. (X,C) is an aligned space.
ii. For all z € X, for all C € C, C-join(z, C) is convez.
iii. For allz, y € X, C-hull({y}) C C-hull({z}) U {y}.

Proof: We only proof that if Conditions (i)-(iii) hold, then C-kernel(X) = N C-skulls(X). For
brevity, let K = C-kernel(X) and I = C-skulls(X). We split the proof into two parts.

K CI. If K = @, this holds vacuously, so assume that K # 0. Consider p € K; we prove that
p € I. Let S be a skull in C-skulls(X) and s a point in S; since p € C-kernel(X), we
have p seesx s. Thus, C-hull({p,s}) C X and so C-join(p,S) = U,es C-hull({p,s}) € X;
furthermore, C-join(p, S) is convex, by assumption. But S is a maximal inscribed convex set
of X; therefore, C-join(p,S) =S, p € S, and hence p € I.

I C K. Again assume that I # @ and consider p € ] and an arbitrary point z € X. We have to show
that p seesx z. Since C-hull({p}) C I C X, we have C-hull({z}) C {z} U C-hull({p})C X
by Condition (iii). Also, since C-hull({z}) C X, we know that there is an S, € C-skulls(X)
with C-hull({z}) C S;. Now p € I C S, and, thus, C-hull({p,z}) C S, C X. Therefore,
pseesx zandp € K.

O

As an immediate consequence we get the following corollary.

Corollary 2.2 Let (X,C) be a convezity space that satisfies the conditions of the Kernel Theorem;
then, for all X C X, C-kernel(X) is convez.
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