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MINIMUM COVERS FOR GRIDS AND ORTHOGONAL POLYGONS
by PERISCOPE GUARDS (Extended Abstract)
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Abstract: In this paper we try to determine the complexity of finding guard covers in orthogonal
polygons by considering periscope visibility. We show that finding minimum periscope (as well
as k-bend and s-guard) covers is NP-hard for 3-d grids. We present an O(n3) time algorithm for
finding minimum periscope guard covers in a simple grid with n segments. We also show that
this result can be used to obtain minimum periscope guard covers for a class of simple orthogonal
polygons in O(n3) time.

Introduction: The problem of covering a polygon with the minimum number of star polygons has
attracted the interest of many researchers [0’R87,ST88]. This problem is equivalent to the problem
of placing minimum number of point guards (minimum guard cover) so that each point inside the
polygon is visible to some guard. This problem is shown to be NP-hard [O’R87]. However, the
complexity of finding minimum guard cover for orthogonal polygons is open [ST88]. In the standard
definition of visibility two points are said to be visible if the straight line joining them does not
intersect the exterior of the polygon. Alternative definitions of visibility have been considered
for orthogonal polygons [K86,MRS88]. Two points inside an orthogonal polygon are said to be
s-visible [MRS88] if they can be jcined by an orthogonal convex staircase path that does not
intessect tac exterior of the polygon. Two poinis are said to be r-visible [K86) if they can be
placed inside an orthogonal rectangle that is completely contained in the polygon. The notion of
r-visibility and s-visibility directly leads to s-star and r-star polygons. Two points are visible
under periscope visibility if there is an orthogonal path with at most one bend connecting them
without intersecting the exterior of the polygon. Generalizing, k-bend visibility allows staircase
paths with at most k bends (periscope visibility is the same as 1-bend visibility). If k can have any
value but the paths are restricted to be orthogonally convex we have s-visibility.

I1. Periscope Guard Covers for Grids: The complete two dimensional grid of size n is the graph
with vertexset V = {1,2,..,2}X{1,2,...,n} and edge set E = {{(,5),(k,m)} : |i—k|+|j—m| = 1}.
The complete 3-d grid is defined similarly. A (partial) grid is any subgraph of the complete grid. In
a geometric setting we think of the grid edges as corridors and the grid vertices as interconnections
of corridors. We also assume that the grid edges are parallel to the major axes. Finding a minimum
set of guards needed to cover (under normal visibility) a 3-d grid is NP-hard [N86]. The reduction
is from the vertex cover problem for graphs with maximum degree three [0’R87]. We use a similar
approach to establish the following theorem.

Theorem 1: Finding the minimum number of periscope guards needed to cover a 3-d grid is
NP-hard. (Proofs are omitted in this extended abstract due to lack of space)

Corollary 1: The minimum cover problems for k-bend guards and s-guards in 3-d grids are
NP-hard.

We now proceed to develop an O(n3) time algorithm for minimally covering a 2-d grid by
periscope guards. A grid segment is any maximal straight line sequence of successive grid edges.
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A grid is called a simple grid if all the end points of its segments lie on the outer face of the
planar subdivision formed by the grids (as in Figure 1a); otherwise, the grid is called a general
grid (a general grid may have holes as in Figure 1b). The crossing set C; of a segment s; is the set
of segments that intersects s;. A segment s, is said to be dominated by a segment s, if C; is a
subset of C,. In Fig. 1a segments c,e,g and n are dominated by segment d. A segment s is called a
cross if there exist a segment s; such that the crossing set of s; contains only s. A segment is called
a pseudo cross if it becomes a cross by removing zero or more segments dominated by it (note
that every cross is also a pseudo cross). Two segments are equivalent if their crossing sets are the
same. In figure la, segments 4, 5 are crosses, segment d is a pseudo cross, and segments c, e are
equivalent. Note that a periscope guard that can see a segment s can see all segments equivalent
to s. Therefore we keep only one segment from each set of equivalent segments. The importance
of domination is illustrated in Figure la. A guard located on a dominated segment can be moved
to the dominating segment and still see all segments visible from its original position (as well as
some additional ones). For example, a guard at point z can be moved to point y in Figure 1a and
still see all the segments visible from z. This indicates that certain segments are more important
than others. We capture this idea by defining a reduced grid. Let G be a simple grid. Mark all
segments that are dominated in G. The grid obtained by removing all marked segments is called
the reduced grid. Figure 2 shows a grid with the domma.ted segments marked and the reduced
grid obtained by removing them.

Lemma 1: The reduced grid of any simple and connected grid is simple and connected.

Let C = {s1, 52, ...,8k} be the crossing set of a segment s in the reduced grid. The crossing set
C is said to form a group if there exist a segment s’ € C such that s’ is dominated by all segments
in C. Then ¢ is called a junior segment in C. In Fignre 2, the <rossing set for segment d forms a
group and segment 6 is a junior scgiaent in this group. Note lhati junior segmenis are not unique.

Let R, R’ be two guard covers for a simple grid. We say that a guard g; in R is equivalent to
a guard g; in R’ if the two guards see exactly the same set of grid segments. A guard g; covers a
guard g; if the set of segments visible to g; contains the set of segments visible to g;.

Lemma 2: Let G, be the reduced grid of a simple grid G. Let s be a pseudo cross segment in
G, such that its crossing set C = { s;, $3, ... , S; } forms a group. Let s; € C be a junior segment
in the group. Then there exists an optimum guard cover for G that contains a guard equivalent to
a guard placed at the intersection of s and s;.

Lemma 3: The reduced grid G, of any simple grid G contains a segment whose crossing set
forms a group.

Our approach for finding a minimum guard cover for a simple grid is to identify places where
any optimum solution should have a guard, place a guard, remove a portion of the grid and repeat
until all of the grid is visible. To obtain a minimum guard cover we locate each guard so that any
minimum guard cover will contain a guard equivalent to it or covered by it. Dominated segments
in the given grid G are marked and a reduced grid G, is obtained from G by removing dominated
segments. Lemma 3 guarantees that at least one segment of G, is such that its crossing set forms
a group. Once such a segment is found, the location of a guard g that corresponds to an optimum
solution is determined by using Lemma 2. The details of the algorithm is omitted in this extended
abstract and will be reported in the full paper.

Theorem 2: A minimum periscope guard cover for a simple grid can be found in O(n3) time.

The above idea of identifying groups for placing guards does not work for general 2-d grids. It
is easy to construct a 2-d grid in which no crossing set forms a group (Figure 3).

III. Periscope Guard Covers for Simple Orthogonal Polygons: Consider the subdivision
formed by extending the edges of an orthogonal polygon into its interior. The polygon now consists
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of rows and column of rectangles. We construct a grid G to represent an orthogonal polygon P
by associating a grid segment with each sequence of rectangles. Then the internal grid vertices
represent individual rectangles in the polygon (Figure 4a).

Lemma 4: The grid G is simple and connected grid.

Lemma 5: Let X be a guard cover for the grid G. Then X is also a guard cover for the
underlying polygon P.

The difficulty with grid G is that the reverse of Lemma 5 is not true. A guard cover for the
polygon does not always correspond to a guard cover in the grid. We say that a grid segment is a
swept segment if there is a grid segment that intersects it and it can be moved through the entire
span of the swept segment without intersecting the exterior of the polygon and while both its ends
remain in contact with the boundary of the polygon. This definition can be applied recursively by
removing swept rectangles from P each time. All but the bottom horizontal segment in Figure 5a
are swept (recursively). Replacing corresponding segments in the grid with their intersections with
the sweeping segment results in the grids of Figure 5b. Note that a single guard can cover each of
the grids. We call the grid resulting from sweeping the swept grid G, for the orthogonal polygon.
There is one more problem with both grids G and G,. It arises when the polygon contains corners
like the one shown in Figure 6. There are two orthogonal grid segments that enter the corner and
a guard placed on either one of them (i.e., a or b) can see the whole corner. This is similar to
what happens when we have swept segments but here we have a choice of two ways to sweep. The
problem is that it is not clear locally which of the two choices is best. We refer to this type of
corner as a swept corner. Note that choosing to sweep with a vertical (respectively horizontal)
segment is equivalent to adding a vertical (horizontal) notch into the corner so that the notch is
not visible from the vertical (horizontal) edge that enters the corner. Also, note that addition of
such a nctch climinates one of the choices, i.e., the grid cover currespends te a polygou cover.

Lemma 6: A grid cover in the grid G obtained from a simple polygon without swept corners
after replacing swept segments with points is equivalent to a polygon guard cover.

Theorem 3: A minimum periscope guard cover for a simple orthogonal polygon with a fixed

number of swept corners can be constructed in O(n?) time.
IV. Concluding Remarks: We presented an O(n3) algorithm for finding optimum periscope
guard cover for simple grids and orthogonal polygons with a constant number of corners. There are
many interesting open problems. These include the periscope cover problem for general 2-d grids,
the k-bend guard cover problem for grids and orthogonal polygons. Our motivation for considering
periscope guards is to help determine the complexity of guard cover problem for orthogonal polygons
which remains a well known open problem.

An O(n'9) time algorithm for minimally covering an orthogonal polygon under s-visibility by
using perfect graph approach is reported in [MRS88]. It is tempting to use this approach under
periscope visibility also. However the complexity remains the same and hence is too expensive.
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Figure 4: Simple Grid of an Orthogonal Polygon
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Figure 5: Showing the Construction of Swept Grid
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Figure 6: A Swept Comner in an Orthogonal Polygon




