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Abstract

A simple plane sweep algorithm is presented for computing the "offset" of "circular arc

figures”. (The "offset” operation is important in solid modelling. "Circular arc figures” are

planar sets whose boundaries consist of a finite number of circular arcs and/or line segments

forming a set of disjoint Jordan curves; the figures need not be simply connected.) The algo-

rithm runs in O (nlog2n ) time, where n is the number of arcs and line segments in the boun-

dary of the circular arc figure. To analyse the time complexity, general topological result

of interest in its own right is proved: given what we call a k—admissible collection of m Jor-

dan curves, the number of curve intersection points that appear on the boundary of the union
of the regions bounded by these curves is at most k (3m — 6), a tight bound. This generalizes

aresult of Kedem, Livne, Pach and Sharir.

1. Introduction

We have have obtained a simple plane-
sweep algorithm for computing "offsets” of "cir-
cular arc figures”, together with a running time
analysis of the algorithm. (The quoted terms in
this sub-section are defined later in the Introduc-
tion.)

4 Pantially supporied by NSERC grant A0368.

To carry out the running time analysis, we
have proven a general topological result of
interest in its own right. ‘This result gives a tight
upper bound for the number of curve intersection
points that appear on the boundary of the union of
certain regions bounded by Jordan curves (these
Jordan curves are not necessarily polygonal.) Our
result generalizes work of Kedem, Livne, Pach

4 Parntially supporied by NSERC grant A0368 and funds from McRCIM (McGill Research Center for Intelligent Machines).



and Sharir [KL.PS]. (Their notion of an "admissi-
ble" collection of planar Jordan curves is what we
call a "2-admissible" collection, and we have gen-
eralized their results to what we call "k-
admissible” collections, for non-negative even

integers k.)

Let S be a set in the plane. The ! expan-
sion offset E(I,S) of S is defined as the Min-
kowski sum of S with a closed disc of radius /
centered at the origin (see, for example, [SPD]).
That is, E (I, §) is the union of the closed discs of
radius / with centers in §. There is another type
of offset called the shrink offset [SPD]. Our
paper considers exclusively expansion offsets,

which we simply call offsets.

The computation of the "offset” of a set is
an important operation in geometric modeling
about which surprisingly little has been published.
It has applications in tolerance analysis, clearance
testing, NC (numerical control) code generation,
finite element mesh generation, etc., as pointed
out in [RR] and [SPD]. Farouki [Far] outlined
exact offset procedures for convex polyhedra,
convex solids of revolution, and convex solids of
linear extrusion. Rossignac and Requicha [RR]
described offset operations for solids of simple
structure that are represented both in constructive
solid geometry form and in boundary representa-

tion form.

Our interest in computing the offsets of cir-
cular arc figures came about in the process of
designing a brute-force algorithm for the
Euclidean Tree Placement problem. The
Euclidean Tree Placement Problem, informally
speaking, is to position in the plane a tree whose
edges have positive integer weights in such a way
that the distance between each pair of adjacent
nodes is equal to the weight of the edge between
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them and in such a way that any pre-assigned
positions to particular nodes are respected. This
problem finds application in the design of grasp
positions for robot hands and in computer anima-
tion. Our algorithm for computing offsets of cir-
cular arc figures can likely be extended to the
computation of offsets of other kinds of figures.

. Other Related Work

It should be noted that our notion of "circu-
lar arc figure" differs from the notion of "spline-

gon" of Souvaine [Souv].

Other related work includes [BO],
[EGHPPSSS], [OWW], and [SH].

®  Basic Definitions

We call a planar set F a figure if F is con-
nected and compact and if its boundary points
form a set of disjoint Jordan curves. We call F a
circular arc figure if its boundary consists of a
finite set of circular arcs (of various radii). We
allow the radius of a boundary arc to be infinite,
so line segments can appear in the boundary. Let
J={J; li=1,..,m} be a collection of Jordan
curves in the plane. Let int (J;) be the interior of
Jordan curve J;. Let K(J;) be the closure of
int (J;) (the union of int(J;) and J;). Let k be a
non-negative even integer. We define J to be
k—admissible if: (1) for each i # j, the intersec-
tion J; N J; consists of an even number of cross-
ing points not exceeding k; and (2) for each
i#j, K(Ji)—int(J;)is connected.

In [KLPS], a collection of planar Jordan
curves is called admissible if the intersection of
every two curves either consists of two crossing
points or is empty. Thus, an admissible Jordan
curve collection in that paper is just what we call
2-admissible. They also call a collection of
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planar Jordan curves weakly admissible if the
intersection of every pair of them consists of at

most two points.

L4 Main Results

In this paper, we present a simple
O (nlog2n) time algorithm for computing the
expansion offset of a circular arc figure bounded
by » arcs. To do the running time analysis of the
algorithm, we prove the following topological
result. For a k -admissible collection J of m Jor-
dan curves, J ={ J; | i =1,..,m}, the number
of the intersection points of the J; that appear on
the boundary of UK({Ji) is bounded by
k(3m -6) for all m 23. This bound is tight.
Moreover, this result can be further generalized to
what we call k—weakly—admissible collections of
Jordan curves.

2. The Algorithm
The following notation will be used:

NOTATION:

o(F) — the boundary of figure F .
A} — theclosed disc of radius / centered at
X.

DJ — the open disc of radius / centered at
x.

8x,S)— ggpﬁ(x,y),whereS(z,y)ismedis-

tance between points x and y, and §

is a closed set.

Lemma 2.1. Let F be a circular arc figure.
Then the boundary of E(l,F)= \JAl is con-
tained in the boundary of E (I, 9(F)) = xew.)A;l .

Proof.
dary of E (I, F). The disc A} must touch a point
q € o(F).

Suppose that p is a point on the boun-

Therefore p is contained in

E(l,9(F)). If p is not contained in the boundary
of E(I,0(F)), then there would exist an open
disc D for some £ >0 such that Df is com-
pletely within E(/,d(F)). Because o(F) CF,
Dg would also be completely contained in
E(l,F). This contradicts the assumption that p
is a boundary point of E (!, F). O

Lemma 22. LetF be a circular arc figure. Let
p bea point on the boundary of E (/, (F)). Then
p is a boundary point of E(I, F) if and only if p
is not contained in F .

Proof. It is easy to see that if p is a boundary
point of E ([, F), then p is not contained inF.

Now assume p is not contained in F. We
show that for any €>0, there exist points
x,yeDF such that x e E(l,F) and
ye E(I,F). Since p € dE(I,d(F))) (by the
boundary point definition), for any € >0, there
exist points x,y € DF such that x,yeéF,
x€ E(,9(F)) and yé¢ E(,o(F)).
x e E(I,F) because o(F)cF. For point y,
there are two cases: (1) &(y,F)>1, and (2)
&y,F)<l. (8(y,F) cannot be exactly !
because ye¢ E(I,0(F)).) If (1), then
ye¢ E(I,F). If (2), then A/ must intersect F or
completely contain F. If A} intersects F, then
y € E(l,9(F)). This contradicts the assumption
for y. If A} contains F, then &(y,F) <!, thus
y € E(I,9(F)). The same contradiction arises.

O

Clearly,

The above two lemmas remain true for

some more general figures.

o Outline of the algorithm

For what follows, we remark that it is
straightforward to show that the offset of a single
circular arc (i.c., just the simple 1-dimensional



set consisting of an arc of a cirle) is a solid circu-

lar arc figure bounded by at most four arcs.

An outline of our algorithm for the offset
computation of a circular arc figure F is as fol-
lows. First, we compute the boundary o; of
E(l,q;) for every arc o; < o(F). Then we com-
pute the boundary of QK (d;)=E(l,d(F)).
However, as shown in Lemma 2.1, the boundary
of E(I,0(F)) is a superset of the boundary of
E(l,F), and hence may contain inappropriate
arcs which do not belong to d(E (I, F)). Our final

step is to eliminate those inappropriate arcs.

3. K-admissible Collections of Jordan
Curves

Our tight upper bound on the number of
intersection points that appear on the boundary of
the union of the regions bounded by the Jordan
curves in a k -admissible collection requires many
technical lemmas and involves an inductive argu-
ment indexed by a triple of parameters defined by
how the curves intersect each other. The details

appear in [Zhao).
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