Tree Traveling Salesman Problem

S.N. Kabadi*
The University of New Brunswick

R. Chandrasekaran University of Texas at Dallas

* This research was partially supported by N.S.E.R.C. (Canada) research grant # A8085.

Given a directed graph G = [N, A] and arc lengths $c_{i,j}$, the problem of finding a closed directed path of minimum length that passes through each node precisely once is known in the literature as the *Traveling Salesman Problem* (TSP) [LLRS]. Such paths are also called *Hamiltonian Cycles or Tours*. If for each node i, we can select a state k from a set of possible states S_i , and the length of the arc from nodes i to j is given by $c_{i,j}^k$ where k is the state of i and l is the state of j, then we get a *generalized traveling salesman problem* (GTSP) [KC]. Here we have to find not only the optimum tour but also the states for each node. There is a way to formulate the GTSP as a TSP on a larger graph. Hence, the two problems are equivalent.

We consider the following special case of GTSP which generalizes some work of Gilmore and Gomory [GG] on a special case of TSP.

Problem I:

Given an undirected tree T = [V, E]; nonnegative edge lengths $d_{p,q}$ for $(p, q) \in E$; a set of unordered pairs of nodes (a_i, b_i) , with $a_i \in V$ and $b_i \in V$, for $1 \le i \le n$. For $x, y \in V$, let $d_{x,y}$ be the length of the unique path between x and y in T. The problem we consider is a special case of GTSP on another graph G = [N, A] with |N| = n; where each node has two states α and β . $c_{i,j}^{\alpha} = d_{a_j,b_i}$; $c_{i,j}^{\alpha\beta} = d_{b_j,b_i}$; $c_{i,j}^{\alpha\beta} = d_{b_j,b_i}$;

$$c_{i,j}^{\beta} = d_{a_j,a_i}; c_{i,j}^{\beta} = d_{b_j,a_i}.$$

Assumption:

All a_i, b_i are distinct and the set of nodes in T with degree 2 is a subset of the set of these nodes.

Let $S = \bigcup_{i=1}^{n} \{a_i, b_i\} = \{s_1, s_2, ..., s_{2n}\}$. The algorithm presented below is a generalization of an algorithm found in [KC] for the case T is a path.

Algorithm TTSP:

Step 1: Let $H = K_S$ be the complete graph on S. For s_i , s_j in S, let d_{s_i} , s_j be the length of the unique path in T between s_i and s_j . Using Algorithm M (described later), find a perfect matching φ , in H with the minimum value

of
$$(\sum_{i=1}^{2n} d(s_i, \varphi(s_i))/2 = c_{*}.$$

Definition: For any perfect matching φ in H, let $G_{\varphi} = [N, E_{\varphi}]$ be an undirected graph, where $N = \{i: 1 \le i \le 2n\}$ and

 $\mathbf{E}_{\varphi} = \{(\mathbf{i}, \mathbf{j}) : \text{ either } \varphi(\mathbf{s_i}) = \mathbf{s_j} \text{ or } \{\mathbf{s_i}, \mathbf{s_j}\} \equiv \{\mathbf{a_i}, \mathbf{b_i}\} \text{ for some i}\}.$

Step 2: If G * is connected, then stop; we have the required tour. Else, let the connected components of G * be $G^t = [V^t, E^t]$ for $1 \le t \le k$ with k > 1. Go to step 3.

Step 3: For $1 \le t \le k$, contract nodes in V^t into a single node x_t in T to obtain a multigraph Q = [X, F]. $\nabla = \frac{k}{t-1} \{x_t\} \subset X$ for $1 \le t \le k$; $X - \nabla$ are the nodes in T that do not correspond to any a_i or b_i . Find the minimum Steiner tree F^* in Q containing the set ∇ .

Step 4: Modify φ^* using edges in F^* to obtain the tour τ^* as follows. Let $\tau^0 = \varphi^*$; $F^1 = F^*$; i = 1.

4(a): $e = (u, v) \in F^{i}$, where s is a tip node of F^{i} . Clearly, $s \in \nabla$. If $t \notin \nabla$, contract s and t and let the new node be s; modify steiner tree to F^{i+1} and go to step 4(b). If $t \in \nabla$, then let

$$\tau^{i}(s) = \tau^{i-1}(t); \ \tau^{i}(t) = \tau^{i-1}(s);$$

$$\tau^{i}(\tau^{i-1}(t)) = s; \ \tau^{i}(\tau^{i-1}(s)) = t;$$

$$\tau^{i}(x) = \tau^{i-1}(x) \text{ otherwise.}$$

$$F^{i+1} = F^{i} - \{e\}; \text{ go to step 4(b)}$$

4(b): If $F^{i+1} \neq \phi$, i = i+1, go to step 4(a). Else, let $\tau^* = \tau^i$; go to step 5.

Step 5: Construct G_* . Such a modification of φ^* is called a patching of φ^* and it is well known that this results in a tour [KC]. A traversal of the tour also yields the states for the GTSP. This is the required solution of the GTSP.

Algorithm M:

Step 0: Let $T^0 = T$; j = 0; $S^0 = S$.

Step 1: Let u be a tip node of T^j and e = (u, v). If $u \notin S^j$, then delete u and e to get the new tree T^{j+1} . Let $S^{j+1} = S^j$ and go to step 2. If $u \in S^j$ and if $v \notin S^j$, contract e and let the new node be u; new tree be T^{j+1} ; $S^{j+1} = S^j$; go to step 2. If $u \in S^j$, and $v \in S^j$, then (u, v) in the matching; hence $\varphi^*(u) = v$ and $\varphi^*(v) = u$; delete e from the tree to get T^{j+1} ; $S^{j+1} = S^j - \{u, v\}$; go to step 2.

Step 2: j = j+1; if $S^{j} = \phi$, stop. Else go to step 1.

Validity of Algorithm M:

A perfect matching φ in S is noncrossing iff \forall [i \neq j \neq φ (i), i, j, φ (i), \in S] the path P(i, φ (i)) and P(j, φ (j)) in T do not have a common node.

Lemma 1: A perfect matching φ in S is optimal iff it is noncrossing.

Lemma 2: Algorithm M produces a noncrossing matching in S.

Validity of Algorithm TTSP:

The validity of algorithm TTSP follows from the following two lemmas.

If we used step 4, starting with any steiner tree F containing ∇ in Q yields a feasible solution to GTSP.

- Lemma 3: For any steiner tree F containing ∇ in Q, $c(\varphi^*(F)) = c(\varphi^*) + 2 \sum_{e \in F} d_e$ where $c(\varphi(F))$ is the cost of the solution to GTSP obtained by doing step 4 to φ using F and $c(\varphi)$ is the cost of the matching φ in K_S .
- Lemma 4: For any feasible solution τ to GTSP \exists a steiner tree F in Q \ni $c(\varphi^*(F)) \leq c(\tau)$ where $c(\tau)$ is the cost of τ .

The proof of lemma 4 actually provides a polynomial algorithm that produces such an F given τ . Thus, Problem I is polynomially equivalent to step 3 of algorithm TTSP (that of finding the required steiner tree in Q).

- Theorem 1: The problem of determining minimum cost steiner tree in step 3 of algorithm TTSP is NP—hard.
- Remark: This might look like a special case of the steiner tree problem, but it is still NP—hard.
- Corollary 1: Problem I is NP—hard.
- Remark 2: However, if every node of T corresponds to one of the a_i or b_i , then in step 3 of algorithm TTSP, $X \nabla = \phi$. In this case, the steiner tree problem is a minimum spanning tree problem which is nicely solvable [K]. We, therefore, have the following generalization of the result in [KC] (which itself is a generalization of the result in [GG]):
- Theorem 2: If every node in T is an a_i or b_i for some i, then algorithm TTSP is $O(n \log n)$, and it solves the problem.

References:

[GG] P.C. Gilmore: R.E. Gomory

Sequencing a One-state Variable Machine: A Solvable case of the Traveling Salesman Problem, Operations Research, 12, (1964),

655-679.

[K] J.B. Kruskal:

On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem, Proc. Amer. Math. Soc., 7, (1956), 48-50.

[KC] S.N. Kabadi R. Chandrasekaran

Solvable Classes of Generalized Traveling Salesman Problem, 1985.

[LLRS]

E.L. Lawler J.K. Lenstra

A.H.G. Rinooy Kahn

D.G. Shmoys

The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, J. Wiley, (1985).