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Given a directed graph G = [N, A] and arc lengths ¢ ., the problem of finding a
closed directed path of minimum length that passes through ea.ch node precisely once is
known in the literature as the Traveling Salesman Problem (TSP) [LLRS] . Such paths are
also called Hamiltonian Cycles or Tours. If for each node i, we can select a state k from a
set of possible states Si’ and the length of the arc from nodes i to j is given by Cli(,} where k
is the state of i and 1 is the state of j, then we get a generalized traveling salesman problem
(GTSP) [KC]. Here we have to find not only the optimum tour but also the states for each
node. There is a way to formulate the GTSP as a TSP on a larger graph. Hence, the two
problems are equivalent.

We consider the following special case of GTSP which generalizes some work of
Gilmore and Gomory [GG] on a special case of TSP.

Problem I: Given an undirected tree T = [V, EJ; nonnegative edge lengths dp’ q
for (p, q) € E; a set of unordered pairs of nodes (a;, b;), with a, € V
and bi €V,for1<i<n. Forx,y€eV,let dx,y be the length of the

unique path between x and y in T. The problem we consider is a

special case of GTSP on another graph G = [N, A] with |N| = n;

where each node has two states @ and £. ca =4 ; ﬁ =d ;
i,j aJ ,b. b b
Cﬂ o _ BB _
5 € d .
_ oy 15 ™ Ty
Assumption: All a, bi are distinct and the set of nodes in T with degree 2 is a

subset of the set of these nodes.
' n
LeteS= U f{a;,b}= {s,s,..,s_}. The algorithm presented below is a
i=1 1 12 2n

generalization of an algorithm found in [KC] for the case T is a path.
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Algorithm TTSP:

Step 1: Let H = KS be the complete graph on S. For s,, sj in S, let ds. s be the
')
length of the unique path in T between s, and 55 Using Algorithm M

%
(described later), find a perfect matching ¢ , in H with the minimum value
, 2n
of (T d(s e(s;))/2=c¢
i=1 17

Definition:  For any perfect matching @ in H, let G, = [N, E ] be an undirected graph, where
N = {i:1<i<2n}and

E(p = [(i,j): either ¢fs;) = s; o {s;, sj} = {a;, b;} for some i.

Step 2: If G 4 is connected, then stop; we have the required tour. Else, let the
7
connected components of G  be Gt = [Vt, ok ] for 1 <t <k withk > 1.
77 ©*
Go to step 3.
Step 3: For 1 < t < k, contract nodes in viintoa single node X, in T to obtain a
k

multigraph Q = (X, F]. V= U {x,ic X for1 <t < k; X —V are the nodes
t=1

in T that do not correspond to any a, or bi‘ Find the minimum Steiner tree
F* in Q containing the set V.
Step 4: Modify (p* using edges in F* to obtain the tour r* as follows.
Let 1 = tp*; F! = F*; i=1
4(a): e=(u,v)E€ Fi, where s is a tip node of F. Clearly,se V. Ift ¢V,
contract s and t and let the new node be s; modify steiner tree to Fi +1 and
go to step 4(b). Ift € V, then let
Ae) = A7 P = 776
A ) =5 ) =
'ri(x) =71 (x) otherwise.
FHI —F - {e}; go to step 4(b)
4(b): TFH! #¢,i=i+1, gotostep 4(a). Else,let 7 = 7 g0 to step 5.
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: * *
Step 5: Construct G 4. Such a modification of ¢ is called a patching of p and it is
T

well known that this results in a tour [KC]. A traversal of the tour also yields

the states for the GTSP. This is the required solution of the GTSP.

Algorithm M:
Step O: Let TO=T;j=0;5°=S.
Step 1: Let u be a tip node of T ande = (u,v). fu¢g Sj, then delete u and e to get

the new tree Tj'H. Let Sj'*'1 = Sj and go tostep 2. Ifue Sj and if v ¢ Sj,
contract e and let the néw node be u; new tree be Tj+1; Sj'*'1 = Sj; go to
step2. Tfue Sj, and v € Sj, then (u, v) in the matching; hence cp*(u) =v
and c,o*(v) = u; deletee from the tree to get Tj+1; gitl _ gl {u, v}; go to
step 2.

Step 2: j=j+1;if = ¢, stop. Else go to step 1.

Validity of Algorithm M: .

A perfect matching ¢ in S is noncrossing ff V [i # j # ¢(i), 1, j, ¢(i), € S] the path
P(i, ¢(i)) and P(j, ¢(j)) in T do not have a common node. .
Lemma 1: A perfect matching ¢ in S is optimal iff it is noncrossing.

Lemma 2:  Algorithm M produces a noncrossing matching in S.

Validity of Algorithm TTSP:
The validity of algorithm TTSP follows from the following two lemmas.
If we used step 4, starting with any steiner tree F containing V in Q yiel&s a feasible

solution to GTSP.
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Lemma 3:  For any steiner tree F containing V in Q, c(go*(F)) - c((,o*) +2 % d,
eeF

where c(¢(F)) is the cost of the solution to GTSP obtained by doing step 4

to ¢ using F and c(yp) is the cost of the matching ¢ in Kg.
Lemma 4:  For any feasible solution 7 to GTSP 3 a steiner tree F inQ >3

c(go*(F)) < ¢(7) where c(r) is the cost of 7.

The proof oflemma 4 actually provides a polynomial algorithm that produces such an

F given 7. Thus, Problem I is polynomially equivalent to step 3 of algorithm TTSP (that
of finding the required steiner tree in Q).
Theorem 1: The proﬁlem of determining minimum cost steiner tree in step 3 of

algorithm TTSP is NP—hard.

Remark: This might look like a special case of the steiner tree problem, but it is stiil
NP-hard.
Corollary 1: Problem I is NP—hard.

Remark 2:  However, if every node of T corresponds to one o f the a, or bi’ then in step 3
of algorithm TTSP, X —V = ¢. In this case, the steiner tree problem is a
minimum spanning tree problem which is nicely solvable [K]. We, therefore,
have the following generalization of the result in [KC] (which itself is a
generalization of the result in [GG]):

Theorem 2: If every node in T is an a, or b; for some i, then algorithm TTSP is

O(n log n), and it solves the problem.
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