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1 Introduction

Of the known results in the field of convexity theory, perhaps the most famous is the existence
theorem due to Helly which relates the intersection of a collection of convex sets with the intersection

of its subcollections [2]:

Theorem 1 (Helly) LetC = {C1,Cs,...,Cpn} be a collection of convez sets in R?. Then if every

d + 1 sets intersect, there exists a point common to all the sets.

This result has had numerous applications in proving other combinatorial statements, in partic-
ular those of the general form: If a certain type bf collection is such that each of its subfamilies of
k members has a certain property, then the whole collection has that property (see [1] for a partial
survey). An algorithmic implication of such statements is that to determine whether the collection
has the property, it suffices to determine whether every subfamily of ¥ members has the property.
In the case of Helly’s theorem itself, if we had an algorithm which determined whether any d + 1
members of C have a common intersection,i then by applying this algorithm to all (d_"‘_l) subfamilies
of d + 1 members, we could determine whether all sets of C intersect. However, no constructive
applications had been discovered for Helly’s theorem or its relatives.

In the next section, we outline a general method by which a point in the intersection of n
convex sets in R¢ may be computed, assuming the existence of an algorithm for finding a point in

the intersection of any d 4 1 of these sets. The algorithm will be seen to require time proportional
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to (431) + f(d + 1), where f(d + 1) is the time required to find a point in the intersection of d+1
sets. Although this method perhaps cannot compete against fast algorithms for special sets such

as half-spaces, it may be efficient in cases where the sets are very complex.

2 Computing an Intersection Point Using Radon Partitions

A Radon partition of a set of n points in R is a partition into two sets S and T such that their
convex hulls CH(S) and CH(T) intersect. Radon’s theorem [5] guarantees the existence of a Radon

partition whenever n is at least d + 2. From this, the following lemma can be proved:

Lemma 2 Let{C1,Ca,...,Cas2} be a collection of convez sets in R4, and let P = {p1,p2,. .., Pd+2}
be a set of points such that p; € ;2;Cj for 0 < i < d+2. If S and T form a Radon partition of
P, then CH(S)n CH(T) € N; C;.

This lemma may be used to prove Helly’s theorem by induction. Indeed, Radon first used these
arguments to this end in 1921 [5]. Implicit in the lemma, moreover, is the basis of a recursive
algorithm for finding the common intersection of convex sets.

Given a collection C = {C,C2,...,Cpn} of convex sets in R, let us assume that we have
available a “black box” or “oracle” which accepts as input the indices of d+ 1 sets of C, and which
gives as its output a point in the intersection of these sets, or reports that the sets do not intersect,
as the case may be. We shall also assume that a call to the oracle and the computation of a Radon
partition both take unit time, since these operations are independent of the size of C.

For each k = 1,2,...,n — d, we will compute an intersection point for the collection
{Cl, Cy,... ,Ck,.Cxl,sz, . ,C,,d}, {.’01,32, e ,zd} - {k +1,... ,n}. (1)

Note that when k = n — d, this is the required intersection point. If at any time a call to the oracle
reveals that some subcollection has no intersection, then the algorithm terminates.

For k = 1, an intersection point of each of the ("3') families {C1,Cyz,,Cz,,-.-,Cz,} may be
obtained directly from the oracle. In general, having found all of the intersection points for the
families in (1) up to k — 1 > 1, we compute the values for k by taking a Radon partition of the
intersection points of the following d + 2 families:

K\Ck’

K\Cz;, for1<i<d, and
{Ck’Cantz"",Czd}’
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where

k d
K=¢Cin()Cx-

j=1 =1

From T.emma. 2, it follows that the intersection point of the hulls of the Radon partition is contained
in K. Therefore, to compute a point in the sets of (1) for each value of k > 2 involves finding (";k)

Radon partitions and (";k) calls to the oracle. The total number of Radon partitions computed is

£(4)-%50)-()

Taking the case k¥ = 1 into consideration, the number of calls to the oracle is thus

n-—1 n—1 n
( d )+ (d+1) - (d+1)’
one for each subfamily of C consisting of d + 1 members.
The algorithm just described is optimal in the number of calls to the oracle, since we can
construct families of n convex sets for which all but one of its sui)families of d + 1 members has a

nqn-empty intersection. However, it is certainly not optimal in terms of space, since at iteration

k = k' we require that the results of ¥ = k' — 1 be kept available.

3 Applications

Just as many combinatorial results follow from Helly’s theorem, the method presented in the
previous section has many applicatiohs. In this concluding section, we will mention but three,
although we will not justify our claims in this extended abstract. In the full paper, other extensions
will also be discussed.

The first algorithm follows from an application of Helly’s theorem due to Vincensini (6] and
Klee [4]):

Theorem 3 Let C = {C1,Ca,...,Cr} be a collection of convez sets in R, and let C be another
convex set. Given an algorithm that accepts as input d + 1 sets of C, and returns a translate of
C contained in the intersection of these sets (or reports its non-ezistence), then a translate of C
contained in the intersection of the entire collection may be found (or its non-ezistence reported)

in time proportional to (;},) - f(d+1). Here, f(d + 1) is the time taken by the algorithm.

Next, let § = {51,52,...,5:} be a family of n sets in R¢, some labeled red and the others
labeled green. A linear separator of S is a hyperplane h such that all the red sets are contained in

one open half-space bounded by h, and all the green sets are contained in the other. A spherical
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separator of S is a hypersphere s (possibly degenerate) such that all the red sets are contained in
one connected region of ¢ \ s, and all the green sets are contained in the other.

Recently, Houle [3] showed a reduction of the problem of determining whether n sets can be
linearly separated to the problem of determining whether n convex sets of the same dimension have
a common intersection point. In the case of spherical separation, the n convex sets are of one higher
dimension. Using these transformations, we arrive at the following extensions of the intersection

algorithm:

Theorem 4 Given an algorithm that accepts as input d+2 sets of S, and returns a linear separator
of this subset (or reports its non-ezistence), a linear separator for the entire collection may be found
(or its non-ezistence reported) in time proportional to (;},) - f(d +2). Here, f(d + 2) is the time
taken by the algorithm.

Theorem 5 Given an algorithm that accepts as input d + 3 sets of S, and returns a spherical
separator of this subset (or reports its non-ezistence), a spherical separator for the entire collection
may be found (or its non-ezistence reported) in time proportional to ( diz) - f(d+3), Here, f(d+3)
is the time taken by the algorithm.
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