Point Placement for Delaunay Triangulation of Polygonal
Domains

Lee R. Nackman* Vijay Srinivasan®

1 Introduction

In some applications of triangulation, such as finite element mesh generation, the aim is to trian-
gulate a given domain, not just a set of point sites. One approach to meeting this requirement,
while maintaining the desirable properties of Delaunay triangulation, has been to enforce the empty
circumcircle property of Delaunay triangulation, subject to the additional constraint that the edges
of a polygon (or, more generally, a graph) be covered by edges of the triangulation. This leads to the
constrained Delaunay triangulation (also called the generalized Delaunay triangulation), in which the
usual empty circumcircle property that defines Delaunay triangulation is modified to require that
the interior of the circumcircle of every triangle be devoid of points that are visible from all three of
the triangle’s vertices [FFP85, LL86, Che89, BEG90].

In finite element mesh generation, it is usually necessary to include additional points besides the
vertices of the domain boundary. This leads us to ask whether it is possible to triangulate a domain
by introducing additional points in such a manner that the Delaunay triangulation of the points
includes the edges of the domain boundary. In other words, instead of modifying the definition of
Delaunay triangulation to constrain the triangulation of a given set of points to cover the edges of
a polygon, we ask whether we can add additional points to achieve the same aim.

We present an algorithm that given a polygonal domain with N vertices on its boundary, adds
I additional points in O(N log N + K') time such that the domain boundary is covered by the edges
of the Delaunay triangulation of the N + K points. Furthermore, A is the minimum number of
additional points such that there exists a circle, passing through the endpoints of each boundary
cdge segment, that does not contain in its interior any other part of the domain boundary.

2 Problem Statement

A maultiply-connected polygonal domain (hereafter, domain) D is a region of ®? whose boundary,
9D, consists of one or more simple polygons. A set of points P is admissible only if the edges of the
Delaunay triangulation of P covers the edges of 0D. A circle is poini-free if none of the given points
is contained in the circle’s interior. A triangulation of n > 2 points is Delaunay if and only if every
edge has a point-free circle passing through its endpoints [GS85]. Starting with P being the vertices
of &D, a set of points can be constructed by adding points to P until there exists a point-free circle
passing through consecutive points on the edges of D. Suppose the points are added sequentially
and the resulting point-free circles on edge €; are allowed to overlap another edge, e;. Then, adding a
point later on es might destroy the “point-freeness” of one of the point-free circles of e;. This would
then require another pass over the edges to add more points, and this process would be repeated until
no more points are added. Although it can be argued that this process will eventually terminate, a
very large number of points can be added and the ultimate number added depends on the order and
the position in which the points are added. Therefore, we seek an admissible set of points having the
additional property that there exists an edge-free circle passing through each pair of adjacent points
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Figure 1: Each example shows a smallest possible admissible set of points having the edge-free circle
property. By altering the shape of the input, without altering the size of the input, the output size
can be made arbitrarily large.

on the edges of D. By “edge-free circle,” we mean that the open disk bounded by the circle does
not intersect any other edge of 8D. Finding edge-free circles also brings an additional benefit: it
can be seen trivially that after obtaining the admissible set satisfying the edge-free circle criterion,
new points can be added anywhere on 3D without destroying the edge-free circle property.

The problem we solve in this paper is to find a smallest possible admissible set of points having
the edge-free circle property. We note at the outset that the best we can hope for is an algorithm
with time complexity that is linear in the output size, for as Figure 1 illustrates, the output size can
be independent of the input size.

3 Related Work

Boissonnat et al. have sketched two algorithms for finding an admissible set of points P. The analysis
presented in [Boi88] claims that only O(N) points are added. Unfortunately, the claim is incorrect,
being based on the incorrect implication that if the number of points added is independent of N
(which it is), the number of points added is O(1). A similar algorithm (and incorrect analysis) is
given in [SP]. Boissonnat’s other algorithm [BFBM88] finds an admissible set of points that also
has the edge-free circle property. It computes for each edge the minimum distance d to all other
non-adjacent boundary entities and then places additional points on the edge so that the distanece
between consecutive points is no greater than d. This is sufficient to obtain the edge-free circle
property, but an excessive number of additional points are unnecessarily placed. Here, too, the
claim that only O(N) additional points are added is incorrect.

4 Algorithm Overview

The algorithin described in this paper processes cach edge independently. Starting at one endpoint
of the edge e, it finds an edge-free circle that passes through the endpoint and cuts off the largest
possible portion of e. This is repeated until the entire edge is consumed. In the example of Figure 2,
the algorithm finds an edge-free circle passing through v; and v, and therefore does not add any
points to that edge. However, in processing the next edge, it does not find an edge-free circle passing
through v, and v3. Therefore, it adds the point p to that edge and proceeds further.

5 Maximal Circles and Medial Involutes
A marimal disk with respect to a domain D is an open disk that is contained in D but not contained

in any other open disk contained in D. The circle that bounds a maximal disk is called a mazimal
circle. A maximal circle with respect to D must intersect dD, for if it did not, it would be possible
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Figure 2: Algorithm overview

to construct a concentric circle and associated open disk in D that contains the maximal circle. The
points in the intersection are called the touching points of the maximal circle.

Maximal disks can also be defined with respect to two sets using the notion of a bisector. The
bisector B(Si, S2) of two sets Sy and Sy is the set of points equidistant from S; and S3. Let q be
a point on B(Sy,S3). A mazimal disk D with respect to S; and Sz is the open disk centered at q
with radius 7 = d(q, S1) = d(q, S2). The boundary of D is called the maximal circle.

Let p € 8D. The medial involute [Boo79] of p with respect to D, denoted MI(p, D), is the
set of points q € OD such that there exists a maximal circle with respect to D having p and q
as touching points. The medial involute of a set S C 8D with respect to D, denoted MI(S, D),
is Upes MI(p, D). The interior medial involute of a set S with respect to a domain D, denoted
IMI(S, D), is MI(S, D) and the exterior medial involute of S with respect to D, denoted EMI(S, D),
is MI(S, D).

6 Algorithm

Algorithm PlacePoints:

Input: directed edge e from vertex v; to vertex va, IMI(e, D), and EMI(e, D)
Output: additional points py, p, ..., Pk, on e

1. Compute the bisector B(IMI(e, D), EMI(e, D)) and label its segments b;, i = 1...m.,
consecutively, where m, is the number of segments.

2. Find the maximal circle that passes through v, and “cuts off” the largest possible
portion of e:

(a) Find the last member b of by, by, ..., by, that is also a bisector of vy and some
other boundary entity. The desired maximal circle is the circle passing through
v, and having the rightmost endpoint qq of b as center.

(b) Let p, be the other intersection of this circle with e and set i = 1. Set b to the
bisector segment that is incident from the right at qy.

3. do while p; # v2
Find the maximal circle that first intersects e at p;:
(a) Let €; and €3 be the two boundary vertices or edges such that b C B(ey,€3).
(b) Let 3 be the bisector between p; and either ¢; or €;.
(¢) If q; = b is not empty, then
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i. The desired maximal circle is centered at q; and passes through p;.
ii. Set p;;; to the other intersection of this circle with e. Set b to the bisector
segment that is incident from the right at q;.
iii. i =i+ 1.
Else set b to the next bisector segment.

To place points on all edges in 8D, the algorithm is executed independently on each edge. This
can be shown to take ¥.capO(K, + N, log N.) time, which is O(K + N log N), where K = Secop K
is the output size. It can be shown that Algorithm PlacePoints places the smallest possible number
of points while maintaining the edge-free circle property.

7 Summary

We have presented an algorithm that takes O(Nlog N 4+ K) time to place the smallest possible
number A of additional points on the boundary of a polygonal domain (having N edges) so that
each pair of consecutive points on the domain boundary has passing through it an edge-free circle.
Finding the minimum number of additional points to obtain an admissible set of points to Delaunay
triangulate a polygonal domain remains an open problem. Our algorithms solve a special case of this
problem by constraining the circumcircles of Delaunay triangles to contain at most one connected
portion of an edge on the boundary of the domain.
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