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Abstract

Let T be a set of convex unimodal polygons in fixed position
and orientation. We prove that the problem of determining
. whether K probes are sufficient to identify all polygons P in
[ is NP-Hard for three different ways of orienting the probes.
This implies that the same results hold for most interesting
classes of polygons on which line probes can be used.

1 Introduction

A probe is a directed line ! aimed at a polygon P. The result
of a probe is a contact point p;, which is on the boundary of
P if | intersects P, and at infinity otherwise. Let I' be a set
of m convex n-gons in fixed position and orientation which
all share a common vertex p. In [Lyo88], it is shown that for
every such I, there exists a set II of probes aimed at p, with
|| € m—1, such that all polygons P € T can be identified by
looking at the results of the probes in II. It is also proved that
sometimes one cannot do this with less than m —1 directions.
We recall that a polygon P is unimodal if the distance func-
tion from a vertex of P to all other vertices in clockwise order
around the boundary of P has exactly one local maximum. In
" this abstract we show that the problem of deciding whether
K probes are enough to identify P € T' is NP-Hard for three
different ways of orienting the probes (including the one used
in [Lyo88]) even when the n-gons in I' are not only convex,
but also unimodal. This proof uses a reduction from the Min-
imum Test Set problem (see [GJ79]).

2 Generating convex unimodal n-
gons

In this section we show how to generate up to 2"~2 strictly
convex unimodal n-gons, while using only O(n logn) bits to
represent the vertices of each polygon. This construction is
used in the proofs of the following sections.

Let n be given, O denote the origin, and consider the part
of the unit circle which lies in the first quadrant. Given a
point p, we denote by 6(p) the angle between the positive
direction of the x-axis and the line segment from O to p. For
k=0,1,...,n—1, define ax = kv/(2n — 2). Let us denote
by v the point on the unit circle at angle ag, ie. v =
(cos ag,sinay), for k =0,1,...,n—1 (note that even though
v, and ai are dependent on n, this dependence will be left
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implicit throughout this abstract to simplify the notation).
Fork = 1,2,...,n — 2, let A\; be the midpoint of the line
segment from v;_; to vk41, and let ry = ||Ax||. We note that
Ai lies on the line segment from the origin to vy.

Lemma 2.1 The value of ri is independent of k and, pro-
vided n > 3,
1
rp<1-—
SN
Proof : This can be shown by using the Taylor series ex-
pansion for r; = cos(7/(2n — 2)).—qed

We are now ready to define polygons Py, ..., Pan-2_;. Let
us number the vertices of P; from 0 to n — 1, and denote the
kth vertex of P; in counterclockwise order by v; . We describe
a point (z,y) by a pair (p, ¢) where

p = Vz2+y? norm of the vector (z,y).
¢ = ?ﬂ%_-’—g-)—)- angle made by (z,y) normalized.

We will number the bits of i from 0 to n — 3 starting with
the least significant bit; the k" vertex of P; is set to vy if
the (k — 1)'t bit of 7 is 0, and to some point very close to Ag
otherwise. More formally, the coordinate vector of the ktP
vertex of P; in our new coordinate system is

((1,0), if k= 0;
(1,1), ifk=n-1;
p, 2o if i div 2¥-1 =0 (mod 2);
— = if 7 div =0 (mod 2);
1- —-1——2, 2o , ifidiv2¥-1=1 (mod2).
\ (n - 1) m
Lemma 2.2 P; is strictly conver fori=0,1,...,2"" %2~ 1.
Proof : The proof of this fact will be omitted lere. 0

Lemma 2.3 P; is unimodal fori=0,1,...,2" 2~ 1.

Proof : Suppose that j < k, and consider the triangle
(vi j, Vi, vik+1). By construction, the angle that the line
through two consecutive vertices of P; makes with the pos-
itive direction of the x-axis is in the range (7/2,7). Fur-
thermore, since P; is convex, the angle made by the line
through v; ; and v;; is strictly smaller than the angle made
by the line through v; ; and v; k4. Thus § > 7/2, and so
cosf < 0, and L? = 12 4+ d? — 2ldcosf > I? + d* > %
Hence d(vij,vik4+1) > d(vij,vix). This is true for all
1,7,k provided j < k, and hence the distances from v;; to
Vi j, Vi,j+1,- -+, Vin—1 are strictly increasing. By symmetry,
the distances from v; j to v j, vi,j—1,..., Vi are also strictly
increasing. Since this holds for all 4, j, we conclude that P; is
unimodal. O



Lemma 2.4 P; can be represented using at most O(nlogn)
bits fori=0,1,...,2""2 -1,

Proof: We prove that each coordinate of each vertex of P;
can be expressed as a rational number (using our coordinate
system) in a way such that both the numerator and the de-
nominator have value at most O(n2?). This is clear in the case
of the first coordinate. Consider now the second coordinate.
It has value 20(v;x)/7 = k/(n — 1). Since both the numera-
tor and the denominator are less than n, it can be expressed
using O(logn) bits as well. This implies that each v; 5 can be
represented using at most O(logn) bits, and so we conclude
that P; can be expressed using O(n logn) bits as required. O

Combining Lemmas 2.2, 2.3 and 2.4, we get :

Theorem 2.1 Fori=0,1,...,2""2—1, P; is a strictly con-
vez unimodal n-gon which can be represented using at most
O(nlogn) bits.

For the remainder of this abstract, we will express points in
ordinary polar coordinates (p, #) unless otherwise specified, as
this is more intuitive than the transformed coordinates used
to represent the polygons.

3 Probing convex polygons

We now want to show how the polygons in which we are
interested are probed. Consider a line L in the plane, and
a point p € L. Let T be a set of convex n-gons P,..., Pny.
Assume that each polygon P is positioned such that one of
its edges, denoted by e[P], is collinear with L, and that the
left endpoint of e[P], denoted by I[P], coincides with p.

We want to determine a set of rays I = {o4,...,0} such
that we can differentiate between two polygons P;, P; in I’
using the contact points obtained by probing them with rays
in II. In [Lyo88], it is shown that ,

Theorem 3.1 (Lyons) m — 1 probes are always sufficient
and sometimes necessary to identify an object P € T posi-
tioned such that I[P)] is coincident at p and e[P] is collinear
with L.

In [Lyo88], an algorithm which finds a set of at most m — 1
such raysin O(mn+m?) time is given. All raysin II are aimed
at p through another vertex of some polygon P € I'. This
algorithm does not guarantee that the set of directions found
has minimal cardinality. We will show that the problem of
determining whether K rays are enough to identify an object
P € T is NP-Hard for three different ways of choosing our
probes, namely the following :

C1. All probes o4,...,0k are aimed at p through at least
one other vertex of some polygon P € T — all probes
generated by the algorithms in [Lyo88] are of this kind.

C2. Allprobes g, ...,0k are aimed at p, without necessarily
going through a vertex of a polygon P € T.
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C3. The probes used are completely arbitrary.

The formal definition in the style of [GJ79] for the three
corresponding problems which we will prove NP-Ilard is the
following :

Instance : A set T of convex unimodal polygons in fixed
position and orientation, with a common ver-
tex p and the edge clockwise to p collinear
with a fixed line L. An integer K such that
I<KL|N -1
Is there a set or probes II = o¢y,.. Ok
(k < K) satisfying condition C1, C2 or C3
above (depending on the version of the prob-
lem which is considered) which allows us to
identify all polygons P €T ?

The first two versions of the problem are in fact NP-
complete. It is not known whether the third one belongs to
NP or not.

Question :

4 Probing towards a fixed point p
belongs to NP

In this section, we show that the first two of the three prob-
lems enumerated above belong to NP. We assume that each
polygon is given by a list of the cartesian coordinates of its
vertices in clockwise order.

Lemma 4.1 The version of the probing problem in which the
probes have to satisfy condition C1 belongs to NP.

Proof: The idea is to guess the coordinates of the vertices
towards which the probes are aimed. m]

To show that the version of the probing problem in which
the probes only have to satisfy condition C2 is in NP, we need
two definitions.

Definition 4.1 A special point is either a vertez of P for
some P € T, or the intersection of an edge of P; with an edge
of Pj which is not collinear with it, for P;, P; € T.

Definition 4.2 A target is either is special point, or the mid-
point of the line segment joining two special points adjacent
in the an ordering of all special points by polar angle around
.

We note that there are at most O(m?n?) such targets for
all sets T' of m convex n-gons, and that each of them can
be represented as a rational number using a number of bits
polynomial in the size of the input.

Lemma 4.2 The version of the probing problem in which the
probes have 1o satisfy condition C2 belongs to NP.

Proof : Suppose that there is a set IT of K probes which
are directed towards p and identify all P € T. Look at all
targets, sqrted by polar angle around p. It can be checked
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that each probe aimed towards p through an edge of some
P; € T is equivalent to a probe aimed towards p through a
target, i.e. that these two probes meet the same edges of the
same polygons in the same order (although at slightly different
places). Hence we can guess the second point determining a
ray in II as being a target, and check this guess in polynomial
time. (@]

Note that the crucial fact in this proof is the possibility of
ordering a small number of targets, which can all be repre-
sented using only a polynomial number of bits, by polar angle
around p. If there is no such point p towards which all the
probes are directed, as in the case where the probes only have
to satisfy condition C3, the problem becomes much harder
and determining whether it belongs to NP or not remains an
open problem.

5 Reduction from Minimum Test
-~ Set '

We now want to give a way to reduce the Minimum Test Set
problem (see [GJ79]) to our probing problems (the reduction
will be the same in all three cases). First recall the statement
of the Minimum Test Set problem :

A collection C = {C, ..., Ci} of subsets of a
finite set S, and a positive integer K < |C|.
Is there a subcollection C* C C with |C'] £
K such that for each pair of distinct elements
u,v € S there is some set ¢ € C’ that con-
tains exactly one of u and v?

Without loss of generality, we assume that the elements of
S are numbered from 1 to |S|, that |C| > 1 and that 0 ¢ C.
Let n = 2|C|+ 1. We choose p to be the point (1,0), and L
to be the line through p with slope —1. For each i € S, let
p(i) = Yiejtiecs) 2%-2, and let Py(;) correspond to i, where
Pyiy is taken from a list Po,..., Pya-2_; of strictly convex
n-gons generated as in Section 2.

Intuitively, this means that we have one polygon for each
element in S, and that every other vertex corresponds to a
subset of S which is in C. For all i and k, vy(i),2¢ = Vai, and
Vp(i),2k—1 is equal to vor—1 if element i of S is in C, but is a
little bit closer to the origin if 7 is not in Ci.

Instance :

Question :

Lemma 5.1 The transformation from Minimum Test Set
can be done in polynomial time.

For notational convenience, let us assume that p() = ¢ for
i=1,2,...,|5], so that Py can be expressed more simply
as P;. We conclude this section by making two observations.

Lemma 5.2 Let P;, Pj be two polygons in Py, ..., Pyn-a_1.
If a probe o aimed at p hils P; between v; ox—2 and vk, i
contacts P;j between vjr—2 and vjor. Furthermore, if o is
aimed at p through v; 2x—1, it contacts P; at vjax-1 if and
only if vjak—1 = viz2k-1-

Proof': By construction, Vi,2k-2 = Vj,2k-2 and Vi, 2k = Vj 2k,
and by Theorem 2.1, P; and P; are convex. Thus, since o
hits P;j, it must do so between vjr.2 and v; ;. Suppose
now that o hits P; at v;op-1. If vi2k—1 = vj 21, then o
also contacts P; at vj 2x—1. On the other hand, if the contact
point of o with P; is different from v; 21, then since v; a1,
vj 2k—~1 and p are not all collinear (since v; 3x-1 and vj k-1
are collinear with the origin, but do not lie on the x-axis),
does not contact P; at v; 2z either, as required. 8]

Lemma 5.3 Let P;, P; be two polygons in Po,..., Ppa-a_y. -
If a probe o satisfying condition C1 distinguishes between P;
and Pj, then 3k such that o hits either v; 2p -1 or vj 21 1.

Proof : Since o satisfies condition C1, Lemma 5.2 implies
that 3P; which is hit by ¢ at v, 2k-1- As Vi 2k-1 F# Vi2k-1,
and there are only two possible values for the k*h vertex of
polygons in T', this means that either v; ;.1 = v;2r-1, or
Vl,2k-1 = Vj 2k-1, i.e. that o hits one of v; 2x_1 or vj k-1, as
required. o

6 Proof of correctness

To prove that our problems are NP-Iard, we now need to
show that there is a set Il of probes satisfying our conditions
if and only if there is a subset C' C C with |C’| < K such
that, for each pair u,v € S, 3C(u,v) € C’ to which exactly
one of u and v belongs. First we prove :

Lemma 6.1 Each solution to Minimum Test Set gives a so-
lution 1o the corresponding probing problem under each one
of our three condilions.

Proof : We show that, under our hypothesis, there exists
a set of probes satisfying condition C1 which can identify all
P € T. Suppose that Yu,v € 8, 3C(u,v) € €’ such that
exactly one of 4 and v is in C(u,v). For each %, define o} to
be the ray starting at infinity and aimed towards p through
Vok-1- We claim that II = {0k | Ckx € C'} is a set of probes
satisfying condition C1 which identifiesall P € T. Since C} #
0, vi_1 is a vertex of at least one P € T, and therefore all
probes in II satisfy condition C1. Given P;, P; € T', consider
i,j € S. By hypothesis, there is C(¢,j) € C’ (say Cyn) such
that exactly one of ¢ and j is in C(¢, 7). Thus, by construction,
Vi2m-1 # Vj,2m-1. Therefore, by Lemma 5.2, probe oy, € I1
distinguishes between P; and P;j. This holds for all pairs P;, P;
of elements of T, and so II allows us to identify all P € T.
Clearly |II} = |C| < K, and hence this proves the lemma. O

We now want to show that, if there is a set of probes sat-
isfying one of our conditions, then it gives a solution to the
instance of Minimum Test Set. We first prove it when con-
dition C1 is satisfied by the probes, and we then generalize
this to the other kinds of probes, namely those satisfying only
condition C2 or C3.



Lemma 6.2 If there exists a set I = oy,...,0; of probes
satisfying condition C1, with | < K, and which can identify
all P €T, then there is a subset C' C C with |C'| < K, such
that Yu,v € S, 3C(u,v) € C' to which ezactly one of u and v
belongs.

Proof : By condition C1, each probe ¢ € II is aimed at
p from infinity through some vertex v;. Let C' = {C} |
o € II goes through v; 251 for some 0 < i < |S|}. Clearly
I[C’'| = [I] < K. Consider i,j € S. By the definition of
II, condition C1 and Lemma 5.3, 3o € II which distinguishes
between polygons P; and P; and is aimed at Vi 2k—1 OF Vj 2k—1
for some k (say vi2r-1). By Lemma 5.2, v; 91 # Vj2k-1,
and so by construction exactly one of i and j is in C}. This
holds for all pairs of elements of S, and so C’ is the required
solution to the Minimum Test Set problem. ]

Lemma 6.3 If there ezists a set Il = 0y,...,04 (k < K)
of probes satisfying condition C2 or condition C3 which can
identify all P € T, then there is a subset C' C C with |C'] <
K, such that Yu,v € S, 3C(u,v) € C' for which ezactly one
of u and v is in C(u,v).

Proof : We show that, for each set Il = 0y,...,0% of
probes satisfying condition C3 which can identify all P € T,
we can define a set II' = 0'4,...,0"s of probes which satisfy
condition C1 and can identify all P € T'. Consider ¢ € II. We
construct a probe ¢/ which will replace ¢ in II’. Without loss
of generality assume that ¢ does not miss all polygons in T,
that it hits P;, and that there is P, € T' which it does not hit
at the same place as P; (or maybe that it misses altogether).
Suppose that it hits P; between v; 2 and ¥ 2k+2. By Lemma
5.2, 0 must hit Py between v;s 2 and vy 2 4+2. There are only
8 different ways in which this can happen (here we assume
without loss of generality that ||v; sx—1]| > ||vir 26-1]]) :

1. o hits an edge of P; and the edge of Py on the same side
of the line segment from v; 2x-1 to vir 25-1.
2. o hits an edge of P; and vy gk—1.

3. o hits an edge of P; and the edge of P;s on the other side
of the line segment from v; 2x—1 to vy 2k—1.
4. o hits an edge of P; and the vertex of Py on the other side
of the line segment from v; 2x_1 to vir 2k—1 (N0t vir 25 —1).
5. o hits an edge of P; and misses Py .
6. o hits v; k1 and hits P/ on either vy 2x—3 or vir 5.
7. o hits v;2;—; and hits P;s inside one of the two edges
: adjacent to Vi’ 2k—1-
8. o hits v; 2k—1 and Vs 2k -1
In each case, we let o’ be the probe aimed at p through Vi 2k-1-
If o distinguished between P; and P;, obviously so does o”.
This holds for all 7, j < |S|, and thus II’ identifies all P € T".

By Lemma 6.2, this implies that the required subset C’ of C
exists. a

Combining Lemmas 4.1, 4.2, 5.1, 6.1, 6.2 and 6.3 on one
side, and Lemmas 5.1, 6.1 and 6.3 on the other, we get :
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Theorem 6.1 The versions of the probing problem in which
the probes have to satisfy conditions C1 or C2 are NP-
Complete. The version of the problem in which arbitrary
probes are allowed is NP-Hard.

We recall that a polygon P is weakly externally visible if|
for all ¢ on the boundary of P, there is a ray o which has
endpoint ¢ and intersects P only at q. Clearly the class of
weakly externally visible polygons contains all classes of poly-
gons which can be identified using line probes, since we may
not be able to probe part of the boundary of P if it is not
weakly externally visible. We note that, in this more general
case, the point p will be chosen on the convex hull of P, and
e[P] will be an edge of the convex hull of P adjacent to p.

Let P be a class of polygons which contains all convex uni-
modal polygons and which is contained in the class of weakly
externally visible polygons. Since the polygons generated by
the reduction were both strictly convex and unimodal, Theo-
rem 6.1 can be applied to class P and we get :

Theorem 6.2 Let T be a set of polygons belonging to a class
P which satisfies the two conditions above. The versions of
the probing problem in which the probes have to salisfy con-
ditions C1 or C2 are NP-Complete, and the version in which
arbitrary probes are allowed is NP-Hard,

7 Conclusion

We have shown that the problem of selecting probes to
uniquely identify a polygon belonging to a set I' of convex uni-
modal n-gons in fixed position an orientation is NP-Complete
under two criteria for the choice of probes, and that it is NP-
Hard under a third, more general criterion — namely that no
probe is invalid. We do not know whether this third case
belongs to NP or not. It is also interesting to note that we
can extend the convex unimodal polygons generated from the
Minimum Test Set problem into cylinders into higher dimen-
sions without affecting the reduction or its proof of correct-
ness. Thus, the NP-ardness results also generalize to higher
dimensions. Finally, they furthermore imply that these prob-
lems are also NP-Hard for all other classes of polygons of
which either convex or unimodal polygons form a subclass,
and which are subclasses of weakly externally visible poly-
gons.
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