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On the perimeter of a point set in the plane

Vasilis Capoyleas *

Abstract

Let {co,...,¢n},{ch,...,c,} be two point sets in the plane
satisfying |c; —¢;| < |¢] —¢}| for all i and j. By a theorem
of Sudakov and Alexander, the perimeter of the convex
hull of {co,...,¢cs} does not exceed the perimeter of the
convex hull of {cg,...,c,}. We give a simple proof of

this result and establish a similar theorem in the case
when the Euclidean distance is replaced by the maximum

norm. We point out the close relationship between these
questions and a longstanding open problem due to Thue
Poulsen, Kneser and Hadwiger.

1 The union of balls.

More than 35 years ago E. Thue Poulsen [TP)], M. Kneser
(K] and H. Hadwiger [H] proposed the following conjec-
ture which has attracted the interest of many geometers
but is still open. Let {Co,...,Cpn},{C},...,C%} be two
collections of disks of radius r in the plane. Let ¢; and c}
denote the center of C; and C!, respectively, and assume
that
les — ¢j] < |e; — cf| for all i and j.

Then
n n
Area(U C) < Area(U C)).

=0 1=0

W. Habicht (see [K]) and B. Bollobds [Bo] settled the
special case when the system {Co,...,C,} can be contin-
uously transformed into {Cj,...,C4} so that during the
transformation the mutual distances between the centers
do not decrease.

Assume now that (1) is true, and let the radii r of the
disks tend to infinity. It is easy to see that

(1)

n
Area(U Ci) = r¥x + r Per conv{cy, ... Cn}

1=0

+Area conv{co,...,cp} + 0(':‘),
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where Per and conv stand for the perimeter and the con-
vex hull, respectively. Similarly,

n
Area(U C{) = r’z + r Per conv{ch,...,c.}

=0

+Area conv{cg,...,c} + O(%),
Now (1) immediately yields

Per conv{co,...,cn} < Per conv{cy,...,ch}. (2)

The aim of the present note is to give a simple ele- -
mentary proof of tgis weaker assertion, which was first
established by Sudakov ([S]) and rediscovered by Alexan-
der ([A]). Our approach is similar to the one followed in
Alexander’s paper, but it avoids using Schlifli’s formula.
Both proofs are based on a simple property of simplices
( Lemma 1 in the next section ).

Theorem 1 Let {co,...,cn},{ch,...,cL} be two point
sets in the plane satisfying lei—cj|<le;—c}| for alli and j.
Then the perimeter of the convez hull of {co,...,cn} does
not ezceed the perimeter of the convez hull of {c),...,c,}.

Let us reca]l first some basic notions and results from
the theory of convex bodies. Let B" denote the n-

dimensional unit ball, and let S*~! be the boundary of
B™. For any convex set K C R", let K + rB"™ denote the
parallel body of K with radius r, i.e., the set of all points
of the space whose distance from at least one element of
K is at most r. Let Vol, stand for the n-dimensional vol-
ume. It is well-known (see e.g. Bonnesen—Fenchel [BF],
Busemann [Bu], Leichtweiss [L]) that Vol,, (K +rB") can
be expressed as a polynomial of degree n in r,

Vola(K + rB") = Wo(K) + ()W (K)r (3)

+G)Wa(K)r? + ...+ W (K)r".

The coefficient W,,,(K) is called the m-th mean pro-
jection measure (Quermassintegral) of K. Wo(K) =
Vol (K), (T)W1(K) is the surface area of K, Wh(K) =
Vol, B" = k,,. In general, apart from a factor depending
only on n, W, (K) is the average of Vol, _,, K ( F) over all
(n — m)-dimensional subspaces F C R", where K (F) de-
notes the orthogonal projection of K on F. In particular,

Wao1(K) = % width, (K, z) dz, (4)

sn-1



where width,(K,z) = Vol, K (z) is the distance between
the two supporting hyperplanes of K perpendicular to the
unit vector z € S"-1.

Let us turn now to the proof of Theorem 1. Imag-
ine that the plane is embedded in R". Put K =
conv{cy,...,cn}, K' = conv{cy,...,c,}. Furthermore,
let B; and B{ denote the n-dimensional balls of radius r
centred at c; and c] respectively. Obviously, Uise Bi C
K +rB™.

Claim 1 Let diam K = max

0<i,j<n

lei — ¢l If » >

diam K, then

n
B¢ |JB..

i=0

(diam K)?
K+ (r " )
Proof: Let x € K + (r — M)B", i.e, there exists

k € K such that |z — k| < r-M. If 2 is not a
vertex of K, then one can choose ¢; so that Lzke; < £.
But then

|z — el < Viz — k2 + [k = ¢ 2

: 272
< \/(r--(dir:lK—)) + (diam K)?2 < r

provided that r > diam K. Hence, z € B;. O

Claim 2 Let B; and B{ denote the n-dimensional balls
of radius r centred at ¢; and c; respectively. Then,

Vol,,(LnJ B) < v°1,,(0 B)).
i=0

i=0

Now we show how Theorem 1 can
these observations, and postpone the
until the next section. .

Combining Claims 1 and 2, we obtain that

be deduced from
proof of Claim 2

: -\2
Vol (K + (r - i‘h—”:‘_".)_)B") < Vol (K’ + rB").
Substituting (3), this implies

War) (- Gam Ky

(diam K)?
r

+W, _1(1\,)(,‘— )n_1+0(1‘”-2)

S Wal(K" )™ + Was 1 (K')r™ 1 4 O(r"-2).

Using the fact that W, (K) = W, (K ') = kn, and taking
the limits as r tends to infinity, we get

Wn—l(K) < Wn—l(I(,)‘ (5)

However, K is a planar convex set, so (4) can be rewrit-

ten as N
Wn—l(h )
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+5
= _1— / / / widthy (K, y) cos? ¢ dzdgdy
2n srJo (sin ¢)Sn—3
— (n - 2)’€n-—2 / .
= T—( - w1dth2(K, y) dy)

(/+§ sin""3 ¢ cos? ¢ d¢).
0

Similarly,

Wa-1(K') = (L_%&"—z(/ widthy(K’, y) dy)
S1

( /+§ sin" "3 ¢ cos? ¢ d¢).
0

Hence, it follows immediately from (5) that

Per K = 1/ widthy (K, y) dy
2 Js

< l/ widthy(K',y) dy = Per K’,
2 Jox

completing the proof of Theorem 1.

2 Proof of Claim 2.

The proof consists of two steps. The first one is a slight
generalization of a simple fact which was also used by
M. Gromov [G] to verify a special case of the following
’dual’ counterpart of the Hadwiger-Kneser-Thue Poulsen
conjecture: Let {Bo,Bi,..., Bnm}, {B}, 1,---.Bl} be
two sets of balls in n-dimensional space, and let ¢; and c;
denote the center of B; and Bj, respectively. If

lei = ¢;| < |¢j — ¢}| for all i and j,
then

Vola(( 8) 2 Vol ([ BY). ©)
1=0

1=0

Gromov proved this result when the number of balls
does not exceed n + 1, i.e., m <n.

Lemma 1l Let K = conv{cy,...,cn} and K' =
conv{cy,...,ch} be two non-degenerate simplices in n-
dimensional space, and assume that lei — ¢;| < b =
c;| foralliandj.

Then K can be continuously transformed into a con-
gruent copy of K' in a finite number of steps so that

1. in each step we move only one verter,
2. the motion of this verter is smooth,
3. the edgelengths of the simplex never decrease.

Proof: Omitted in this abstract.0



56

Lemma 2 Let {By, By,...,Bn} be a collection of n-
dimensional balls of arbitrary radii in R”, and let ¢; de-
note the center of B;. Let U be a vector with the property
that translating co along U, the distance between co and
any other c; does not decrease. Then Vol, (|~ B;) does
not decrease during this translation.

Proof: Omitted in this abstract. O

Now we are in the position to prove Claim 2. Let us
perturb slightly the point sets co,...,cn,ch, ..., ¢! CR"
to make them full dimensional, without violating the con-
ditions

lei — ¢j| < |e; — ¢}| for all i and j.

Let us assume that this perturbation does not change
Vol (1=, B:) and Vol,, (L, B!) by more than e.
Lemmata 1 and 2 now imply

n n
Volu(|J Bi) — ¢ < Voln (| BY) +e¢

i=0 =0

for any € > 0, and Claim 2 follows.

3 Perimeter in the maximum

norm.

Throughout we have been measuring distances in the usu-
al Euclidean norm. However, it is possible that (2) is valid
for a large class of norms.

Let lo, denote the distance induced by the maximum
norm, l.e., given two points a = (z,y),a' = (2',y') €
R2?, l(a,a’) = max(|z — 2’|, |y — /|). Let Perc, denote
the perimeter of a convex polygon measured in the lo-
distance. We have the following

Theorem 2 Let {co,...,cn},{ch,...
sels in the plane satisfying I (ci,c;)
t and j. Then

be two point

»Cn}
< loo(c}y€5) for all

Pero, conv{cy,...,cn} < Pereo conv{cy,...,c,}.

Proof: First we make an observation about the perime-
ter of a convex polygon in the maximum norm.

Lemma 3 Given a finite point set P in the plane, let R
denote the smallest rectangle enclosing P such that the
angles between the sides of R and the coordinate azes are
equal to /4. Let a,b,c,d be (not necessarily distinct)
elements of P such that each side of R coniains at least
one of them. Then

Per(R)

Perq, conv(P) = Perq, conv {a,b,c,d} =

Proof: Omitted in this abstract. O

Corollary. Let P be a finile point set in the plane, P* C
P. Then

Per., conv P* < Per,, conv P.0O

Next we show that it is sufficient to prove Theorem 2
for n = 3 ( for 4 points). For n < 3 there is nothing to
prove. Assume that the statement is true for n = 3, and
let n > 3. Let a,b,c,d denote the points of {co,...,en}
sitting on the boundary of the rectangle R enclosing P,
as in Lemma 3. Let a’,V’, ¢/, d’ denote the corresponding
points in P/ = {c,...,c,}. Suppose, in order to obtain
a contradiction, that

Per, conv P > Per,, conv P’.
By Lemma 3 and by the above Corollary,
Per, conv {a,b,¢,d} = Pery, conv P >

i / / U
Pero, conv P’ > Pery, conv {d',V',¢',d'},

contradicting our assumption that Theorem 2 is true for
n=4.
Suppose now that in the maximum norm distances be-
tween the elements of P = {a,b, ¢, d} are at most as large
as the corresponding distances within P’ = {a’,¥/, ¢, d'}.
but

Per, conv P > Per, conv P’.

We can assume without loss of generality that
a’,b',¢,d are in convex position. Suppose not. Then one
of them, say d’, is in the interior of the triangle induced
by the others. The /,,-distance of d’ from a’, b’ and ¢’ is

gither their, vertical,l distance or their horizontal distance.
uppose without loss of generality that at most one of

these three distances is the horizontal distance. Then we
can move d’ horizontally until it hits the boundary of the

triangle a’d’c’, so that none of the I.,-distances decreases.

We can also assume that a, b, ¢, d are in convex position.
Otherwise, if, say, d is in the triangle abe, then by the
Corollary

Pero, conv {a,b,c} = Pery, conv P

> Pereo convP’ > Pergoconv {d’,¥',¢'},

a contradiction. . .
Let abed be the cyclic order of the vertices of conv P. By

symmetry, there are only two essentially different cases.

e Case A: The cyclic order of the vertices of conv P’ is
a'b'c'd'. Then

Pere, conv P = lo(a, b)+leo (b, ¢)+loo(c, d) 1o (d, a)
Sloo(a',b) + 1o (¥, ') + loo(c’, d') + loo(d, ')

= Pero, conv P’.

e Case B: The cyclic order of the vertices of conv P’ is
a’d¥'d’. By the triangle inequality for the maximum
norm, leo(a,b)+1loo(c,d)< loo(a, ¢)+loo (b, d). Hence,
Pere, conv P = loo(a, b)+loo (b, ¢) +loo (¢, d)+1oo (d, @)

Sloo(b',¢') + loo(d', ') + log(a’, ') + 1o (¥, d)
= Pery, conv P'.

This completes the proof of Theorem 2.0



4 Related problems and general-
izations.

Theorem 1 can readily be generalized to bounded infinite
sets S C R%2. A mapping f : S — R? is said to be a
contraction if

[f(p) = f(OI<|p—gq| forallp,q€S.

Theorem 3 Let f be a contraction of a bounded set S C
R2. Then

Per convf(S) < Per convS.O

Evidently, similar results cannot be true for the sur-
face area of the convex hull of higher dimensional sets.
However, the above arguments immediately yield

Theorem 4 Let f be a coniraction of a bounded set S C
R". Then

Whn-1(conv f(S)) < Wyr_1(convS),

where W,,_y is the (n — 1)-st mean projection measure
(the mean width) in n dimensions.0

It might be interesting to notice that by slightly mod-
ifying the proof presented in Section 2, we can generalize
Lemma 2 in two different directions.

Lemma 2’ Let {By,...,Bx,Bx41,...,Bm}, k< mbea

collection of n-dimensional balls of arbilrary radii in R,
and let ¢; denote the center of B;. Let U be a vector with
the property that translating {ci,...,ci} along 7, the dis-
tance between any c¢; and cj, 1 < k < j does not decrease.
Then

) Vol,.(U B;) does not decrease,

i=1

m
(%) Vol,,(ﬂ B;) does not increase,

i=1
during this translation.O

Combining Lemma 1 and (the special case k = 1 of)
Lemma 2°(ii), we obtain a proof of (6) for m < n, some-
what different from the one given in [G].

It is worth mentioning that conjecture (1) of Thue
Poulsen, Kneser and Hadwiger cannot be generalized to
other Minkowski planes. More precisely, we have the fol-
lowing.

Theorem 5 Let the plane be equipped with a norm ||.||
such that the unit disk C = {z € R? : ||z|| < 1} is not
an ellipse.

Then one can find poinis a,b,a’,b’ € R? with the prop-
erty that ||a — b|| < ||a’ — ¥'|| but

Area((C 4 a) U(C + b)) > Area((C + d') U(C +b')).0

On the other hand, the weaker statement (2) might
remain true for a large class of other norms substantailly
different from the Euclidean one.
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In the last section we have shown that (2) holds in the
plane equipped with the maximum norm (when the unit
disk is a square). A related question is the following.

Given two collections of axis parallel unit squares in
the plane, Si,...,S, and Sj,..., S}, such that Area(S; U
Sj) > Area(S; U S}) for all i and j. Is it true that
Area(US;) > Area(US;)?

Some related questions with applications to particle
physics are discussed by Lieb and Simon in [L] and [LS].
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