62

Minimizing the Sum of Diameters Efficiently

John Hershberger

DEC Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

johrnh@src.dec.com

Abstract

This note considers the problem of parti-
tioning a planar set of n points into two subsets
so that the sum of the diameters of the sub-
sets is minimized. We present a simple algo-
rithm that runs in O(nlog® n/loglogn) time,
improving the previous O(n?) algorithm. In
the case in which the ratio between the diam-
eter and the minimum inter-point distance of
the set is polynomial in n, a refinement of our
algorithm runs in optimal O(n log n) time.

1 Introduction

Clustering problems are of fundamental importance in
operations research. These problems specify a set of
points S, a parameter k, a set measure y, and a k-
argument function f; the solution to the problem is
a partition of S into k subsets S,..., Sk such that
F(u(S1), ..., u(Sk)) is minimized. Such problems are
generally NP-hard for arbitrary k, even for planar point
sets and for simple instances of p and f (4 = diameter
and f = maximum, for example) [T, 9, 11}. Therefore
research has concentrated on the case of fixed &, for
which polynomial algorithms are available [2, 8, 14].

This note focuses on the case in which S is planar,
u is the diameter, k is 2, and f is the sum. That is,
we seek a bipartition of S that minimizes the sum of
the diameters of the two subsets. This problem was
considered by Monma and Suri, who gave an O(n?)
algorithm [12]. We give an algorithm that improves
their bound to O(nrlog?n/loglogn). Our algorithm
can be improved to O(nlogn) when the ratio between
the diameter of S and its minimum inter-point separa-
tion is polynomial im n. This is the case, for example,
whenever the point coordinates are specified using fixed-
precision machine arithmetic. The algorithm also gives
subquadratic bounds for points in any fixed-dimensional
Euclidean space.

2 Definitions

We need a few definitions before we can describe the
algorithm. Let S be a set of n points in the plane, let
the distance between two points p and ¢ be d(p, ¢), and
let the diameter of a set X be denoted by Diam(.X).
The closed disk with radius r centered on a point p is
denoted by D(p,r). For brevity, we refer to the sum of
the diameters of the components of a bipartition as the
diameter sum of the bipartition. We say that any bi-
partition with diamecter sum less than Diam(S) is good.
Our algorithm finds the best of the good partitions, if
any good partitions exist.

3 The basic algorithm

This section describes a simple algorithm to find a bipar-
tition of S that minimizes the diameter sum. The algo-
rithm is based on the following straightforward lemma:

Lemma 3.1 Let 6 and b be a diametral pair of S. In
any good bipartition of S, the subsels are contained n
twe disjoint disks centercd an a and b.

Proof: Let A = d(e,b). Any good bipartition of S
must have a and b in different sets, which we denote
by S. and Sj. Let r be the distance from a to the
point in S, fatthest from it. The set S, lies in the
disk Dfa,r). Beecause Diam(S,) > r, we must have
Diam(S,) < A—r, and hence Sy C D(b,A —r—¢)
for some positive €.

The algorithm begins by computing a diametral pair
a and b of S, which takes O(nlogn) time [13]. Next it
sorts the points of S\ {e, b} into two hists L, and Ly,
one sorted by increasing distance from a and the other
by increasing distance from b. Lemma 3.1 implies that
for any good bipartition, the points in S, must be a
prefix of £, and a suffix of Ly (their order may difler
in the two lists). The algorithm identifies all prefixes of
L. whose elements form a suffix of Ly. To do this, it
first marks each element of L, with its rank in Ep, then
prepares an empty array corresponding to the list L.

T'he algorithm marches through the clements of L,, at
each step marking the array entry given by the element’s
rank in Ly. Whenever a suflix of the array is marked,
the algorithm detects it using union-find. This takes
O(n) total time [6], or O(nlogn) time using a simpler
algorithm based on a static binary tree.

To compute the diameter sum for all potentially good
partitions, we use the semi-online algorithm of Dobkin
and Suri for diameter maintenance [3]. We insert the
elements of L, into S, in order, recording the diameter
of the set as it changes. We do the same for L;. For
cach prefix of L, whose elements form a suffix of L, we
add the two corresponding diameters. The minimum
sum gives the best partition. Because the algorithm of
Dobkin and Suri takes O(nlog® n) time, we have the
following theorem.

Theorem 3.2 Given a planar set S of n points, the
bipartition S = S, U Sy that minimizes Diam(S;) +
Diam(S3) can be found in O(nlog? n) time.

As shown in the next section, this time bound can
be improved to O(n log® n/loglogn) by more careful
exploitation of Dobkin and Suri’s method.

4 A precision-sensitive
improvement

The algorithm of the previous section works in the Real
RAM model of computation, in which the point coordi-
nates are specified with arbitrary precision. This section
shows how to improve the running time of the algorithm
to O(nlogn) under the mild restriction that the ratio
between the diameter and the minimum inter-point dis-
tance is polynomial in n. Alternatively, the algorithm
can approximate the optimal bipartition to within a fac-
tor of (1 + O(n~°)) in O(nlogn) time.

The previous scction shows how to identify values of r
for which S C D(a,»)U D(b, A —r), where A = d(a,b).
We will show that these values of r can be grouped into
intervals such that the full complexity of Dobkin and
Suri’s algorithin is necessary only if there are many in-
tervals. The lower bound of the ith interval increases
exponentially with i and hence if there are many in-
tervals, the points of S must be specified to very high
precision.

Without loss of generality, suppose that the segment
ab is horizontal, with a at the left end. Divide the plane
to the right of a into three 60° sectors T, M, and B
as shown in Figure 1. As r increases, new points are
inserted into S, on the boundary of D(a,r). After an
inscrtion, the new Diam(S,) is the maximum of the old
diameter and the distance from the new point to its
farthest neighbor in S,. For any new point in the sector
M, the farthest point in the current set S, is a or is in
T or B; it cannot lie in M.

Figure 1: Partition the plane into sectors

Any point in T or B is evidence that the algorithm
doesn’t need to check diameters for a substantial range
of values of r. Suppose that a point ¢ lies in T or B at
distance p from a. Then no value of r in @p <r<p
can give a good partition: for such radii, ¢ is outside
both D(a,r) and D(b, A — r). With one pass through
L., we can identify a sequence of radius values r; <
r} < r2 < ry < --- such that no value of r outside the
intervals [ry,), [r2,75),... can give a good partition.
Within each interval, the first insertion to S, lies in T
or B, but all the rest liein M. Let k be the total number
of such intervals.

Our algorithm exploits the facts that (1) within each
interval [r;, r}), no new point except the first can be the
farthest neighbor of any other, and (2) outside those in-
tervals, no diameters need to be computed. Following
the example of Dobkin and Suri, we partition the cur-
rent S, into disjoint subsets and maintain the farthest-
point Voronoi diagram of each subset [1, 3, 4, 13]. To
determine the farthest neighbor of a new point, we per-
form point location in each of the Voronoi diagrams.
For purposes of the high-level algorithm below, let us
arbitrarily define rq and ry such that ro < rf < 0.

Fori:=1to k do

1. Merge the points in the radial interval
(ri—1, ;) into the Voronoi diagram struc-
ture. (Recall that rj_y <7r{_, <r; <7r}.)

2. For each point p in [r{_,,r{) in radial or-
der do

e Compute the farthest neighbor of pin
the Voronoi diagram structure; call
it q.

e Update the diameter Diam(S,) :=
max(Diam(S,), d(p, 9))-

Lemma 4.1 The preceding algorithm maintains the
correct value of Diam(S,) in every interval [r;, rf), that
is, in those intervals in which it is needed. ‘

64

Proof: The proof is by induction. The claim i$ vac-
uously true for i = 0. At the ith step, statement 1
updates the Voronoi diagram structure to include
all the points in the interval [0,7;]. The for-loop
of statement 2 processes points in [r;_;,r;] before
those in (rj, r}). It first finds the farthest neighbor
of each point in [r}_,, ;] among the points in [0, r;].
The computed value of Diam(S,) may be larger
than the true value during this period, but it does
not matter. By the time the point at radius r; is in-
serted, the computed value of Diam(S,) is correct
once again. All the points in the interval (r;, r;) lie
in region M, and so their farthest neighbors are in
the Voronoi diagram structure computed in state-
ment 1. Thus Diam(S,) is correctly maintained for
these points.

We need to describe the Voronoi diagram structure
more carefully. Let t = [logk/loglogn], and let o =
kl/t < logn (the reason for these choices will be ap-
parent later). We maintain an array V[1..t] of farthest-
point Voronoi diagrams. Let S[j] be the subset of S,
of which V[j] is the Voronoi diagram. We maintain the
invariant that the size of S[j] is greater than nai=!/k
and at most na’ /k for 1 < j < t, and is at most na/k
forj=1. ‘ '

At step 1 of the algorithm above, we determine the
set P; of points in the interval (r;_;,r;]. Let j be the
index such that na/=1/k < |P| < nalfk, or j = 1 if
|P;| € nafk. We compute the convex hull of P;, set
S[j) := S[F] U P, and compute the convex hull of the
new S[j]. If the new S[j] is too big, with |S[j]| > na /k,
we merge it into S[j + 1], set j := j + 1, and repeat
until S[j] is small enough. Finally we build the farthest-
point Voronoi diagram of S[j] and preprocess it for point
location in O(|S[j]]) time [1, 5, 10].

Lemma 4.2 The total cost of maintaining the dala
structure described above is O(nlogn[logk/loglogn]).

Proof: Computing the convex hull of P; may take
O(|Pi|log|P;]) time, but merging this convex hull
with that of the old S[j] takes only O(|P;| + |S[;]])
time. We can bound this by O(a|P;| + na/k),
since S[j] is at most o times larger than P; unless
j = 1. The possible merges of S[j] into S[j+ 1] take
O(a|S[j]]) time apiece by a similar argument. To
obtain a global bound on the latter merging cost,
note that as sets merge, no point ever moves into
a set with a smaller index, and ecach merge of a
smaller set into a larger takes time proportional to
at most a times the size of the smaller set. We can
charge each merge to the points whose set index in-
creases, and hence the total cost of the merges that.
combine some S[j] and S[j + 1] is O(t«) per point,
or O(tan) overall. The cost of building the Voronoi
diagram is proportional to the cost of the merges
that precede it, so we do not need to account for

it separately. Putting it all together, we obtain a
total bound of

0 | tan + Y (a|Pi| + |Pi|log | P;| + na/k)
i<k
= O(lan+ nlogn + an)

_ log k
- o (menr[ii])
1

Because each farthest neighbor computation does a
point location in each of t Voronoi diagrams, the to-
tal cost of step 2 of the algorithm is O(ntlogn) =
O(nlogn[logk/ loglogn]). (The parameter ¢ was cho-
sen to balance this cost with that of maintaining the
Voronoi diagrams.)

The preceding discussion shows how to compute all
the required values of Diam(S,). We apply the same
algorithm to compute Diam(S), and thus establish the
following theorem.

Theorem 4.3 Let S be a planar sel of n points, and
let k be the parameter defined above, marimized over S,
and Sy. Then we can find a bipartilion of S that min-
tmizes the diameler sum in O(nlogn[logk/loglogn])
time.

Notice that this improves the bound of Theorem 3.2
to O(nlog® n/loglogn), since k is always less than n.

Corollary 4.4 Let S be a planar sel of n poinls such
that the ratio of the diameter and the minimum inlcr-
point distance is O(n®) for some constanl c. Then we
can find a bipartilion of S thal mintmizes the diameler
sum in O(nlogn) time.

Proof: We argue that k is O(logn) for S,; the
argument for S, is symmetric. By the definition
of the intervals [r;,r}), we have ripy > (2/V3)r
for any ¢ > 1. If k > 1, there is a point of S at
distance r5 > 0 from a (r; might be 0), and so
the minimum inter-point distance of S is at most
ry. We have Diam(S) > rp > r(2/V3)* =2, and
so (2/V3)F-2 = O(n®), which implies that k =
O(logn).

The arguments above also imply that if we wish to ap-
proximate the optimal bipartition to within a factor of
(14¢), we need to process points in at most O(log(1/¢))
intervals, which takes only O(nlogn) time il ¢ is fixed
or ¢ = Q(n~°) for some constant c.

5 Extensions

The algorithms given in this note also work for points in
higher dimensions. The time bounds degrade, because

the algorithms for computing and searching Voronoi di-
agrams in_higher dimensions are more expensive than
algorithms for two dimensions. The bound of Theo-
rem 3.2 degrades to O(n**logn) in three dimensions
and O(n?~ /(443040 Jog 1) for dimension d > 4 [3, 15].
Because the cost of computing Voronoi diagrams is su-
perlinear in three dimensions and above, the refinement
of Theorem 4.3 no longer applies, but a separate argu-
ment shaves a logarithmic factor from the time bounds
of Dobkin and Suri, giving the bounds quoted here [15].

Subhash Suri has observed that the algorithm of The-
orem 3.2 also applies when the diameter is computed in
the 1y or Lo, metric. In that case the problem is easier,
and requires only O(nlogn) time.

The appearance of a term dependent on the preci-
sion of the point coordinates in Theorem 4.3 is unusual
in computational geometry, especially since no direct
manipulation of coordinates (such as scaling) is per-
formed. It may be that further analysis or algorithmic
refinement will remove that dependency and result in
an O(nlogn) algorithm without restrictions.

Acknowledgment

Thanks to Subhash Suri for several helpful and enjoy-
able discussions about this work.

References

(1] A. Aggarwal, L. Guibas, J. Saxe, and P. Shor. A
linear time algorithm for computing the Voronoi di-
agram of a convex polygon. Discr. Comput. Geom.,
4:591-604, 1989.

[2] T. Asano, B. Bhattacharya, M. Keil, and F. Yao.
Clustering algorithms based on minimum and max-
imum spanning trecs. In Proceedings of the {th
ACM Symposium on Computational Geometry,
pages 252-257, June 1988.

[3] D. Dobkin and S. Suri. Dynamically computing
the maxima of decomposable functions, with appli-
cations. In Proceedings of the 30th Annual IEEE
Symposium on Foundations of Computer Science,
pages 488-493, 1989.

(1] . Edelsbrunner. Algorithms in Combinatorial Ge-
ometry, volume 10 of EATCS Monographs on The-
orelical Computer Science. Springer-Verlag, 1987.

(5] H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM J.
Comput., 15:317-340, 198:_6.

[6] H. N. Gabow and R. E. Tarjan. A linear-time
algorithm for a special case of disjoint set union.

J. Comput. Syst. Sci., 30:209-221, 1985.

[7] M. R. Garey and D. S. Johnson. Compulers

and Intractability: A Guide to the Thcory of NP-

- Complcteness. W. H. Freeman and Company, San
Francisco, 1979.

(8] J. Hershberger and S. Suri. Finding tailored parti-
tions. In Proceedings of the 5th ACM Symposium
on Computational Geometry, pages 255-265, 1989.
To appear in J. Algorithms.

[9] D. S. Johnson. The NP-completeness column. J.
Alg., 3, 1982.

[10] D. Kirkpatrick. Optimal search in planar subdivi-
sions. SIAM J. Comput., 12:28-35, 1983.

[11] N. Meggido and K. Supowit. On the complexity of
some common geometric location problems. STAM
J. Comput., 13(1):182-196, 1984.

[12] C. Monma and S. Suri. Partitioning points and
graphs to minimize the maximum or the sum of
diameters. In Proceedings of the Sizth Interna-
tional Conference on the Theory and Applications
of Graphs. John Wiley & Sons Publishers, 1989.

[13] F. P. Preparata and M. I. Shamos. Computational
Geometry. Springer-Verlag, New York, 1985.

[14] G. Rote and G. Wocginger. Geometric clusterings.
Technical Report (Serie B—Informatik) B-89-04,
Freie Universitat Berlin, April 1989.

[15] M. Smid. A worst-case algorithm for semi-online
updates on decomposable problems. Technical Re-
port A 03/90, Fachbereich Informatik, Universitit
des Saarlandes, 1990.

