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Extended Abstract

We present a simple necessary and sufficient
condition for turning a polygon inside out,
The vertices of the polygon, which are labeled,
act like rotary joints. The edges are fixed-
length links that are allowed to cross over one
another as they move. To turn the polygon
inside out means to convert it by a continuous
motion in the plane to a polygon that is the
mirror image (with respect to some arbitrary
line in the plane) of the original one. Qur sim-
ple necessary and sufficient condition is that
the lengths of the second and third longest
links sum to no more than half the perimeter
of the polygon. We then use this condition to
solve the following motion planning problem:
given two configurations of a chain of links,
the two endpoints of which are fixed, deter-
mine whether the chain can be moved from
one configuration to the other. In fact, this can
be determined in linear time. Furthermore, in
the event of a yes answer, a sequence of simple
motions achieving the reconfiguration can be
computed in linear time.

1 Introduction

The problem of reconfiguring chains of links
under various conditions has been considered
in 1], [2] and [3]. In particular, these papers
present polynomial time algorithms for motion
planning problems that have an unbounded

number of degrees of freedom. While there are
general techniques for solving motion planning
problems having a bounded number of degrees
of freedom in polynomial time, problems hav-
ing an unbounded number of degrees of free-
dom are often at least NP-complete. Ience it
is interesting to see examples of motion prob-
lems that can be solved quickly despite having
an unbounded number of degrees of freedomn.
This paper contributes such an example,

Given a sequence (z,y,z) of three noun-
collinear points in the plane, we call the se-
quence a left turn if it determines a counter-
clockwise cycle; otherwise we call the sequence
a right turn. We say that two sequences
(z,v,2) and (2',y',2') have opposile orienta-
tions if one is a left turn and the other is a
right turn; otherwise, we say they have the
same orientation.

A chain is a sequence of n links, L,, ..., Ly,
connected by joinls. L; has joints v;_; and v;
and length ;. Somectimes L; will be denoted
[vi-1,vi]. Each link can rotate freely about its
joints. A configuration of a chain Ly, ..., L, is
a polygonal curve (possibly self-intersecting)
that consists of n consecutive links of lengths
li, ..., In, respectively. A closed chain is chain
such that v and v, are the same joint. Hence
a configuration of a closed chain is just a closed
polygonal curve. An arm is a chain in which a
fixed location in the plane has been associated



with vp.
We use the term linkage, often denoted L,
to refer to a chain, a closed chain or an arm.

Definition 1.1 Two configurations of a link-
age L arc equivalent if one configuration can
be continuously transformed to the other in
such a way that the lengths of the links remain
fized throughout the motion.

In mathematical terms, this means that there
is a homotopy between the two curves hav-
ing the property that the link lengths are pre-
served throughout the homotopy. I two con-
figurations of L are equivalent, we say that L
can be moved from the one configuration to
the other.

Definition 1.2 A configuration of a closed
chain L is invertible if it is equivalent lo its

mirror image (with respect to some arbitrary
line).

Since a simple polygon can be viewed as a
configuration of a closed chain, we will refer
to a polygon as invertible if it is equivalent to
some mirror image of itself. Figure 1 shows a
polygon that is invertible.

Key idea: Let L; = [vi_1,v;] be a link of a
closed chain L. Suppose that some configu-
ration of L can be moved to its mirror image
with respect to some arbitrary line. Let vj be
any joint of L that is not collinear with L; in
the original configuration. Then at some mo-
ment during the motion, v; lies on the the line
through L; at that moment. This is because
the orientation of (vj,vi_1,v;) in the original
configuration of L differs from its orientation
in any mirror image of that configuration. By
determining what conditions on the lengths
of the links allow each v; to become collinear
with each L;, we can establish a necessary con-
dition for invertibility; as it happens, this con-
dition is also sufficient.
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Figure 1: A polygon being inverted. [vg, ;]
rotates c.w. about vy as [vs, v3] rotates first
c.w., then c.c.w. about v3.
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Definition 1.3 Given a configuration of a
closed chain L, a joint v of L is said 1o be
extensible if the configuration is equivalent to
a configuration in which the angle between the
two links adjacent to v is 180°. (When the
angle of a joint equals 180°, we say it is ex-
tended.) Similarly, v is collapsible if the con-
figuration is equivalent to one in which the an-
gle i 0°. (If a joint has an angle of 0° we call
it collapsed.)

2 Inverting a Polygon

One of our main results is the following:

Theorem 2.1 Given a configuration of a
closed chain L, the sum of whose link lengths
equals m, the configuration can be inverted iff
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the lengths of ils second and third longest links
sum to no more than m/2.

One consequence of this theorem is that in-
vertibility is seen not to be a property of a
particular configuration of a closed chain, but
rather a property of the chain itself. That is, if
some configuration of L can be inverted, then
every configuration of L can be inverted.

Lemma 2.1 Any configuralion of a closed
chain that forms a simple polygon is equiva-
lent to some configuration that forms a convez

polygon.

This lemma has the following consequence.
For a given closed chain L, either all its con-
figurations are equivalent, or they partition
into two class. One class includes the con-
vex polygons with clockwise oriemntation ob-
tainable from L (vertices are visited in or-
der vg, vy, ... to determine the orientation); the
other class contains the convex polygons with
the opposite orientation. i

A configuration of a linkage is said i,o‘ be flat
if all of its links are collinear.

Lemma 2.2 Ifa closed chain L admits a flat
configuration, then some configuration of L in
the form of a convez polygon s invertible.

Another useful lemma is the following:

Lemma 2.3 If a configuration of a closed
chain L contains a joint that can be collapsed
but not extended, then that configuration is in-
vertible.

Sketch of the proof of Theorem 2.1: As-
sume in what follows that the chain contains
at least four links. First, we establish the ne-
cessity of the condition by showing that if the
condition is violated, then some joint cannot
be positioned on the line determined by some
link, which we know to be necessary by the

Key idea. Since the chain has at least four
links, by suitably choosing which joint to la-
bel vg, we can assume that L;, L;j and Ly are
the three longest links, that L; and Li do not
have a joint in common, and that i < j < k.
(Li, Lj, and Ly do not necessarily appear in
order of decreasing length.) See Figure 2.

L;

Figure 2: A polygon with longest links L, L;
and Lg.

If the condition is violated, we have

L+l > m/2
L+l > m/2 m
L+l > m/2

Partition L into three chains as fol-
lows: the link L; = [vi-1,v;], the ’left
chain’ (vi,vi41,...,v;), and the ’right chain’
(vi-1,Vi=2,...,v;). Also, let s; be the total
length of the left chain not including link L;
and let s, be the total length of the right chain
not including link Ly. Thusm = [; +1; +s; +
I + sk

For v; to lie on the line through I;, it can
be shown that at least one of the following in-
equalities must be satisfied (these inequalities



correspond to vj being on, to the left of, or to
the right of L;, respectively).

(i—si))+ (e —sk) < &
(i=s))+L < (k+s) (2
ek =se)+L < (I +55)

However, cach of these inequalities contra-
dicts onc of the three incqualities in (1).

Now we give the idea behind the proof of
the sufficicncy of the condition. First, we show
that if there exists a joint v; that neither ex-
tends nor collapses then we can find three links
(two of which are L; and Li41) such that each
pair of links has total length greater than half
of the perimeter of L. This clearly violates the
condition. We then prove by induction on the
number of links in L that the condition is suf-
ficient by demonstrating that either the con-
figuration of L has a joint that collapses but
does not extend (in which case we are done
by Lemma 2.3), or the configuration of L is
equivalent to a configuration in which one of
the joints of the longest link is extended. This
new configuration can be viewed as a closed
chain having one fewer link (the extended joint
is ’frozen’, making a new longest link), and the
condition of the theorem still holds.

3 Application

We give an application to motion planning.
From [1] we use:

Decfinition 3.1 A simple motion of a linkage
s a conlinuous motion such that

1. At most four joint angles are changing.
(If the linkage is an arm, then one of the
angles may be the angle formed by l, and
some line through v,.)

2. Each angle is changing monotonically.

The main result is:

Theorem 3.1 Given two configurations of a
chain C that has both endpoints fized at partic-
ular points in the plane, it can be determined
in linear time whether the two configurations
are equivalent. Moreover, if the configurations
are equivalent, it is possible to compute in lin-
ear lime a sequence of simple motions that
moves one of the configurations to the other.
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