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Abstract

In this paper, a class of 2-D compliant motion planning problems [1] [2], namely, a disc pushing another
disc, is studied. The space is shown to possess some unusual and complex propertics not seen in other
motion planning problems. We characterize the 2-D space by dividing it into six different types of regions
with different dimension, symmetry and directedness. The boundaries between different. regions are then
characterized and complexity of motion planning in each type of region is discussed,

Consider a system consisting of two circular discs A and B in a closed 2-D space (which we call a room)
with a polygonal boundary (which we call walls). A is a robot free to move, and B is an object whose center
b needs to be moved from a specific starting position s to a specific final position f. The only way one can
move B is by ‘pushing’ A against it. To simplify the problem, we assume that there is no friction between
the discs or between the discs and the walls. We also assume that B has no inertia, and the motion of I3
is compliant with the walls. A point where two walls meet is called a corner. We also denote by d(z) the
distance from a point z to the nearest wall.

First, we observe that the direction which B can be moved is restricted when d(b) < 214 + rp, where 74
and rpg are the radii of A and B respectively. In Figure 1, the direction that b can be moved is limited by
be and bd. In fact, since Zcbd < w, once b is moved to b/, it can never be moved back to b again. This shows
the directedness of the region. Region R is directed if for any two points £,y € R such that b can be moved
from position z to position y along a path in 12, b can not be moved from y to z along any path that lies in
R; otherwise R is undirected.

Second, we observe that within certain regions, B can be moved from one position to another position
and then be moved back, but the two loci are different in nature. In Figure 2, b can be moved from b to ¥
along the line bb/, but the trip back must take a zigzag locus because of the restriction on the position of
Al. This shows the asymmelry of the region. Region R is asymmetric if not every locus of the motion of b
from z to y is a possible locus of that from y to z, for any two points z,y € R, otherwise IR is symmelric.
Note that if R is directed then R must be asymmeltric, but not vice versa.

We call the set of admissible positions of a the free space for A, and denote it by F,. And we define F in
the same way. For any position x, we denote the circle of radius (r4 + rp) centered at z by C(a). A room is
reachable if for any position ¢ € Fy, C(z) N F, # 0. From here on, we only consider reachable rooms, unless
otherwise stated.

The free space Fj can be divided into six types of regions:

e A 2-D region which is both undirected and symmetric is called an a-region.
e A 2-D region which is undirected and asymmetric is called a B-region.

e A 2-D region which is directed is called a y-region.

e A 1-D region which is undirected and symmetric is called a é-region.

e A 1-D region which is directed is called an e-region.

e A point such that b can only be moved into but not from it is called a (-region or a black hole®.

1We assume that A can be ‘lifted’ and placed at will.
2In an unreachable room, ¢-regions may have dimensions higher than zero.
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Depending upon the geometry of the room and discs, there may not exist all the regions listed above. For
example, there will be no a-region if for any point z € F, d(z) < 2rs + rp.

Theorem 1. The regions can only be connected in the following ways ( ¢ => v means B can be pushed
from a ¢-region directly into a y-region): a = 3, f =2 a, 8 =6, 6 => 3, B => v, Y =>6, v =&,
b=e,7y=(, 6=( and e = (. ‘

A room is sparse if for any position £ € Fy, T(z) intersects with at most two walls.

We denote the ratio r4/rg by p.

Theorem 2. A sparse room is reachable if and only if

p-l)

p<1,or p>1 and for any corner 6 > 2arcsin( 71
P

Since we assume no friction and inertia, the locus of b follows a special ‘pushing aside’ curve (which we
call a P-curve) when the direction of pushing keeps constant but is not along ab. When A moves along pg
(which we call major azis) and the initial position of b is not on Pq, B will be pushed until ab L 57 (where
its center position b is called an end point).

Theorem 3. If the major axis is the y-axis, and the end point is (L, 0), then the P-curve is defined by:

z
=VI2—-224LIn ———.
y r nL-I-\/Li—a:2

Theorem 4. In a sparse room, a corner angle of 0 induces a (-region if and only if

1-p 1-p
0 < .
3 )0} <6< arccos(l +p)

1
> —, and 2arcsin max
p {( o

3

The corner also induces two e-regions when the equality does not hold.

Now we characterize the boundary between regions.

From definition of the regions and theorem 1, we know that a-regions and B-regions are separated by
line segments parallel to the walls at distance (2r4 + rp), and all the e-regions (if there are any) are line
segments parallel to the walls at distance rp. If p < 1, there are no é-regions, otherwise, there are two types
of é-regions: (a) line segments parallel to the walls at distance r4 (which we call 61-regions), and (b) the
boundary between f-regions and y-regions (which we call é,-regions).

Theorem 5. For a convex sparse room, the boundary between B-regions and ¥-regions consists only of
line segments, circular arcs and P-curve segments.

Proof. We first consider the case where p > 1, i.e. Fy C F,. For any point z € F} that is at least
(ra + rB) away from any vertex on the boundary of F,, z belongs to a é-region if d(z) = r4 or d(z) = rp,
otherwise, z belongs to a y-region if rg < d(z) < r4 and z belongs to a B-region if r4 < d(z) < 2r4 + rp.
See Figure 3.

When z is within the distance of (r4 +rp) from a vertex v on the boundary of F,, the situation becomes
complicated. The boundary between the S-region and y-region is determined by (i) C(v), (ii) the lines
and I3 that are parallel to the walls at distance r4, (iii) the P-curve passing the intersection point between
C(v) and l; and having I, as its major axis, and (iv) the P-curve passing the intersection point between
C(v) and I3 and having !, as its major axis. See Figure 4.

It can be shown that when @ < 7 /4, the P-curves are outside the circular arc, so the boundary consists
of only the circular arc. When 7/4 < 6 < ¢, where ¢ is the angle that makes both P-curves intersect with
C(v) at its mid point, the boundary consists of (i) the part of C(v) that lies within its intersection points
with the P-curves, and (ii) the P-curve segments. It can be shown that ¢ satisfies the following equation?:

2(cos g — cos ¢) = In(sin ¢(1 + cos *g)) — In(sin gi(l + cos ¢)).

3 According to definition, we have L = r4 4 rp.
4 ~ 61°53'00".
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When ¢ < 0 < m, The intersecting point of the two P-curves locates on or inside C(v), so the boundary
consists of only two P-curve segments. This concludes the case for p > 1.

When p < 1, the y-regions can only exist near corners. As in the above case, the boundary between a
B-region and a y-region is determined by the circle C(u) (u is the vertex on the boundary of F}), the two line
segments parallel to the walls at distance rp, and the two P-curve segments defined similarly. See Figure 5.

When p < 1/3 or 6 < 2¢(p), where ¢(p) = arcsin iTe’ or 8 > a.rccos(——-f) there is no y-region at all;
otherwise, the shape of the boundary depends on p and 6. If 2¢(p) < 0 < é(p) + 7/4, the boundary consists
of only the arc on C(u). If ¢(p) + /4 < 0 < ¢, where ¢ satisfies

2(cos % ~ cos( ~ $(s))) = In(sin(s — $(p))(1 + cos £)) ~ In(sin L1 + cos( - o(e)),

then the boundary consists of both P-curve segments and part of C(u). Finally, the boundary consists of
only the two P-curve segments when ¢ < 0 < arccos(—-e) Q. E D
Theorem 6. In a sparse room, the boundary between p-regions and y-regions consists of line scgments,
circular arcs, P-curve segments and ellipsoid arcs.
Proof. In theorem 5, we have considerd the case for corner angle § < x. For a corner of § > =, if
p < 1, there is no vy-region near the corner; otherwise the boundary between the S-region and the y-region
is determined by segments of the following ellipsoid arcs that are closest the the corner: (a) the locus of the
mid point of a line segment of length 2(r4 + rg) when its end points slide along (i) the line parallel to the
wall at distance r,, and (ii) the circular arc of radius r4 centered at the corner, respectively, and (b) the
locus of this mid point when t.he two end points slide along the two lines parallel to the walls at distance ry4.
Particularly, when
—f
V2(T+p) "
the vy-region near the corner splits into two separate parts. See Figure 6. Q E D
Corollary 1. A corner of angle @ causes a §;-region to connect to a S-region if and only if

—f )
V2(1 +p)

Theorem 7. In a sparse room with n walls, the number of regions is at most 6n.

Theorem 8. In a sparse room, the connection between the regions can be determined in time 0(n?3),
where n is the total number of walls.

Theorem 9. If z and y are two points in a y-region, and b can be pushed from z to y along a path
totally within the region, then the motion can be accomplished by at most two linear movements of A.

However, for motion planning in B-region, the complexity of motion depends on the location of the
starting and final position. For example, in Figure 2, the motion from b’ back to b takes more steps when
b’ is closer to the boundary between f-region and y-region (shown as dash line). When b’ approaches this
boundary, the number of steps required to move from b’ to b approaches infinity.

In conclusion, a class of 2-D compliant motion planning problems is studied. The space under such
a model demonstrates some unusual properties not shown in other motion planning problems. We also
characterize the regions and the connection among them.

6 > 2arctan(1 + p) + 2 arctan(

p>1, and 0 > 2arctan(1 + p) + 2 arctan(

Acknowledgements
The author thanks Dr. Joe Culberson for helpful comments and discussions.
References

[1] J. F. Canny (1989). On Computability of Fine Motion Plans. Proc. IEEE International Conference
on Robotics and Automation, Scottsdale, Arizona.

[2] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor (1984). Automatic synthesis of fine motion strategies
for robots. The International Journal of Robotics research, Vol. 3, No. 1, pp. 3-20.



73

(LLLLLL L

A\

Il HHIllllllltllllRllRhSS)

N

mmrmTTmTEEEREEREE]

LSS S S S/ Y
Figure 1.

- ——
- -

A O N N NN NN NN NN

Figdre 3. Figure 6.



