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Computing the Wingspan of a Butterfly
(Extended Abstract)
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Abstract

A simple polygon P is a butterfly polygon provided it
contains exactly four convex vertices labeled a,b,¢,d in
order such that the line segments [a, c] and [b, d] inter-
sect. In this paper we consider a fundamental geomet-
ric minimization problem which we call computing the
wingspan of a butterfly. The problem involves comput-
ing a shortest line segment joining a pair of opposite
concave chains of an n vertex butterfly polygon, where
the line segment is constrained to lie inside the polygon.
We propose an O(log? n) time algorithm for computing
such a line segment. This result finds application in
computing shortest transversals of sets, minimal sets of
external visibility, and shortest lines-of-sight.

1 Introduction

Several geometric optimization problems involving the
computation of shortest distances or shortest line seg-
ments have been considered in the computing literature.
For example, Edelsbrunner showed how to compute the
shortest distances between two convex polygons with a
total of n vertices in O(log n) time [7]. Dobkin and Kirk-
patrick proposed a solution to the three dimensional ver-
sion of this problem. They gave an O(n) time algorithm
for computing the shortest distance between a pair of
convex polyhedra with a total of n vertices [6]. A simi-
lar problem was considered by McKenna and Toussaint
who showed that the minimum vertex distance between
a pair of convex polygons with a total of n vertices could
be computed in O(n) time [8]. In this paper we consider
a closely related problem which we call computing the
wingspan of a butterfly. A buiterfly polygon is a simple
polygon containing exactly four convex vertices labeled
a,b,c,d in order such that the line segments [a, ¢] and
[b, d] intersect. The problem is stated as follows: given
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an n vertex butterfly polygon P and a pair of opposite
concave chains of P, compute a shortest line segment
joinin§ the chains that lies inside P. We propose an
O(log”® n) time algorithm that solves this problem. Note
that our algorithm also gives an O(log? n) time solution
to the problem of computing the shortest distance be-
tween two convex polygons that is constrained to pass
through a point.

2 Geometric Theory

Consider an n vertex, butterfly polygon P with con-
vex vertices labeled vy, vs, v3, w4 in counterclock-
wise (CCW) order. Without loss of generality, assume
vy, ¥2,v3 and vq are located in the 1st, 2nd, 3rd and
4th quadrants of the plane, respectively. Furthermore,
label the concave chains of P by T, B, L and R where
T = (v1,...,v2), L = (v3,...,v3), B = (va,...,v4)
and R = (v4,...,v1). We concentrate on computing a
shortest line segment lying inside P that joins L to R.
Qbviously, not every line segment joining L to R lies in-
side P. However, if r is a shortest line segment joining
L to R and r also lies inside P, then r is a solution to
our problem.

" Let I and !; be the common separating tangents of
T and B where slope(l;) < slope(l;). As well, let a
and ¢ denote the intersection points of l; with R and
L, respectively, and let b and d denote the intersection
points of I; with L and R, respectively. Finally, let o’
and ¢’ denote the tangent points of I3 with 7" and B, re-
spectively, and let b’ and d’ denote the tangent points of
l; with T and B, respectively. Observe that every line
segment joining L to R that has an endpoint on any
of the CCW chains (a,...,v1), (va,...,b), (¢,...,v3) or
(va,...,d) intersects either T or B. Hence, we may re-
place the CCW chains (a,...,a"), (b',...,b), (c,...,c")
and (d',...,d) of P by the line segments [a,a’], [b', 8],
[c,c'] and [d', d], respectively, without affecting the so-
lution to our problem. Since this operation can be car-
ried out in O(log n) time, we will assume, without loss
of generality, that the line segments [v1, v3] and [ve, v4]



are contained in P.

~ Suppose there is a unique line segment realizing the
shortest distance between L and R. This line segment
must have as an endpoint a vertex of either L or R. Now
suppose there is more than one line segment realizing
the shortest distance between L and R. In this case,
there must exist parallel edges, e, and ey, such that
every shortest line segment joining L to R also joins e,
to e and is perpendicular to e, and es. Furthermore,
exactly two of the shortest line segments joining L to R
must have as an endpoint a vertex of either L or R.

Let s = [a, b] be a shortest line segment joining L to
R where a € L, b € R and either a is a vertex of L or b
is a vertex of R. Furthermore, if s intersects T'(B) then
s is the highest (lowest) such line segment. We show
later that if s intersects T'(B) then every shortest line
segment that lies inside P and joins L to R is tangent
to T'(B). This suggests that an appropriate strategy for
solving our problem would be to break the problem into
two subproblems, as follows. Determine whether s lies
inside P, and if it does, report it as the solution. If s
does not lie inside P, then over all line segments join-
ing L to R and tangent to T(B), compute the short-
est. The first subproblem is equivalent to computing a
shortest line segment joining two disjoint convex poly-
gons, a problem that has been solved by Edelsbrunner
in O(log n) time [7]. We now show how the second prob-
lem can be converted into an instance of a fundamental
geometric optimization problem.

A concave-cone C is composed of two concave chains
Cr = (p1,pa,-..,p.) and Cr = (91,93,---,9r) Where
P1 = q1. Furthermore, as the edges of C and Cg are
traversed in order, their slopes are strictly increasing
over the range (—o00,0) and strictly decreasing over the
range (0,+00), respectively. The vertex that Cy and
Cp share is called the apez of C. A convez-bridge of C
is a convex chain P = (wy, w2, ..., w;) where w; € Cr,
wi € Cg, P is the upper half of some convex polygon
and P lies below [p., gx). Let u and w denote the slopes
of the common tangents of P with Cr, and Cg, respec-
tively. For each slope m € [u, w] there is a line segment
h(m) with slope m that joins CL to Cr and is tangent
to P. Consider a function f of slope defined over the
range [u, w] so that f(m) for m € [u, w) is the length of
h(m). The following lemma characterizes the function
f over the range [u, w].

Lemma 1 The function f over the range [u, w] is uni-
modal.

Given that s does not lie inside P, we would like to
apply Lemma 1 to the problem of computing the short-
est line segment tangent to T'(B) and joining L to R.
Consider the following lemma.
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Lemma 2 Every line segment joining L to R either lies
inside P or inlersects eractly one of T and B.

Proof: Consider an arbitrary line segment r = [p, q]
that joins L to R and observe that r meets L and R
only at p and ¢q. Let v be the intersection of the line
segments [vy,v3] and [vz, v4]. Clearly, T is contained in
Av,vav and B is contained in Avzvsv, however, both T
and B may not contain v. Finally, observe that r either
passes through v or intersects exactly one of Avjvyv
and Awvzvqv. Hence, r either lies inside P or intersects
exactly one of T and B. _ o

In what follows, we assume neither vy, v, v3 nor v,
is an endpoint of s. This assumption guarantees that s
always decomposes L and R into four chains and serves
only to eliminate from consideration the simple cases
where the resulting number of chains is less than four.
Let a1, a4 and a3, a3 be the pairs of angles formed at the
intersections of s with L and R, respectively, where a;
and a3 lie above s and a3 and a4 lie below s. Consider
the following lemma.

Lemma 3 If s intersecis T(B) then a; > 7/2, az >
T/2, a3 2 7/2, @y > 7/2 and ag+ay > 7 (ay+az > 7).

Proof: Suppose s intersects T. If a; < 7/2 then
there must exist some b’ € R such that the line segment
[a,b] is shorter than s, which contradicts our assump-
tion that s was shortest possible. Hence a; > 7/2. Sim-
ilar arguments demonstrate that a; > 7/2, a3 > 7/2
and a4 > 7/2. To complete the proof observe that our
choice of s rules out the possibility that a3 = ay = 7/2.
Hence a3 + a4 > 7. An analogous proof holds for the
case when s intersects B. O

Suppose that s intersects T(B). Let s, = [a,b'] be
the line segment tangent to T(B) and joining a to R.
Similarly, let s, = [b,a’] be the line segment tangent
to T(B) and joining b to L. Observe that by Lemma
2 both s, and s; lie inside P. The following lemma
characterizes every shortest line segment that lies inside
P and joins L to R.

Lemma 4 If s intersects T(B) then of the line seg-
ments that lie inside P and join L to R, every shortest
one is tangent to T(B) and lies below (above) s.

Proof: Suppose s intersects T. Observe that every
line segment that joins L to R and has both endpoints
lying either above s, or above s, intersects T'. Consider
a pair p € L, ¢ € R of points where p lies on or above
s, and g lies on or below s3. Let r = [p, g] and recall
Lemma 3. If r # s, then r is longer than s,. Similarly,
if p lies on or below s, and q lies on or above s; and
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r # s, then r is longer than s;. Hence, if s intersects
T then of the line segments that lie inside P and join
L to R, every shortest one lies below s. Consider a line
segment r that joins L to R, that does not intersect T'
and whose endpoints lie on or below s. Let r’ be the line
segment parallel to r that joins L to R and is tangent
to T. Again, recall Lemma 3. If both endpoints of r'
lie on or below s and r # r', then r is longer than r',
On the other hand, if either endpoint of r' lies on or
above s and r # s, and r # s;, then r is longer than
one of 8, and s,. Hence, if s intersects T' then of the
line segments that lie inside P and join L to R, every
shortest one is tangent to 7" and lies below s. A similar
proof holds for the case where s intersects B. (n]

Let m, and m; denote the slopes of s, and s, re-
spectively. For each slope m € [m,, m] there is a line
segment s(m) with slope m that joins L to R and is
tangent to T'(B). Consider a function d of slope defined
over the range [m,,ms] so that d(m) for m € [m,, my)
is the length of s(m).

Lemma 5 Ifs intersects T(B) then the function d over
the range [m,, my) is unimodal.

Proof: Suppose s intersects 7. Let e, and e, be
the edges of L and R, respectively, that intersect s and
extend below s. Recall Lemma 3. If we extend the
edges e, and e, above s they will intersect at some
point v above 3. The two chains L' = (v,a,...,vs)
and R’ = (v,},...,vs) together form a concave-chain C.
Furthermore, the portion 7" of T that lies inside C, is
a convex-bridge of C. Let u and w be the slopes of the
common tangents of 7° with L' and R', respectively.
Combining Lemma 1 with the fact that [m,,my] is a
subrange of [u, w], we get that the function d over the
range [m4, ms) is unimodal. An analogous proof holds
for the case where s intersects B. n]

3 Algorithm

Observe that the line segments s(m) for m € [mg, my)
are exactly those that join L to R, are tangent to T(B)
and lie below (above) s. This suggest the following al-
gorithm that takes as input the butterfly polygon P and
returns a shortest line segment that joins L to R and
lies inside P. First determine the line segment s. If s
lies inside P then return s, otherwise find the line seg-
ment that corresponds to the minimum of the function
d over the range [m,,m;) and return the line segment.
The correctness of the algorithm follows directly from
Lemma 5.

It remains to be shown that there exists an O(log® n)
time implementation of the algorithm. We assume P is
stored in a data structure, such as an array or balanced
tree, that in O(logn) time supports binary searches on
the chains L, R, T and B, and can report the vertices
adjacent to a given vertex.

Using an algorithm of Edelsbrunner [7] that computes
the shortest distance between two disjoint convex poly-
gons, s can be computed in O(log n) time. Given either
a line or a line segment and a convex polygon Q with n
vertices, whether the line or line segment intersects Q
can be determined in O(logn) time using an algorithm
of Chaselle and Dobkin [5]. Hence, in O(logn) time it
is possible to determine if s lies inside P, since, if s does
not lie inside P then s must intersect either T or B.
Clearly, if s lies inside P, the algorithm computes the
desired line segment in O(logn) time.

Suppose s intersects either 7' or B. We now turn
our attention to computing the line segment that corre-
sponds to the minimum of the function d over the range
[ma, my), which we call the optimal line segment. In
order to compute the optimal line segment it is neces-
sary to first compute the line segments s, and s;, which
requires O(log n) time. Suppose, without loss of gener-
ality, that s intersects 7. Let p and ¢ denote the points
of s, and s, respectively, that are tangent to T, and
let T° denote the portion of T between p and g in the
clockwise sense. Recall that the function d over the
range [m,, m;] is unimodal. Suppose we are given soine
slope » € [ma, m;]. The line segment s(r) can be found
in O(log n) time by first computing the line ! with slope
r that is tangent to 7', and then the intersection of {
with L and R. Furthermore, given s(r), it is possible
to decide in O(log n) time whether the optimal line seg-
ment has slope in the range [m,,r] or [r,m;]). Hence,
using binary search on 77, it is possible to isolate, in
O(logn) time, the vertex v € T” to which the optimal
line segment is tangent.

Given v and some point ¢ € L such that the line
1 through v and c is tangent to T', and has slope in
the range [m,, my], it is possible to determine the in-
tersection point of { with R in O(logn) time. Further-
more, let r be the slope of I, then it is possible to decide
in O(log n) time whether the optimal line segment has
slope in the range [m,, r] or [r,m,;]. Hence, having iso-
lated v, the optimal line segment can be determined in
O(log® n) usmg bmary search on L. Clearly, the algo-
rithm runs in O(log? n) time. Therefore, we have estab-
lished the following theorem, which is the main result
of this paper.

Theorem 1 Given an n verter butterfly polygon P, the
wingspan of P can be compated in O(log® n) time.
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4 Applications

We have presented several results which find application
in a variety of contexts. One approach to the problem
of computing a shortest transversal of a family of n line
segments requires solving n different subproblems (3,
4]. Each subproblem involves determining the wingspan
of a butterfly polygon. A similar application arises in
computing a shortest transversal of a family of convex
polygons [4]. Combining our results with those found in
[2], it is possible to obtain the shortest line segment from
which an n vertex convex polygon is weakly externally
visible in O(n) time. Finally, given two edges of a simple
n vertex polygon, the shortest line-of-sight between the
two edges (shortest line segment internal to the polygon
and joining the two edges) can be computed in O(n)
time using our results in conjunction with those in [1].

5 Concluding Remarks

In this paper we presented an O(log? n) time algorithm
for computing the wingspan of an n vertex butterfly
polygon. We also described several applications of the
algorithm. It remains an open problem as to whether
the wingspan of a butterfly polygon can be computed
in O(logn) time. The existence of such an algorithm
would imply that the shortest distance between a pair
of convex polygons that is constrained to pass through
a point could also be computed in O(logn) time.
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