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A Generalization of Staircase Visibility *

Sven Schuierer! Gregory J. E. Rawlins * Derick Wood §

Abstract

In this paper we investigate the consequences of defining visibility based on special classes of curves rather
than straight lines. The general framework we make use of here is known as O-convexity, a generalization of
the usual notion of convexity in the plane. _

We investigate the structural properties of O-convex curves in simple polygons. Further, we give algorithms
to construct the kernel under various versions of visibility for simple polygons.

1 Introduction

The kernel of a polygon is the set of all points which see every point in the polygon. Finding the kernel of a polygon
is one of the central visibility problems in computational geometry.

Visibility questions can also be seen as reachability questions. The particular problem we have in mind is that
of “guarding” a polygon with one robot whose motion is restricted in some way. The particular restriction we
investigate here is that of requiring that the robot’s path must be monotone in some set of orientations.

In [6] we motivated and gave a new definition of “sight” different to the usual notion of straight line visibility.
Coupled with the convexity considerations from [5] this lead us to general visibility considerations.

2 Definitions

We shall assume that we are working in the plane and that the plane is oriented in the usual way. Given a directed
line I we say that its orientation is the counterclockwise angle made with the positive z-axis and we denote it by
©(!). Given an undirected line we say that its orientation is the smaller of the two possible orientations.

A curve C is z-conver if the intersection of C with any horizontal line is connected. Equivalently, C is z-convez
if it is y-monotone. This definition can be extended to 0-convez curves by choosing the class of intersecting lines
as the lines of orientation @ instead of the lines parallel to the z-axis (the lines of orientation 0°).

We further generalize this notion to a set of orientations as follows: Given a set of orientations O we say that
the curve C is O-convez if it is 6-convex, for all  in O. It is easy to see that if O+ denotes the set of orientations
which are orthogonal to those in O, then a curve C is O-convex if and only if C is monotone with respect to all
orientations in @+. Note that if O is the set of all orientations, the only O-convex curves are lines, rays, and line
segments. From now on we will call an O-convex curve an O-stairsegment.

Since we defined O-convexity using the intersection of lines, we can assume that with § we always have 6 + 180°
in O. We denote 8 + 180° by 6.

3 Restricted Orientation Visibility

Our last observation suggests that we define the generalized notion of visibility based on the concept of O-
stairsegments.

Definition 3.1 Let P be a polygon. We say two poinis p and g in P O-see each other or are O-visible from each
other if there is an O-slairsegment in P that connects p and q.
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Apart from the usual definition of straight line visibility which is captured by the special case that O = [0°,360°)
the case that O = {0°,90°} has also been studied in the literature [2,4]. This is also known as staircase-visibility.

" In the following we are mainly interested in algorithms to compute the O-kernel which is defined below. We
will restrict ourselves to simple polygons and finite O.

Detinition 3.2 The O-kernel of a polygon P 1s the set of poinls in P which O-see all other points in P.

3.1 O-Visibility and the O-kernel

Before we can give an algorithm to compute the O-kernel of a simple polygon, we need the following two powerful
results about O-visibility.

Lemma 3.1 Let O;, i € I C IN, be some family of orientations and O their union, i.e. O = JO;. IfP is a
simple polygon and p and q are two poinls in P, then we have that

p O-sees g if and only if p O;-sees q, for alli € 1.

As an immediate consequence we obtain the followmg relationship between the O-kernel and the O;-kernel of a
polygon. ‘

Corollary 3.2 Let O;, i € I C IN, be some family of orientalions and O their union. If P is a stmple polygon,
then
O-kernel(P) = ﬂ(O;-kernel(P)).
iel
This immediately yields an algorithm to compute the O-kernel of a simple polygon, for finite O, once we are able
to compute the O-kernel for one direction since Corollary 3.2 implies that

O-kernel(P) = ﬂ ({0}-kernel(P)).
0€0O

3.2 The {0°}-Kernel of a Polygon

In this subsection we consider the special case that |O] = 1. W.lo.g. we can assume that O = {0°}. Given a
polygon P, we wish to determine {0°}-kernel(P). That is, the set of all points which see every point in P via
{0°}-sta1rsegments which lie in P. Recall that a {0° }-stalrsegment is a curve which is monotone with respect to the
y-axis. We develop an algorithm to find {0°}-kernel(P) in linear time and space. We use the usual RAM model
of computation in which any arithmetic operation costs constant time.

Consider a reflex vertex v; in P where v;_; and v;4; are either both above or both below v;. These vertices
create two types of “extrema”’—refler marima and reflezx minima. Note that a horizontal edge with two reflex
vertices may also form a reflex maximum or minimum.

Lemma 3.3 Given a simple polygon P, {0°}-kernel(P) lies between the lowest reflex minimum and the highest
reflex mazimum.

Proof: We only prove that no point above the lowest reflex minimum or below the highest reflex maximum can
belong to {0°}-kernel(P). To this end consider the horizontal line I through a reflex maximum v;. If there is a
point p in {0°}-kernel(P) that lies below v;, then either v;_; or v;4; cannot be {0°}-seen from p since any curve
crossing ! twice cannot be {0°}-convex. O

The above lemma immediately yields an algorithm to compute {0°}-kernel(P). We Jjust have to find the lowest
reflex minimum v; and highest reflex maximum v, and then output the left and right part of the boundary of P
with a y-range in the interval vy, v;]. All of this can be done in linear time. So we have the following result.

Theorem 3.4 Let P be a simple polygon, then {0°}-kernel(P) can be computed in time linear in the number of
verlices.
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Figure 1: {0°}-kernel(P) is the intersection of S(0°) and P.

3.3 A Fast Algorithm for the O-Kernel of a Polygon

Above we presented an algorithm which computes the {6}-kernel of a polygon P, for each § € O, and then
intersects the kernels obtained to yield O-kernel(P). Since we have to apply the {0°}-kernel subroutine |O|-times,
the algorithm needs at least time Q(n-|0|) to compute O-kernel(P) even if we do not take the time for intersecting
the {#}-kernels of P into account. -

In the following we will give an algorithm to compute O-kernel(P) that only takes O(nlog|O|) time if O is
given as a sorted set. In order to develop an algorithm that obtains the above time bound, we have to view the
{0°}-kernel a little differently. Let vy be the lowest reflex minimum and v; the highest reflex maximum of P. If
we denote the horizontal line through v; by h;, for i = 1,2, then Lemma 3.3 implies that {0°}-kernel(P) is the
intersection of the slab S(0°) between hy and hy with P (see Figure 1). Hence, if we are given the slabs S(0)
that lie between the @-oriented lines through the lowest f-reflex minimum and the highest reflex #-maximum, for
all 8 € O, then we have that

O-kernel(P) = ﬂ S@NP)= (n S(@)) np

- €0 ([:{e]

In the following we denote (,¢ S(8) by C(P). Since S(6) is the intersection of two f-oriented halfplanes, C(P)
is an @-oriented convex set. This, in particular, implies that it consists of at most |O} edges. Hence, C(P)NP can
be computed in time O(nlog |Q]) by testing, for each edge ¢ of P, if ¢ intersects an edge of C(P). This yields the
intersection points of C(P) with P and enables us to compute the vertices of C(P) N P in additional linear time.

So we only have to show how to compute C(P) in time O(nlog|O]). Given a point p in the plane we denote
the (closed) halfplane above the 6-oriented line ! through p by A*(p,8). For a given orientation 0, we denote the
highest reflex 8-maximum of P by vg.

The first observation we make is that S(@) is the is the intersection of h*(ve,8) with h*(ve-1,07!) since the
lowest reflex 6-minimum is, of course, the highest reflex 8~!-maximum. Since we always have that 0~ is in O if
0 € O, we only have to find the intersection of the #-oriented halfplanes above the reflex 0-maxima, taken over
all # € O. Therefore, if vy is the highest reflex #-maximum of P, for each 8 € O, then we want to compute
Moco h* (v, 8).

The idea of the algorithm is to scan the boundary of P counterclockwise and, thus, successively process the
vertices of P. During the scan we keep a list £ of the highest reflex -maxima we have encountered so far, for
each 8 € @. So when we process the next reflex vertex v, we check for which orientations § € O v is a reflex
0-maximum. We replace those #-maxima vy for which v is higher than v, in the @-coordinate system by v. The
problem is that there may be Q(]O|) of orientations @ which have vy replaced by v: Hence, the algorithm may still
take time Q(n|@)) if there are Q(n) reflex vertices, each being a #-maximum for Q(|O|) orientations 8.

The important observation to reduce the running time of the algorithm is that we are only interested in the
intersection of the halfplanes h*(vg,#), with # € ©. If we have that the so far encountered highest reflex #-
maximum vy is lower than v, for a subset @ of orientations # in @, the following lemma shows that there exist
two orientations 8; and 6 such that h*(v,8;) N h*(v,8;) already equals (Yyeo: h* (v,0). If we can find 8, and 6,
in logarithmic time, we only have to replace vs, and ve, in L since only these may influence the final intersection.
If £ is stored as a dictionary, then replacing vs, and vg, can be achieved in time O(log [O]). Hence, it only has to
be shown that #; and 6, exist and can be found in time O(log |O}).

Lemma 3.5 If P is a polygon, O a finite set of orientations, and v a reflex vertezx of P, then there are two
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orienlatlions 0, and 0, in O such that

h*(v,0,) N h*(v,02) = [ h*(v,6)
[

1f the inlersection on the right side 1s taken over all 0 € O for which v 1s a reflez U-mazimum. Furthermore, vy
and 0y can be found in time O(log |O]).

So the scanning algorithm yields a number of vertices vg such that

() h*(ve,8) NP
v

yields the O-kernel of P. Above we have shown that we can compute the vertices vg in time O(nlog|0]). Observe
that there are at most O(]O[) such vertices, at most one for each § € . Furthermore, note that the above
computation yields the vertices vy sorted according to 6. It is easy to show that the intersection of halfplanes that
are sorted according to slope can be computed in time linear in the number of halfspaces. Hence, the intersection
Meco 1™ (ve,0) can be computed in time O(|O|). This proves the following theorem.

Theorem 3.6 The O-kernel of a simple polygon with n vertices can be computed in time O(nlog|O| + |0)), for
finite O, given O(|O|log|O]) preprocessing time to sort O.

There are two questions in connection with the above result.

(1) Is it possible to compute the O-kernel of polygon within the same time bounds if @ consists of a finite number
of intervals, i.e. the algorithm should have a running time of O(nlogr) if O consists of r intervals?

(i1) Is there an algorithm that computes the O-kernel faster or can a lower bound be proven?

As to the first question we conjecture that this is possible using an approach that is similar to the kernel
algorithm of Lee and Preparata [3], i.e. processing the vertices in a scan as in our algorithm and keeping track of
a suitable representation of the @-kernel. :

As for the second question the situation is less clear. On the one hand, there is an easy to show lower bound
on finding all vertices which are a #-maximum, for some 8 in 0, of Q(nlog|0|), on the other hand there is a
kernel algorithm by Cole and Goodrich [1] which may be adapted to yield an O(n + |©|) time algorithm for the
computation of O-kernel(P). \
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